
 CSE V Sem ASDL Lab

ILAHIA COLLEGE OF ENGINEERINGG & TECHNOLOGY

Mulavoor,Muvattupuzha

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CS 333 APPLICATION SOFTWARE DEVELOPMENT LAB MANUAL

VVTTHH SSEEMMEESSTTEERR

 CSE V Sem ASDL Lab

LIST OF EXPERIMENTS

1. Data Definition, Table Creation, Constraints

2. Insert, Select Commands, Update and Delete Commands.

3. Nested Queries and Join Queries

4. Views

5. High level programming language extensions (Control structures,

Procedures and Functions.

6. Triggers

7. Determination of Attribute Closure ,Candidate key, Functional dependency.

8. Checking serializability of a Schedule.

9. Dynamic Hashing.

10. Report Generation.

11. JDBC/ODBC Interface.

 CSE V Sem ASDL Lab

Exercise Number: 1

Title of the Exercise : DATA DEFINITION LANGUAGE (DDL) COMMANDS

Date of the Exercise :

OBJECTIVE (AIM) OF THE EXPERIMENT

To practice and implement data definition language commands and constraints.

a) Procedure for doing the experiment:

Step

no.
Details of the step

1

DDL COMMAND

It is used to communicate with database. DDL is used to:

o Create an object

o Alter the structure of an object

o To drop the object created.

2 The commands used are: Create, Alter, Drop, Truncate

3

INTEGRITY CONSTRAINT

An integrity constraint is a mechanism used by oracle to prevent invalid data entry

into the table. It has enforcing the rules for the columns in a table. The types of the

integrity constraints are:

a) Domain Integrity b) Entity Integrity c) Referential Integrity

4

a) Domain Integrity

This constraint sets a range and any violations that take place will prevent the user

from performing the manipulation that caused the breach. It includes:

Not Null constraint:

While creating tables, by default the rows can have null value .the enforcement of

not null constraint in a table ensure that the table contains values.

Principle of null values:

o Setting null value is appropriate when the actual value is unknown, or when a

value would not be meaningful.

o A null value is not equivalent to a value of zero.

o A null value will always evaluate to null in any expression.

o When a column name is defined as not null, that column becomes a mandatory

i.e., the user has to enter data into it.

o Not null Integrity constraint cannot be defined using the alter table command

when the table contain rows.

5

Check Constraint:

Check constraint can be defined to allow only a particular range of values .when the

manipulation violates this constraint, the record will be rejected. Check condition

cannot contain sub queries.

 CSE V Sem ASDL Lab

6

b) Entity Integrity

Maintains uniqueness in a record. An entity represents a table and each row of a

table represents an instance of that entity. To identify each row in a table uniquely

we need to use this constraint. There are 2 entity constraints:

Unique key constraint

It is used to ensure that information in the column for each record is unique, as with

telephone or drivers license numbers. It prevents the duplication of value with rows

of a specified column in a set of column. A column defined with the constraint can

allow null value.

If unique key constraint is defined in more than one column i.e., combination of

column cannot be specified. Maximum combination of columns that a composite

unique key can contain is 16.

Primary Key Constraint

A primary key avoids duplication of rows and does not allow null values. It can be

defined on one or more columns in a table and is used to uniquely identify each row

in a table. These values should never be changed and should never be null.

A table should have only one primary key. If a primary key constraint is assigned to

more than one column or combination of column is said to be composite primary

key, which can contain 16 columns.

7

c) Referential Integrity

It enforces relationship between tables. To establish parent-child relationship

between 2 tables having a common column definition, we make use of this

constraint. To implement this, we should define the column in the parent table as

primary key and same column in the child table as foreign key referring to the

corresponding parent entry.

Foreign key

A column or combination of column included in the definition of referential

integrity, which would refer to a referenced key.

Referenced key

It is a unique or primary key upon which is defined on a column belonging to the

parent table.

b) SQL Commands:

CREATE TABLE

It is used to create a table

Syntax: Create table tablename (column_name1 data_ type constraints, column_name2

data_ type constraints …)

Example:

Create table Emp (EmpNo number(5), EName VarChar(15), Job Char(10) constraint un unique,

DeptNo number(3) CONSTRAINT FKey2 REFERENCES DEPT(DeptNo));

Create table stud (sname varchar2(20) not null, rollno number(10) not null,dob date not null);

Rules:

1. Oracle reserved words cannot be used.

3. Underscore, numerals, letters are allowed but not blank space.

3. Maximum length for the table name is 30 characters.

4. 2 different tables should not have same name.

5. We should specify a unique column name.

6. We should specify proper data type along with width.

7. We can include “not null” condition when needed. By default it is „null‟.

 CSE V Sem ASDL Lab

ALTER TABLE

Alter command is used to:

1. Add a new column.

2. Modify the existing column definition.

3. To include or drop integrity constraint.

Syntax: alter table tablename add/modify (attribute datatype(size));

Example:

1. Alter table emp add (phone_no char (20));

2. Alter table emp modify(phone_no number (10));

3. ALTER TABLE EMP ADD CONSTRAINT Pkey1 PRIMARY KEY (EmpNo);

DROP TABLE

It will delete the table structure provided the table should be empty.

Example:

drop table prog20; Here prog20 is table name

TRUNCATE TABLE

If there is no further use of records stored in a table and the structure has to be retained

then the records alone can be deleted.

Syntax: TRUNCATE TABLE <TABLE NAME>;

Example: Truncate table stud;

DESC

This is used to view the structure of the table.

Example: desc emp;

Name Null? Type
--------------------------------- --------

EmpNo NOT NULL number(5)

EName VarChar(15)

Job NOT NULL Char(10)

DeptNo NOT NULL number(3)

PHONE_NO number (10)

 CSE V Sem ASDL Lab

DOMAIN INTEGRITY

Example: Create table cust(custid number(6) not null, name char(10));

Alter table cust modify (name not null);

CHECK CONSTRAINT

Example: Create table student (regno number (6), mark number (3) constraint b check

(mark >=0 and mark <=100));
Alter table student add constraint b2 check (length(regno<=4));

ENTITY INTEGRITY

a) Unique key constraint

Example: Create table cust(custid number(6) constraint uni unique, name char(10));

Alter table cust add(constraint c unique(custid));

b) Primary Key Constraint

Example: Create table stud(regno number(6) constraint primary key, name char(20));

c) Queries:

Q1. Create a table called EMP with the following structure.

Name Type

---------- ----------------------

EMPNO NUMBER(6)

ENAME VARCHAR2(20)

JOB VARCHAR2(10)

DEPTNO NUMBER(3)

 SAL NUMBER(7,2)

Allow NULL for all columns except ename and job.

Solution:
1. Understand create table syntax.

2. Use the create table syntax to create the said tables.

3. Create primary key constraint for each table as understand from logical table structure.

Ans:

SQL> create table emp(empno number(6),ename varchar2(20)not null,job varchar2(10) not null,

deptno number(3),sal number(7,2));

Table created.

Q2: Add a column experience to the emp table. experience numeric null allowed.

Solution:

1. Learn alter table syntax. 2. Define the new column and its data type.
3. Use the alter table syntax.

Ans:

SQL> alter table emp add(experience number(2));

Table altered.

 CSE V Sem ASDL Lab

Q3: Modify the column width of the job field of emp table.

Solution:

1. Use the alter table syntax. 2. Modify the column width and its data type.

Ans:

SQL> alter table emp modify(job varchar2(12));

Table altered.

SQL> alter table emp modify(job varchar(13));

Table altered.

Q4: Create dept table with the following structure.

Name Type

DEPTNO NUMBER(2)

DNAME VARCHAR2(10)

LOC VARCHAR2(10)
Deptno as the primarykey

Solution:

1. Understand create table syntax. 2. Decide the name of the table.

3. Decide the name of each column and its data type.

4. Use the create table syntax to create the said tables.

5. Create primary key constraint for each table as understand from logical table structure.

Ans:

SQL> create table dept(deptno number(2) primary key,dname varchar2(10),loc

varchar2(10));
Table created.

Q5: create the emp1 table with ename and empno, add constraints to check the empno

value while entering (i.e) empno > 100.

Solution:
1. Learn alter table syntax. 2. Define the new constraint [columns name type]

3. Use the alter table syntax for adding constraints.

Ans:

SQL> create table emp1(ename varchar2(10),empno number(6) constraint ch

check(empno>100));
Table created.

Q6: drop a column experience to the emp table.

Solution:

1. Learn alter table syntax. Use the alter table syntax to drop the column.
Ans:

SQL> alter table emp drop column experience;

Table altered.

Q7: Truncate the emp table and drop the dept table

Solution:

1. Learn drop, truncate table syntax.

Ans:

SQL> truncate table emp;

Table truncated.

SQL> drop table dept;

Table dropped.

Result:

Thus the data definition language commands was performed and implemented

successfully.

 CSE V Sem ASDL Lab

 CSE V Sem ASDL Lab

QUESTIONS AND ANSWERS

1.Define the terms DDL:

 Data base schema is specified by a set of definitions expressed by a special language called

a data definition language.

2. What are the categories of SQL command?

SQL commands are divided in to the following categories:

Data Definition language

Data manipulation language

Data control language

Transaction Control Language

3.What is integrity constraint?

An integrity constraint is a mechanism used by oracle to prevent invalid data entry into the

table. It has enforcing the rules for the columns in a table.

4.List the types of constraint.

• Domain Integrity

• Entity Integrity

• Referential Integrity

5.Primary Key Constraint

A primary key avoids duplication of rows and does not allow null values. It can be defined on

one or more columns in a table and is used to uniquely identify each row in a table. These

values should never be changed and should never be null.

6.Referential Integrity

It enforces relationship between tables. To establish parent-child relationship between 2

tables having a common column definition, we make use of this constraint. To implement this,

we should define the column in the parent table as primary key and same column in the child

table as foreign key referring to the corresponding parent entry.

Exercise Number: 2

Title of the Exercise : DATA MANIPULATION LANGUAGE (DML) COMMANDS

Date of the Exercise :

AIM OF THE EXPERIMENT

To study the various DML commands and implement them on the database.

 CSE V Sem ASDL Lab

a) Procedure for doing the experiment:

Step

no.
Details of the step

1

DML COMMAND
DML commands are the most frequently used SQL commands and is used to query

and manipulate the existing database objects. Some of the commands are Insert,

Select, Update, Delete

2

Insert Command

This is used to add one or more rows to a table. The values are separated by commas

and the data types char and date are enclosed in apostrophes. The values must be

entered in the same order as they are defined.

3

Select Commands

It is used to retrieve information from the table. it is generally referred to as

querying the table. We can either display all columns in a table or only specify

column from the table.

4
Update Command

It is used to alter the column values in a table. A single column may be updated or

more than one column could be updated.

5

Delete command

After inserting row in a table we can also delete them if required. The delete

command consists of a from clause followed by an optional where clause.

b) SQL Commands:

INSERT COMMAND

Inserting a single row into a table:

Syntax: insert into <table name> values (value list)

Example: insert into s values(„s3‟,‟sup3‟,‟blore‟,10)

Inserting more than one record using a single insert commands:

Syntax: insert into <table name> values (&col1, &col2, ….)

Example: Insert into stud values(®, „&name‟, &percentage);

Skipping the fields while inserting:

Insert into <tablename(coln names to which datas to b inserted)> values (list of values);

Other way is to give null while passing the values.

 CSE V Sem ASDL Lab

SELECT COMMANDS
Selects all rows from the table

Syntax: Select * from tablename;

Example: Select * from IT;

The retrieval of specific columns from a table:

It retrieves the specified columns from the table

Syntax: Select column_name1, …..,column_namen from table name;

Example: Select empno, empname from emp;

Elimination of duplicates from the select clause:

It prevents retriving the duplicated values .Distinct keyword is to be used.

Syntax: Select DISTINCT col1, col2 from table name;

Example: Select DISTINCT job from emp;

Select command with where clause:

To select specific rows from a table we include „where‟ clause in the select command. It

can appear only after the „from‟ clause.

Syntax: Select column_name1, …..,column_namen from table name where condition;

Example: Select empno, empname from emp where sal>4000;

Select command with order by clause:

Syntax: Select column_name1, …..,column_namen from table name where condition

order by colmnname;

Example: Select empno, empname from emp order by empno;

Select command to create a table:

Syntax: create table tablename as select * from existing_tablename;

Example: create table emp1 as select * from emp;

Select command to insert records:

Syntax: insert into tablename (select columns from existing_tablename);

Example: insert into emp1 (select * from emp);

UPDATE COMMAND

Syntax:update tablename set field=values where condition;

Example:Update emp set sal = 10000 where empno=135;

DELETE COMMAND

Syntax: Delete from table where conditions;

Example:delete from emp where empno=135;

 CSE V Sem ASDL Lab

c) Queries:

Q1: Insert a single record into dept table.

Solution:

1. Decide the data to add in dept.

2. Add to dept one row at a time using the insert into syntax.

Ans:

SQL> insert into dept values (1,'IT','ICET’);

 1 row created.

Q2: Insert more than a record into emp table using a single insert

command.

Ans:

SQL> insert into emp values(&empno,'&ename','&job',&deptno,&sal);

Enter value for empno: 1

Enter value for ename: Aswathy

Enter value for job: AP

Enter value for deptno: 1

Enter value for sal: 30000

old 1: insert into emp values(&empno,'&ename','&job',&deptno,&sal)

new 1: insert into emp values(1,'Aswathy','AP',1,30000)

1 row created.

SQL>

Enter value for empno: 2

Enter value for ename: Arya

Enter value for job: AP

Enter value for deptno: 2

Enter value for sal: 40000

old 1: insert into emp values(&empno,'&ename','&job',&deptno,&sal)

new 1: insert into emp values(2,'Arya','AP',2,40000)

1 row created.

SQL>

Enter value for empno: 3

Enter value for ename: Milan

Enter value for job: Lecturer

Enter value for deptno: 1

Enter value for sal: 12000

old 1: insert into emp values(&empno,'&ename','&job',&deptno,&sal)

new 1: insert into emp values(3,'Milan','Lecturer',1,12000)

1 row created.

 CSE V Sem ASDL Lab

14

Q3: Update the emp table to set the salary of all employees to Rs15000/- who are working

as Lecturer.
Ans:

SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

1 Aswathy AP 1 30000

2 Arya AP 2 40000

3 Milan Lecturer 1 12000

SQL> update emp set sal=15000 where job='Lecturer’;

1 row updated.

SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

1 Aswathy AP 1 30000

2 Arya AP 2 40000

3 Milan Lecturer 1 15000

Q4: Create a pseudo table employee with the same structure as the table emp and insert

rows into the table using select clauses.
Ans:

SQL> create table employee as select * from emp;

Table created.

SQL> desc employee;

Name Null? Type

--- -------- ----------------------------

EMPNO NUMBER(6)

ENAME NOT NULL VARCHAR2(20)

JOB NOT NULL VARCHAR2(13)

DEPTNO NUMBER(3)
SAL NUMBER(7,2)

Q5: select employee name, job from the emp table

Ans:

SQL> select ename, job from emp;

ENAME JOB
-------------------- -------------

Aswathy AP

Arjun AP

Milan Lecturer

3 rows selected.

 CSE V Sem ASDL Lab

15

Q6: Delete only those who are working as Lecturer

Ans:

SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

1 Aswathy AP 1 30000

2 Arya AP 2 40000

3 Milan Lecturer 1 15000

4 Neha Lecturer 2 16000
 5 Tittu AP 2 35000

5 rows selected.

SQL> delete from emp where job='Lecturer';

 2 rows deleted.
SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

1 Aswathy AP 1 30000

2 Arya AP 2 40000

 5 Tittu AP 2 35000

Q7: List the records in the emp table orderby salary in ascending order.

Ans:
SQL> select * from emp order by sal;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

2 Arya AP 2 40000
 5 Tittu AP 2 35000

1 Aswathy AP 1 30000

4 Neha Lecturer 2 16000

 3 Milan Lecturer 1 15000

Q8: List the records in the emp table orderby salary in descending order.

Ans:
SQL> select * from emp order by sal desc;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

3 Milan Lecturer 1 15000

4 Neha Lecturer 2 16000

 1 Aswathy AP 1 30000

5 Tittu AP 2 35000

2 Arya AP 2 40000

 CSE V Sem ASDL Lab

16

Q9: Display only those employees whose deptno is 2.

Solution:

1. Use SELECT FROM WHERE syntax.

Ans:

SQL> select * from emp where deptno=2;

EMPNo ENAME JOB DEPTNO SAL

 ---------- -------- ------- --------- -------

2 Arya AP 2 40000

 4 Neha Lecturer 2 16000
 5 Tittu AP 2 35000

Q10: Display deptno from the table employee avoiding the duplicated values.

Solution:

1. Use SELECT FROM syntax.

2. Select should include distinct clause for the deptno.

Ans:

SQL> select distinct deptno from emp;

DEPTNO

1

2

d) Result:

Thus the DML commands using from where clause was performed successfully and

executed.

 CSE V Sem ASDL Lab

17

QUESTIONS AND ANSWERS

1. What is DML?

DML commands are the most frequently used SQL commands and is used to query

and manipulate the existing database objects.

2. What are DML command?

Some of the commands are Insert, Select, Update, Delet

3. Give the general form of SQL Queries? Select

A1, A2…………., An

From R,1R2……………, R

m Where P

4. What is the use of rename operation?

Rename operation is used to rename both relations and an attributes. It uses the as

clause, taking the form: Old-name as new-name

5. Define tuple variable?

Tuple variables are used for comparing two tuples in the same relation. The tuple

variables are defined in the from clause by way of the as clause.

6. Write the syntax to retrieve specific columns from a table:

Syntax: Select column_name1, …..,column_namen from table name;

 CSE V Sem ASDL Lab

18

Exercise Number: 3

Title of the Exercise : DATA CONTROL LANGUAGE (DCL),

TRANSACTION CONTROL LANGUAGE (TCL) COMMANDS
Date of the Exercise :

OBJECTIVE (AIM) OF THE EXPERIMENT

To practice and implement data language commands (DCL, TCL).

a) Procedure for doing the experiment:

Step

no.
Details of the step

1

DCL COMMAND
The DCL language is used for controlling the access to the table and hence securing

the database. DCL is used to provide certain privileges to a particular user.

Privileges are rights to be allocated.

2 The privilege commands are namely, Grant and Revoke

3
The various privileges that can be granted or revoked are,

Select Insert Delete Update References Execute All

4
GRANT COMMAND: It is used to create users and grant access to the database. It

requires database administrator (DBA) privilege, except that a user can change their

password. A user can grant access to their database objects to other users.

5
REVOKE COMMAND: Using this command , the DBA can revoke the granted

database privileges from the user.

6

TCL COMMAND
COMMIT: command is used to save the Records.

ROLL BACK: command is used to undo the Records.

SAVE POINT command is used to undo the Records in a particular transaction.

b) SQL Commands

DCL Commands

GRANT COMMAND

Grant < database_priv [database_priv…..] > to <user_name> identified by <password>

[,<password…..];

Grant <object_priv> | All on <object> to <user | public> [With Grant Option];

REVOKE COMMAND
Revoke <database_priv> from <user [, user] >;

Revoke <object_priv> on <object> from < user | public >;

<database_priv> -- Specifies the system level priveleges to be granted to the users or roles. This

includes create / alter / delete any object of the system.

<object_priv> -- Specifies the actions such as alter / delete / insert / references / execute / select /

update for tables.

<all> -- Indicates all the priveleges.

 CSE V Sem ASDL Lab

19

[With Grant Option] – Allows the recipient user to give further grants on the objects.

The priveleges can be granted to different users by specifying their names or to all users by

using the “Public” option.

TCL COMMANDS:

Syntax:
SAVEPOINT: SAVEPOINT <SAVE POINT NAME>;

ROLLBACK: ROLL BACK <SAVE POINT NAME>;

COMMIT: Commit;

c) Queries:

Tables Used:
Consider the following tables namely “DEPARTMENTS” and “EMPLOYEES”

Their schemas are as follows ,

Departments (dept _no , dept_ name, dept_location);

Employees (emp_id , emp_name , emp_salary);

Q1: Develop a query to grant all privileges of employees table into departments table

Ans:

SQL> Grant all on employees to departments;

Grant succeeded.

Q2: Develop a query to grant some privileges of employees table into departments table

Ans:

SQL> Grant select, update , insert on departments to departments with grant option;

Grant succeeded.

Q3: Develop a query to revoke all privileges of employees table from departments table
Ans:

SQL> Revoke all on employees from departments;

Revoke succeeded.

Q4: Develop a query to revoke some privileges of employees table from departments table

Ans:

SQL> Revoke select, update , insert on departments from departments;

Revoke succeeded.

Q5: Write a query to implement the save point

Ans:
SQL> SAVEPOINT S1;
Savepoint created.

SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

1 Anu AP 1 10000
2 Arjun ASP 2 15000

3 Megha ASP 1 15000

4 Karthik Prof 2 30000

SQL> INSERT INTO EMP VALUES(5,'Ahalya','AP',1,10000);

1 row created.

 CSE V Sem ASDL Lab

20

SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

1 Anu AP 1 10000
2 Arjun ASP 2 15000

3 Megha ASP 1 15000

4 Karthik Prof 2 30000

5 Ahalya AP 1 10000

Q6: Write a query to implement the rollback

Ans:
SQL> rollback s1;

SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

1 Anu AP 1 10000
2 Arjun ASP 2 15000

3 Megha ASP 1 15000

4 Karthik Prof 2 30000

Q6: Write a query to implement the commit

Ans:

SQL> COMMIT;

Commit complete.

Result:

The DCL,TCL commands was performed successfully and executed.

QUESTIONS AND ANSWERS

1. Define DCL?

The DCL language is used for controlling the access to the table and hence securing

the database. DCL is used to provide certain privileges to a particular user. Privileges are

rights to be allocated.

2. List the DCL commands used in data bases

The privilege commands are namely, Grant and Revoke

3. What type of privileges can be granted?

The various privileges that can be granted or revoked are,

✓ Select

✓ Insert

✓ Delete

✓ Update

✓ References

✓ Execute

✓ All

4. Write the syntax for grant command

Grant < database_priv [database_priv…..] > to <user_name> identified by <password>

[,<password…..];

Grant <object_priv> | All on <object> to <user | public> [With Grant Option];

5. What are TCL commands?

*Commit *Rollback *save point

 CSE V Sem ASDL Lab

21

Exercise Number: 4

Title of the Exercise : IN BUILT FUNCTIONS

Date of the Exercise :

OBJECTIVE (AIM) OF THE EXPERIMENT

To perform nested Queries and joining Queries using DML command.

a) Procedure for doing the experiment:

Step

no.
Details of the step

1

Function is a group of code that accepts zero or more arguments and both return one

or more results. Both are used to manipulate individual data items. Operators differ

from functional in that they follow the format of function name (arg..). An argument

is a user defined variables or constants. Most operators accept at most 2 arguments

while the structure of functions permit to accept 3 or more arguments. Function can

be classifies into single row function and group functions.

2

Single Row functions

A single row function or scalar function returns only one value for every row

queries in table. Single row function can appear in a select command and can also

be included in a where clause. The single row function can be broadly classified as,

o Date Function o Numeric Function

o Character Function o Conversion Function

o Miscellaneous Function

The example that follows mostly uses the symbol table “dual”. It is a table, which is

automatically created by oracle along with the data dictionary.

3

Date Function

They operate on date values and produce outputs, which also belong to date data

type except for months, between, date function returns a number.

4
Group Functions

A group function returns a result based on group of rows

b) SQL Commands:

DATE FUNCTION
1. Add_month
This function returns a date after adding a specified date with specified number of months.

Syntax: Add_months(d,n); where d-date n-number of months

Example: Select add_months(sysdate,2) from dual;

2. last_day

It displays the last date of that month.

Syntax: last_day (d); where d-date

Example: Select last_day („1-jun-2009‟) from dual;

3. Months_between

It gives the difference in number of months between d1 & d2.

Syntax: month_between (d1,d2); where d1 & d2 -dates

Example: Select month_between („1-jun-2009‟,‟1-aug-2009‟) from dual;

 CSE V Sem ASDL Lab

22

4. next_day

It returns a day followed the specified date.

Syntax: next_day (d,day);

Example: Select next_day (sysdate,‟wednesday‟) from dual

5. round

This function returns the date, which is rounded to the unit specified by the format model.

Syntax : round (d,[fmt]);

where d- date, [fmt] – optional. By default date will be rounded to the nearest day

Example: Select round (to_date(„1-jun-2009‟,‟dd-mm-yy‟),‟year‟) from dual;

Select round („1-jun-2009‟,‟year‟) from dual;

NUMERICAL FUNCTIONS

Command Query Output

Abs(n) Select abs(-15) from dual; 15

Ceil(n) Select ceil(55.67) from dual; 56

Exp(n) Select exp(4) from dual; 54.59

Floor(n) Select floor(100.2) from dual; 100

Power(m,n) Select power(4,2) from dual; 16

Mod(m,n) Select mod(10,3) from dual; 1

Round(m,n) Select round(100.256,2) from dual; 100.26

Trunc(m,n) Select trunc(100.256,2) from dual; 100.23

Sqrt(m,n) Select sqrt(16) from dual; 4

CHARACTER FUNCTIONS

Command Query Output

initcap(char);

lower (char);

upper (char);

ltrim (char,[set]);

rtrim (char,[set]);

replace (char,search

string, replace string);

substr (char,m,n);

select initcap(“hello”) from dual;

select lower („HELLO‟) from dual;

select upper („hello‟) from dual;

select ltrim („cseit‟, „cse‟) from dual; select

rtrim („cseit‟, „it‟) from dual;

select replace(„jack and jue‟,„j‟,„bl‟) from dual;

select substr („information‟, 3, 4) from dual;

Hello

hello

HELLO

it

cse

black and

blue

Form

CONVERSION FUNCTION

1. to_char()

Syntax: to_char(d,[format]);

This function converts date to a value of varchar type in a form specified by date format.

If format is negelected then it converts date to varchar2 in the default date format.
Example: select to_char (sysdate, ‟dd-mm-yy‟) from dual;

2. to_date()

Syntax: to_date(d,[format]);

This function converts character to date data format specified in the form character.

Example: select to_date(„aug 15 2009‟,‟mm-dd-yy‟) from dual;

Miscellaneous Functions

1. uid – This function returns the integer value (id) corresponding to the user currently

logged in.
Example: select uid from dual;

2. user – This function returns the logins user name.

Example: select user from dual;

3. nvl – The null value function is mainly used in the case where we want to consider null values

as zero.

 CSE V Sem ASDL Lab

23

Syntax; nvl(exp1, exp2)

If exp1 is null, return exp2. If exp1 is not null, return exp1.

Example: select custid, shipdate, nvl(total,0) from order;

4. vsize: It returns the number of bytes in expression.

Example: select vsize(„tech‟) from dual;

GROUP FUNCTIONS

A group function returns a result based on group of rows.

1. avg - Example: select avg (total) from student;

2. max - Example: select max (percentagel) from student;

2.min - Example: select min (marksl) from student;

4. sum - Example: select sum(price) from product;

COUNT FUNCTION

In order to count the number of rows, count function is used.

1. count(*) – It counts all, inclusive of duplicates and nulls.

Example: select count(*) from student;

2. count(col_name)– It avoids null value.

Example: select count(total) from order;

2. count(distinct col_name) – It avoids the repeated and null values.

Example: select count(distinct ordid) from order;

GROUP BY CLAUSE

This allows us to use simultaneous column name and group functions.

Example: Select max(percentage), deptname from student group by deptname;

HAVING CLAUSE

This is used to specify conditions on rows retrieved by using group by clause.

Example: Select max(percentage), deptname from student group by deptname having

count(*)>=50;

SPECIAL OPERATORS:

In / not in – used to select a equi from a specific set of values

Any - used to compare with a specific set of values

Between / not between – used to find between the ranges

Like / not like – used to do the pattern matching

c) Queries:

Q1: Display all the details of the records whose employee name starts with ‗A‘.

Solution:

1. Use SELECT FROM WHERE syntax. 2. select should include all in the given format.

3. from should include employee 4. where should include condition on empname like „A%‟.

Ans:
SQL> select * from emp where ename like 'A%';

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

2 Arjun ASP 2 15000
5 Ahalya AP 1 10000

Q2: Display all the details of the records whose employee name does not starts with ‗A‘.

Ans:
SQL> select * from emp where ename not like 'A%';

 CSE V Sem ASDL Lab

24

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

1 Anu AP 1 10000
3 Megha ASP 1 15000

4 Karthik Prof 2 30000

Q3: Display the rows whose salary ranges from 15000 to 30000.

Ans:
SQL> select * from emp where sal between 15000 and 30000;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

2 Arjun ASP 2 15000
3 Megha ASP 1 15000

4 Karthik Prof 2 30000

Q4: Calculate the total and average salary amount of the emp table.

Ans:

SQL> select sum(sal),avg(sal) from emp;

SUM(SAL) AVG(SAL)

---------- ----------

80000 16000

Q5: Count the total records in the emp table.

Ans:
SQL>select * from emp;

EMPNO ENAME JOB DEPTNO SAL

------ -------------------- ------------- ---------- ----------

1 Anu AP 1 10000
2 Arjun ASP 2 15000

3 Megha ASP 1 15000

4 Karthik Prof 2 30000

5 Ahalya AP 1 10000

SQL> select count(*) from emp;

COUNT(*)

5

Q6: Determine the max and min salary and rename the column as max_salary and

min_salary.
Solution:

1. Use the MIN & MAX aggregate function in select clause.

2. Rename the column as min_sal & max_sal.

Ans:

SQL> select max(sal) as max_salary, min(sal) as min_salary from emp;

MAX_SALARY MIN_SALARY

---------- ----------

30000 10000

Q7: Display the month between ―1-jun-10‖and 1-aug-10 in full.

Ans:
SQL>Select month_between („1-jun-2010‟,‟1-aug-2010‟) from dual;

Q8: Display the last day of that month in ―05-Oct-09‖.

Ans:

SQL> Select last_day ('1-jun-2009') from dual;

LAST_DAY(

30-JUN-09

 CSE V Sem ASDL Lab

25

Q9: Find how many job titles are available in employee table.

Solution:

1. Use select from clause.

2. Use count function to get the result.

Ans:

SQL> select count(job) from emp;

COUNT(JOB)

4

SQL> select count(distinct job) from emp;

COUNT(DISTINCTJOB)

2

Q10: What is the difference between maximum and minimum salaries of employees in the

organization?

Solution:
1. Use select from clause.

2. Use function max(),min() and find the difference between them to get the result.

Ans:

SQL> select max(sal), min(sal) from emp;

MAX(SAL) MIN(SAL)

---------- ----------

20000 10000

d) Result:

Thus the nested Queries and join Queries was performed successfully and executed.

 CSE V Sem ASDL Lab

26

QUESTIONS AND ANSWERS

1. Define function?

Function is a group of code that accepts zero or more arguments and both return one

or more results. Both are used to manipulate individual data items.

2. Write the two types of functions

i. Single row functions

ii. Group functions

3. What are single row functions?

A single row function or scalar function returns only one value for every row

queries in table. Single row function can appear in a select command and can also be

included in a where clause. The single row function can be broadly classified as,

o Date Function o Numeric Function

o Character Function o Conversion Function

o Miscellaneous Function

4. List some character funcitons

initcap(char);

lower (char);

upper (char);

ltrim (char,[set]); rtrim (char,[set]);

 CSE V Sem ASDL Lab

27

Exercise Number: 5

Title of the Exercise : NESTED QUERIES AND JOIN QUERIES

Date of the Exercise :

OBJECTIVE (AIM) OF THE EXPERIMENT

To perform nested Queries and joining Queries using DML command.

a) Procedure for doing the experiment:

Step

no.
Details of the step

1

Nested Queries: Nesting of queries one within another is known as a nested

queries.

Sub queries The query within another is known as a sub query. A statement

containing sub query is called parent statement. The rows returned by sub query are

used by the parent statement.

2

Types

1. Sub queries that return several values

Sub queries can also return more than one value. Such results should be made use

along with the operators in and any.

2. Multiple queries

Here more than one sub query is used. These multiple sub queries are combined by

means of „and‟ & „or‟ keywords

3. Correlated sub query

A sub query is evaluated once for the entire parent statement whereas a correlated

Sub query is evaluated once per row processed by the parent statement.

3

Relating Data through Join Concept

The purpose of a join concept is to combine data spread across tables. A join is

actually performed by the „where‟ clause which combines specified rows of tables.

Syntax; select columns from table1, table2 where logical expression;

Types of Joins 1. Simple Join 2. Self Join 3. Outer Join 4. Inner Join

4

1. Simple Join

a) Equi-join: A join, which is based on equalities, is called equi-join.

b) Non Equi-join: It specifies the relationship between

Table Aliases

Table aliases are used to make multiple table queries shorted and more readable. We

give an alias name to the table in the „from‟ clause and use it instead of the name

throughout the query.

5
Self join: Joining of a table to itself is known as self-join. It joins one row in a table

to another. It can compare each row of the table to itself and also with other rows of

the same table.

6

Outer Join: It extends the result of a simple join. An outer join returns all the rows

returned by simple join as well as those rows from one table that do not match any

row from the table. The symbol (+) represents outer join.

Inner join: Inner join returns the matching rows from the tables that are being

joined

 CSE V Sem ASDL Lab

28

b) SQL Commands:

Nested Queries:

Example: select ename, eno, address where salary >(select salary from employee where

ename =‟jones‟);

1.Subqueries that return several values

Example: select ename, eno, from employee where salary <any (select salary from

employee where deptno =10‟);

3. Correlated subquery

Example: select * from emp x where x.salary > (select avg(salary) from emp where deptno

=x.deptno);

Simple Join
a) Equi-join

Example: select * from item, cust where item.id=cust.id;

b) Non Equi-join

Example: select * from item, cust where item.id<cust.id;

Self join

Example: select * from emp x ,emp y where x.salary >= (select avg(salary) from x.emp where x.

deptno =y.deptno);

Outer Join
Example: select ename, job, dname from emp, dept where emp.deptno (+) = dept.deptno;

d) Queries:

Q1: Display all employee names and salary whose salary is greater than minimum salary of
the company and job title starts with ‗M‘.

Solution:

1. Use select from clause.

2. Use like operator to match job and in select clause to get the result.

Ans:

SQL> select ename,sal from emp where sal>(select min(sal) from emp where job like 'A%');

ENAME SAL

-------------------- ----------

Arjun 12000

Megha 20000

Karthik 15000

Q2: Issue a query to find all the employees who work in the same job as Arjun.

Ans:

SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ---------- ---------- ----------

1 Anu AP 1 10000
10000 2 Arjun ASP 2 12000

3 Megha ASP 2 20000

4 Karthik AP 1 15000

SQL> select ename from emp where job=(select job from emp where ename='Arjun');

ENAME

Arjun

Megha

 CSE V Sem ASDL Lab

29

Q3: Issue a query to display information about employees who earn more than any

employee in dept 1.
Ans:

SQL> select * from emp where sal>(select max(sal) from emp where empno=1);

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ---------- ---------- ----------

2 Arjun ASP 2 12000
3 Megha ASP 2 20000

4 Karthik AP 1 15000

JOINS

Tables used

SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ---------- ---------- ----------

1 Anu AP 1 10000
2 Arjun ASP 2 12000

3 Megha A
ASP

 2 20000

4 Karthik AP 1 15000

SQL> select * from dept;

DEPTNO DNAME LOC

---------- -------------- -------------

1 ACCOUNTING NEW YORK

2 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

EQUI-JOIN

Q4: Display the employee details, departments that the departments are same in both the

emp and dept.

Solution:

1. Use select from clause. 2. Use equi join in select clause to get the result.

Ans:

SQL> select * from emp,dept where emp.deptno=dept.deptno;

EMPNO ENAME JOB DEPTNO SAL DEPTNO DNAME LOC

---------- ------------------ ---------- ---------- ---------- ---------- -------------- -------------

1 Anu AP 1 10000 1 ACCOUNTING NEW YORK

2 Arjun ASP 2 12000 2 RESEARCH DALLAS

3 Megha ASP 2 20000 2 RESEARCH DALLAS

4 Karthik AP 1 15000 1 ACCOUNTING NEW YORK

NON-EQUIJOIN

Q5: Display the employee details, departments that the departments are not same in both

the emp and dept.

Solution:

1. Use select from clause. 2. Use non equi join in select clause to get the result.

 CSE V Sem ASDL Lab

30

Ans:

SQL> select * from emp,dept where emp.deptno!=dept.deptno;

EMPNO ENAME JOB DEPTNO SAL DEPTNO DNAME LOC

---------- -------------------- ---------- ---------- ---------- ------------------------ -------------

2 Arjun ASP 2 12000 1 ACCOUNTING NEW YORK
3 Megha ASP 2 20000 1 ACCOUNTING NEW YORK

1 Anu AP 1 10000 2 RESEARCH DALLAS

EMPNO ENAME JOB DEPTNO SAL DEPTNO DNAME LOC

---------- -------------------- ---------- ---------- ---------- ---------- -------------- -------------

4 Karthik AP 1 15000 2 RESEARCH DALLAS
1 Anu AP 1 10000 30 SALES CHICAGO
2 Arjun

EEEeENAMEJOB

ASP

DEPT

NO

2 12000

30 SALES CHICAGO

2 Arjun ASP 2 12000 40 OPERATIONS BOSTON
3 Megha ASP 2 20000 40 OPERATIONS BOSTON

4 Karthik AP 1 15000 40 OPERATIONS BOSTON
6 rows selected.

LEFTOUT-JOIN

Tables used

SQL> select * from stud1;

Regno Name Mark2 Mark3 Result

---------- ----------- ---------- ---------- ---------------------------------------

101 John 89 80 pass
102 Raja 70 80 pass
103 Sharin 70 90 pass

SQL> select * from stud2;

NAME GRA

----------- ----------

john s

raj s

sam a
sharin a

Q6: Display the Student name and grade by implementing a left outer join.

Ans: SQL> select stud1.name,grade from stud1 left outer join stud2 on stud1.name=stud2.name;

Name Gra

----------- ----------

john s

raj s

sam a

sharin a

smith null

 CSE V Sem ASDL Lab

31

RIGHTOUTER-JOIN

Q7: Display the Student name, register no, and result by implementing a right outer join.

Ans:

SQL> select stud1.name, regno, result from stud1 right outer join stud2 on stud1.name =

stud2.name;

Name Regno Result

----------- ---------- --------------------------

john 101 pass
raj 102 pass
sam 103 pass
sharin 104 pass

Rollno Name Mark1 Mark Total
---------- ---------- ---------- ---------- ----------

1 sindu 90 95 185
2 arul 90 90 180

FULLOUTER-JOIN

Q8: Display the Student name register no by implementing a full outer join.

Ans:
SQL> select stud1.name, regno from stud1 full outer join stud2 on (stud1.name= stud2.name);

Name Regno

----------- ----------

john 101
raj 102

sam 103

sharin 104

SELFJOIN

Q9: Write a query to display their employee names

Ans:

SQL> select distinct ename from emp x, dept y where x.deptno=y.deptno;

ENAME

Arjun

Megha

Karthik

Anu

Q10: Display the details of those who draw the salary greater than the average salary.

Ans:

SQL> select distinct * from emp x where x.sal >= (select avg(sal) from emp);

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ---------- ---------- ----------

3 Anu ASP 2 20000
4 Karthik AP 1 15000

11 kavitha designer 12 17000

e) Result:

Thus the nested Queries and join Queries was performed successfully and executed.

QUESTIONS AND ANSWERS

1. What is the use of sub Queries?

A sub Queries is a select-from-where expression that is nested with in another

Queries. A common use of sub Queries is to perform tests for set membership, make set

comparisons, and determine set cardinality

 CSE V Sem ASDL Lab

32

Exercise Number: 6

Title of the Exercise : SET OPERATORS

Date of the Exercise :

OBJECTIVE (AIM) OF THE EXPERIMENT

To perform set operations using DML Commands.
a) Procedure for doing the experiment:

Step

no.
Details of the step

1

Set Operators:
The Set operator combines the result of 2 queries into a single result. The following

are the operators:
· Union · Union all

· Intersect · Minus

2

The rules to which the set operators are strictly adhere to :

· The queries which are related by the set operators should have a same number of

column and column definition.

· Such query should not contain a type of long.

· Labels under which the result is displayed are those from the first select statement.

b) SQL commands:

Union: Returns all distinct rows selected by both the queries

Syntax:

Query1 Union Query2;

Union all: Returns all rows selected by either query including the duplicates.

Syntax:

Query1 Union all Query2;

Intersect: Returns rows selected that are common to both queries.

Syntax:

Query1 Intersect Query2;

Minus: Returns all distinct rows selected by the first query and are not by the second

Syntax:

Query1 minus Query2;

c) Queries:

Q1: Display all the dept numbers available with the dept and emp tables avoiding

duplicates.
Solution:

1. Use select from clause. 2. Use union select clause to get the result.

Ans:
SQL> select deptno from emp union select deptno from dept;

 CSE V Sem ASDL Lab

33

DEPTNO

1

2

12

30

40

Q2: Display all the dept numbers available with the dept and emp tables.

Solution:

1. Use select from clause. 2. Use union all in select clause to get the result.

Ans:
SQL> select deptno from emp union all select deptno from dept;

DEPTNO

1

2

2

1

12

1

2

30

40

9 rows selected.

Q3: Display all the dept numbers available in emp and not in dept tables and vice versa.

Solution:

1. Use select from clause.

2. Use minus in select clause to get the result.

Ans:

SQL> select deptno from emp minus select deptno from dept;

DEPTNO

12

SQL> select deptno from dept minus select deptno from emp;

DEPTNO

30

40

d) Result:

Thus the set operations using DML Commands was successfully performed and executed.

QUESTIONS AND ANSWERS

1. List the set operations of SQL?

1) Union 2)Intersect operation 3)The except operation(minus)

2. Which command returns all distinct rows selected by both the queries?

Union

 CSE V Sem ASDL Lab

34

Exercise Number: 7

Title of the Exercise : VIEWS
Date of the Exercise :

OBJECTIVE (AIM) OF THE EXPERIMENT

To create and manipulate various database objects of the Table using views

a) Procedure for doing the experiment:

Step

no.
Details of the step

1

Views:

A view is the tailored presentation of data contained in one or more table and can also

be said as restricted view to the data‟s in the tables. A view is a “virtual table” or a

“stored query” which takes the output of a query and treats it as a table. The table

upon which a view is created is called as base table.

2

A view is a logical table based on a table or another view. A view contains no data of

its own but is like a window through which data from tables can be viewed or

changed. The tables on which a view is based are called base tables. The view is

stored as a SELECT statement in the data dictionary

3

Advantages of a view:
a. Additional level of table security.

b. Hides data complexity.

c. Simplifies the usage by combining multiple tables into a single table.

d. Provides data‟s in different perspective.

4

Types of view:

Horizontal -> enforced by where cause

Vertical -> enforced by selecting the required columns

b) SQL Commands

Creating and dropping view:

Syntax:
Create [or replace] view <view name> [column alias names] as <query> [with <options>

conditions];
Drop view <view name>;

Example:

Create or replace view empview as select * from emp;

Drop view empview;

c) Queries:

Tables used:

SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ---------- ---------- ----------

1 Anu AP 1 10000

2 Arjun ASP 2 12000
3 Megha ASP 2 20000

4 Karthik AP 1 15000

 CSE V Sem ASDL Lab

35

Q1: The organization wants to display only the details of the employees those who are ASP.

(Horizontal portioning)

Solution:

1. Create a view on emp table named managers

2. Use select from clause to do horizontal partioning

Ans:

SQL> create view empview as select * from emp where job='ASP';

View created.

SQL> select * from empview;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ---------- ---------- ----------

2 Arjun ASP 2 12000

3 Gugan ASP 2 20000

Q2: The organization wants to display only the details like empno, empname, deptno,

deptname of the employees. (Vertical portioning)

Solution:

1. Create a view on emp table named general 2. Use select from clause to do vertical partioning

Ans:

SQL> create view empview1 as select ename,sal from emp;

View created.

Q3: Display all the views generated.

Ans:
SQL> select * from tab;

TNAME TABTYPE CLUSTERID

------------------------------ ------- ----------

DEPT TABLE
EMP TABLE

EMPVIEW VIEW

EMPVIEW1 VIEW

Q4: Execute the DML commands on the view created.

Ans:
SQL> select * from empview;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ---------- ---------- ----------

2 Arjun ASP 2 12000
3 Megha ASP 2 20000

Q5: Drop a view.

Ans: SQL> drop view empview1;

View dropped.

d) Result:

Thus the creation and manipulate various database objects of the Table using views was

successfully executed.

QUESTIONS AND ANSWERS

1. What is a view?

A view is a logical table based on a table or another view. A view contains no data of

its own but is like a window through which data from tables can be viewed or changed.
2. List any two advantages of view?

1. Hides data complexity.

2. Simplifies the usage by combining multiple tables into a single table.

 CSE V Sem ASDL Lab

36

Exercise Number: 8

Title of the Exercise : CONTROL STRUCTURE

Date of the Exercise :

OBJECTIVE (AIM) OF THE EXPERIMENT

To create PL/SQL programs to implement various types of control structure.
a) PL/SQL Syntax:

PL/SQL can also process data using flow of statements. The flow of control

statements are classified into the following categories.

• Conditional control –Branching

• Iterative control – looping

• Sequential control - Selection

BRANCHING in PL/SQL:

Sequence of statements can be executed on satisfying certain condition. If statements are

being used and different forms of if are:

1. Simple IF 2. If then else 3. Else if 4. Nested if

SELECTION IN PL/SQL (Sequential Controls)

1. Simple case 2. Searched case

ITERATIONS IN PL/SQL

Sequence of statements can be executed any number of times using loop construct. It is

broadly classified into:
1. Simple Loop 2. For Loop 3. While Loop

SIMPLE IF:

Syntax:

IF condition THEN

statement1;

statement2;
END IF;

IF-THEN-ELSE STATEMENT:

Syntax:

IF condition THEN

statement1;

ELSE

statement2;

END IF;

ELSIF STATEMENTS:
Syntax:

IF condition1 THEN

statement1;

ELSIF condition2 THEN

statement2;

ELSIF condition3 THEN

statement3;
ELSE

 CSE V Sem ASDL Lab

37

NESTED IF:

statement;

END IF;

Syntax:

IF condition THEN

statement1;
ELSE

IF condition THEN

statement2;

ELSE

statement3;

END IF;

END IF;

ELSE

statement3;

END IF;

SELECTION IN PL/SQL (Sequential Controls)

SIMPLE CASE

Syntax:

CASE SELECTOR

WHEN Expr1 THEN statement1;

WHEN Expr2 THEN statement2;

:

ELSE

Statement n;

END CASE;

SEARCHED CASE:

Syntax:

CASE

WHEN searchcondition1 THEN statement1;

WHEN searchcondition2 THEN statement2;

::

ELSE

statementn;

END CASE;

ITERATIONS IN PL/SQL

SIMPLE LOOP

Syntax:

LOOP

statement1;

EXIT [WHEN Condition];

END LOOP;

Example:

Declare

A number:=10;

Begin

Loop

a := a+25;

exit when a=250;

end loop;

dbms_output.put_line(to_char(a));

end;

/

 CSE V Sem ASDL Lab

38

WHILE LOOP
Syntax

WHILE condition LOOP

statement1;

statement2;

END LOOP;

Example:

Declare

i number:=0;

j number:=0;

begin

while i<=100 Loop

j := j+i;

i := i+2;

end loop;

dbms_output.put_line(„the value of j is‟ ||j);

end;

/

FOR LOOP
Syntax:

FOR counter IN [REVERSE]

LowerBound..UpperBound

LOOP

statement1;

statement2;

END LOOP;

Example:

Begin

For I in 1..2

Loop

Update emp set field = value where condition;

End loop;

End;

/

Q1: write a pl/sql program to swap two numbers

b) Procedure for doing the experiment:

Step

no.
Details of the step

1 Declare three variables and read variables through a and b

2 Swap the values of a and b using temporary variables

3 Display the swapped results

c) Program:

SQL>edit swapping.sql

declare

a number(10);

b number(10);

c number(10);

begin

dbms_output.put_line('THE PREV VALUES OF A AND B WERE');

dbms_output.put_line(a);
dbms_output.put_line(b);

Dr.N.N.C.E CSE&IT / IV Sem DBMS Lab - LM

a:=&a;

b:=&b;

c:=a;

a:=b;

b:=c;

dbms_output.put_line('THE VALUES OF A AND B ARE');

dbms_output.put_line(a);

dbms_output.put_line(b);

end;

e)output:

SQL> @ swapping.sql

19 /

Enter value for a: 5

old 6: a:=&a;
new 6: a:=5;

Enter value for b: 3

old 7: b:=&b;

new 7: b:=3;

THE PREV VALUES OF A AND B WERE

53

THE VALUES OF A AND B ARE

35
PL/SQL procedure successfully completed.

Q2: Write a pl/sql program to find the largest of three numbers

c) Procedure for doing the experiment:

Step

no.
Details of the step

1 Read three numbers through a, b & c

2 Find the biggest among three using nested if statement

3 Display the biggest no as result

d)Program:

SQL>set server output on;

SQL>edit biggest.sql

declare

a number;

b number;

c number;

begin

a:=&a;

b:=&b;

c:=&c;

if a>b then

if a>c then

dbms_output.put_line ('biggest is:' ||to_char(a));

else

dbms_output.put_line('biggest is :' ||to_char(c));

end if;

elsif b>c then

dbms_output.put_line('biggest is :' ||to_char(b));

else
dbms_output.put_line('biggest is :' ||to_char(c));

36

CSE V Sem DBMS Lab

end if;

end;

e)output:

SQL>@biggest.sql

/

Enter value for a: 5

old 6: a:=&a;

new 6: a:=5;

Enter value for b: 5

old 6: b:=&b;
new 6: b:=8;

Enter value for c: 8

old 6: c:=&c;

new 6: c:=4;

biggest is : 8

Q3: write a pl/sql program to find the total and average of 6 subjects and display the grade

c) Procedure for doing the experiment:

Step

no.
Details of the step

1 Read six numbers and calculate total and average

2 Find whether the student is pass or fail using if statement

3 Find the grade using nested elseif statement

4 Display the Grade, Percentage and Total of the student

d)Program:

SQL> edit grade.sql

declare

java number(10);

dbms number(10);

co number(10);

se number(10);

es number(10);

ppl number(10);

total number(10);

avgs number(10);

per number(10);

begin

dbms_output.put_line('ENTER THE MARKS');

java:=&java;

dbms:=&dbms;

co:=&co;

se:=&se;

es:=&es;

ppl:=&ppl;

total:=(java+dbms+co+se+es+ppl);

per:=(total/600)*100;

if java<50 or dbms<50 or co<50 or se<50 or es<50 or ppl<50 then

dbms_output.put_line('FAIL');

if per>75 then

dbms_output.put_line('GRADE A');

elsif per>65 and per<75 then

dbms_output.put_line('GRADE B');

elsif per>55 and per<65 then

37

CSE V Sem DBMS Lab

38

dbms_output.put_line('GRADE C');

else

dbms_output.put_line('INVALID INPUT');

end if;

dbms_output.put_line('PERCENTAGE IS '||per);

dbms_output.put_line('TOTAL IS '||total);

end;

e)output:

SQL> @ grade.sql

31 /

Enter value for java: 80

old 12: java:=&java;
new 12: java:=80;

Enter value for dbms: 70

old 13: dbms:=&dbms;

new 13: dbms:=70;

Enter value for co: 89

old 14: co:=&co;

new 14: co:=89;

Enter value for se: 72

old 15: se:=&se;

new 15: se:=72;

Enter value for es: 76

old 16: es:=&es;
new 16: es:=76;

Enter value for ppl: 71

old 17: ppl:=&ppl;

new 17: ppl:=71;

GRADE A

PERCENTAGE IS 76
TOTAL IS 458

PL/SQL procedure successfully completed.

Q4: Write a pl/sql program to find the sum of digits in a given number

c) Procedure for doing the experiment:

Step

no.
Details of the step

1 Read a number. Separate the digits using modular function

2 Sum the digits separated by mod function

3 Display the sum of digits

d)Program:

SQL>edit sumofdigits.sql

declare
a number;

d number:=0;

sum1 number:=0;

begin

a:=&a;

while a>0

loop

d:=mod(a,10);

sum1:=sum1+d;

CSE V Sem DBMS Lab

39

a:=trunc(a/10);

end loop;

dbms_output.put_line('sum is'|| sum1);

end;

e)output:

SQL> @ sumofdigits.sql

16 /

Q5: write a pl/sql program to display the number in reverse order

c)Procedure for doing the experiment:

Step

no.
Details of the step

1 Read a number. Separate the digits using modular function

2 Reverse the digits separated by taking remainder from mod function

3 Display the reverse of the digits

d)Program:

SQL>edit reverse.sql

declare

a number;

rev number;

d number;

begin

a:=&a;

rev:=0;

while a>0

loop

d:=mod(a,10);

rev:=(rev*10)+d;

a:=trunc(a/10);

end loop;

dbms_output.put_line('no is'|| rev);

end;

e)output:

SQL> @ reverse.sql

16 /
Enter value for a: 536

old 6: a:=&a;

new 6: a:=536;

no is 635

PL/SQL procedure successfully completed.

Q6: Write a PL / SQL program to check whether the given number is prime or not

c) Procedure for doing the experiment:

Step

no.
Details of the step

1 Read the number

2 Using mod function find the given number is prime or not

3 Display the result

CSE V Sem DBMS Lab

40

d)Program:

SQL>edit prime.sql

declare

a number; c number:=0; i number;

begin

a:=&a;

for i in 1..a

loop

if mod(a,i)=0 then

c:=c+1;

end if;

end loop;
if c=2 then

dbms_output.put_line(a ||'is a prime number');

else

dbms_output.put_line(a ||'is not a prime number');

end if;

end;

e)output:

SQL> @ prime.sql

19 /

Enter value for a: 11

old 6: a:=&a;

new 6: a:=11;

11is a prime number

PL/SQL procedure successfully completed.

Q7: Write a PL/SQL program to find the factorial of a given number

c) Procedure for doing the experiment:

Step

no.
Details of the step

1 Read a number for calculating factorial value.

2 Calculate the factorial of a given number using for loop

3 Display the factorial value of a given number.

d)Program:

SQL>edit fact.sql

declare

n number;f number:=1;

begin

n:=&n;

for i in 1..n

loop

f:=f*i;

end loop;

dbms_output.put_line('the factorial is'|| f);

end;

e)output:

SQL> @ fact.sql

12 /

Enter value for n: 5

old 5: n:=&n;

new 5: a:=5;

the factorial is 120

CSE V Sem DBMS Lab

41

Q8: write a pl/sql code block to calculate the area of a circle for a value of radius varying

from 3 to 7. Store the radius and the corresponding values of calculated area in an empty

table named areas, consisting of two columns radius & area

c) Procedure for doing the experiment:

Step

no.
Details of the step

1 Create a table named areas with radius and area

2 Initialize values to pi, radius and area

3 Calculate the area using while loop. Display the result.

d)Program:

SQL> create table areas(radius number(10),area number(6,2));

Table created.

PROGRAM

declare

pi constant number(4,2):=3.14;

radius number(5):=3; area number(6,2);

begin

while radius<7

loop
area:=pi*power(radius,2);

insert into areas values(radius,area);

radius:=radius+1;

end loop;

end;

e)output:

SQL> @ AREAOFCIRCLE.SQL

13 /

PL/SQL procedure successfully completed.

SQL> SELECT * FROM AREAS;

RADIUS AREA

---------- ----------

3 28.26
4 50.24

5 78.5

6 113.04

Q9: write a PL/SQL code block that will accept an account number from the user, check if

the users balance is less than minimum balance, only then deduct rs.100/- from the balance.

This process is fired on the acct table.

c) Procedure for doing the experiment:

Step

no.
Details of the step

1 Develop a query to Create the table acct and insert values into them

2 Develop a PL/SQL program to read the account number.

3
Check the balance for the account no. check if the users balance is less than

minimum balance, only then deduct rs.100/- from the balance

4 Update the balance changes into the acct table.

CSE V Sem DBMS Lab

42

d)Program:

SQL> create table acct(name varchar2(10),cur_bal number(10),acctno number(6,2));

SQL> insert into stud values('&sname',&rollno,&marks);

SQL> select * from acct;

ACCTNO NAME CUR_BAL

---------- ---------- ----------

777 sirius 10000

765 john 1000

855 sam 500

353 peter 800

declare

mano number(5);

mcb number(6,2);

minibal constant number(7,2):=1000.00;

fine number(6,2):=100.00;

begin

mano:=&mano;

select cur_bal into mcb from acct where acctno=mano;

if mcb<minibal then

update acct set cur_bal=cur_bal-fine where acctno=mano;

end if;

end;

e)output:

SQL> @ BANKACC.sql

13 /

Enter value for mano: 855

old 7: mano:=&mano;
new 7: mano:=855;

PL/SQL procedure successfully completed.

f)Result:
Thus the above creation of PL/SQL programs to implement various types of control

structure was successfully executed.

QUESTIONS AND ANSWERS

1. What is meant by branching in PL/SQL:

Sequence of statements can be executed on satisfying certain condition. If statements are

being used and different forms of if are:
1. Simple IF 2. If then else 3. Else if 4. Nested if

2. What are selection statements?

1. Switch case statement

3. Define iterations IN PL/SQL

Sequence of statements can be executed any number of times using loop construct.

4. Classify the iteration statements `in PL/SQL

It is broadly classified into:

1.Simple Loop
2. For Loop

3. While Loop

CSE V Sem DBMS Lab

43

Exercise Number: 9

Title of the Exercise : PROCEDURE AND FUNCTION
Date of the Exercise :

OBJECTIVE (AIM) OF THE EXPERIMENT

To develop procedures and function for various operations.

a) PL/SQL syntax:

A procedure is a block that can take parameters (sometimes referred to as arguments) and

be invoked.

Procedures promote reusability and maintainability. Once validated, they can be used in

number of applications. If the definition changes, only the procedure are affected, this greatly

simplifies maintenance.

Modularized program development:

· Group logically related statements within blocks.

· Nest sub-blocks inside larger blocks to build powerful programs.

· Break down a complex problem into a set of manageable well defined logical modules

and implement the modules with blocks.

KEYWORDS AND THEIR PURPOSES

REPLACE: It recreates the procedure if it already exists.

PROCEDURE: It is the name of the procedure to be created.

ARGUMENT: It is the name of the argument to the procedure. Parenthesis can be omitted if no

arguments are present.

IN: Specifies that a value for the argument must be specified when calling the procedure ie., used

to pass values to a sub-program. This is the default parameter.

OUT: Specifies that the procedure passes a value for this argument back to it‟s calling

environment after execution ie. used to return values to a caller of the sub-program.

INOUT: Specifies that a value for the argument must be specified when calling the procedure

and that procedure passes a value for this argument back to it‟s calling environment after

execution.
RETURN: It is the data type of the function‟s return value because every function must return a

value, this clause is required.

PROCEDURES
Syntax :

create or replace procedure <procedure name> (argument {in,out,inout} datatype) {is,as}

variable declaration;

constant declaration;

begin

PL/SQL subprogram body;

exception

exception PL/SQL block;

end;

CSE V Sem DBMS Lab

44

FUNCTIONS
Syntax:

create or replace function <function name> (argument in datatype,……) return datatype {is,as}

variable declaration;

constant declaration;

begin

PL/SQL subprogram body;

exception

exception PL/SQL block;

end;

Tables used:
SQL> select * from ititems;

ITEMID

ACTUALPRICE

ORDID

PRODID

101 2000 500 201

102 3000 1600 202

103 4000 600 202

PROGRAM FOR GENERAL PROCEDURE – SELECTED RECORD‘S PRICE IS

INCREMENTED BY 500 , EXECUTING THE PROCEDURE CREATED AND

DISPLAYING THE UPDATED TABLE

SQL> create procedure itsum(identity number, total number) is price number;

2 null_price exception;

3 begin

4 select actualprice into price from ititems where itemid=identity;

5 if price is null then
6 raise null_price;

7 else

8 update ititems set actualprice=actualprice+total where itemid=identity;

9 end if;

10 exception

11 when null_price then

12 dbms_output.put_line('price is null');

13 end;
14 /

Procedure created.

SQL> exec itsum(101, 500);

PL/SQL procedure successfully completed.

SQL> select * from ititems;

PROCEDURE FOR ‗IN‘ PARAMETER – CREATION, EXECUTION

SQL> set serveroutput on;

SQL> create procedure yyy (a IN number) is price number;

2 begin

3 select actualprice into price from ititems where itemid=a;

ITEMID

ACTUALPRICE

ORDID

PRODID

101 2500 500 201

102 3000 1600 202

103 4000 600 202

CSE V Sem DBMS Lab

45

4 dbms_output.put_line('Actual price is ' || price);

5 if price is null then

6 dbms_output.put_line('price is null');

7 end if;
8 end;

9 /

Procedure created.

SQL> exec yyy(103);

Actual price is 4000
PL/SQL procedure successfully completed.

PROCEDURE FOR ‗OUT‘ PARAMETER – CREATION, EXECUTION

SQL> set serveroutput on;

SQL> create procedure zzz (a in number, b out number) is identity number;

2 begin

3 select ordid into identity from ititems where itemid=a;

4 if identity<1000 then

5 b:=100;

6 end if;

7 end;

8 /

Procedure created.

SQL> declare

2 a number;

3 b number;

4 begin

5 zzz(101,b);

6 dbms_output.put_line('The value of b is '|| b);

7 end;

8 /

The value of b is 100

PL/SQL procedure successfully completed.

PROCEDURE FOR ‗INOUT‘ PARAMETER – CREATION, EXECUTION

SQL> create procedure itit (a in out number) is

2 begin

3 a:=a+1;

4 end;

5 /

Procedure created.

SQL> declare

2 a number:=7;

3 begin

4 itit(a);

5 dbms_output.put_line(„The updated value is „||a);

6 end;

7 /

The updated value is 8

PL/SQL procedure successfully completed.

Tables used:

CSE V Sem DBMS Lab

46

SQL>select * from ittrain;

TNO TFARE

--------- ------------

1001 550
1002 600

PROGRAM FOR FUNCTION AND IT‘S EXECUTION

SQL> create function trainfn (trainnumber number) return number is

2 trainfunction ittrain.tfare % type;

3 begin

4 select tfare into trainfunction from ittrain where tno=trainnumber;

5 return(trainfunction);
6 end;

7 /

Function created.

SQL> declare

2 total number;

3 begin

4 total:=trainfn (1001);

5 dbms_output.put_line('Train fare is Rs. '||total);

6 end;
7 /

Train fare is Rs.550

PL/SQL procedure successfully completed.

FACTORIAL OF A NUMBER USING FUNCTION — PROGRAM AND EXECUTION

SQL> create function itfact (a number) return number is

2 fact number:=1;

3 b number;

4 begin

5 b:=a;

6 while b>0

7 loop

8 fact:=fact*b;

9 b:=b-1;

10 end loop;

11 return(fact);

12 end;
13 /

Function created.

SQL> declare

2 a number:=7;

3 f number(10);

4 begin

5 f:=itfact(a);

6 dbms_output.put_line(„The factorial of the given number is‟||f);

7 end;

8 /

The factorial of the given number is 5040

CSE V Sem DBMS Lab

47

Q1: Write a procedure to calculate total for the all the students and pass regno, mark1, &

mark2 as arguments.

b) Procedure for doing the experiment:

Step

no.
Details of the step

1 Develop a query to create a table named itstudent2 and insert values into them

2 Develop a procedure p1 with regno, mark1, & mark2 as arguments.

3 Calculate the total and update the total value into the itstudent2 table

d)Program:

SQL> create table itstudent2(regno number(3),name varchar(9),mark1 number(3),mark2

number(3));

Table created.

SQL> insert into itstudent2

2 values(&a,'&b',&c,&d);

Enter value for a: 110

Enter value for b: arun

Enter value for c: 99 Enter value for d: 100

old 2: values(&a,'&b',&c,&d)
new 2: values(110,'arun',99,100)

1 row created.

SQL> /

Enter value for a: 112 Enter value for b: siva Enter value for c: 99 Enter value

for d: 90

old 2: values(&a,'&b',&c,&d)

new 2: values(112,'siva',99,90)

1 row created.

SQL> select * from itstudent2;

REGNO NAME MARK1 MARK2
110 arun 99 100
112 siva 99 90

SQL> alter table itstudent2 add(total number(5)); Table altered.

SQL> select * from itstudent2;
REGNO NAME MARK1 MARK2 TOTAL

110 arun 99 100
112 siva 99 90

SQL> create or replace procedure p1(sno number,mark1 number,mark2 number) is

2 tot number(5);

3 begin

4 tot:=mark1+mark2;

5 update itstudent2 set total=tot where regno=sno;

6 end;

7 /

Procedure created.

SQL> declare

2 cursor c1 is select * from itstudent2;

3 rec itstudent2 % rowtype;
4 begin

5 open c1;

6 loop

7 fetch c1 into rec;

CSE V Sem DBMS Lab

48

8 exit when c1%notfound;

9 p1(rec.regno,rec.mark1,rec.mark2);

10 end loop;

11 close c1;

12 end;

13 /

PL/SQL procedure successfully completed.

e)Output:
SQL> select * from itstudent2;

REGNO NAME MARK1 MARK2 TOTAL

--------- --------- ---------- ---------- ----------

110 arun 99 100 199

112 siva 99 90 189

Q2: Write a PL/SQL procedure called MULTI_TABLE that takes two numbers as parameter and

displays the multiplication of the first parameter till the second parameter.

Ans.
//p2.sql

create or replace procedure multi_table (a number, b number) as

mul number;
begin

for i in 1. .b

loop
mul : = a * i;

dbms_output.put_line (a || „*‟ || i || „=‟ || mul);

end loop;

end;
//pq2.sql

declare

a number; b number;

begin

a:=&a; b:=&b; multi_table(a,b);

end;

e)Output:
SQL> @p2.sql;

Procedure created.

SQL> @pq2.sql;
Enter value for a: 4

old 5: a:=&a; new 5: a:=4;
Enter value for b: 3
old 6: b:=&b; new 6: b:=3;

4*1=4
4*2=8
4*3=12

Q3: Consider the EMPLOYEE (EMPNO, SALARY, ENAME) Table.

Write a procedure raise_sal which increases the salary of an employee. It accepts an employee

number and salary increase amount. It uses the employee number to find the current salary from

the EMPLOYEE table and update the salary.
Ans:
//p3.sql

create or replace procedure raise_sal(mempno employee . empno % type, msal_percent

number) as
begin

update employee set salary = salary + salary*msal_percent /100 where empno = mempno;

end;
/

CSE V Sem DBMS Lab

49

//pq3.sql

declare

cursor c1 is select * from emp;

rec emp % rowtype;

begin

open c1;

loop
fetch c1 into rec;

exit when c1%notfound;

raisal(rec.empno,10);

end loop;

close c1;

end;

/

e)Output:
SQL> @p3.sql;

Procedure created.
SQL> select * from emp;

EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

1 Anu AP 1 10000
2 Arjun ASP 2 15000

3 Megha ASP 1 15000

4 Karthik Prof 2 30000
5 Ahalya AP 1 10000

SQL> @pq3.sql;

PL/SQL procedure successfully completed.

SQL> select * from emp;
EMPNO ENAME JOB DEPTNO SAL

---------- -------------------- ------------- ---------- ----------

1 Anu AP 1 11000
2 Arjun ASP 2 16500

3 Megha ASP 1 16500

4 Karthik Prof 2 33000
5 Ahalya AP 1 11000

Q4: Write a PL/SQL function CheckDiv that takes two numbers as arguments and returns the

values 1 if the first argument passed to it is divisible by the second argument, else will return the

value 0;

Ans:

//p4.sql

create or replace function checkdiv (n1 number, n2 number) return number as res

number;
begin

if mod (n1, n2) = 0 then

res := 1;

else

res:= 0;

end if;

return res;

end;
/

//pq4.sql
declare

a number;

b number;

CSE V Sem DBMS Lab

50

begin

a:=&a; b:=&b;

dbms_output.put_line(„result=‟||checkdiv(a,b));

end;

/

e)Output:

SQL> @p4.sql;

Function created.

SQL> @pq4.sql;

Enter value for a: 4

old 5: a:=&a; new 5: a:=4;

Enter value for b: 2

old 6: b:=&b; new 6: b:=2;

result=1

Q5: Write a PL/SQL function called POW that takes two numbers as argument and return the

value of the first number raised to the power of the second .

Ans:

//p5.sql

create or replace function pow (n1 number, n2 number) return number as

res number;

begin

select power (n1, n2) into res from dual; return res;

end;

or

create or replace function pow (n1 number, n2 number) return number as

res number : =1;

begin

for res in 1..n2

loop

res : = n1 * res;

end loop;

return res;
end;

//pq5.sql

declare

a number;

b number;

begin

a:=&a; b:=&b;

dbms_output.put_line('power(n1,n2)='||pow(a,b));

end;

/

e)Output:

SQL> @p5.sql;

Function created.

SQL> @ pq5.sql;

Enter value for a: 2

old 5: a:=&a;

new 5: a:=2;

Enter value for b: 3

old 6: b:=&b;

new 6: b:=3;

power(n1,n2)=8

CSE V Sem DBMS Lab

51

Q6: Write a PL/SQL function ODDEVEN to return value TRUE if the number passed to it is

EVEN else will return FALSE.

Ans:

//p6.sql
create or replace function oddeven (n number) return boolean as

begin

if mod (n, 2) = 0 then return true;

else

return false;

end if;

end;

/

//pq6.sql

declare

a number; b boolean;

begin

a:=&a; b:=oddeven(a);

if b then

dbms_output.put_line('The given number is Even');

else

dbms_output.put_line('The given number is Odd');

end if;

end;

/

e)Output:

SQL> @p6.sql;

Function created.

SQL> @pq6.sql;

Enter value for a: 5

old 5: a:=&a; new 5: a:=5;

The given number is Odd

f)Result:

 Thus the procedures and function for various operations was developed and executed

successfully.

QUESTIONS AND ANSWERS

1. What is procedure? Write its advantages.

A procedure is a block that can take parameters (sometimes referred to as arguments) and

be invoked. Advantages:

 Procedures promote reusability and maintainability.

 They can be used in number of applications.

 If the definition changes, only the procedure are affected, this greatly simplifies

maintenance.

2. List the three types of argument passed in to the procedure

IN: Specifies that a value for the argument must be specified when calling the procedure

OUT: Specifies that the procedure passes a value for this argument back to it‟s calling

environment after execution ie. used to return values to a caller of the sub-program.

INOUT: Specifies that a value for the argument must be specified when calling the procedure

and that procedure passes a value for this argument back to it‟s cal ling environment after

execution.

3. Is the function return value?

 Yes, function‟s return value because every funct ion must return a value, this clause is

required.

CSE V Sem DBMS Lab

52

