

o*Software

» Software is a collection of instructions that enable the user tc
interact with a computer, its hardware or perform tasks

» Without software, most computers would be useless. For
example, without your Internet browser software, you coulc
not surf the Internet. Without an operating system, the browsel
could not run on your computer.

nere are two types of software
System Software
Application Software

Examples of system software are Operating System, Compiler:
Interpreter, Assemblers, etc.

Examples of Application software are Railways Reservatio
Software, Microsoft Office Suite Software, Microsoft Worc
Microsoft PowerPoint , etc.

—I | Mo i
Llr II_J LiI’lE A Microsoft' S //Q
Microsoft y 0ff|Ce o

Wlndows Q-4

System Software's Application software's

3

Software Design

Software design is a process to transform user requirements int
some suitable form, which helps the programmer in softwar

coding and implementation.
The design process for software

systems often has two levels. A

he first level the focus is on deciding which modules are neede

or the system on the basis
specification) and how the modu

Software design is the first ste
Cycle)

It tries to specify how to fulfill
SRS document.

of SRS (Software Requiremer
es should be interconnected.

0 in SDLC (Software Design Lif

the requirements mentioned i

»In function-oriented design, the system is comprised of many
smaller sub-systems known as functions.

»These functions are capable of performing significant task in
the system

»Function oriented design inherits some properties of

structured design where divide and conquer methodology is
used.

»This design mechanism divides the whole system into smaller
functions

>These functional modules can share information among
themselves by means of information passing and using
information available globally.

FOD

Eg: Banking process

Here withdraw, Deposit, Transfer ar
functions and that can be divided in to sub
functions again.

Withdraw, Deposit,

Transfer So, in FOD, the entire problem is divided ir
- to number of functions and those function:
ithdraw() , :
{Defn... } are broken down in to smaller function
?[fgf‘;‘f't(}) and these smaller functions are convertec
Transfer() in to software modules.

{ Defn.. }

» 00D is based on Objects and interaction between the objects
» Interaction between objects is called message communication.

»It involves the designing of Objects, Classes and the
relationship between the classes

1

00D Consider the previous example of
Banking process.

Here, customer, money and account
are objects

Customer, Money, Account

»In 00D, implementation of a software based on the concept
of objects.

» This approach is very close to the real-world applications
Basic Object Oriented concepts

Object
Oriented
Programming
Concepts

Abstraction Polymorphism

Inheritance Encapsvlation

'« OBJECT

»Objects are real-world entities that has their own properties
and behavior.

> |t has physical existence
Eg: person, banks, company, customers etc
*CLASS

»A class is a blueprint or prototype from which objects are
created

» A class is a generalized description of an object.
»An object is an instance of a class

» Relationship between Object & Class

>Let’s take Human Being as a class. My name is John, and | am ar
instance/object of the class Human Being

>(Object has a physical existence while a class is just a logical
definition.

*Encapsulation

>The wrapping up of data(variables) and function (methods) into
a single unit (called class) is known as encapsulation.

>t is also called "information hiding“

Class ‘

e
Methods

Variables ‘

Key Points of Encapsulation
» Protection of data from accidental corruption
» Flexibility and extensibility of the code and reduction in complexity

» Encapsulation of a class can hide the internal details of how an object
does something

» Encapsulation protects abstraction

**ABSTRACTION

»Abstraction means displaying only essential information anc
hiding the details.

»Data abstraction refers to providing only essential informatior
about the data to the outside world, hiding the backgrounc
details or implementation.

»Consider a real-life example of a man driving a car. The mar
only knows that pressing the accelerators will increase the
speed of the car or applying brakes will stop the car but he doe:
not know about how on pressing accelerator the speed i:
actually increasing, he does not know about the inne
mechanism of the car or the implementation of accelerator
brakes etc in the car. This is what abstraction is.

Abstraction & Encapsulation

Encapsulation

Abstraction

13

+POLYMORPHISM

>The word polymorphism means having many forms

>|n simple words, we can define polymorphism as the ability of .
message to be displayed in more than one form.

g: A person at the same time can have different characteristic
ike @ man at the same time is a father, a husband, an employee
o0 the same person posses different behavior in differen
ituations. This is called polymorphism.

>An operation may exhibit different behaviors in differen
instances. The behavior depends upon the types of data used i
the operation.

E

Polymorphism

e =l

bt s

Fig: polymorphism

-'.‘
\

15

**Inheritance

»The capability of a class to derive properties and characteristi
from another class is called Inheritance.

OR

Inheritance is the process by which objects of one class acquire
the properties of objects of another classes

"Sub Class : The class that inherits properties from another cla:
is called Sub class or Derived Class.

"Super Class : The class whose properties are inherited by st
class is called Base Class or Super class.

" Reusability: Inheritance supports the concept of “reusability”
l.e. when we want to create a new class and there is already ¢
class that includes some of the code that we want, we car
derive our new class from the existing class. By doing this, we
are reusing the fields and methods of the existing class.

ANIMAL CLASS

/ l \ Eg: Dog, Cat, Cow can be

DOG CAT cow Derived Class of Animal Base
CLASS CLASS CLASS Class

d

Unified Modeling Language (UML)

>UML (Unified Modeling Language) is a general-purpose
graphical modeling language in the field of Software Engineering

>UML is used to specify, visualize, construct, and document th
artifacts (major elements) of the software system

>UML is a visual language for developing software blue print
(designs). A blue print or design represents the model.

>For example, while constructing buildings, a designer o
architect develops the building blueprints. Similarly, we can als
develop blue prints for a software system.

»UML is the most commonly and frequently used language foi
building software system blueprints

»UML is not a programming language, it is rather a visua
language.

The UML has the following features:
|t is a generalized modeling language.

[t is distinct from other programming languages like C++
Python, etc.

[t is interrelated to object-oriented analysis and design.
|t is used to visualize the workflow of the system.

[t is a pictorial language, used to generate powerful modeling
artifacts

JML is linked with object oriented design and analysis

agrams in UML can be broadly classified as:

‘ucture Diagrams : Capture static aspects or structure of a systerr
havior Diagrams: Capture dynamic aspects or behavior of the

;te m Diagram
Structure Behaviour
Diagram Diagram
Fa Fa
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction State Machine
Diagram Structure Diagram Diagram Diagram Diagram Diagram
Ja
Sequence Communicati Interaction Timing
Diagram on Diagram Overview Diagram Diagram

20

*CLASS DIAGRAM

The most widely use UML diagram is the class diagram. It is the
building block of all object oriented software systems.

Using class diagrams we can create the static structure of a syste
by showing system’s classes, their methods and attributes.

Class diagrams also help us identify relationship between differe
classes or objects.

There are several software available which can be used online an
offline to draw these diagrams Like Edraw mayx, lucid chart etc.

lass & Object

Propertiez
Color

Eve Color
Height
Length
Weight

Metheds
Sit

Loy Down
shake

Come

Create instance

Bobby

Property Values
Color: Yellow

Eve Color: Brown
Height: 17 in
Length: 35 in
Weight: 24 pounds

Methods
Sit

Loy Down
shake

Come

22

assS Notation MyClass

lass notation consists of three parts: +attributel : int
lass Name: -attributeZ : float

he name of the class appears in the first partition. e .
+opin p1 : bool, in p2) | String

lass Attributes: ; _

_ _ o -op2(input p3 @ int) : float
ttributes are shown in the second partition. #op3{out pB): Classe®
he attribute type is shown after the colon.
ttributes map onto member variables (data members) in code.
lass Operations (Methods):

)perations are shown in the third partition. They are services the class provides.

he return type of a method is shown after the colon at the end of the method
ignature.

he return type of method parameters are shown after the colon following the
arameter name. Operations map onto class methods in code

The +, - and # symbols before an attribute and operation name ir
) class denote the visibility of the attribute and operation.

+ denotes public attributes or operations
- denotes private attributes or operations
denotes protected attributes or operations

Public Atftribute

-.ﬁ, MyClassNamea

_ : 1Ettlib_u’[ﬂ= L int
Private Atiribute = =r| stritute? : float

ﬁ gattribute3 : Circle
. +op1(in p1 : boolean, in p2}: Sting

Protected AHIbUIES [sgion nb): Gacer.

a|lationships between classes

1
__________________ o
s 3
e 1

Association

Inheritance

Realization

Dependency

Aggregation

Composifion

25

1. Dependency

» A dependency means the relation between two or more classes
in which a change in one may force changes in the other.

» Dependency indicates that one class depends on another.

» A dashed line with an open arrow TR TR
. .

2. Inheritance (or Generalization)
» A generalization helps to connect a subclass to its superclass.
A sub-class is inherited from its superclass.

A solid line with a hollow arrowhead that point from the child
to the parent class

SuparClass

‘ ‘ Fig: Inheritance (or Generalization)

Subclass1 Subclass2

3. Association

' This kind of relationship represents static relationships between
classes A and B.

' There is an association between Class1 and Class?2
A solid line connecting two classes

Class1 Class2 _ o
- Fig: Association

1. Aggregation
» A special type of association. It represents a "part of" relationsh

> ' 1
Class2 is part of Classl. gt | 1 b Class2

» Many instances (denoted by the *) of Class2 can be associated
with Class1.

» A solid line with an unfilled diamond at the association end
connected to the class of composite

5. Composition

» A special type of aggregation where parts are destroyed when
the whole is destroyed.

» Objects of Class2 live and die with Class1.
» Class2 cannot stand by itself.

» A solid line with a filled diamond at the association connected
to the class of composite

Class1 | | Class2

ultiplicity

t means, how many objects of each class take part in ti
elationships

-xactly one - 1
‘’eroorone-0..1

Viany - 0..* or *

Dne or more - 1..*

xact Number -e.g.3..40r6

Or a complex relationship - e.g. 0..1, 3..4, 6.* would mean any
wumber of objects other than 2 or 5

30

g: Class diagram for an ATM system

Bank

+code
+address Fa
el

]

+manages() ATM
+maintains()
Cusiomer «locatinn
smanagedby
+name =
:;ﬁ"’ﬁ +identifies()
+iransactions
+card number 0
+pin
ATM Transachons
+varilyPassword()
Account :
Haz |1 & = +iransaction id
AL ccount Transaction | +date
1.2 +balance f Hype
- +EMount
+post balance
+depasit) s
+withsdraw()
creataTransaction() +imodifies()
Current Account Saving Account
+ACCoUNt ng. Savings-Checking | *BECOUNt no.
+balance 4 1 | *hsance
+ythdraw()

31

+»USE CASE MODEL / USE CASE DIAGRAM

>The purpose of a use case diagram in

>|t captures the dynamic behavior of a

>a use case diagram can summarize t
users (also known as actors) and t
system.

UML is to demonstrate th

different ways that a user might interact with a system.

lve system.
ne details of your system

neir interactions with th

>To build a use case diagram, we will use a set of specialize

symbols and connectors

>A use case diagram doesn't go into a lot of detail, but it depicts
high-level overview of the relationship between use cases, actor

and systemes.

A use-case model is a model of how different types of users
nteract with the system to solve a problem

Use case diagram components

\ctors: The users that interact with a system. An actor can be
)erson, an organization, or an outside system that interacts w
our application or system. They must be external objects tt
yroduce or consume data.

ystem: A specific sequence of actions and interactions betwe
iIctors and the system. A system may also be referred to as
cenario

30als: The end result of most use cases. A successful diagr:
hould describe the activities and variants used to reach the goal.

Use case diagram symbols and notation
-Use cases

Horizontally shaped ovals that represent the different uses that a
user might have

A use case represents a distinct functionality of a system, a
component, a package, or a class

UseCase-name

UML UseCase Notation

-Actors

Stick figures that represent the people actually employing the use
Cases.

A user is the best example of an actor

One actor can be associated with multiple use cases in the systen

O
()
St

Actor-name

UML Actor Notation

- Associations
A line between actors and use cases

In complex diagrams, it is important to know which actors a
associated with which use cases.

System boundary boxes
A box that sets a system scope to use cases

All use cases outside the box would be considered outside tl
scope of that system. B

Packages
A UML shape that allows you to put different elements into grouy

Just as with component diagrams, these groupings are represents
as file folders.

yurposes of use case diagram
Used to gather the requirements of a system.
Used to get an outside view of a system.

ldentify the external and internal factors influencing the system.
Show the interaction among the requirements and actors

o: Use case diagram of a student management system

check attendance

B check timetable
Student \

update attendance i

38

Bank AT

- Check Balances —,
- Deposit Funds —.]
A [~ Withdraw Cash —|
ustomer :

s ransfer Funds — Bank 1
@ Eg: ATM use case diagram

schnician

<extend>> Use Case

he <<extend>> use case inserting additional action sequences into th
ase use-case sequence.

Return Book BEZ LU Damaged

<include>> Use Case

he time to use the <<include>> relationship is after you have completec
he first cut description of all your main Use Cases.

Associalion = == ==p

Acto

System Boundary
|

¥ System

Order Food

— Em Em el

1

1

i
=<=Extend==

Waiter
b |
\.
—
Patron
= e=ap
Cashier
\

@ff@wﬁf-_)
<<Extend=> :
F'Ef;l' forFood @ k------------ F'Ejl' for Wine
A

Chef

= Usze Case

INTERACTION DIAGRAM

NTERACTION DIAGRAMS are used in UML to establi
ommunication between objects

nteraction diagrams mostly focus on message passing and hc
hese messages make up one functionality of a system

[he critical component in an interaction diagram is lifeline ai
nessages.

Interaction diagrams capture the dynamic behavior of any systen

[he details of interaction can be shown using several notatio
uch as sequence diagram, timing diagram, collaboration diagram.

interaction SequenceDiagram1 J

43

Purpose of an Interaction Diagram
o capture the dynamic behavior of a system.
o describe the message flow in the system.
o describe the structural organization of the objects.

o describe the interaction among objects.

1teraction diagram visualizes the communication and sequence o
nessage passing in the system.

1teraction diagram represents the ordered sequence of
1teractions within a system.

1teraction diagrams can be used to explain the architecture of an
bject-oriented system.

Different types of Interaction Diagrams

Sequence diagram
urpose - To visualize the sequence of a message flow in the syste

hows the interaction between two lifelines

Collaboration diagram

Iso called as a communication diagram

hows how various lifelines in the system connects.

Timing diagram

ocus on the instance at which a message is sent from one object
nother object.

interaction SequenceDiagraml _)

Lifeline2

2 : Self Message

46

In a sequence diagram, a lifeline is represented by a vertical bar.

A lifeline represents an individual participant in a sequenc
diagram

A lifeline will usually have a rectangle containing its object name

A message flow between two or more objects is represente
using a vertical dotted line which extends across the bottom
the page.

In a sequence diagram, different types of messages and operatol
are used

In @ sequence diagram, iteration and branching are also used.

Messages used

Message Name Meaning

Synchronous message The sender of a message keeps waiting for the
receiver to return control from the message
execution.

Asynchronous message The sender does not wait for a return from the

receiver; instead, it continues the execution of
a next message.

Return message The receiver of an earlier message returns the
focus of control to the sender.

Object creation The sender creates an instance of a classifier.
Object destruction The sender destroys the created instance.
Found message The sender of the message is outside the scope

of interaction.

Lost message The message never reaches the destination,
and itis lost in the interaction.

48

interaction McDonald's Order System

4 - Order preparation

=5

"'3" Order confirmation

Sequence diagram of Mcdonald's ordering system

49

3enefits of a Sequence Diagram

Sequence diagrams are used to explore any real application or a
system.

Sequence diagrams are used to represent message flow from one
object to another object.

Sequence diagrams are easier to maintain.
Sequence diagrams are easier to generate.

Sequence diagrams can be easily updated according to the
changes within a system.

Sequence diagram allows reverse as well as forward engineering.

d)rawbacks of a sequence diagram

Sequence diagrams can become complex when too many lifeline
are involved in the system.

If the order of message sequence is changed, then incorrect
results are produced.

Each sequence needs to be represented using different message
notation, which can be a little complex.

The type of message decides the type of sequence inside the
diagram

How to draw a Collaboration /Communication Diagram

interaction CommunicationDiagraml)

=elf

Coop

Lifelinel

2 - Reverse Message
-

+Connector

1 : Forward Message
—-

Lifeline?

52

-As per Object-Oriented Programming (OOPs), an object entity
has various attributes associated with it.

-Usually, there are multiple objects present inside an object
oriented system where each object can be associated with any
other object inside the system

-Collaboration Diagrams are used to explore the architecture o
objects inside the system.

-The message flow between the objects can be represented using
a collaboration diagram.

Collaboration Diagram Example

interaction Student Management System /

Login System

Student Database

+Request Login

2 : Check details

~3

- Return access

1: Fill the login details

H

Authentication System

+Request Access

54

>The above collaboration diagram represents a studen
information management system. The flow of communication i

the above diagram is given by,
A student requests a login through the login system.
An authentication mechanism of software checks the request.

If a student entry exists in the database, then the access i
allowed; otherwise, an error is returned.

nefits of Collaboration Diagram
tis also called as a communication diagram.

t emphasizes the structural aspects of an interaction diagram
1ow lifeline connects.

ts syntax is similar to that of sequence diagram except that lifeli
lon't have tails.

Viessages passed over sequencing is indicated by numbering ea
nessage hierarchically.

t allows you to focus on the elements rather than focusing on tl
nessage flow as described in the sequence diagram.

equence diagrams can be easily converted into a collaboratic
liagram as collaboration diagrams are not very expressive.

Drawbacks of a Collaboration Diagram

Collaboration diagrams can become complex when too man
objects are present within the system.

It is hard to explore each object inside the system.
Collaboration diagrams are time consuming.
The object is destroyed after the termination of a program.

The state of an object changes momentarily, which makes i
difficult to keep track of every single change the occurs within a
object of a system.

How to draw a Timing Diagram

Requirement
Analysis

Design

Development

In the above diagram, first, the software passes through th
requirements phase then the design and later the developmen
phase.

-The output of the previous phase at that given instance of tim
is given to the second phase as an input

-Thus, the timing diagram can be used to describe SDLC (Softwar:
Development Life Cycle) in UML.

3enefits of a Timing Diagram

Timing diagrams are used to represent the state of an object at .
particular instance of time.

Timing diagram allows reverse as well as forward engineering.

Timing diagram can be used to keep track of every change insids
the system.

drawbacks of a Timing Diagram
Timing diagrams are difficult to understand.
Timing diagrams are difficult to maintain.

ACTIVITY DIAGRAM

ACTIVITY DIAGRAM is basically a flowchart to represent the flo
rom one activity to another activity.

The activity can be described as an operation of the system

The basic purpose of activity diagrams is to capture the dynam
yehavior of the system

It is also called object-oriented flowchart

Activity diagrams are not only used for visualizing the dynam
1ature of a system, but they are also used to construct tt
xecutable system by using forward and reverse engineerir
echniques.

)asic components of an activity diagram

\ction: A step in the activity wherein the users or softwa
erform a given task.

)ecision node: A conditional branch in the flow that is represente
)y a diamond. It includes a single input and two or more outputs.

ontrol flows: Another name for the connectors that show tt
low between steps in the diagram.

tart node: Symbolizes the beginning of the activity. The start noc
s represented by a black circle.

nd node: Represents the final step in the activity. The end node
epresented by an outlined black circle.

Activity diagram symbols

Start symbol - Represents the beginning of a process or workflo
n an activity diagram.

\ctivity symbol - Indicates the activities that make up a modele
yrocess. These symbols, which include short descriptions with
he shape, are the main building blocks of an activity diagram.

“onnector symbol - Shows the directional flow, or control flow,
he activity.

> S Connector
. S Sl [Activity] Activity symbol > symbol

oint symbol / Synchronization bar - Combines two concurre
ictivities and re-introduces them to a flow where only one activi
ccurs at a time. Represented with a thick vertical or horizont
ine.

-ork symbol - Splits a single activity flow into two concurrel
Ictivities. Symbolized with multiple arrowed lines from a join.

decision symbol - Represents a decision and always has at lea
wo paths branching out with condition text.

Joint symbol/ Decision
Synchronization Fork symbol symbol
bar

lote symbol - Allows the diagram creators or collaborators -
ommunicate additional messages that don't fit within the diagra
tself. Leave notes for added clarity and specification.

end signal symbol - Indicates that a signal is being sent to
ecelving activity

eceive signal symbol - Demonstrates the acceptance of an ever
\fter the event is received, the flow that comes from this action
ompleted.

Note symbol 1 > Send signal [Receive signe
symbol symbol

-low final symbol - Represents the end of a specific process flo
"his symbol shouldn’t represent the end of all flows in an activit
ne flow final symbol should be placed at the end of a sing
Ictivity flow.

“ondition text - Placed next to a decision marker to let you kno
Inder what condition an activity flow should split off in th
lirection

'nd symbol - Marks the end state of an activity and represents tt
ompletion of all flows of a process.

End symbol

Flow final (Concdion] Condition text
symbol

Activity diagram - a login page

67

!

[Check account]
|
l l

[Wiz] [Depost] Activity Diagram -

Banking system.

r

Withdraw not Withdraw ameunt Update account
allowed balance

g

68

*STATE CHART DIAGRAM

State chart diagram is used to capture the dynamic aspect of
system

An object goes through various states during its lifespan. Th
lifespan of an object remains until the program is terminated. Th

object goes from multiple states depending upon the event the
occurs within the object.

Each state represents some unique information about the object

State chart diagram visualizes the flow of execution from on
state to another state of an object.

It represents the state of an object from the creation of an objec
until the object is destroyed or terminated.

The primary purpose of a state chart diagram is to mode
interactive systems and define each and every state of an object.

State chart diagrams are also referred to as State machines an
state diagrams.

A state machine consists of states, linked by transitions. A state |
a condition of an object in which it performs some activity c
waits for an event

Simple State Machine Diagram Notation

Initial Pseudo State 1€ Final State

. 5 o |
inwoice inwoice
created i

Transifion

Notation and Symbol for State Machine / State Chart Diagram

. initial
siate

[Statel] state-box

Q decision-box
@ final-state

UML state diagram notations

71

Initial state - The initial state symbol is used to indicate th
beginning of a state machine diagram.

Final state - This symbol is used to indicate the end of a stat
machine diagram.

Decision box - It contains a condition. Depending upon the resu
of an evaluated guard condition, a new path is taken for prograr
execution.

Transition - A transition is a change in one state into anothe
state which is occurred because of some event. A transitio
causes a change in the state of an object.

State box
-States represent situations during the life of an object.
It is denoted using a rectangle with round corners.
-The name of a state is written inside the rounded rectangle.
- A state can be either active or inactive.
-When a state is in the working mode, it is active, as soon as |

stops executing and transits into another state, the previous stat
becomes inactive, and the current state becomes active.

State Cancelled
|
v

Passive Acthe

cancel order
Y request confirm
| shipment arrival

Transition

Types of State
-Simple state

P
Siate 1 A simple state

They do not have any sub state.
-Composite state

State
A state with internal activities

activities/methods

These types of states can have one or more than one sub state.

A composite state with two or more sub states is called an
orthogonal state.

>Submachine state

These states are semantically equal to the composite states
Unlike the composite state, we can reuse the submachine states.

Enrollment
o rropsed | {j:fair;z;t]
A
University st
S h: led (Full :) (Clo:edto) I_?\ﬁ cl:;sdes - Diagram

I cancelled l-©-i closed

e composite state “Enrollment” is made up of various sub state
3t will lead students through the enrollment process.

ce the student has enrolled, they will proceed to “Being taught
d finally to “Final exams.”

State machine vs. Flowchart

Statemachine

It represents various states of a system.

The state machine has a WAIT concept, i.e.,
wait for an action or an event,

State machines are used for a live running
system.

The state machine is a modeling diagram.

The state machine can explore various states of
a system.

FlowChart

The Flowchart illustrates the program
execution flow.

The Flowchart does not deal with walting for :
concept.

Flowchart visualizes branching sequences of ¢
system.

A flowchart is a sequence flow or a DFD
diagram.

Flowchart deal with paths and control flow.

CHAPTER 2
INTRODUCTION TO JAVA

va is a powerful general-purpose , Object Oriented programmi
nguage developed by Sun Micro System of USA in 1991.

evelopment team members are James Gosling, Patrick Naughto
hris Warth, Ed Frank, and Mike Sheridan

rst name of Java is “Oak,” but was renamed “Java” in 1995.
va derives much of its character from C and C++.
3va Changed the Internet by simplifying web programming

Jva innovated a new type of networked program called the apple

2

Multithreaded

: ﬁ Features | | FEATURES OF JAVA

Performance

| of
O Java

Interpreted . Platform
E ' Indepe?tdent

(Java Buzzwords)

** JAVA RUNTIME ENVIRONMENT (JRE)
A software program needs an environment to run .

The runtime environment loads class files and ensures there
access to memory and other system resources to run them.

Java Runtime Environment provides the minimum requiremen
for executing a Java application programes.

JRE is an installation package which provides environment to on
run(not develop) the java program(or application)onto yo
machine.

JRE is only used by them who only wants to run the Ja
Programs i.e. end users of your system. JRE can be view as
subset of JDK.

< JAVA DEVELOPMENT KIT (JDK)

» The Java Development Kit (JDK) is a software developmen
environment used for developing and executing Jav
applications and applets

[t includes t

ne Java Runtime Environment (JRE), a

interpreter/load
documentation
Java developme

» JDK is only used

er (Java), a compiler (javac), an archiver (jar),
generator (Javadoc) and other tools needed i
nt.

by Java Developers.

Librariesand : Compiler,
: compiled class:

Debugger and
Other

Development
Tools

JRE
Java Development Kit(]DK)

< JAVA VIRTUAL MACHINE (JVM)

» JVM is a program which provides the runtime environment t
execute Java programs. Java programs cannot run if
supporting JVM is not available.

» JVM is a virtual machine that resides in the real machine (you
computer) and the machine language for JVM is byte code.

» The Java compiler generate byte code for JVM rather tha
different machine code for each type of machine.

» JVM executes the byte code generated by compiler and produc
output.

 JVM is the one that makes java platform independent.

» The primary function of JVM is to execute the byte cod
produced by compiler

» The JVM doesn’t understand Java source code, that's why w
need to have javac compiler

» Java compiler (javac) compiles *.java files to obtain *.class file
that contain the byte codes understood by the JVM.

» JVM makes java portable (write once, run anywhere).

» Each operating system has different JVM, however the outpu
they produce after execution of byte code is same across a
operating systems.

[VM-<—» | Interpreter

/ for Mac
Interpreter
Source Code —> w —> Byte code >Ny fﬂrir‘fifd:WS

(Java file) (.class file)

(javac)
Interpreter

UM =P
| for Linux

< BYTE CODE

» Java byte code is the instruction set for the Java Virtual Machine
|t is the machine code in the form of a .class file.

» Byte code is a machine independent code

|t is not completely a compiled code but it is an intermediat
code somewhere in the middle which is later interpreted an
executed by JVM.

» Byte code is a machine code for JVM.

» Byte code implementation makes Java a platform- Independen
language.

Souree code Sy
(Program) ARTRAER
beteriis claszs file

Machine code

Machine code Machine code

11

*JAVA COMPILER

Java is compiled language. But it is very different from tradition:

compiling in the way that after compilation source code
converted to byte code.

' Javac is the most popular Java compiler

Java has a virtual machine called JVM which then converts byt
code to target code of machine on which it is run.

JVM performs like an interpreter. It doesn’t do it alone, thougt

It has its own compiler to convert the byte code to machin
code. This compiler is called Just In Time or JIT compiler.

*JAVA APPLET

‘An applet is a special kind of Java program that is designed to b
transmitted over the Internet and automatically executed by
Java-compatible web browser

It runs inside the web browser and works at client side

Applets are used to make the web site more dynamic an
entertaining

Applets are not stand-alone programs. Instead, they run withi
either a web browser or an applet viewer. JDK provides
standard applet viewer tool called applet viewer.

In general, execution of an applet does not begin at main
method.

Applet is
Initialized.

; Applet Is

' K painted.

Lifecycle of Java Applet

14

Java Applet vs Java Application

Java Application Java Applet

Java Applications are the stand-alone programs |Java Applets are small Java programs which are
which can be executed independently designed to exist within HTML web document

Java Applications must have main() method for

Java Applets do not need main() for execution
them to execute

Java Applications just needs the JRE Java Applets cannot run independently and

require APl's
Java Applications do not need to extend any Java Applets must extend java.applet.Applet
class unless required class

Java Applications can execute codes from the

ava Applets Applications cannot do so
local system) PP PP

Java Applications has access to all the resources |Java Applets has access only to the browser-
available in your system specific services

15

-Simple
It’s simple and easy to learn if you already know the bas
concepts of Object Oriented Programming.

C++ programmer can move to JAVA with very little effort to learr

Java syntax is based on C++

Java has removed many complicated and rarely-used feature
for example, explicit pointers, operator overloading, etc.

16

-Object oriented

Java is true object oriented language. Everything in Java is a
object.

All program code and data reside within objects and classes.

Java comes with an extensive set of classes, arranged in package
that can be used in our programs through inheritance.

-Distributed

Java is designed for distributed environment of the Internet. Its
used for creating applications on networks

Java enables multiple programmers at multiple remote locations
to collaborate and work together on a single project.

-Compiled and Interpreted

Usually a computer language is either compiled or Interprete
Java combines both this approach and makes it a two-stag
system.

Compiled : Java enables creation of a cross platform programs k

compiling into an intermediate representation called Java Byt
code.

Interpreted : Byte code is then interpreted, which generate
machine code that can be directly executed by the machine th:
provides a Java Virtual machine.

-Robust

It provides many features that make the program execute reliab
in variety of environments.

Java is a strictly typed language. It checks code both at compil
time and runtime.

Java takes care of all memory management problems wit
garbage-collection.

Java, with the help of exception handling captures all types ¢
serious errors and eliminates any risk of crashing the system.

Secure

Java provides a “firewall” between a networked application an
your computer.

When a Java Compatible Web browser is used, downloading ca
oe done safely without fear of viral infection or malicious intent.

Java achieves this protection by confining a Java program to th
java execution environment and not allowing it to access othe
parts of the computer.

Architecture Neutral

Java language and Java Virtual Machine helped in achieving th
goal of “write once; run anywhere, any time, forever.”

Changes and upgrades in operating systems, processors an
system resources will not force any changes in Java Programes.

Portable

Java is portable because it facilitates you to carry the Java byt
code to any platform. It doesn't require any implementation.

Java Provides a way to download programs dynamically to all th
various types of platforms connected to the Interne

High Performance
Java performance is high because of the use of byte code.
The byte code can be easily translated into native machine code.

Multithreaded

Multithreaded Programs handled multiple tasks simultaneousl
which was helpful in creating interactive, networked programs.

Java run-time system comes with tools that support multiproces
synchronization used to construct smoothly interactive systems

Dynamic

Java is capable of linking in new class libraries, methods, an
objects.

It supports functions from native languages (the function
written in other languages such as C and C++).

It supports dynamic loading of classes. It means classes ar
loaded on demand

Documentation Section > Suggested
Package Statement — Uptional

Import Statement —> [ptional

Interface Statement —> [ptiona

Class Definition —> [ptiona

Main Method Class

}{ /Main method defintion —> tssential dection

23

-Documentation Section

You can write a comment in this section. It helps to understand
the code. These are optional

It is used to improve the readability of the program.

The compiler ignores these comments during the time of
execution

There are three types of comments that Java supports
Single line Comment //This is single line comment
-Multi-line Comment /* this is multiline comment.

and support multiple lines*/
Documentation Comment /** this is documentation cmnt*/

24

>~Package Statement

We can create a package with any name. A package is a group of
classes that are defined by a name.

That is, if you want to declare many classes within one element,
then you can declare it within a package

It is an optional part of the program, i.e., if you do not want to
declare any package, then there will be no problem with it, and
vou will not get any errors.

Package is declared as: package package name;
Eg: package mypackage;

>Import Statement

If you want to use a class of another package, then you can do
this by importing it directly into your program.

Many predefined classes are stored in packages in Java

We can import a specific class or classes in an import statement.
Examples:

import java.util.Date; //imports the date class

mport java.applet.*; /*imports all the classes from the java
applet package*/

Interface Statement
This section is used to specify an interface in Java

Interfaces are like a class that includes a group of metho
declarations

It's an optional section and can be used when programmers war
to implement multiple inheritances within a program.

Class Definition

A Java program may contain several class definitions.

Classes are the main and essential elements of any Java program
A class is a collection of variables and methods

Main Method Class

The main method is from where the execution actually starts anc
follows the order specified for the following statements

Every Java stand-alone program requires the main method as the
starting point of the program.

This is an essential part of a Java program.

There may be many classes in a Java program, and only one class
defines the main method

Methods contain data type declaration and executable
statements.

A simple java program to print hello world

public class Hello

{

//main method declaration
public static void main(String[] args)

{

System.out.printin("hello world");

J

29

public class Hello - This creates a class called Hello. We shot
make sure that the class name starts with a capital letter, and t
public word means it is accessible from any other classes.

Braces - The curly brackets are used to group all the comman
together

public static void main

When the main method is declared public, it means that it can
used outside of this class as well.

The word static means that we want to access a method witho
making its objects

The word void indicates that it does not return any value. T
main is declared as void because it does not return any value.

main is a method; this is a starting point of a Java program.

String[] args

IS an array where each element is a string, which is named as ar;
you run the Java code through a console, you can pass the inp
arameter. The main() takes it as an input.

System.out.printin();
This statement is used to print text on the screen as output

system is a predefined class, and out is an object of the PrintWrit
class defined in the system

The method println prints the text on the screen with a new line.

We can also use print() method instead of printin() method. .
Java statement ends with a semicolon.

Garbage Collection in Java

(A process of releasing unused memory)

When JVM starts up, it creates a heap area which is known :
runtime data area. This is where all the objects (instances of clas
are stored

Since this area is limited, it is required to manage this are
efficiently by removing the objects that are no longer in use.

The process of removing unused objects from heap memory
known as Garbage collection and this is a part of memol
management in Java.

| anguages like C/C++ don’t support automatic garbage collectio
however in java, the garbage collection is automatic.

':r'ﬂ_'_ljeet- 'qf_;l_n'q;eﬂ

33

In java, garbage means unreferenced objects.

Main objective of Garbage Collector is to free heap memory
destroying unreachable objects.

Unreachable objects : An object is said to be unreachable iff it doesn
contain any reference to it.

Eligibility for garbage collection : An object is said to be eligible fc
GC(garbage collection) iff it is unreachable.

finalize() method — This method is invoked each time before tt
object is garbage collected and it perform cleanup processing.

The Garbage collector of JVM collects only those objects that ai
created by new keyword. So if we have created any object withot
new, we can use finalize method to perform cleanup processing

Request for Garbage Collection

We can request to JVM for garbage collection however, it is upt
the JVM when to start the garbage collector.

Java gc() method is used to call garbage collector explicitly.

However gc() method does not guarantee that JVM will perfori
the garbage collection.

It only request the JVM for garbage collection. This method
present in System and Runtime class.

* TOKENS

' Java Tokens are the smallest individual building block o
smallest unit of a Java program

Java program is a collection of different types of tokens
comments, and white spaces.

36

Tokens
inJava

Keywords

int, while,float

Identifiers

sum, total

Constants

10, 20

strings

“ram”, "hello” J

Special symbols

Operators

37

-Keywords

A keyword is a reserved word. You cannot use it as a variable
name, constant name etc.

The meaning of the keywords has already been described to the
java compiler. These meaning cannot be changed.

Thus, the keywords cannot be used as variable names because
that would try to change the existing meaning of the keyword,
which is not allowed.

Java language has reserved 50 words as keywords

Keywords in Java

abstract

assert
boolean
break
I:n_lrte
case
catch
char

class

continue

default

do
double
else
enuim
extends
final
finally

float

for

if

implements

import

instanceof

int
interface

long

native

new

package

privale
protected
public
return
short
static
strictfp
super

switch

synchronized

this
throw
throws
transient
try

void
volatile

while

39

dentifiers

lentifiers are the names of variables, methods, classes, packages and
iterfaces

lentifier must follow some rules.

All identifiers must start with either a letter(ato zor Ato Z) or curren
1aracter(S) or an underscore.

rThey must not begin with a digit

After the first character, an identifier can have any combination of
1aracters.

A Java keywords cannot be used as an identifier.

dentifiers in Java are case sensitive, foo and Foo are two different
lentifiers.

They can be any length Eg: inta; char name;

onstants or Literals

onstants are fixed values of a particular type of data,which cannc
e modified in a program.

ava language specifies five major type of literals.
‘Integer

Floating point

Literals _
In Java : Character
oolean'

41

3. Integer literal : 100
Floating-point literal
Character literal : ‘s’

: 98.6

String literal : “sample”

omments

Comment type

Meaning

// comment

Single-line comments

/7 comment 7/

Multi-line comments

/7 documentation =/

Documentation comments

42

String

1 java, string is basically an object that represents sequence of ch
alues.

n array of characters works same as java string.
-g: char[] ch ={'a','t,'n','y,'l','a'};
String s = "atnyla";

va String class provides a lot of methods to perform operatiol
n string such as compare(), concat(), equals(), split(), length
aplace(), compareTo(), intern(), substring() etc.

Special symbol

()
% [
&

ickets[] : Opening and closing brackets are used as array eleme
erence. These indicate single and multidimensional subscripts.

-entheses() : These special symbols are used to indicate function ca
d function parameters.

ices{} : These opening and ending curly braces mark the start and el
a block of code containing more than one executable statement.

nicolon ; : It is used to separate more than one statements like in f
p is separates initialization, condition, and increment.

nma , : It is an operator that essentially invokes something called
ialization list.

erisk * : It is used for multiplication.
ignment operator = :Itis used to assign values.

jod . : Used to separate package names from subpackages ai
sses

Operators

An operator is a symbol that takes one or more arguments al
operates on them to produce a result.

Unary Operator
Arithmetic Operator
shift Operator
Relational Operator
Bitwise Operator
Logical Operator
Ternary Operator
Assignment Operator

Whitespace

Java is a free-form language. This means that you do not need
follow any special indentation rules

White space in Java is used to separate tokens in the source file.
is also used to improve readability of the source code.

Eg: inti=0;

White spaces are required in some places. For example betwe:
the int keyword and the variable name.

In java whitespace is a space, tab, or newline

