
 
 

 

MODULE III 
 

SQL DATA DEFINITION 
 

SQL uses the terms table, row, and column for the formal relational model terms relation, tuple, 

and attribute, respectively. 

The name SQL is derived from Structured Query Language. Originally, SQL was called 

SEQUEL (for Structured English Query Language) and was designed and implemented at IBM 

Research. 

SQL is now the standard language for commercial relational DBMSs. 
 

SQL is a comprehensive database language: It has statements for data definition, query, and 

update. Hence, it is both a DOL and a DML. In addition, it has facilities for defining views on  

the database, for specifying security and authorization, for defining integrity constraints, and for 

specifying transaction controls. 

ATTRIBUTE DATA TYPES AND DOMAINS IN SQL 
 

(a) Numeric data types 

 

- integer numbers of various sizes (INTEGER or INT, and SMALLINT) 
 

-floating-point (real) numbers of various precision (FLOAT or REAL, and DOUBLE 

PRECISION). 

- Formatted numbers can be declared by using DECIMAL(i,j)or DEC(i,j) or NUMERIC(i,j)- 

where i, the precision, is the total number of decimal digits and j, the scale, is the number of 

digits after the decimal point. 

(b) Character-string data type 

 

-either fixed length--CHAR(n) or CHARACTER(n), where n is the number of characters 
 

- varying length-VARCHAR(n) or CHAR VARYING(n) or CHARACTER VARYING(n), 

where n is the maximum number of characters. 

(c) Bit-string data types 

 

BIT(n)-or varying length-BIT VARYING(n), 



 
 

 

Literal bit strings are placed between single quotes but preceded by a B to distinguish them from 

character strings; for example, B'10101’ 

(d) Boolean data type -TRUE ,FALSE,Unknown 
 

In SQL, because of the presence of NULL values, a three-valued logic is used, so a third possible 

value for a boolean data type is UNKNOWN. 

(e) Date and Time datatypes 

 

The DATE data type has ten positions, and its components are YEAR, MONTH, and DAY in the 

form YYYY-MM-DD. The TIME data type has at least eight positions, with the components 

HOUR, MINUTE, and SECOND in the form HH:MM:SS. 

(f) Timestamp data type (TIMESTAMP) 
 

A timestamp data type (TIMESTAMP) includes both the DATE and TIME fields, plus a 

minimum of six positions for decimal fractions of seconds. 

Example: TIMESTAMP '2002-09-27 09:12:4 7648302'. 
 

SCHEMA AND CATALOG CONCEPTS IN SQL 
 

An SQL schema is identified by a schema name, and includes an authorization identifier to 

indicate the user or account who owns the schema, as well as descriptors for each element in the 

schema. 

Schema elements include tables, constraints, views, domains, and other constructs (such as 

authorization grants) that describe the schema. For example, the following statement creates a 

schema called COMPANY, owned by the user with authorization identifier JSMITH: 

CREATE SCHEMA COMPANY AUTHORIZATION JSMITH; 
 

In general, not all users are authorized to create schemas and schema elements. The privilege to 

create schemas, tables, and other constructs must be explicitly granted to the relevant user 

accounts by the system administrator or DBA. 

CREATE TABLE COMMAND 
 

The syntax is given below: 



 
 

 

 

 
 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 



 
 

 

SPECIFYING BASIC CONSTRAINTS IN SQL 
 

1. Specifying Attribute Constraints and Attribute Defaults 
 

Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified if 

NULL is not permitted for a particular attribute. This is always implicitly specified for the 

attributes that are part of the primary key of each relation, but it can be specified for any other 

attributes whose values are required not to be NULL. 

It is also possible to define a default value for an attribute by appending the clause DEFAULT 

<value> to an attribute definition. 
 

If no default clause is specified, the default, default value is NULL for attributes that do not have 

the NOT NULL constraint. 

Another type of constraint can restrict attribute or domain values using the CHECK clause 

following an attribute or domain definition.6 For example, suppose that department numbers are 

restricted to integer numbers between 1 and 20; then, we can change the attribute declaration of 

DNUMBER in the DEPARTMENT table 

DNUMBER INT NOT NULL CHECK (DNUMBER > 0 AND DNUMBER < 21); 
 

2. Specifying Key and Referential Integrity Constraints 
 

The PRIMARY KEY clause specifies one or more attributes that make up the primary key of a 

relation. Ifa primary key has a single attribute, the clause can follow the attribute directly. 

For example, the primary key of DEPARTMENT can be specified as follows: 

DNUMBER INT PRIMARY KEY 

The UNIQUE clause specifies alternate (secondary) keys 
 

Referential integrity is specified via the FOREIGN KEY clause . a referential integrity constraint 

can be violated when tuples are inserted or deleted, or when a foreign key or primary key 

attribute value is modified. 

The default action that SQL takes for an integrity violation is to reject the update operation that 

will cause a violation. However, the schema designer can specify an alternative action to be 

taken if a referential integrity constraint is violated, by attaching a referential triggered action 

clause to any foreign key constraint. The options include SET NULL, CASCADE, and SET 

DEFAULT. An option must be qualified with either ON DELETE or ON UPDATE. 

In Figure below, the database designer chooses SET NULL ON DELETE and CASCADE ON 

UPDATE for the foreign key SUPERSSN of EMPLOYEE. This means that if the tuple for a 

supervising employee is deleted, the value of SUPERSSN is automatically set to NULL for all 



 
 

 

employee tuples that were referencing the deleted employee tuple. On the other hand, if the SSN 

value for a supervising employee is updated (say, because it was entered incorrectly), the new 

value is cascaded to SUPERSSN for all employee tuples referencing the updated employee tuple. 

The action for CASCADE ON DELETE is to delete all the referencing tuples, whereas the action 

for CASCADE ON UPDATE is to change the value of the foreign key to the updated (new) 

primary key value for all referencing tuples. 

 
 

In addition to key and referential integrity constraints, which are specified by special keywords, 

other table constraints can be specified through additional CHECK clauses at the end of a 

CREATE TABLE statement. 

Then we could add the following CHECK clause at the end of the CREATE TABLE statement 

for the DEPARTMENT table to make sure that a manager's start date is later than the department 

creation date: 

CHECK (DEPT_CREATE_DATE < MGRSTARTDATE); 

 



 
 

 

 

 

 
 



 
 

 

THE SELECT-FROM-WHERE STRUCTURE OF BASIC SQL QUERIES 
 

The syntax is given below: 

 

 
 

 
• <attribute list> is a list of attribute names whose values are to be retrieved by the query. 

 

• <table list> is a list of the relation names required to process the query. 
 

• <condition> is a conditional (Boolean) expression that identifies the tuples to be retrieved by 

the query. 

 

Query 0 
 

Retrieve the birthdate and address of the employees) whose name is 'John B. Smith'. 
 

 

 

 
 

 
Output: 

 



 
 

 

 
 

 

 
AMBIGUOUS ATTRIBUTE NAMES, ALIASING 

 

In SQL the same name can be used for two (or more) attributes as long as the attributes are in 

different relations. If this is the case, and a query refers to two or more attributes with the same 

name, we must qualify the attribute name with the relation name to prevent ambiguity. 

This is done by prefixing the relation name to the attribute name and separating the two by a 

period(.). 

For example ,let the DNO and LNAME attributes of the EMPLOYEE relation were called 

DNUMBER and NAME, and the DNAME attribute of DEPARTMENT was also called NAME; 

then, to prevent ambiguity, 

Then the Query 1 above can be rewritten as 

 

Here,aliasing is done with employee and department table names.Rather than using “employee 

“ and “department”everywhere we can make use of aliases “E ” and ”D”respectively. 

 



 
 

 

UNSPECIFIED WHERE CLAUSE 
 

Select all EMPLOYEE SSNS (Q9), and all combinations of EMPLOYEE SSN and 

DEPARTMENT DNAME (Q10) in the database. 

 
 

 

 

 



 
 

 

 

USE OF THE ASTERISK (*) 
 

 

 
 

Output of Q1C 



 
 

 

 
 

Query QIC retrieves all the attribute values of any EMPLOYEE who works in DEPARTMENT 

number 5. 

query QID retrieves all the attributes of an EMPLOYEE and the attributes of the DEPARTMENT 

in which he or she works for every employee of the 'Research' department, and 

Query10A specifies the CROSS PRODUCT of the EMPLOYEE and DEPARTMENT relations. 

 

Query 11 below retrieves the salary of every employee; if several employees have the same 

salary, that salary value will appear as many times in the result of the query,. If we are interested 

only in distinct salary values, we want each value to appear only once, regardless of how many 

employees earn that salary. By using the keyword DISTINCT as in QIIA, we can accomplish 

this. 

 

(a)output of Q11   (b)output of Q11A 

 
 
SETOPERATIONS 

SQL has directly incorporated some of the set operations of relational algebra. There are set 

union (UNION), set difference (EXCEPT), and set intersection (INTERSECT) operations. 

The relations resulting from these set operations are sets of tuples; that is, duplicate tuples are 

eliminated from the result. Because these set operations apply only to union-compatible relations, 



 
 

 

we must make sure that the two relations on which we apply theoperation have the same 

attributes and that the attributes appear in the same order in both relations. 
 

 

 
 

 

 

 

 

SUBSTRING PATTERN MATCHING AND ARITHMETIC OPERATORS 
 

Partial strings are specified using two reserved characters: 

(a)% replaces an arbitrary number of zero or more characters, 

(b)the underscore ( _)replaces a single character. 

For example, consider the following query. 



 
 

 

 

 
 

 

 
 

To retrieve all employees who were born during the 1950s, we can use Query 12A. Here, '5' 

must be the third character  of the string (according to our format for date), so we use the  value   

' 5 ', with each underscore serving as a placeholder for an arbitrary character. 

If an underscore or % is needed as a literal character in the string, the character should be 

preceded by an escape character, which is specified after the string using the keyword ESCAPE. 

For example, 'AB\_CD\%EF'. ESCAPE '\' represents the literal string 'AB_CD%EF', because \ is 

specified as the escape character. 

 
ORDERING OF QUERY RESULTS 

 

SQL allows the user to order the tuples in the result of a query by the values of one or more 

attributes, using the ORDER BY clause. 

 



 
 

 

The default order is in ascending order of values. We can specify the keyword DESCif we want 

to see the result in a descending order of values. The keyword ASC can be usedto specify 

ascending order explicitly. For example, if we want descending order on DNAME and ascending 

order on LNAME, FNAME, the ORDER BY clause of Q15 can be written as 

  
 

COMPARISONS INVOLVING NULL 

 

SQL allows queries that check whether an attribute value is NULL. Rather than using =or< >(not 

equal) to compare an attribute value to NULL, SQL uses IS or IS NOT. 

Consider the following examples to illustrate each of the meanings of NULL. 

1. Unknown value. A person’s date of birth is not known, so it is represented by NULL in the 

database. 

2. Unavailable or withheld value. A person has a home phone but does not want it to be listed, so 

it is withheld and represented as NULL in the database. 

3. Not applicable attribute. An attribute LastCollegeDegree would be NULL for a person who has 

no college degrees because it does not apply to that person. 

 

 

 

NESTED QUERIES 

Some queries require that existing values in the database be fetched and then used in a comparison 

condition. Such queries can be conveniently formulated by using nested queries, which are 

complete select-from-where blocks within the WHERE clause of another query. That other query is 

called the outer query. 

Make a list of all project numbers for projects that involve an employee whose last name is 'Smith', 

either as a worker or as a manager of the department that controls the project. 



 
 

 

 
 

 

The first nested query selects the project numbers of projects that have a 'Smith' involved as 

manager, while the second selects the project numbers of projects that have a 'Smith' involved as 

worker. In the outer query, we use the OR logical connective to retrieve aPROJECT tuple if the 

PNUMBER value of that tuple is in the result of either nested query. 

If a nested query returns a single attribute and a single tuple, the query result will be 

 a single (scalar) value. In such cases, it is permissible to use = instead of IN for the 

 comparison operator. In general, the nested query will return a table (relation), which is a set or 

multiset of tuples. 

 
 

 

In addition to the IN operator, a number of other comparison operators can be used to compare a single 

value v (typically an attribute name) to a set or multiset v (typically a nested query). The = ANY (or = 

SOME) operator returns TRUE if the value v is equal to some value in the set V and is hence equivalent to 

IN. The two keywords ANY and SOME have the same effect. Other operators that can be combined with 

ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can also be combined with each of these 

operators. For example, the comparison condition (v > ALL V) returns TRUE if the value v is greater than 

all the values in the set (or multiset) V. 

 



 
 

 

 
 

 
In the nested query of Q16, we must qualify E.Sex because it refers to the Sex attribute of EMPLOYEE 

from the outer query, and DEPENDENT also has an attribute called Sex. If there were any unqualified 

references to Sex in the nested query, they would refer to the Sex attribute of DEPENDENT. However, we 

would not have to qualify the attributes Fname and Ssn of EMPLOYEE if they appeared in the nested 

query because the DEPENDENT relation does not have attributes called Fname andSsn, so there is no 

ambiguity. 

 

CORRELATED NESTED QUERIES 
 

Whenever a condition in the WHERE clause of a nested query references some attribute of a 

relation declared in the outer query, the two queries are said to be correlated. 

We can understand a correlated query better by considering that the nested query is evaluated 

once for each tuple (or combination of tuples) in the outer query. 

 

THE EXISTS AND NOT EXISTS FUNCTIONS IN SQL 
 

Q16 can be written with EXISTS function



 
 

 

 

EXISTS and NOTEXISTS are usually used in conjunction with a correlated nested query. In 

general, EXISTS(Q) returns TRUE if there is at least onetuple in the result of the nested query Q, 

and it returns FALSE otherwise. On the other hand, NOTEXISTS(Q) returns TRUE if there are 

no tuples in the result of nested query Q, and it returns FALSE otherwise. 

 

EXPLICIT SETS 
 

 

We have seen several queries with a nested query in the WHERE clause. It is also possible to use 

an explicit set of values in the WHERE clause, rather than a nested query. Such a set is enclosed in 

parentheses in SQL. 

 
 

 
 

 

 

 

JOINED TABLES IN SQL 
 

Query 1 can be rewritten as 

 

 

 

The concept of a joined table also allows the user to specify different types of join, such as 



 
 

 

NATURAL JOIN and various types of OUTER JOIN. In a NATURAL JOIN on two relations 

Rand S, no join condition is specified. 

If the names of the join attributes are not the same in the base relations, it is possible to rename 

the attributes so that they match, and then to apply NATURAL JOIN. In this case, the AS 

construct can be used to rename a relation and all its attributes in the FROM clause 

 

 



 
 

 

AGGREGATE FUNCTIONS IN SQL 
 

A number of built-in functions exist: COUNT, SUM, MAX, MIN, and AVG. The COUNT 

function returns the number of tuples or values as specified in a query. The functions SUM, 

MAX, MIN, and AVG are applied to a set or multiset of numeric values and return, respectively, 

the sum, maximum value, minimum value, and average (mean) of those values. These functions 

can be used in the SELECT clause or in a HAVING clause. 

 

 
 

 



 
 

 

The GROUP BY and HAVING Clauses 
 

In many cases we want to apply the aggregate functions to subgroups of tuples in a relation, where 

the subgroups are based on some attribute values. For example, we may want to find the average 

salary of employees in each department or the number of employees who work on each project. In 

these cases we need to partition the relation into nonoverlapping subsets (or groups) of tuples. 

Each group (partition) will consist of the tuples that have the same value of some attribute(s), called 

the grouping attribute(s).  

We can then apply the function to each such group independently produce summary information 

about each group. SQL has a GROUP BY clause for this purpose. The GROUP BY clause 

specifies the grouping attributes, which should also appear in the SELECT clause, so that the value 

resulting from applying each aggregate function to a group of tuples appears along with the value 

of the grouping attribute(s). 

 

 



 
 

 

 



 
 

 

 
 

For example, suppose that we want to modify Query 25 so that only projects with more than two employees 

appear in the result. SQL provides a HAVING clause, which can appear in conjunction with a GROUP BY clause, 

for this purpose. HAVING provides a condition on the summary information regarding the group of tuples 

associated with each value of the grouping attributes. Only the groups that satisfy the condition are retrieved in 

the result of the query. This is illustrated by Query 26. 

 

 

 

 



 
 

 

 

 
 

 

 

 

 

THE INSERT COMMAND 
 

 

 
 

INSERT is used to add a single tuple to a relation. We must specify the relation name and a list 

of values for the tuple. The values should be listed in the same order in which the corresponding 

attributes were specified in the CREATE TABLE command. 

To enter a tuple for a new EMPLOYEE for whom we know only the FNAME, LNAME, DNa, 

and SSN attributes, we can use 

 

 
 

 
The query would be rejected because no SSN value is provided 



 
 

 

THE DELETE COMMAND 

The DELETE command removes tuples from a relation. It includes a WHERE clause, 

similar to that used in an SQL query, to select the tuples to be deleted. Tuples are 

explicitly deleted from only one table at a time. However, the deletion may propagate 

to tuples in other relations if referential triggered actions are specified in the referential 

integrity constraints of the DDL. 
 

 
If applied independently to the database will delete zero, one, four, and all tuples, respectively, from the 

EMPLOYEE relation. 

THE UPDATE COMMAND 

 

The UPDATE command is used to modify attribute values of one or more selected 

tuples. As in the DELETE command, a WHERE clause in the UPDATE command 

selects the tuples to be modified from a single relation. 

 

An additional SET clause in the UPDATE command specifies the attributes to be modified and 

their new values. 

 

Eg: 

 
Several tuples can be modified with a single UPDATE command. An example is to give all 

employees in the ‘Research’ department a 10 percent raise in salary, as shown in U6. In this request, 

the modified Salary value depends on the original Salary value in each tuple, so two references to 

the Salary attribute are needed. In the SET clause, the reference to the Salary attribute on the right 

refers to the old Salary value before modification, and the one on the left refers to the new Salary 

value after modification: 



 
 

 

  
 
 

DROP COMMAND 
 
 

DROPTABLE DEPENDENT CASCADE; 
 

Ifthe RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is not 

referenced in any constraints (for example, by foreign key definitions in another relation) or 

views. 

With the CASCADE option, all such constraints and views that reference the table are dropped 

automatically from the schema, along with the table itself. 

One can also drop a schema. For example, if a whole schema is not needed any more, the DROP 

SCHEMA command can be used. There are two drop behavior options: CASCADE and 

RESTRICT. For example, to remove the COMPANY database schema and all its tables, 

domains, and other elements, the CASCADE option is used as follows: 

DROP SCHEMA COMPANY CASCADE; 

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only if 

ithasnoelements in it; otherwise, the DROP command will not be executed. 

THE ALTER COMMAND 
 

For example, to add an attribute for keeping track of jobs of employees tothe EMPLOYEE base 

relations in the COMPANY schema 

ALTER TABLE COMPANY.EMPLOYEE ADD JOB VARCHAR(12); 
 

For example, the following command removes the attribute ADDRESS from the EMPLOYEE 

base table: 

ALTER TABLE COMPANY.EMPLOYEE DROP ADDRESS CASCADE; 
 

It is also possible to alter a column definition by dropping an existing default clause or by 

defining a new default clause 

ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN DROP DEFAULT; 
 

 

ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN SET

 DEFAULT "333445555"; 



 
 

 

For example, to drop the constraint named EMPSUPERFK in Figure 8.2 from the EMPLOYEE 

relation, we write: 

ALTER TABLE COMPANY.EMPLOYEE DROP CONSTRAINT EMPSUPERFK 

CASCADE; 
 

VIEWS 
 

 A view in SQL terminology is a single table that is derived from other tables.

 These other tables could be base tables or previously defined views.

 Think of a view as a way of specifying a table that we need to reference frequently, 

even though it may not exist physically.

 In SQL, the command to specify a view is CREATE VIEW.

 The view is given a (virtual) table name (or view name), a list of attribute names, and a 

query to specify the contents of the view.

 If none of the view attributes results from applying functions or arithmetic operations, we 

do not have to specify attribute names for the view, since they would be the same as 

the names of the attributes of the defining tables in the default case.





 
 

 

 

Figure : Two views specified 

 
 In V1, we did not specify any new attribute names for the view WORKS_ONI (although 

we could have); in this case, WORKS_ONI inherits the names of the view attributes from 



 
 

 

the defining tables EMPLOYEE, PROJECT, and WORKS_ON.

 View V2 explicitly specifies new attribute names for the view DEPT_INFO, using a one- 

to-one correspondence between the attributes specified in the CREATE VIEW clause and 

those specified in the SELECT clause of the query that defines the view.

 If we do not need a view any more, we can use the DROP VIEW command to dispose of 

it.

 For example, to get rid of the view V1, we can use the SQL statement in V1A: 



An efficient strategy for automatically updating the view table when the 

base tables are updated must be developed in order to keep the view up to date.

 



 
 

 

 Techniques using the concept of incremental update have been developed for this 

purpose, where it is determined what new tuples must be inserted, deleted, or modified in 

a materialized view table when a change is applied to one of the defining base tables.

 The view is generally kept as long as it is being queried.

 If the view is not queried for a certain period of time, the system may then 

automatically remove the physical view table and recompute it from scratch when 

future queries reference the view.

 A view with a single defining table is updatable if the view attributes contain the 

primary key of the base relation, as well as all attributes with the NOT NULL constraint 

that do not have default values specified.

 Views defined on multiple tables using joins are generally not updatable.

 Views defined using grouping and aggregate functions are not updatable.

ASSERTIONS 
 

 Users can specify general constraints-those that do not fall into any of the categories 

like primary constraint, referential integrity constraint ,domain constraint via declarative 

assertions, using the CREATE ASSERTION statement of the DDL.



create assertion  assertion-name check predicate 

 

 Each assertion is given a constraint name and is specified via a condition similar to the 

WHERE clause of an SQL query.

 For example, to specify the constraint that "the salary of an employee must not be 

greater than the salary of the manager of the department that the employee works for" in 

SQL, we can write the following assertion:



 

 

 

 

 

 

 

 



 
 

 

 
 The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK, 

which is followed by a condition in parentheses that must hold true on every database 

state for the assertion to be satisfied.The constraint name can be used later to refer to the 

constraint or to modify or drop it.

 Any WHERE clause condition can be used, but many constraints can be specified using 

the EXISTS and NOT EXISTS style of SQL conditions.

 The basic technique for writing such assertions is to specify a query that selects any 

tuples that violate the desired condition.

 By including this query inside a NOT EXISTS clause, the assertion will specify that the 

result of this query must be empty. Thus, the assertion is violated if the result of the 

query is not empty.

 In our example, the query selects all employees whose salaries are greater than the salary 

of the manager of their department. If the result of the query is not empty, the assertion is 

violated.

Eg: Ensuring the sum of loan amounts for each branch is less than the sum of all account 

balances at the branch. 

Ensuring every loan customer keeps a minimum of $1000 in an account. 

Two assertions mentioned above can be written as follows. 

Ensuring the sum of loan amounts for each branch is less than the sum of all account 

balances at the branch. 

  create assertion  sum-constraint check(not exists (select * from branch  

  where (select sum)amount) from loan where (loan.bname =  

branch.bname >=(select sum)amount) from account where (account.bname 

=  branch.bname))) 

Ensuring every loan customer keeps a minimum of $1000 in an account. 

 create assertion  balance-constraint check (not exists (select * 

from loan L(where not exists (select *from borrower B, depositor D, 

account A where L.loan# =  B.loan# and B.cname = D.cname and 

D.account# = A.account# and A.balance >= 1000 ))) 

When an assertion is created, the system tests it for validity. 

If the assertion is valid, any further modification to the database is allowed only if it does 

not cause that assertion to be violated. 



 
 

 

This testing may result in significant overhead if the assertions are complex. Because of 

this, the assert should be used with great care. 

Some system developer omits support for general assertions or provides specialized form 

of assertions that are easier to test. 

TRIGGERS 
 

 It may be useful to specify a condition that ,if violated, causes some user to be informed 

of the violation.

 For example, A manager may want to be informed if an employee’s travel expenses 

exceed a certain limit by receiving a message whenever this occurs.

 The action that the DBMS must take in this case is to send an appropriate message to that 

user.

 The CREATE TRIGGER statement is used to implement such actions in SQL. 

COMPONENTS OF TRIGGERS

- event (inserting, changing)-(before/after) 
 

These events are specified after the keyword BEFORE , which means that the trigger should be 

executed before the triggering operation is executed. An alternative is to use AFTER , which 

specifies that the trigger should be execute after the operation specified in the event is completed. 

- condition(when) 
 

The condition that determines whether the rule action should be executed.Once the 

triggering event has occurred, an optional condition may be evaluated. If a condition is  specified, 

it is first evaluated, and only if it evaluates to true will the rule action be executed. The condition 

is specified in the when clause of the trigger. 

- action(rollback,update) 
 

The action is usually sequence of SQL statements, but it could also be a database transaction or 

an external program that will be automatically executed. 

 

 

Triggers are stored programs, which are automatically executed or fired when some events occur. 

Triggers are, in fact, written to be executed in response to any of the following events − 

 A database manipulation (DML) statement (DELETE, INSERT, or UPDATE) 

 A database definition (DDL) statement (CREATE, ALTER, or DROP). 

 A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or 

SHUTDOWN). 



 
 

 

Triggers can be defined on the table, view, schema, or database with which the event is associated. 

Benefits of Triggers 

Triggers can be written for the following purposes − 

 Generating some derived column values automatically 

 Enforcing referential integrity 

 Event logging and storing information on table access 

 Auditing 

 Synchronous replication of tables 

 Imposing security authorizations 

 Preventing invalid transactions 

Creating Triggers 

The syntax for creating a trigger is − 

CREATE [OR REPLACE ] TRIGGER trigger_name   

{BEFORE | AFTER | INSTEAD OF }   

{INSERT [OR] | UPDATE [OR] | DELETE}   

[OF col_name]   

ON table_name   

[REFERENCING OLD AS o NEW AS n]   

[FOR EACH ROW]   

WHEN (condition)    

DECLARE  

   Declaration-statements  

BEGIN   

   Executable-statements  

EXCEPTION  

   Exception-handling-statements  

END;  

Where, 

 CREATE [OR REPLACE] TRIGGER trigger_name − Creates or replaces an existing 

trigger with the trigger_name. 



 
 

 

 {BEFORE | AFTER | INSTEAD OF} − This specifies when the trigger will be executed. 

The INSTEAD OF clause is used for creating trigger on a view. 

 {INSERT [OR] | UPDATE [OR] | DELETE} − This specifies the DML operation. 

 [OF col_name] − This specifies the column name that will be updated. 

 [ON table_name] − This specifies the name of the table associated with the trigger. 

 [REFERENCING OLD AS o NEW AS n] − This allows you to refer new and old values 

for various DML statements, such as INSERT, UPDATE, and DELETE. 

 [FOR EACH ROW] − This specifies a row-level trigger, i.e., the trigger will be executed 

for each row being affected. Otherwise the trigger will execute just once when the SQL 

statement is executed, which is called a table level trigger. 

 WHEN (condition) − This provides a condition for rows for which the trigger would fire. 

This clause is valid only for row-level triggers. 

 

Advantages of using SQL triggers 

 SQL triggers provide an alternative way to check the integrity of data. 

 SQL triggers can catch errors in business logic in the database layer. 

 SQL triggers provide an alternative way to run scheduled tasks. By using SQL 

triggers, you don’t have to wait to run the scheduled tasks because the triggers are 

invoked automatically before or after a change is made to the data in the tables. 

 SQL triggers are very useful to audit the changes of data in tables. 

Disadvantages of using SQL triggers 

 SQL triggers only can provide an extended validation and they cannot replace all 

the validations. Some simple validations have to be done in the application layer. 

For example, you can validate user’s inputs in the client side by using JavaScript 

or on the server side using server-side scripting languages such as JSP, PHP, 

ASP.NET, Perl. 

 SQL triggers are invoked and executed invisible from the client applications, 

therefore, it is difficult to figure out what happens in the database layer. 

 SQL triggers may increase the overhead of the database server. 

http://www.mysqltutorial.org/mysql-triggers/working-mysql-scheduled-event/
http://www.zentut.com/perl-tutorial/


 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timeslot_check1 is the name of the TRIGGER 
 

Section and time_slot are the 2 TABLES . Both tables contain time_slot_id as the 

ATTRIBUTES. 

Time_slot_id act as foreign key in the table section whereas primary key in the table time_slot 
 

Trigger gets activates when foreign key(time_slot_id) in section tries to enter values not in 

primary key (time_slot_id) of time_slot since it violates referential integrity. If it violates 

,rollback happens. 
 

The first trigger definition in the figure specifies that the trigger is initiated after any insert on the 

relation section and it ensures that the time slot id value being inserted is valid. 

An SQL insert statement could insert multiple tuples of the relation, and the for each row clause 

in the trigger code would then explicitly iterate over each inserted row. 

Example 1 
 

The referencing new row as clause creates a variable nrow(called a transition variable)that 

stores the value of an inserted row after the insertion. 
 

The when statement specifies a condition. The system executes the rest of the trigger body only 

for tuples that satisfy the condition. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Timeslot_check2 is the name of the TRIGGER 
 

Section and time_slot are the 2 TABLES . Both tables contain time_slot_id as the 

ATTRIBUTES. 

Time_slot_id act as foreign key in the table section whereas primary key in the table time_slot 
 

Trigger gets activates when primary key (time_slot_id) of time_slot tries to delete some of its 

value and foreign key(time_slot_id) of section still have references for this deleted values in its 

table(section),because it violates referential integrity .If it violates ,rollback happens. 

Example 3 

Example 2 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Tabletakes, student Attributegrade 

Trigger activates when grade gets updated, which in turn updates the total credits. 


