
 

 

Module IV 

 

Informal Design Guidelines for Relational Databases  

• Semantics of the Relation Attributes  

• Redundant Information in Tuples and Update Anomalies  

•  Null Values in Tuples  

• Spurious Tuples 

 

1.1 Semantics of the Relation Attributes 

 

◼ GUIDELINE 1: Informally, each tuple in a relation should represent one entity or relationship 

instance. (Applies to individual relations and their attributes). 

◼ Attributes of different entities (EMPLOYEEs, DEPARTMENTs, PROJECTs) should 

not be mixed in the same relation 

◼ Only foreign keys should be used to refer to other entities 

◼ Entity and relationship attributes should be kept apart as much as possible. 

◼ Bottom Line: Design a schema that can be explained easily relation by relation. The 

semantics of attributes should be easy to interpret.  

Figure 10.1 A simplified COMPANY relational database schema 

 



 

 

 
 

 

 

 

 

1.2 Redundant Information in Tuples and Update Anomalies 

◼ Information is stored redundantly  



 

 

◼ Wastes storage 

◼ Causes problems with update anomalies 

◼ Insertion anomalies 

◼ Deletion anomalies 

◼ Modification anomalies  

 

DIFFERENT ANOMALIES IN DESIGNING A DATABASE 

 

 

Update  anomalies can be classified into insertion anomalies, deletion anomalies, and 

modification anomalies. 

Example of an update anomaly: 

◼ Consider the relation: 

◼ EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours) 

◼ Update Anomaly: 

◼ Changing the name of  project number P1 from “Billing” to “Customer-

Accounting” may cause this update to be made for all 100 employees working on 

project P1.  

 

(a) Insertion anomalies: 

 

Insertion anomalies can be differentiated into two types, illustrated by the following examples 

based on the EMP_DEPT relation: 



 

 

• To insert a new employee tuple into EMP_DEPT, we must include either the attribute values 

for the department that the employee works for, or nulls (if the employee does not work for a 

department as yet). 

For example, to insert a new tuple for an employee who works in department number 5, we must 

enter the attribute values of department 5 correctly so that they are consistent with values for 

department 5 in other tuples in EMP_DEPT. 

In the design, we do not have to worry about this consistency problem because we enter only the 

department number in the employee tuple; all other attribute values of department 5 are recorded 

only once in the database, as a single tuple in the DEPARTMENT relation. 

• It is difficult to insert a new department that has no employees as yet in the EMP_DEPT 

relation. The only way to do this is to place null values in the attributes for employee. This 

causes a problem because SSN is the primary key of EMP_DEPT, and each tuple is supposed to 

represent an employee entity-not a department entity. 

This problem does not occur in the design, because a department is entered in the 

DEPARTMENT relation whether or not any employees work for it, and whenever an employee 

is assigned to that department, a corresponding tuple is inserted in EMPLOYEE. 

(b) Deletion anomalies: 

 

The problem of deletion anomalies is related to the second insertion anomaly situation discussed 

earlier. If we delete from EMP_DEPT an employee tuple that happens to represent the last 

employee working for a particular department, the information concerning that department is lost 

from the database. 

This problem does not occur in the database of Figure 1 because DEPARTMENT tuples are 

stored separately. 

(c) Modification anomalies: 

 

In EMP_DEPT, if we change the value of one of the attributes of a particular department-say, the 

manager of department 5-we must update the tuples of all employees who work in that 

department; otherwise, the database will become inconsistent. 

If we fail to update some tuples, the same department will be shown to have two different values 

for manager in different employee tuples, which would be wrong. 

Guideline to Redundant Information in Tuples and Update Anomalies: 

◼ GUIDELINE 2:  

◼ Design a schema that does not suffer from the insertion, deletion and update 

anomalies. 

◼ If there are any anomalies present, then note them so that applications can be made 

to take them into account.  

1.3 Null Values in Tuples 

GUIDELINE 3: 



 

 

◼ Relations should be designed such that their tuples will have as few NULL values as 

possible 

◼ Attributes that are NULL frequently could be placed in separate relations (with the 

primary key) 

◼  Reasons for nulls: 

◼ Attribute not applicable or invalid 

◼ Attribute value unknown  (may exist) 

◼ Value known to exist, but unavailable  

1.4 Spurious Tuples 

◼ Bad designs for a relational database may result in erroneous results for certain JOIN 

operations 

◼ The "lossless join" property is used to guarantee meaningful results for join operations  

GUIDELINE 4: 

◼ The relations should be designed to satisfy the lossless join condition. 

◼ No spurious tuples should be generated by doing a natural-join of any relations. 

◼ There are two important properties of decompositions:  

◼ Non-additive or losslessness of the corresponding join 

◼ Preservation of the functional dependencies.  

◼ Note that: 

◼ Property (a) is extremely important and cannot be sacrificed. 

Property (b) is less stringent and may be sacrificed 

FUNCTIONAL DEPENDENCY (FD) 

 

A functional dependency, denoted by X  Y, between two sets of attributes X and Y that are 

subsets of R specifies a constraint on the possible tuples that can form a relation state r of R. 

The constraint is that, for any two tuples tl and t2 in r that have t1[X] =t2[X], they must also have 

t1[Y] = t2[Y]. 

This means that the values of the Y component of a tuple in r depend on, or are determined by, 

the values of the X component; 

Alternatively, the values of the X component of a tuple uniquely (or functionally) determines 

the values of the Y component. 

 

We also say that there is a functional dependency from X to Y, or that Y is functionally 

dependent on X. The abbreviation for functional dependency is FD or f.d. 

The set of attributes X is called the left-hand side of the FD, and Y is called the right-hand 

side . 

Example: 



 

 

Thus, X functionally determines Y in a relation schema R if, and only if, whenever two tuples of 

r(R) agree on their X-value, they must necessarily agree on their Y-value. 

 

Consider the following functional dependencies should hold: 

 

a. SSN ENAME 

 

b. PNUMBER  {PNAME, PLOCATION} 

 

c. {SSN, PNUMBER}  HOURS 

 

These functional dependencies specify that 

 

(a) The value of an employee's social security number (SSN) uniquely determines the 

employee name (ENAME). 

Alternatively, we say that ENAME is functionally determined by (or functionally 

dependent on) SSN. 

(b) The value of a project's number (PNUMBER) uniquely determines the project name 

(PNAME) and location (PLOCATION), and 

(c) A combination of SSN and PNUMBER values uniquely determines the number of hours the 

employee currently works on the project per week (HOURS). 

 

 

 

• If a constraint on R states that there cannot be more than one tuple with a given X value in any 

relation instance r(R)-that is, X is a candidate key of R-this implies thatX  Yfor any subset of 

attributes Yof R 

• If X Y in R, this does not say whether or not Y  X in R. 

 

There are two types of functional dependencies- 

  

 

  

1. Trivial Functional Dependencies 

2. Non-trivial Functional Dependencies 

  

1. Trivial Functional Dependencies- 

  



 

 

• A functional dependency X → Y is said to be trivial if and only if Y ⊆ X. 

• Thus, if RHS of a functional dependency is a subset of LHS, then it is called as a trivial 

functional dependency. 

  

Examples- 

  

The examples of trivial functional dependencies are- 

• AB → A 

• AB → B 

• AB → AB 

  

2. Non-Trivial Functional Dependencies- 

  

• A functional dependency X → Y is said to be non-trivial if and only if Y ⊄ X. 

• Thus, if there exists at least one attribute in the RHS of a functional dependency that is not a 

part of LHS, then it is called as a non-trivial functional dependency. 

 

Armstrong's Axioms 

The following six rules IRI through IR6 are well known inference rules for functional 

dependencies: 

 

◼ IR1. (Reflexive) If Y subset-of X, then X -> Y 

◼ IR2. (Augmentation) If X -> Y, then XZ -> YZ 

◼ (Notation: XZ stands for X U Z) 

◼ IR3. (Transitive) If X -> Y and Y -> Z, then X -> Z 

Some additional inference rules that are useful: 

◼ IR4. Decomposition: If X -> YZ, then X -> Y and X -> Z 

◼ IR5. Union: If X -> Y and X -> Z, then X -> YZ 

◼ IR6. Psuedotransitivity: If X -> Y and WY -> Z, then WX -> Z 

◼ Inference rules IR1 through IR3 are known as Armstrong's inference rules or 

Armstrong's axioms. 

◼ The reflexive rule (IR1) states that a set of attributes always determines itself or any of its 

subsets, which is obvious. 

◼ Because IRl generates dependencies that are always true, such dependencies are called 

trivial. 

◼ Formally, a functional dependency X  Y is trivial if X ⊇Y; otherwise, it is nontrivial. 



 

 

◼  

◼ The augmentation rule (IR2) says that adding the same set of attributes to both the left- and 

right-hand sides of a dependency results in another valid dependency. 

◼ According to IR3, functional dependencies are transitive. 

◼  

◼ The decomposition rule (IR4) says that we can remove attributes from the right-hand side 

of a dependency;  applying this rule repeatedly can decompose the FD X    {A1, A2, , 

An} into 

◼ the set of dependencies {X  A1, X  A2, ,X  An} 

◼  

◼ The union rule (IR5) allows us to do the opposite; we can combine a set of dependencies 

◼  

◼ {X  A1, X  A2,.... ,X  An}into the single FD X  {A1, A2,. ,An} 

 

CLOSURES 

 

Definition. Formally, the set of all dependencies that include F as well as all dependencies that 

can be inferred from F is called the closure of F; it is denoted by F+. 

 

For example, suppose that we specify the following set F of obvious functional dependencies on 

the relation schema of Figure below: 

F= {SSN {ENAME, BDATE, ADDRESS, DNUMBER},, 

DNUMBER  {DNAME, DMGRSSN}} 

Some of the additional functional dependencies that we can infer from F are the following: 

SSN  {DNAME, DMGRSSN} 

SSN  SSN 

DNUMBER  DNAME 

An FD X  Y is inferred from a set of dependencies F specified on R if X  Y holds in every 

legal relation state r of R; that is, whenever r satisfies all the dependencies in F, X  Y also 

holds in r. The closure F+ of F is the set of all functional dependencies that can be inferred from 

F. 



 

 

To determine a systematic way to infer dependencies, we must discover a set of inference rules 

that can be used to infer new dependencies from a given set of dependencies. We use the 

notation F |= X  Y to denote that the functional dependency X  Y is inferred from the set of 

functional dependencies F. 

 

Closure of an Attribute Set- 

  

• The set of all those attributes which can be functionally determined from an attribute set is 

called as a closure of that attribute set. 

• Closure of attribute set {X} is denoted as {X}+. 

  

Steps to Find Closure of an Attribute Set- 

  

Following steps are followed to find the closure of an attribute set- 

 

Step-01:  

Add the attributes contained in the attribute set for which closure is being calculated to the result set 

Step-02:  

Recursively add the attributes to the result set which can be functionally determined from the 

attributes already contained in the result set. 

  

Example- 

  

Consider a relation R ( A , B , C , D , E , F , G ) with the functional dependencies- 

A → BC 

BC → DE 

D → F 

CF → G 

  

Now, let us find the closure of some attributes and attribute sets- 

  

Closure of attribute A- 

  

A+   = { A } 

= { A , B , C }                          ( Using A → BC ) 

= { A , B , C , D , E }               ( Using BC → DE ) 

= { A , B , C , D , E , F }          ( Using D → F ) 

= { A , B , C , D , E , F , G }    ( Using CF → G ) 

Thus, 



 

 

A+ = { A , B , C , D , E , F , G } 

  

Closure of attribute D- 

  

D+   = { D } 

= { D , F }   ( Using D → F ) 

We can not determine any other attribute using attributes D and F contained in the result set. 

Thus, 

D+ = { D , F } 

  

Closure of attribute set {B, C}- 

  

{ B , C }+= { B , C } 

= { B , C , D , E }               ( Using BC → DE ) 

= { B , C , D , E , F }          ( Using D → F ) 

= { B , C , D , E , F , G }    ( Using CF → G ) 

Thus, 

{ B , C }+ = { B , C , D , E , F , G } 

  

Finding the Keys Using Closure- 

  

Super Key- 

  

• If the closure result of an attribute set contains all the attributes of the relation, 

then that attribute set is called as a super key of that relation. 

• Thus, we can say- 

“The closure of a super key is the entire relation schema.” 

  

Example- 

  

In the above example, 

• The closure of attribute A is the entire relation schema. 

• Thus, attribute A is a super key for that relation. 

  

Candidate Key- 

  



 

 

• If there exists no subset of an attribute set whose closure contains all the attributes of the 

relation, then that attribute set is called as a candidate key of that relation. 

  

Example- 

  

In the above example, 

• No subset of attribute A contains all the attributes of the relation. 

• Thus, attribute A is also a candidate key for that relation. 

  

PRACTICE PROBLEM BASED ON FINDING CLOSURE OF AN ATTRIBUTE SET- 

  

Problem- 

  

Consider the given functional dependencies- 

AB → CD 

AF → D 

DE → F 

C → G 

F → E 

G → A 

  

Which of the following options is false? 

(A) { CF }+ = { A , C , D , E , F , G } 

(B) { BG }+ = { A , B , C , D , G } 

(C) { AF }+ = { A , C , D , E , F , G } 

(D) { AB }+ = { A , C , D , F ,G } 

  

Solution- 

  

Let us check each option one by one- 

  

Option-(A): 

  

{ CF }+  = { C , F } 

      = { C , F , G }                     ( Using C → G ) 

      = { C , E , F , G }               ( Using F → E ) 



 

 

      = { A , C , E , E , F }          ( Using G → A ) 

      = { A , C , D , E , F , G }    ( Using AF → D ) 

  

Since, our obtained result set is same as the given result set, so, it means it is correctly given. 

  

Option-(B): 

  

{ BG }+  = { B , G } 

      = { A , B , G }                   ( Using G → A ) 

      = { A , B , C , D , G }        ( Using AB → CD ) 

  

Since, our obtained result set is same as the given result set, so, it means it is correctly given. 

 

Option-(C): 

  

{ AF }+  = { A , F } 

      = { A , D , F }               ( Using AF → D ) 

      = { A , D , E , F }          ( Using F → E ) 

  

Since, our obtained result set is different from the given result set, so,it means it is not correctly 

given. 

  

Option-(D): 

  

{ AB }+  = { A , B } 

      = { A , B , C , D }            ( Using AB → CD ) 

      = { A , B , C , D , G }      ( Using C → G ) 

 

Since, our obtained result set is different from the given result set, so,it means it is not correctly 

given. 

Thus, 

Option (C) and Option (D) are correct. 

 

EQUIVALENCE OF FDS, 

Definition. Two sets of functional dependencies E and F are equivalent if E+=F+ .Hence, 

equivalence means that every FD in E can be inferred from F, and every FD in F can be inferred 

from E; that is, E is equivalent to F if both the conditions E covers F and F covers E hold. 



 

 

Definition. A set of functional dependencies F is said to cover another set of functional 

dependencies E if every FD in E is also in F+; that is, if every dependency in E can be inferred 

from F; alternatively, we can say that E is covered by F. 

Case-01: F covers G (F ⊇ G) 

Case-02: G covers F (G ⊇ F) 

Case-03: Both F and G cover each other (F = G) 

PRACTICE PROBLEM BASED ON EQUIVALENCE OF FUNCTIONAL DEPENDENCIES- 

  

Problem- 

  

A relation R (A , C , D , E , H) is having two functional dependencies sets F and G as shown- 

  

Set F- 

A → C 

AC → D 

E → AD 

E → H 

  

Set G- 

A → CD 

E → AH 

Which of the following holds true? 

(A) G ⊇ F 

(B) F ⊇ G 

(C) F = G 

(D) All of the above 

  

Solution- 

  

Determining whether F covers G- 

  

Step-01: 

  

• (A)+ = { A , C , D }               // closure of left side of A → CD using set G 

• (E)+ = { A , C , D , E , H }    // closure of left side of E → AH using set G 



 

 

  

Step-02: 

  

• (A)+ = { A , C , D }               // closure of left side of A → CD using set F 

• (E)+ = { A , C , D , E , H }    // closure of left side of E → AH using set F 

  

Step-03: 

  

Comparing the results of Step-01 and Step-02, we find- 

• Functional dependencies of set F can determine all the attributes which have been determined 

by the functional dependencies of set G. 

• Thus, we conclude F covers G i.e. F ⊇ G. 

  

Determining whether G covers F- 

  

Step-01: 

  

• (A)+ = { A , C , D }               // closure of left side of A → C using set F 

• (AC)+ = { A , C , D }            // closure of left side of AC → D using set F 

• (E)+ = { A , C , D , E , H }    // closure of left side of E → AD and E → H using set F 

  

Step-02: 

  

• (A)+ = { A , C , D }                // closure of left side of A → C using set G 

• (AC)+ = { A , C , D }             // closure of left side of AC → D using set G 

• (E)+ = { A , C , D , E , H }    // closure of left side of E → AD and E → H using set G 

  

Step-03: 

  

Comparing the results of Step-01 and Step-02, we find- 

• Functional dependencies of set G can determine all the attributes which have been determined 

by the functional dependencies of set F. 

• Thus, we conclude G covers F i.e. G ⊇ F. 

  

Determining whether both F and G cover each other- 

  

• From Step-01, we conclude F covers G. 

• From Step-02, we conclude G covers F. 

• Thus, we conclude both F and G cover each other i.e. F = G. 

  



 

 

Thus, Option (D) is correct. 

MINIMAL COVER/CANONICAL COVER 

In DBMS, 

• A MINIMAL cover is a simplified and reduced version of the given set of functional 

dependencies. 

• Since it is a reduced version, it is also called as Irreducible set. 

  

Characteristics- 

  

• Canonical cover is free from all the extraneous functional dependencies. 

• The closure of canonical cover is same as that of the given set of functional dependencies. 

• Canonical cover is not unique and may be more than one for a given set of functional 

dependencies. 

 

PRACTICE PROBLEM BASED ON FINDING CANONICAL COVER- 

  

Problem- 

  

The following functional dependencies hold true for the relational scheme R ( W , X , Y , Z ) – 

X → W 

WZ → XY 

Y → WXZ 

Write the irreducible equivalent for this set of functional dependencies. 

  

Solution- 

  

Step-01: 

  

Write all the functional dependencies such that each contains exactly one attribute on its right side- 

X → W 

WZ → X 

WZ → Y 

Y → W 

Y → X 

Y → Z 

  



 

 

Step-02: 

  

Check the essentiality of each functional dependency one by one. 

  

For X → W: 

  

• Considering X → W, (X)+ = { X , W } 

• Ignoring X → W, (X)+ = { X } 

  

Now, 

• Clearly, the two results are different. 

• Thus, we conclude that X → W is essential and can not be eliminated. 

  

For WZ → X: 

  

• Considering WZ → X, (WZ)+ = { W , X , Y , Z } 

• Ignoring WZ → X, (WZ)+ = { W , X , Y , Z } 

  

Now, 

• Clearly, the two results are same. 

• Thus, we conclude that WZ → X is non-essential and can be eliminated. 

  

Eliminating WZ → X, our set of functional dependencies reduces to- 

X → W 

WZ → Y 

Y → W 

Y → X 

Y → Z 

Now, we will consider this reduced set in further checks. 

  

For WZ → Y: 

  

• Considering WZ → Y, (WZ)+ = { W , X , Y , Z } 

• Ignoring WZ → Y, (WZ)+ = { W , Z } 

  

Now, 

• Clearly, the two results are different. 

• Thus, we conclude that WZ → Y is essential and cannot be eliminated. 



 

 

  

For Y → W: 

  

• Considering Y → W, (Y)+ = { W , X , Y , Z } 

• Ignoring Y → W, (Y)+ = { W , X , Y , Z } 

  

Now, 

• Clearly, the two results are same. 

• Thus, we conclude that Y → W is non-essential and can be eliminated. 

  

Eliminating Y → W, our set of functional dependencies reduces to- 

X → W 

WZ → Y 

Y → X 

Y → Z 

  

For Y → X: 

  

• Considering Y → X, (Y)+ = { W , X , Y , Z } 

• Ignoring Y → X, (Y)+ = { Y , Z } 

  

Now, 

• Clearly, the two results are different. 

• Thus, we conclude that Y → X is essential and cannot be eliminated. 

  

For Y → Z: 

  

• Considering Y → Z, (Y)+ = { W , X , Y , Z } 

• Ignoring Y → Z, (Y)+ = { W , X , Y } 

  

Now, 

• Clearly, the two results are different. 

• Thus, we conclude that Y → Z is essential and cannot be eliminated. 

  

From here, our essential functional dependencies are- 

X → W 

WZ → Y 

Y → X 



 

 

Y → Z 

  

Step-03: 

  

• Consider the functional dependencies having more than one attribute on their left side. 

• Check if their left side can be reduced. 

  

In our set, 

• Only WZ → Y contains more than one attribute on its left side. 

• Considering WZ → Y, (WZ)+ = { W , X , Y , Z } 

  

Now, 

• Consider all the possible subsets of WZ. 

• Check if the closure result of any subset matches to the closure result of WZ. 

(W)+ = { W } 

(Z)+ = { Z } 

  

Clearly, 

• None of the subsets have the same closure result same as that of the entire left side. 

• Thus, we conclude that we cannot write WZ → Y as W → Y or Z → Y. 

• Thus, set of functional dependencies obtained in step-02 is the canonical cover. 

  

Finally, the canonical cover is- 

X → W 

WZ → Y 

Y → X 

Y → Z 

Canonical Cover



 

 

NORMALIZATION USING FUNCTIONAL DEPENDENCIES, 

 

Normalization: The process of decomposing unsatisfactory "bad" relations by breaking up their 

attributes into smaller relations 

Normalization is carried out in practice so that the resulting designs are of high quality and meet 

the desirable properties 

Normalization of data can be looked upon as a process of analyzing the given relation schemas 

based on their FDs and primary keys to achieve the desirable properties of 

(1) minimizing redundancy 

(2) minimizing the insertion, deletion, and update anomalies 

 

Thus, the normalization procedure provides database designers with the following: 

 

• A formal framework for analyzing relation schemas based on their keys and on the functional 

dependencies among their attributes 

• A series of normal form tests that can be carried out on individual relation schemas sothat the 

relational database can be normalized to any desired degree 

 

• An attribute of relation schema R is called a prime attribute of R if it is a member of 

some candidate key of R. 

• An attribute is called nonprime if it is not a prime attribute-that is, if it is not a member 

of any candidate key. 

 

 

First Normal Form- 

  

A given relation is called in First Normal Form (1NF) if each cell of the table contains only an atomic 

value. 

OR 

A given relation is called in First Normal Form (1NF) if the attribute of every tuple is either single 

valued or a null value. 

  

Example- 

  

The following relation is not in 1NF- 

 

 

  



 

 

Student_id Name Subjects 

100 Akshay Computer Networks, Designing 

101 Aman Database Management System 

102 Anjali Automata, Compiler Design 

Relation is not in 1NF 

  

However, 

• This relation can be brought into 1NF. 

• This can be done by rewriting the relation such that each cell of the table contains only one 

value. 

  

Student_id Name Subjects 

100 Akshay Computer Networks 

100 Akshay Designing 

101 Aman Database Management System 

102 Anjali Automata 

102 Anjali Compiler Design 

Relation is in 1NF 

  

This relation is in First Normal Form (1NF). 

  

NOTE- 

  

• By default, every relation is in 1NF. 

• This is because formal definition of a relation states that value of all the attributes must be 

atomic. 

  



 

 

Second Normal Form- 

  

A given relation is called in Second Normal Form (2NF) if and only if- 

1. Relation already exists in 1NF. 

2. No partial dependency exists in the relation. 

   

Partial Dependency 

  

A partial dependency is a dependency where few attributes of the candidate key determines 

non-prime attribute(s). 

OR 

A partial dependency is a dependency where a portion of the candidate key or incomplete 

candidate key determines non-prime attribute(s). 

  

In other words, 

A → B is called a partial dependency if and only if- 

1. A is a subset of some candidate key 

2. B is a non-prime attribute. 

If any one condition fails, then it will not be a partial dependency. 

  

NOTE- 

  

• To avoid partial dependency, incomplete candidate key must not determine any non-

prime attribute. 

• However, incomplete candidate key can determine prime attributes. 

  

Example- 

  

Consider a relation- R ( V , W , X , Y , Z ) with functional dependencies- 

VW → XY 

Y → V 

WX → YZ 

  

The possible candidate keys for this relation are- 

VW , WX , WY 



 

 

  

From here, 

• Prime attributes = { V , W , X , Y } 

• Non-prime attributes = { Z } 

  

Now, if we observe the given dependencies- 

• There is no partial dependency. 

• This is because there exists no dependency where incomplete candidate key determines any 

non-prime attribute. 

  

Thus, we conclude that the given relation is in 2NF. 

  

Third Normal Form- 

  

A given relation is called in Third Normal Form (3NF) if and only if- 

1. Relation already exists in 2NF. 

2. No transitive dependency exists for non-prime attributes. 

  

Transitive Dependency 

  

A → B is called a transitive dependency if and only if- 

1. A is not a super key. 

2. B is a non-prime attribute. 

If any one condition fails, then it is not a transitive dependency. 

  

NOTE- 

  

• Transitive dependency must not exist for non-prime attributes. 

• However, transitive dependency can exist for prime attributes. 

  

OR 

  

A relation is called in Third Normal Form (3NF) if and only if- 

Any one condition holds for each non-trivial functional dependency A → B 

1. A is a super key 



 

 

2. B is a prime attribute 

  

Example- 

  

Consider a relation- R ( A , B , C , D , E ) with functional dependencies- 

A → BC 

CD → E 

B → D 

E → A 

  

The possible candidate keys for this relation are- 

A , E , CD , BC 

  

From here, 

• Prime attributes = { A , B , C , D , E } 

• There are no non-prime attributes 

  

Now, 

• It is clear that there are no non-prime attributes in the relation. 

• In other words, all the attributes of relation are prime attributes. 

• Thus, all the attributes on RHS of each functional dependency are prime attributes. 

  

Thus, we conclude that the given relation is in 3NF. 

  

Boyce-Codd Normal Form- 

  

A given relation is called in BCNF if and only if- 

1. Relation already exists in 3NF. 

2. For each non-trivial functional dependency A → B, A is a super key of the relation. 

  

Example- 

  

Consider a relation- R ( A , B , C ) with the functional dependencies- 

A → B 

B → C 



 

 

C → A 

  

The possible candidate keys for this relation are- 

A , B , C 

  

Now, we can observe that RHS of each given functional dependency is a candidate key. 

Thus, we conclude that the given relation is in BCNF. 

 

1NF 

 

Relation should have no non atomic attributes or nested relations. 

 

It states that the domain of an attribute must include only atomic (simple, indivisible) values and 

that the value of any attribute in a tuple must be a single value from the domain of that attribute. 

Consider the DEPARTMENT relation schema shown in Figure whose primary key is 

DNUMBER. We assume that each department can have a number of locations. The 

DEPARTMENT schema and an example relation state are shown in Figure 10.8. As we can see, 

this is not in 1NF because DLOCATIONS is not an atomic attribute, as illustrated by the first 

tuple . 



 

 

 
 

 

 

 

There are three main techniques to achieve first normal form for such a relation: 

 

1. Remove the attribute DLOCATIONS that violates 1NF and place it in a separate relation 

DEPT_LOCATIONS along with the primary key DNUMBER of DEPARTMENT. The 

primary key of this relation is the combination {DNUMBER, DLOCATION},as shown in 

Figure 10.2. A distinct tuple in DEPT_LOCATIONS exists for each location of a department. 

This decomposes the non-1NF relation into two 1NF relations. 

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT relation 

for each location of a DEPARTMENT, as shown in Figure 10.8c. In this case, the primary 

key becomes the combination {DNUMBER, DLOCATION}. This solution has the 

disadvantage of introducing redundancy in the relation. 

3. If a maximum number of values is known for the attribute-for example, if it is known that 

at most three locations can exist for a department-replace the DLOCATIONS attribute by 

three atomic attributes: DLOCATION l, DLOCATION 2, and DLOCATION 3. This solution 

has the disadvantage of introducing null values if most departments have fewer than three 

locations. I 

Of the three solutions above, the first is generally considered best because it does not suffer 

from redundancy and it is completely general, having no limit placed on a maximum number 

of values. 

First normal form also disallows multivalued attributes that are themselves composite. These are 

called nested relations because each tuple can have a relation within it. Figure 10.9 shows how 

the EMP_PROJ relation could appear if nesting is allowed. 



 

 

Notice that SSN is the primary key of the EMP_PROJ relation in Figures 10.9a and b, while 

PNUMBER is the partial key of the nested relation; that is, within each tuple, the nested relation 

must have unique values of PNUMBER. 

To normalize this into INF, we remove the nested relation attributes into a new relation and 

propagate the primary key into it; the primary key of the new relation will combine the partial 

key with the primary key of the original relation. Decomposition and primary key propagation 

yield the schemas EMP_ PROJ 1 and EMP_PROJ2 shown in Figure  

 



 

 

 

 

 

2NF 

For relations where primary key contains multiple attributes, no nonkey attribute should be 

functionally dependent on a part of the primary key. 

Formally, A relation schema R is in second normal form (2NF) if every nonprime attribute A in 

R is not partially dependent on any key of R. 

 
Fig 10.3b 

 

Second normal form (2NF) is based on the concept of full functional dependency. 

 

A functional dependency X     Y is a full functional dependency if removal of any attribute A 

from X means that the dependency does not hold any more; that is, for any attribute A ε X , 

(X - {A}) does not functionally determine Y. 

 

A functional dependency X   Y is a partial dependency if some attribute A ε X can be 

removed from X and the dependency still holds; that is, for some A ε X, (X - {A})     Y. 

 

In Figure l0.3b, {SSN, PNUMBER}    HOURS is a full dependency (neither SSN    HOURS 

nor PNUMBER     HOURS holds). 

However, the dependency {SSN, PNUMBER}    ENAME is partial because SSN    ENAME 

holds.(FD2) 

The test for 2NF involves testing for functional dependencies whose left-hand side attributes 

are part of the primary key. 

If the primary key contains a single attribute, the test need not be applied at all. 

 

The EMP_PROJ relation in Figure 10.3b is in INF but is not in 2NF. 

 

The nonprime attribute ENAME violates 2NF because of FD2( ssn   ename ,on the left side 

both ssn and pnumber should be present), 



 

 

as do the nonprime attributes PNAME and PLOCATION because of FD3( pnumber     pname, 

plocation , on the left side both ssn and pnumber should be present). 

The functional dependencies FD2 and FD3 make ENAME, PNAME, and PLOCATION partially 

dependent on the primary key {SSN, PNUMBER} of EMP_PROJ, thus violating the 2NF test. 

If a relation schema is not in 2NF, it can be "second normalized" by decomposition of 

FD1,FD2,FD3 of EMP_PROJ into the three relation schemas EP1, EP2, and EP3 shown in 

Figure below each of which is in 2NF. 

 
 

Figure: Normalizing EMP_PROJ into 2NF relations. 

 

 3NF 

 

Relation should not have a non key attribute functionally determined by another non key 

attribute (or by a set of non key attributes.) That is, there should be no transitive dependency of a 

non key attribute on the primary key. 

Formally, A relation schema R is in third normal form (3NF) if, whenever a nontrivial functional 

dependency X      A holds in R, either (a) X is a superkey of R, or (b) A is a prime attribute of R. 

Third normal form (3NF) is based on the concept of transitive dependency. 

 

 



 

 

 
A functional dependency X   Y in a relation schema R is a transitive dependency if there is a set of 

attributes Z that is neither a candidate key nor a subset of any key of R and both X  Z and Z   Y hold. 

The dependency SSN    DMGRSSN is transitive through DNUMBER in EMP_DEPT of  

Figure below because both the dependencies SSN   DNUMBER and DNUMBER  DMGRSSN 

hold and DNUMBER is neither a key itself nor a subset of the key of EMP_DEPT. 

Another Example: 

Suppose that there are two candidate keys: Property_id# and {County_name, Lot#}; that is, lot 

numbers are unique only within each county, but Property_id# numbers are unique across counties 

for the entire state. 

Based on the two candidate keys Property_id# and {County_name, Lot#}, the functional 

dependencies FD1 and FD2 in below Figure  hold. We choose Property_id# as the primary key, so it 

is underlined in Figure  but no special consideration will be given to this key over the other candidate 

key. Suppose that the following twoadditional functional dependencies hold in LOTS: 

FD3: County_name      Tax_rate 

FD4: Area       Price 

In words, the dependency FD3 says that the tax rate is fixed for a given county (does not vary lot by 

lot within the same county), while FD4 says that the price of a lot is determined by its area regardless 

of which county it is in. (Assume that this is the price of the lot for tax purposes.) 

The LOTS relation schema violates the general definition of 2NF because Tax_rate is 

partially dependent on the candidate key {County_name, Lot#}, due to FD3. To normalize LOTS into 

2NF, we decompose it into the two relations LOTS1 and LOTS2, shown in Figure b.  We construct 

LOTS1 by removing the attribute Tax_rate that violates 2NF from LOTS and placing it with 

County_name (the left-hand side of FD3 that causes the partial dependency) into another relation 

LOTS2. Both LOTS1 and LOTS2 are in 2NF. Notice that FD4 does not violate 2NF and is carried 

over to LOTS1. 



 

 

Two points are worth noting about this example and the general definition of 3NF: 

■ LOTS1 violates 3NF because Price is transitively dependent on each of the candidate keys 

of LOTS1 via the nonprime attribute Area. 

■ This general definition can be applied directly to test whether a relation schema is in 3NF; it 

does not have to go through 2NF first. If we apply the above 3NF definition to LOTS with the 

dependencies FD1 through FD4, we find that both FD3 and FD4 violate 3NF. Therefore, we 

could decompose LOTS into LOTS1A, LOTS1B, and LOTS2 directly. Hence, the transitive 

and partial dependencies that violate 3NF can be removed in any order. 

 
 

 

BCNF 

 

The formal definition of BCNF differs slightly from the definition of 3NF. 

 



 

 

The only difference between the definitions of BCNF and 3NF is that condition (b) of 3NF, 

which allows A to be prime, is absent from BCNF. 

In our example, FD5 violates BCNF in LOTS1A because AREA is not a superkey of LOTSlA. 

Note that FD5 satisfies 3NF in LOTS1A because COUNTY_NAME is a prime attribute (part 

of candidate key)(condition b), but this condition does not exist in the definition of BCNF. 

We can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown in 

Figure below. 

 



 

 

LOSSLESS AND DEPENDENCY PRESERVING DECOMPOSITIONS 

 

Dependency Preservation Property of a Decomposition 

 

The dependency preservation property, which ensures that each functional dependency is 

represented in some individual relation resulting after decomposition 

If each functional dependency X  Y specified in F either appeared directly in one of the 

relation schemas Ri in the decomposition D or could be inferred from the dependencies that 

appear in some Ri. 

Informally, this is the dependency preservation condition. 

 
 

• If a decomposition is not dependency-preserving, some dependency is lost in the 

decomposition. 

• To check that a lost dependency holds, we must take the JOIN of two or more relations in 

the decomposition to get a relation that includes all left- and right-hand-side attributes of 

the lost dependency, and then check that the dependency holds on the result of the JOIN. 

 

Example: 

Let a relation R(A,B,C,D) and set a FDs F = { A -> B ,  A -> C  , C -> D}  are given. 

A relation R is decomposed into - 

  

R1 = (A, B, C) with FDs F1 = {A -> B, A -> C}, and 

R2 = (C, D) with FDs F2 = {C -> D}. 

      F' = F1 ∪ F2 = {A -> B, A -> C, C -> D} 

      so, F' = F.  

      And so, F'+ = F+. 

  

Thus, the decomposition is dependency preserving decomposition. 

Or 

Assume R(A, B, C, D) with FDs A→B, B→C, C→D. 



 

 

Let us decompose R into R1 and R2 as follows; 

R1(A, B, C) 

R2(C, D) 

The FDs A→B, and B→C are hold in R1. 

The FD C→D holds in R2. 

 All the functional dependencies hold here. Hence, this decomposition is dependency 

preserving.  

 

Losslesss 

 

The lossless join or nonadditive join property, which guarantees that the spurious tuple 

generation problem discussed in Section 10.1.4 does not occur with respect to the relation 

schemas created after decomposition 

Definition. Formally, a decomposition D= {R1, R2, … , Rm} of R has the lossless (nonadditive) 

join property with respect to the set of dependencies F on R if, for every relation state r of R that 

satisfies F, the following holds, where * is the NATURAL JOIN of all the relations in D: 

 

 
 

 

The word loss in lossless refers to loss of information, not to loss of tuples. If a decomposition 

does not have the lossless join property, we may get additional spurious tuples after the 

PROJECT ( ∏ ) and NATURAL JOIN (*) operations are applied; these additional tuples 

represent erroneous information. 

Testing for Lossless (nonadditive) Join Property 

 

1. Create an initial matrix S with one row i for each relation Ri in D, and one column j for each 

attribute Aj in R. 

2. Set S(i, j):= bij for all matrix entries. 

 

3. For each row i representing relation schema Ri 

 

4. Repeat the following loop until a complete loop execution results in no changes to S. 

 

5. If a row is made up entirely of "a" symbols, then the decomposition has the lossless join 

property; otherwise, it does not. 

 

 

Determining Whether Decomposition Is Lossless Or Lossy- 

Consider a relation R is decomposed into two sub relations R1 and R2. 

Then, 

• If all the following conditions satisfy, then the decomposition is lossless. 



 

 

• If any of these conditions fail, then the decomposition is lossy. 

  

Condition-01: 

  

Union of both the sub relations must contain all the attributes that are present in the original relation 

R. 

Thus, R1 ∪ R2 = R  

Condition-02: 

  

• Intersection of both the sub relations must not be null. 

• In other words, there must be some common attribute which is present in both the sub 

relations. 

Thus, R1 ∩ R2 ≠ ∅ 

  

Condition-03: 

  

• Intersection of both the sub relations must be a super key of either R1 or R2 or both. 

Thus, R1 ∩ R2 = Super key of R1 or R2 

PRACTICE PROBLEMS BASED ON DETERMINING WHETHER DECOMPOSITION IS 

LOSSLESS OR LOSSY- 

  

Problem-01: 

  

Consider a relation schema R ( A , B , C , D ) with the functional dependencies A → B and C → D. 

Determine whether the decomposition of R into R1 ( A , B ) and R2 ( C , D ) is lossless or lossy. 

  

Solution- 

  

To determine whether the decomposition is lossless or lossy, 

• We will check all the conditions one by one. 

• If any of the conditions fail, then the decomposition is lossy otherwise lossless. 

  

Condition-01: 

  

According to condition-01, union of both the sub relations must contain all the attributes of relation 

R. 

So, we have- 



 

 

 R1 ( A , B ) ∪ R2 ( C , D ) 

= R ( A , B , C , D ) 

Clearly, union of the sub relations contain all the attributes of relation R. 

Thus, condition-01 satisfies. 

  

Condition-02: 

  

According to condition-02, intersection of both the sub relations must not be null. 

So, we have- 

R1 ( A , B ) ∩ R2 ( C , D )= Φ 

Clearly, intersection of the sub relations is null. 

So, condition-02 fails. 

Thus, we conclude that the decomposition is lossy. 

 

 To determine whether the decomposition is lossless or lossy, 

• We will check all the conditions one by one. 

• If any of the conditions fail, then the decomposition is lossy otherwise lossless. 

 

 

 



 

 

 



 

 

 



 

 

 
 


