
1

MODULE V

INDEX STRUCTURES-(SINGLE-LEVEL AND MULTILEVEL)

TYPES OF SINGLE-LEVEL ORDERED INDEXES

 The idea behind an ordered index access structure is similar to that behind the index used

in a textbook, which lists important terms at the end of the book in alphabetical order

along with a list of page numbers where the term appears in the book.

 We can search an index to find a list of addresses-page numbers in this case-and use these

addresses to locate a term in the textbook by searching the specified pages.

 For a file with a given record structure consisting of several fields (or attributes), an index

access structure is usually defined on a single field of a file, called an indexing field.

 The index typically stores each value of the index field along with a list of pointers to all

disk blocks that contain records with that field value.

 The values in the index are ordered so that we can do a binary search on the index. The

index file is much smaller than the data file, so searching the index using a binary search

is reasonably efficient.

 There are several types of single-level ordered indexes.

 A primary index is specified on the ordering key field of an ordered file of records.

 An ordering key field is used to physically order the file records on disk, and every

record has a unique value for that field.

 If the ordering field is not a key field-that is, if numerous records in the file can have the

same value for the ordering field-another type of index, called a clustering index, can be

used.

 A third type of index, called a secondary index, can be specified on any nonordering

field of a file.

INDEXING

Indexing is a data structure technique to efficiently retrieve records from the database files based

on some attributes on which the indexing has been done.

 An index on a database table provides a convenient mechanism for locating a row (data

record) without scanning the entire table and thus greatly reduces the time it takes to

2

process a query.

 The property to be located is a column (or columns) of the indexed table called a search

key.

 Based on a search key: rows having a particular value for the search key attributes can be

quickly located

 Don’t confuse candidate key with search key:

 Candidate key: set of attributes; guarantees uniqueness

 Search key: sequence of attributes; does not guarantee uniqueness – just used for search.

Basic Concepts

• Indexing mechanisms used to speed up access to desired data.

E.g., author catalog in library

• Search Key - attribute to set of attributes used to look up records in a file.

• An index file consists of records (called index entries) of the form

• Index files are typically much smaller than the original file

• Two basic kinds of indices:

• Ordered indices: search keys are stored in sorted order

• Hash indices: search keys are distributed uniformly across “buckets” using a “hash function”.

3

Advantages & Disadvantages

 Stores and organizes data into computer files.

 Makes it easier to find and access data at any given time.

 It is a data structure that is added to a file to provide faster access to the data.

 It reduces the number of blocks that the DBMS has to check.

disadvantage of using index

 Index needs to be updated periodically for insertion or deletion of records in the main table.

Structure of index

 An index is a small table having only two columns.

 The first column contains a copy of the primary or candidate key of a table and

 The second column contains a set of pointers holding the address of the disk block where that

particular key value can be found.

• If the indexes are sorted, then it is called as ordered indices.

PRIMARY INDEX

4

5

 A primary index is an ordered file whose records are of fixed length with two fields.

 The first field is of the same data type as the ordering key field-called the primary

key- of the data file, and the second field is a pointer to a disk block (a block

address).

 There is one index entry (or index record) in the index file for each block in the data file.

 Each index entry has the value of the primary key field for the first record in a block

and a pointer to that block as its two field values.

 We will refer to the two field values of index entry i as <K(i),P(i)>

 To create a primary index on the ordered file shown in the Figure, we use the NAME

field as primary key, because that is the ordering key field of the file (assuming that

each value of NAME is unique). Each entry in the index has a NAME value and a

pointer. The first three index entries are as follows:

 The first record in each block of the data file is called the anchor record of the block,

or simply the block anchor.

 Indexes can also be characterized as dense or sparse.

 A dense index has an index entry for every search key value (and hence every record)

in the data file.

 A sparse (or non dense) index, on the other hand, has index entries for only some of

the search values.

 A primary index is hence a nondense (sparse) index, since it includes an entry for

each disk block of the data file and the keys of its anchor record rather than for every

search value (or every record).

 The index file for a primary index needs substantially fewer blocks than does the

data file, for two reasons.

6

 First, there are fewer index entries than there are records in the data file.

 Second, each index entry is typically smaller in size than a data record because it has

only two fields; consequently, more index entries than data records can fit in one

block.

 A binary search on the index file hence requires fewer block accesses than a binary

search on the data file.

Problems

 A major problem with a primary index-as with any ordered file-is insertion

and deletion of records.

 With a primary index, the problem is compounded because, if we attempt to insert a

record in its correct position in the data file, we have to not only move records to

make space for the new record but also change some index entries, since moving

records will change the anchor records of some blocks.

Example 1. (See book page 635.) Consider an ordered file with these parameters:

Block size (B) 1024 B

Record count (r) 30,000

Record length (R) 100 B fixed size, unspanned

The blocking factor is bfr = ⌊(B/R)⌋ = 10 record/block. The number of blocks needed by the file is b =

⌈(r/bfr)⌉ = 3000 blocks. A binary search would, on average, need to access ⌈log b⌉ = 12 blocks.

Now consider a primary index on that file with these parameters:

7

Ordering key length (V) 9 B

Block pointer length (P) 6 B

Index entry length (Ri) 15 B (9+6)

The blocking factor of the index file is bfri = ⌊(B/Ri)⌋ = 68 record/block.

The total number of index entries will be the same as the number of blocks in the main file, or ri =

3000.

Thus the number of blocks needed by the index file is bi = ⌈(ri/bfri)⌉ = 45 blocks.

A binary search on this need access on average only ⌈log bi⌉ = 7 blocks.

CLUSTERING INDICES,

 If records of a file are physically ordered on a nonkey field-which does not have a

distinct value for each record-that field is called the clustering field.

 We can create a different type of index, called a clustering index, to speed up

retrieval of records that have the same value for the clustering field.

 This differs from a primary index, which requires that the ordering field of the data

file have a distinct value for each record.

 A clustering index is also an ordered file with two fields; the first field is of the same

type as the clustering field of the data file, and the second field is a block pointer.

 There is one entry in the clustering index for each distinct value of the

clustering field, containing the value and a pointer to the first block in the data file

that has a record with that value for its clustering field.

8

 The record insertion and deletion still cause problems, because the data records are

physically ordered. To alleviate the problem of insertion, it is common to reserve a

whole block (or a cluster of contiguous blocks) for each value of the clustering field;

all records

with that value are placed in the block (or block cluster). This makes insertion and

deletion relatively straightforward.

 A clustering index is another example of a nondense index, because it has an entry

for every distinct value of the indexing field which is a nonkey by definition and

hence has duplicate values rather than for every record in the file.

9

10

SECONDARY INDEX

 A secondary index provides a secondary means of accessing a file for which some

primary access already exists.

 The secondary index may be on a field which is a candidate key and has a unique value

in every record, or a nonkey with duplicate values.

 The index is an ordered file with two fields.

 The first field is of the same data type as some nonordering field of the data file that is

an indexing field. The second field is either a block pointer or a record pointer.

 We first consider a secondary index access structure on a key field that has a distinct

value for every record. Such a field is sometimes called a secondary key.

 In this case there is one index entry for each record in the data file, which contains

the value of the secondary key for the record and a pointer either to the block in which

the record is stored or to the record itself. Hence, such an index is dense.

 We again refer to the two field values of index entry i as <K(i),P(i)>

 The entries are ordered by value of K(i),, so we can perform a binary search.

 Because the records of the data file are not physically ordered by values of the secondary

key field, we cannot use block anchors.

 That is why an index entry is created for each record in the data file, rather than for each

block, as in the case of a primary index

 Once the appropriate block is transferred to main memory, a search for the desired record

within the block can be carried out.

 A secondary index usually needs more storage space and longer search time than does a

primary index, because of its larger number of entries.

 However, the improvement in search time for an arbitrary record is much greater for a

secondary index than for a primary index, since we would have to do a linear search on

the data file if the secondary index did not exist.

 For a primary index, we could still use a binary search on the main file, even if the index

did not exist.

11

12

13

MULTI-LEVEL INDEXING

 A multilevel index considers the index file, which we will now refer to as the first (or

base) level of a multilevel index, as an ordered file with a distinct value for each K(i).

 Hence we can create a primary index for the first level; this index to the first level is

called the second level of the multilevel index.

 Because the second level is a primary index, we can use block anchors so that the second

level has one entry for each block of the first level.

 We can repeat this process for the second level. The third level, which is a primary index

for the second level, has an entry for each second-level block.

 The multilevel scheme described here can be used on any type of index, whether it is

primary, clustering, or secondary-as long as the first-level index has distinct values for

K(i) and fixed-length entries.

 A common file organization used in business data processing is an ordered file witha

multilevel primary index on its ordering key field. Such an organization is called an

indexed sequential file and was used in a large number of early IBM systems.

 A multilevel index reduces the number of blocks accessed when searching for a record,

given its indexing field value.

 We are still faced with the problems of dealing with index insertions and deletions,

because all index levels are physically ordered files.

 To retain the benefits of using multilevel indexing while reducing index insertion and

deletion problems, designers adopted a multilevel index that leaves some space in each of

its blocks for inserting new entries.

 This is called a dynamic multilevel index and is often implemented by using data

structures called B-trees and B+-trees.

14

15

B TREES

A B-tree of order p, when used as an access structure on a key field to search for records in a

data file, can be defined as follows:

1. Each internal node in the B-tree (Figure 14.10a) is of the form

where q ≤ p. Each Pi is a tree pointer--a pointer to another node in the B-tree.

Each Pri is a data pointer--a pointer to the record whose search key field value is equal

to Ki .

16

5.A node with q tree pointers, q ≤ p, has q - 1 search key field values (and hence has q - 1 data

pointers).

6. All leaf nodes are at the same level. Leaf nodes have the same structure as internal nodes

except that all of their tree pointers P, are null.

17

 A B-tree starts with a single root node (which is also a leaf node) at level 0 (zero).

 Once the root node is full with p - 1 search key values and we attempt to insert another

entry in the tree, the root node splits into two nodes at level 1.

18

 Only the middle value is kept in the root node, and the rest of the values are split evenly

between the other two nodes.

 When a non-root node is full and a new entry is inserted into it, that node is split into two

nodes at the same level, and the middle entry is moved to the parent node along with two

pointers to the new split nodes.

 If the parent node is full, it is also split. Splitting can propagate all the way to the root

node, creating a new level if the root is split.

B+TREES (BASIC STRUCTURE ONLY, ALGORITHMS NOT NEEDED),

The structure of the internal nodes of a B + -tree of order p (Figure 18.11a) is as follows:

6. An internal node with q pointers, q≤ p, has q - 1 search field values.

The structure of the leaf nodes of a W-tree oforder p (Figure 14.11b) is as follows:

4. All leaf nodes are at the same level.

19

 Most implementations of a dynamic multilevel index use a variation of the B-tree data

structure called a B+-tree.

 In a B-tree, every value of the search field appears once at some level in the tree, along

with a data pointer.

 In a B+-tree, data pointers are stored only at the leaf nodes of the tree; hence, the

structure of leaf nodes differs from the structure of internal nodes.

 The leaf nodes have an entry for every value of the search field, along with a data pointer

to the record (or to the block that contains this record) if the search field is a key field.

 For a non key search field, the pointer points to a block containing pointers to the data

file records, creating an extra level of indirection.

 The leaf nodes of the B+-tree are usually linked together to provide ordered accesson the

search field to the records.

 These leaf nodes are similar to the first (base) level of an index. Internal nodes of the B+-

tree correspond to the other levels of a multilevel index.

 Some search field values from the leaf nodes are repeated in the internal nodes of the B+-

tree to guide the search.

20

B+-Trees Compared with B‐Trees:

• Only leaf nodes store record pointers.

• All search values are stored in leaf nodes. (And may be stored at higher levels.)

• Leaf nodes are usually linked into a sorted list.

• With no data pointers in the internal nodes, fanout is increased and height is decreased.

• B+‐Trees are commonly used in modern filesystems for indexing subdirectories, very large files,

and so on.

• They are the basis for many related data structures like R‐Tree etc.

Differences of B+-tree from B-tree

1. In B+-tree, data pointers are stored only at the leaf nodes

2. Leaf and non-leaf nodes are of the same size in B+-tree, while in B- tree, non-leaf nodes are larger

3. Deletion in B-tree is more complicated

QUERY OPTIMIZATION

• Tasks in processing a high-level query

1. Scanner scans the query and identifies the language tokens

21

2. Parser checks syntax of the query

3. The query is validated by checking that all attribute names and relation names are valid

4. An intermediate internal representation for the query is created (query tree or query graph)

5. Query execution strategy is developed

6. Query optimizer produces an execution plan

7. Code generator generates the object code

8. Runtime database processor executes the code

• Query processing and query optimization

HEURISTICS-BASED QUERY OPTIMIZATION,

 Optimization techniques are the ones that apply heuristic rules to modify the internal

representation of a query-which is usually in the form of a query tree or a query

graph data structure-to improve its expected performance.

 The parser of a high-level query first generates an initial internal representation, which is

then optimized according to heuristic rules.

 Following that, a query execution plan is generated to execute groups of operations

based on the access paths available on the files involved in the query.

 One of the main heuristic rules is to apply SELECT and PROJECT operations before

applying the JOIN or other binary operations.

 This is because the size of the file resulting from a binary operation-such as JOIN-is

usually a multiplicative function of the sizes of the input files.

 The SELECT and PROJECT operations reduce the size of a file and hence should be

applied before a join or other binary operation.

Notation for Query Trees and Query Graphs

 A query tree is a tree data structure that corresponds to a relational algebra expression.

 It represents the input relations(tables) of the query as leaf nodes of the tree, and

represents the relational algebra operations as internal nodes.

 An execution of the query tree consists of executing an internal node operation whenever

its operands are available and then replacing that internal node by the relation that results

22

from executing the operation.

 The execution terminates when the root node is executed and produces the result

relation for the query.

 Consider the query Q2

For every project located in 'Stafford', retrieve the project number, the controlling

department number,

23

 As we can see, the query tree represents a specific order of operations for executing a

query.

 A more neutral representation of a query is the query graph notation. Figure 15.4c shows

the query graph for query Q2.

 Relations(tables) in the query are represented by relation nodes, which are displayed as

single circles.

 Constant values, typically from the query selection conditions, are represented by

constant nodes, which are displayed as double circles or ovals.

 Selection and join conditions are represented by the graph edges.

 Finally, the attributes to be retrieved from each relation are displayed in square brackets

above each relation.

Heuristic Optimization of Query Trees

 The query parser will typically generate a standard initial query tree to correspond to

an SQL query, without doing any optimization.

 For example, for a select-project-join query, such asQ2, the initial tree is shown in Figure

15.4b. The CARTESIAN PRODUCT of the relations specified in the FROM clause is

first applied; then the selection and join conditions of the WHERE clause are applied,

followed by the projection on the SELECT clause attributes.

 Such a canonical query tree represents a relational algebra expression that is very

inefficient if executed directly, because of the CARTESIAN PRODUCT (X) operations.It

produces more no.of unnecessary tuples.

 It is now the job of the It is now the job of the heuristic query optimizer to transform

this initial query tree into a final query tree that is efficient to execute.

Example of Transforming a Query

 Consider the example query

24

Step 1

 The initial query tree for Q is shown in Figure 15.5a.

 Executing this tree directly first creates a very large file containing the CARTESIAN

PRODUCT of the entire EMPLOYEE, WORKS_ ON, and PROJECT files.

 However, this query needs only one record from the PROJ ECT relation for the

'Aquarius' project-and only the EMPLOYEE records for those whose date of birth is after

'1957-12-31'.

25

Step 2

Figure 15.5b shows an improved query tree that first applies the SELECT operations to

reduce the number of tuples that appear in the CARTESIAN PRODUCT.

26

Step 3

A further improvement is achieved by switching the positions of the EMPLOYEE and

PROJECT relations in the tree, as shown in Figure 15.5c. This uses the information that

PNUMBER is a key attribute of the project relation, and hence the SELECT operation on

the PROJECT relation will retrieve a single record only.

Step 4

We can further improve the query tree by replacing any CARTESIAN PRODUCT

operation that is followed by a join condition with a JOIN operation, as shown in Figure

(d)

27

Step 5

 Another improvement is to keep only the attributes needed by subsequent operations in

the intermediate relations, by including PROJECT (7r) operations as early as possible in

the query tree,as shown in Figure(e).

 This reduces the attributes (columns) of the intermediate relations, whereas the SELECT

operations reduce the number of tuples (records).

28

Outline of a Heuristic Algebraic Optimization Algorithm

 Break up any SELECT operations with conjunctive conditions into a cascade of SELECT

operations

 Move each SELECT operation as far down the query tree as is permitted by the

attributes involved in the select condition

 First, position the leaf node relations with the most restrictive SELECT (produce a

relation with the fewest tuples) operations so they are executed first in the query tree

representation. (or with the smallest absolute size.It may be desirable to change the order

of leaf nodes to avoid Cartesian products.

 Combine a CARTESIAN PRODUCT operation with a subsequent SELECT operation in

the tree into a JOIN operation, if the condition represents a join condition.

 Break down and move lists of projection attributes down the tree as far as possible by

creating new PROJECT operations as needed. Only those attributes needed in the query

result and in subsequent operations in the query tree should be kept after each PROJECT

operation.

Converting Query Trees into Query Execution Plans

An execution plan for a relational algebra expression represented as a query tree includes

29

information about the access methods available for each relation(tables) as well as the

algorithms to be used in computing the relational operators represented in the tree.

30

Consider the query

To convert this query tree into an execution plan, the optimizer might choose an index search for

the SELECT operation (assuming one exists), a table scan as access method for EMPLOYEE, a

nested-loop join algorithm for the join, and a scan of the JOIN result for the PROJECT operator.

In addition, the approach taken for executing the query may specify a materialized or a

pipelined evaluation.

 materialized evaluation

the result of an operation is stored as a temporary relation

For instance, the join operation can be computed and the entire result stored as a temporary

relation, which is then read as input by the algorithm that computes the PROJECT operation

 pipelined evaluation the resulting tuples of an operation are produced, they are forwarded directly

to the next operation in the query sequence

For example, as the selected tuples from DEPARTMENT are produced by the SELECT

operation, they are placed in a buffer; the JOIN operation algorithm would then consume the

tuples from the buffer, and those tuples that result from the JOIN operation are pipelined to

the projection operation algorithm.

Summary

Indexing is a data structure technique to efficiently retrieve records from the database files based on some

attributes on which the indexing has been done. Indexing in database systems is similar to what we see in

books.

Indexing is defined based on its indexing attributes. Indexing can be of the following types −

 Primary Index − Primary index is defined on an ordered data file. The data file is ordered on

a key field. The key field is generally the primary key of the relation.

31

 Secondary Index − Secondary index may be generated from a field which is a candidate key and

has a unique value in every record, or a non-key with duplicate values.

 Clustering Index − Clustering index is defined on an ordered data file. The data file is ordered on

a non-key field.

Ordered Indexing is of two types −

 Dense Index

 Sparse Index

Dense Index

In dense index, there is an index record for every search key value in the database. This makes searching

faster but requires more space to store index records itself. Index records contain search key value and a

pointer to the actual record on the disk.

Sparse Index

In sparse index, index records are not created for every search key. An index record here contains a

search key and an actual pointer to the data on the disk. To search a record, we first proceed by index

record and reach at the actual location of the data. If the data we are looking for is not where we directly

reach by following the index, then the system starts sequential search until the desired data is found.

Multilevel Index

Index records comprise search-key values and data pointers. Multilevel index is stored on the disk along

with the actual database files. As the size of the database grows, so does the size of the indices. There is

an immense need to keep the index records in the main memory so as to speed up the search operations.

If single-level index is used, then a large size index cannot be kept in memory which leads to multiple

disk accesses.

32

Multi-level Index helps in breaking down the index into several smaller indices in order to make the

outermost level so small that it can be saved in a single disk block, which can easily be accommodated

anywhere in the main memory.

B+ Tree

A B+ tree is a balanced binary search tree that follows a multi-level index format. The leaf nodes of a

B+ tree denote actual data pointers. B+ tree ensures that all leaf nodes remain at the same height, thus

balanced. Additionally, the leaf nodes are linked using a link list; therefore, a B+ tree can support random

access as well as sequential access.

Structure of B+ Tree

Every leaf node is at equal distance from the root node. A B+ tree is of the order n where n is fixed for

every B+ tree.

Internal nodes −

 Internal (non-leaf) nodes contain at least ⌈n/2⌉ pointers, except the root node.

 At most, an internal node can contain n pointers.

Leaf nodes −

 Leaf nodes contain at least ⌈n/2⌉ record pointers and ⌈n/2⌉ key values.

 At most, a leaf node can contain n record pointers and n key values.

 Every leaf node contains one block pointer P to point to next leaf node and forms a linked list

	Dense Index
	Sparse Index
	Multilevel Index
	B+ Tree
	Structure of B+ Tree

