

DATA TYPES

»Data type defines the values that a variable can take, for
example if a variable has int data type, it can only take intege
values.

»Data types specify the different sizes and values that can be
stored in the variable.

»There are two types of data types in Java:
Primitive data types
Non-primitive data types

Numeric

 Primitive Data types

C
: A__

* Primitive Data Types (Fundamental Data Types)

Primitive Data Types are predefined and available within the Java
language. There are 8 types of primitive data types:

Data Type Default Value Default size
byte 0 1 byte
short 0 2 bytes

int 0 4 hytes
long oL 8 bytes
float 0.0f 4 bytes
double 0.0d 8 hytes
boolean false 1 bit

char "\ u0000' 2 bytes

-byte, short, int and long data types are used for storing who
numbers.

-float and double are used for fractional numbers.
-char is used for storing characters(letters).
~boolean data type is used for variables that holds either true «

—
Jul

=

byte shr:rt int long
4 8

155 JavaExample {

public static void main(5tring[] args) {

byte num;

num = 113;

System.out.println{num);

Output 113

class JavaExample {

public static wvoid main(5tring[] args) {

short num;

num = 158,

System.out.println(num);

Output 150

5 JavaExample { class JavaExample {

public static void main(5tring[] args) { public static void main(5tring[] args,
boolean b = false: char ch = 'Z°;
System.out.println(b); system.out.printin(ch);

e

Output false Output Z

Variables In JAVA

* Variable in Java is a data container that stores the data values
during Java program execution.

* Variable is a memory location name of the data.
- 11 11 -
* variable="vary + able" that means its value can be changed.

* In order to use a variable in a program we need to perform 2 steps
1. Variable Declaration
2. Variable Initialization

1. Variable Declaration
Syntax: data type variable name ;

Eg: inta,b,c; type name
float pi; Sy
double d; int count;

). Variable Initialization

Syntax : data_type variable_name = value;

Eg: inta=2,b=4,c=6; int num = 45.66;
float pi = 3.14f;
double val = 20.22d;
chara ="v’;

In Memory

In programming

int age = 21 ;

age

Variable Name

e

Value of the
variable

/l : Random Access |
Memory

10

Types of variables
l. Local variables - declared inside the method.

). Instance Variable - declared inside the class but outside the
method.

3. Static variable - declared as with static keyword.

class A{

int data=50;//instance variable

static int m=100;//static variable
-xample: yoid method(){

int n=90://local variable

¥

¥/ /fend of class

11

Java Type Casting or Type Conversion

» Type casting is when you assign a value of one primitive data
type to another type.

»1In Java, there are two types of casting:

1. Widening Casting (automatically) — converting a smaller type
to a larger type size (called Type Conversion)
byte -> short -> char -> int -> long -> float -> double

2. Narrowing Casting (manually) — converting a larger type to a
smaller size type (called Type Casting)
double -> float -> long -> int -> char -> short -> byte

1imple: Converting int to double Example: Converting double into an int
lass Main { class Main {
public static void main{String[] args) { public static void main(String[] args) {
/{ create int type variable /i create double type variable
int num = 10; double num = 10.99;
System.out.println{"The integer value: " + num); System.out.println{"The double wvalue: ™ + num
/4 convert into double tType /f convert into int type
double data = num; int data = {(int)num;
System.out.println("The double value: "™ + data); System.out.println({"The integer value: " + dat
T ¥
Iy
tput Output
ne integer value: 10 The double value: 10.99
ne double value: 10.0 The integer value: 10

Widening Narrowing

*Truncation

-when a floating-point value is assighed to an integer typ
truncation takes place, As you know, integers do not ha\
fractional components

-Thus, when a floating-point value is assigned to an integer typ
the fractional component is lost.

-For example, if the value 45.12 is assigned to an integer, tt
resulting value will simply be 45. The 0.12 will have bee
truncated.

-No automatic conversions from the numeric types to char
boolean. Also, char and boolean are not compatible with eac
other.

int number;

tloat tval= 32.33f;

number= [(int)[fval];

-

oe in which you
ant to convert

e

Variable name
Which you want to convert

class Casting{

public static wvoid main(5tring[] args)
int number;
float fwal= 32.33f;
number= (int)fval;
System.out.println{number);

h

Dutput:

32
Fress any key to coniinue . . .

15

OPERATORS

»An operator is a symbol that tells the computer to performn
certain mathematical or logical manipulation.

»Java operators can be divided into following categories:
» Arithmetic Operators

» Relational Operators

* Bitwise Operators

* Logical Operators

* Assignment Operators

» conditional operator (Ternary)

» Arithmetic Operators

Operator Description Example

+ (Addition) Adds two operands 5 + 10

- (Subtraction) | Subtract second operands from first. Also used to Coneatenate | 10- 5 =5
two strings

x Multiplies values on either side of the operator. 16 T 5

(Multiplication) =50

[(Division) Divides left-hand operand by right-hand operand. 10/ 5 =0

% (Modulus) Divides left-hand operand by right-hand operand and returns | 5% 2 =1
remainder.

++ (Increment) | Increases the value of operand by 1. 29++ gives

5
— (Decrement) | Decreases the value of operand by 1. 9--

lass ArithmeticOperations

public static woid main (5tring[] args){

Output

int answer = 2 + 2;
System.out.println{answer); Zl
answer = answer - 1; E;

System.out.println{answer);

answer = answer * 2;
System.out.println{answer);

answer = answer J 2;
System.out.println{answer);

B~ =L W
[EN

answer = answer + 8;
System.out.println(answer);

answer = answer % 7;
System.out.println{answer);

55 IncrementDecramentExample {
public static void main{5tring args[]}{

int x= 5:

Systam.out.println{x++);
System.out.println{++x);
System.out.println(x--);
System.out.println{--x);

¥

1t

255 any key to continue . . .

+ is Use —Then - Change

class IncrementDecrementExample

public static void main(String args[])}{
int p=18;
int g=18;
System.out.println(pt+ + +p);//18+12=22
System.out.println{g++ + q#+);//18+11=21

}

Output

22
21
Press any key fo continue . . .

++X is Change —Then - Use

19

of Modulus Operator

Joining or Concatenate two strings

ass ModulusOperator {

public static wvoid main(5tring

class AssignmentConcatination {

args[]) 1 public static wvoid main(String[] args){
int B =42
double S = £2.25; String firstName = "Rahim”;
String lastName = "Ramboo”;
System.out.println("R mod 186 = " + R % 18);
System.out.println("5 mod 18 = " + 5 % 18); String fullName = firstName + lastN
¥ System.out.println{fulliame);
¥
I
ut
. mod 10 = 2 Putput
-mod 10 = 225

ress any key to continue . . .

HahimRamboo

Press any key to continue . . .

20

»*Relational Operators

Operators | Descriptions Examples

== (equal | This operator checks the wvalue of two operands, if both are | (2 == 3) is

to) equal, then it returns true otherwise false. not true.

= (not equal | This operator checks the value of two operands, if both are not | (4 != 35) is

to) equal, then it returns true otherwise false. true.

> (greater | This operator checks the value of two operands, if the left side of | (5 > 56) is

than) the operator is greater, then it returns true otherwise false. not true.

< (less than) | This operator checks the value of two operands if the left sideof | (2 < 5) is
the operator is less, then it returns true otherwise false. true.

>~= (greater | This operator checks the value of two operands if the left side of | (12 >= 45)

than or | the operator is greater or equal, then it returns true otherwise | is not true.

equal to) false.

<= (less than | This operator checks the value of two operands if the left side of | (42 <= 432)

or equal to) | the operator is less or equal, then it returns true otherwise | is true.

falsa.

'puhlic class RelationalOperator {

public static void main{5tring args[]) {
b e Output
IRE @ =14 D == q = false
= =
System.out.println("p == g = " + (p == q)); R
System.out.println("p =g ="+ {p != g} }); p>q = false
System.out.printIn("p > g = " + (p > q)); p<q-=lue
System.out.println{"p < g ="+ (p < q} }; q »>= p = true
System.out.printin{®q »= p = " + {g >= p} }); q == p = false
System.out.println(’q <= p = " + (q <= p)); Press any key to contir
i

22

 Bitwise Operators

Operator

Description

&r (bitwise
and)

Bitwise AND operator give true result if bot
operands are true. otherwise, it gives a fals
result.

| (bitwise or)

Bitwise OR operator give true result if any of th
operands is true.

= (bitwise | Bitwise Exclusive-OR Operator returns

HOFR) true result if both the operands are differem
otherwise, it returns a false result.

— (bitwise | Bitwise One's Complement Operator]

compliment) | unary Operator and it gives the result as a
opposite bit.

< (left | Binary Left Shift Operator. The left operand

shift) valae is moved left by the number of bit
specified by the right cperand.

= (richt | Binary Right Shift Operator. The left operand

shift) value is mowved right by the number of bit
specified by the right operand.

e e (zero | Shift right zero fill operator. The left operand

fill right | valne is mowved right by the number of bit

shift) specified by the right operand and shifted value

are filled up with zeros.

23

lass BitwiseAndOperator { class BitwiseOrOperator {
public static woid main(5tring[] args){ public static woid main(String[] arg
int A = 16; int A = 10;
int B = 3; St BT
int ¥; int Y;
Y = A & B; Y = A | B;
System.out.println(¥Y}; System.out.println(Y);
} ¥
t
) 11
oress any key to continue . Fress any key io continue . . .

24

»*Logical Operators

Operator | Description Example
&l [f both the operands are non-zero, then the condition becomes true. | (0 && 1)
(logical is false
and)

|| If any of the two operands are non-zero, then the condition becomes | (0 || 1) is
(logical | true. true

or)

! (logical | Logical NOT Operator Use to reverses the logical state of its operand. | (o && 1)
not) If a condition is true then Logieal NOT operator will make false. is true

public class LogicalOperatorDemo {
public static wvoid main(String args[]) {
boolean bl = true;

boolean b2 = false;

System.out.println{"bl &% b2: " + (bl&&b2});
System.out.println{(®bl || b2: ™ + (bi]||b2)});
System.out.printin{"I{bl && b2): " + !({bl&&b2));

Output:

bl &% b2: false
bi || b2: true
'{bl && b2): true

26

*Assignment Operators

Operator

¥ l=3
%% =13
¥.a=73

xl=23

Same As

M=% LS
Xx=x%3
¥ —was

=063

27

*conditional Operator / Ternary Operator (? :)
Expressionl ? Expression2 : Expression3
Expression ? value if true : value if false

public class ConditionalOperator {

public static wvoid main(5tring args[]) {

int a, b;
a =:28;
b=l lfar=—— Iy 2 38 25:
System.out.println{ "Value of b is : " + b);
b= (a== 28) ¥ 28: 38;
System.out.println{ "value of b is : " + b };
¥
¥
Output

Value of b is ;- 25
Value of b is - 20
Press any kKey to continue . . .

ic €lass TernaryOperatorDemo {

nblic static woid main(5tring args[]) {
int numl, numz;
numl = 25;
/¥ numl i= not equal to 1@ that's why
* the second value after colon is assigned
* to the variable num2
ol
num2 = {numl == 18) ? 188: 208;

System.out.println{ "num2: “+num2});

JE:numl is‘egual to 25 that's why
* the first value is assigned

* to the variable num2

xf

num2 = {numl == 25) ? 18a: 200;

System.out.println{ "num2: "+num2};

Output:

numz: 286
numz: 18

29

Operator Precedence

» Evaluate 2*x-3%y ?

»To answer these questions satisfactorily one has to understand
the priority or precedence of operations.

Priority | Operators| Description

1St I o multiplication, division, modular division
»nd o P addition, subtraction

srd = assignment

* Precedence order - When two operators share an operand the
operator with the higher precedence goes first.

* Associativity - When an expression has two operators with the
same precedence, the expression is evaluated according tc
Its associativity.

»Larger number means higher precedence

Precedence

Operator

Type

Associativity

15

0
[]

Parentheses
Array subscript
Member selection

Left to Right

14

Unary post-increment
Unarv post-decrement

Eight to left

13

Unary pre-increment
Unary pre-decrement
Unary plus

Unary minus

Unarv logical negation
Unary bitwise complement
Unary type cast

Eight to left

]2

Multiplication
Division
Modulus

Left to right

11

Addition
Subtraction

Left to night

32

»Larger number means higher precedence

= Bitwise left shift
10 = Bitwise right shift with sign extension || Left to right
=== |Bitwise right shift with zero extension
= Eelational less than
== Eelational less than or equal
g = Eelational greater than Left to right
== Eelational greater than or equal
instanceof|| Tvpe comparison (objects only)
= Relational 1s equal to .
8 I= Relational 1s not equal to Lrtemaa
7 & Bitwize AND Left to right
6 i Bitwise exclusive OF Left to night
3 Bitwise inclusive OR Left to right
4 && |Logical AND Left to right
3 | Logical OR Left to right
2 in Ternary conditional Eight to left
= Assignment
== Addition assignment
= Subtraction assignment .
L *= Multiplication assignment ek
/= Division assignment
Oo= Modulus assignment

33

Evaluate i=2*3/4+4/4+8-2+5/8

i=6/4+4 /4+8-2+5/8 operation: *
i=1+4 /4 +8-2+5/8 operation: /
i=1+1+8 -2+5/8 operation: /
i=1 +1+8-2+0 operation: /
i=2 +8-2+0 operation: +
i=10-2+0 operation: +
i=8 +0 operation : -

i=8 operation: +

SELECTION STATEMENTS

>Selection statements allow your program to choose differen
paths of execution based upon the outcome of an expression o
the state of a variable.

>Also called decision making statements

>Java supports various selection statements, like if, if-else an
switch

>There are various types of if statement in java.
>if statement

>if-else statement

>nested if statement

>if-else-if ladder

If statement

Use the if statement to specify a block of Java code to b
xecuted if a condition is true.

ntax
if (condition)
{

// block of code to be executed if the condition is true

ample

class Samplelf

1
public static void main(5tring args[])
!
int a=10;
if (a > @) {
System.out.println("a is greater than 8");
¥
h
h
Output:

a is greater than 0

37

if-else Statement

f-else statement also tests the condition. It executes the if block
f condition is true otherwise else block is executed.

ntax
if (condition)
{

// block of code to be executed if the condition is true

}

else

{

// block of code to be executed if the condition is false

Example

class SamplelfElse

{
public static wvoid main{String args[])
1
int a=18;
if (a > @) {
System.out.println("a is greater than @");
¥
else
i
System.out.println(”a is smaller than @");
¥
¥
J
Output:

a is greater than 0

39

yndition) |

(condition)

!/ block of code to be executed if the condition is true

LY

!/ block of code to be executed if the condition is false NeStEd if else Statem<
Syntax

(condition) {

[/ block of code to be executed if the condition is true
A=
// block of code to be executed it the condition is false

40

I else
s SamplellestedIfElse ;
System.out.println(”c is greatest.’
iblic static void main(String args[])) X B (=
int a=1@,b=28,c=30;) ;
if (a>b) :
{ .
if {arc)
{ Output:
System.out.println("a is greatest."); c is greatest.
h
else
d
System.out.println{"c is greatest.");
f
I
else
{
if (b>c)
{

System.out.println("b is greatest.");

else if ladder
Lax
- (condition)

{

// block of code to be executed if the condition is true

J

|se if (condition)

{

// block of code to be executed if the condition is true

J

|se

[
!

// block of code to be executed if the condition is true

|

42

5 IfElselfladder
: : . { - . class SampleladderIftElse
public static wvoid main(String[] args){
double score = G55; {
public static void main{(5tring args|
if (score »= ©0.8) 1
System.out.println'4a’); int a=18;
else if (score >= B8.0j if (a > 0) {
system. out.printing "B); System.out.println("a is +ve")
else if (score »>= 76.8) 1
System.out.println{'C'); _
else if (score »= 68.8) else if (a < @) {
System.out.println{'D'); System.out.println("a is -wve")
else 1
System.out.println('F'); else {
System.out.println("a is zero”
¥
1
; J
t
Output:
ss any key to continue . . . _
d 15 +ve

If...Else & Ternary Operator — A comparison

int time = 20;

it (time < 18) {
System.out.println{“Good day.");

I else {

System.out.println{"Good evening.");

int time = 208,
String result = (time < 18) ? "Good day." : "Good evening.";

System.out.println{result),

‘switch case

The if statement in java, makes selections based on a single true
alse condition. But switch case have multiple choice for selectic
Of the statements

It is like if-else-if ladder statement

How to Java switch works:

Matching each expression with case

Jnce it match, execute all case from where it matched.

Jse break to exit from switch

Jse default when expression does not match with any case

/ntax

switch (expression) {
case wvaluel:
ff statement sequence
break;
case wvalueZ:
/f statement seqguence
break;

case wvalush:

ff statement seguence

break;

default:

/f default statement sequence

i

SampleSwitch case 6:
System.out.println("The day is Saturday”);
lic static void main(String args[]) break;
case 7:
int day = 4; System.out.println("The day is Sunday");
switch (day) { break;
case 1: deafault:
System.out.println("The day is Monday™); System.out.println("Please enter between 1 t
break; }
case 2: h
System.out.println("The day is Tuesday");)
break;
case 3:

System.out.println("The day i

LA

Dy Wednesday"); Output
case 4: J The day |S ThurSday

System.out.println("The day is Thursday™);

L

break;
case 5:
System.out.println("The day is Friday");

break;

47

Why break is necessary in switch statement ?

The break statement is used inside the switch to terminate
statement sequence.

When a break statement is encountered, execution branches t
the first line of code that follows the entire switch statement

This has the effect of jumping out of the switch.

The break statement is optional. If you omit the break, executio
will continue on into the next case.

class MNestedSwitchCase {
public static wvoid main(String args[]) {
int count = 1:
int target = 1;
switch{count) {

case 1:
switch(target) { // nested switch
case @:
System.out.println{"target is zero inner swit
break;

case 1: // no conflicts with outer switch
System.out.println({"targset is one inner swite

Nested Switch st

break;

case 2.
System.out.println("case 2 outer switch");

¥

farget is one inner switch
Press any key to continue . . .

49

A loop can be used to tell a program to execute statemen

repeatedly

A loop repeatedly executes the same set of instructions until

termination condition is met.

Iteration Statements
Or

LOOP

do-while |

50

* While Loop

In while loop first checks the condition if the condition is tri
then control goes inside the loop body otherwise goes outside

the body.

yntax
while (condition)

{

// code block to be executed

J

xample - 1

class WhileloopExample

{
public static wvoid main(5tring args[])
{
int count = @&;
while{count < 1@8){
system.out.println{"Welcome to atnylal™);
count++;
t
¥

Output

Welcome to atnylal
Welcome to atnylal
Welcome o atnylal

Welcome to atnylal
Welcome to atnylal
Welcome to atnylal

Press any key to continue . . .

52

xample -2

public class WhileloopExample {
public static wvoid main{String[] args) {
int n=1;
while(n<=16){
System.out.printlni{n);
n++;

¥

Output

W 0o =~ Oy n = W R o=

10

Press any key to continue .

53

xample -3

class WhileloopSingleStatement |
public static void main(String[] args){
int count = 1;
while (count <= 11)
System.out.printin(Humber Count

o+ countH);

Output

Number Count :
Number Count :
Number Count :
Number Count :
Number Count :
Number Count :
Number Count :
Number Count :
Number Count :
NMumber Count : 10
Number Count : 11

00 =l o n & W kM =

Lo

Fress any key to continue . .

54

xample -4

Output

public class WhileInfiniteloop {
public static wvoid main(String[] ar
while(true){
System.out.println("inftini

gs) {

1
e BT
- b

while loop");

infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive
infinitive

while
while
while
while
while
while
while
while
while
while
while
while
while
while
while
while
while

infinite fime it

loop
[aTals]
loop
loop
loop
loOp
loop
loop
loop
loOp
loOp
loop
loop
[alale}
lalale]
loop
loop

will print like this

55

xmple -5 (Boolean Condition inside while loop)

ass WhileloopBoolean {
public static woid main{5tring[] args){

boolean a = true;

int count = & ;

while (a)
{
System.out.println{"Number Count
Count++;
if{count==5)

a = false;

¥

' + count);

Output

Number Count :
Number Count :
Number Count :
Number Count :

= W M = O

Number Count :
Press any key to continue

56

- do...while loop

A do while loop is a control flow statement that executes a blo
f code at least once, and then repeatedly executes the block,

10t, depending on a given condition at the end of the block |
vhile).

'ntax

0 {
// code block to be executed
} while (condition);

ample -1

class DowWhlie
public static woid main(5tring args[]) {
ipt n = 8;
do {
System.out.println{"Humbar
N++;
1 while(n < 18);

+ nj;

Output

Number
Number
Number
Number
Mumber
Number
Number
Number
Number
Number

Ca =1 O o = Ll ko = O

9

Press any key to continue .

58

ample -2 (Infinitive do-while Loop) Output

infinitive do while loop
infinitive do while loop

public class InfiniteDoWhileloop { infinitive do while loop
ublic static wvoid main(String[] args) { infinitive do while loop
do{ infinitive do while loop
System.out.println("infinitive do while loop™); infinitive do while loop
jwhile(true); infinitive do while loop

I infinitive do while loop

} infinitive do while loop

infinite time it will pnnt like thi

59

Difference Between while and do-while Loop

BASIS FOR
COMPARISON

General Form

WHILE

while { condition) {
statements; //body of loop
¥

DO-WHILE

do{
statements; // body of loop.

} while(Condition);

Controlling
Condition

In 'while' loop the controlling
condition appears at the start of the
loop.

In 'do-while' loop the econtrolling
condition appears at the end of the
loop.

Iterations

The iterations do not occur if, the
condition at the first iteration,
appears false.

The iteration occurs at least once
even if the condition is false at the
first iteration.

60

for loop

For Loop is used to execute set of statements repeatedly until the
ondition is true.

ntax
for (initialization; condition; increment/decrement)
{
// code block to be executed
}
itialization : It executes at once.
)ndition . This check until get true.

crement/Decrement: This is for increment or decrement.

61

xample 1

Output

class ForlLoopExample {
public static wvoid main(5tring[] args) {
for(int i=1;i<=18;i++){
System.out.println(i);

e

w0 o = Oy n B~ W M o=

10

Press any key io continue . . .

62

xample 2 Output

i value of X : 15
emonstrate T:he for loop. : value of x - 18
alu_-l this file "ForlLoopExample.java“. T
J value of x : 18
lass ForlLoopExample { valug of X © 19
public static void main{String[] args) { value of x . 20
value of x @ 21
i - 2 E.' — i
for(int x 15; x 4 ”.33_, X X+ _I'.JI 1 e e o
System.out.print{ "value of x Fa _
System.out.print("'\n"); value of x @ 23
i value of x ;. 24
} Press any key to continue .

For-each or Enhanced For Loop

The for-each loop is used to traverse array or collection in java.
S easier to use than simple for loop because we don't need t

ncrement value and use subscript notation.
ntax

for (type variableName : arrayName)

{

// code block to be executed

64

-Xxample

Output

f®

Demonstrate the for each loop.
cave Tile "FortacheExample.java®.
474

public class ForEachExampla {
public static void main{String[] args) {
int array[]={1€é,11,12,13,14};
for{int i:array)q{
System.out.println{i);

1
X

10
11
12
13
14

Fress any key to continue .

65

Labeled For Loop

According to nested loop, if we put break statement in inner loo)
ompiler will jump out from inner loop and continue the outer loc
gain.

What if we need to jump out from the outer loop using brez
tatement given inside inner loop? The answer is, we shou
lefine label along with colon(:) sign before loop.

ntax
elname:
r(initialization; condition; increment/decrement)

//code to be executed

Loop without label

o) P)
BT
o] f e)
e
break
S
e .

Loop with [abel

ample without labelled loop Output

class WithoutlabelledLoop

{

public static void main(5tring args[])

{

n

ink 1.5:
for(i=1;i<=18;i++)
i
System.out.println{);
for{j=1;7<=18;j++)
{

cnoon OnoOn

System.out.print{j + " ");
if(j==5)
break; f/Statement 1

- sk sk ek sk ek sk sk o omsk o=k
ol M3 3 3 3 3 3 3 3 O
TR - R - 1% S TR - (O - - -
Pl el B R MU R
ch on Cn o on

Press any key io continu

68

ample with labelled loop Output

class kithlabelledLoop

{

public static woid main(5tring args[])

‘ 12345 Press any key to continue .

int 3.j;

loopl: for(i=1;i<=18;i++)
{
Svstem.out.println();
loop2: for(j=1;]j<=18;j++)
{
System.out.print{j + " ");
if{]j==5)
break loopl; ffStatement 1

69

» Java Break Statement

>The Java break statement is used to break loop or switc
statement

> It breaks the current flow of the program at specified condition

>When a break statement is encountered inside a loop, the loop
immediately terminated and the program control resumes at th
next statement following the loop.

>In case of inner loop, it breaks only inner loop.

70

ample 1

lass Samplebreak

public static void main(5tring args[])

{

int num= 1;
while (num <= 18) {

System.out.println(num);

if(num==5)
i

break;
I
NMum++ ;

Output

71

(ample 2

'Java Frogram to demonstrate the use of break statement
'inside the for locop.
ublic class BreakExample {
ublic static void main(String[] args) {
Jfusing for loop
for{int i=1;i<=10;i++){
if(i==5)1{
/fbreaking the loop
break;

¥
System.out.printin{i);

Output:

B oW R

(ample 3

Java Program to illustrate the use of break statement
inside an inner loop
iblic class BreakExample2 {
iblic static void main{String[] args) {
[fouter loop
for(int i=1;i<=3;i++){
ffinner loop
for{int j=1;j<=3;j++ H
if(i==2&8j==2)
//using break statement inside the inner loop
break:

¥

System.out.printin(i+" "+j);

Output:

L Ll Ll R = = =
R S = " N S T

73

@mple 4

Java Program to demonstrate the use of break statement
‘inside the Java do-while loop.
ublic class BreakDoWhileExample {
ublic static void main{String[] args) {
//declaring variable
int i=1;
Jfido-while loop
dod{
if(i==5){
Jfusing break statement
i++:
break;//it will break the loop
¥
System.out.printindi);
i++;

Twhile(i<=10);

Output:

£ oW R

74

Java Continue Statement
he Java continue statement is used to continue the loop

he continue statement is used in loop control structure when yol
ced to jump to the next iteration of the loop immediately

. continues the current flow of the program and skips the remaini
bde at the specified condition.

n case of an inner loop, it continues the inner loop only.

75

xmple 1

iva Program to demonstrate the use of continue statement
icide the for loop.
blic class ContinueExample {
blic static void main{String[] args) {
'ffor loop
or{int i=1;i<=10;i++)1{
if(i==5)1{
/fusing continue statement
continue;//it will skip the rest statement

L
System.out.printin(i);

Output:

o o e b T L I L

=
=

76

xmple 2

va Program to illustrate the use of continue statement
side an inner loop
lic class ContinueExample2 {
lic static void main(String[] args) {
/fouter loop
for{int i=1;i<=3;i++){
ffinner loop
for{int j=1;j<=3;j++ 1
if(i==2&&j==2){
/fusing continue statement inside inner loop
continue;

¥

System.out.printin{i+" "+j);

Cutput:

I I N ¥ N L L N T
T S N ¥ S TV N T =

77

xmple 3

va Program to demonstrate the use of continue statement
side the while loop.
lic class ContinueWhileExample {
lic static void main{String[] args) {
fwhile loop
nti=1;
vhile(i<=10){
if{i==5)}{
ffusing continue statement
i+
continue;//it will skip the rest statement
¥
System.out.printin{i);

i++;

Output:

w00 = o B W R

78

1

¥

tic void main{ S5tring args[] }

int i=B8;i<6;i+t)

System.out.println(i);

79

ARRAY

An array is a collection of similar data types.

Java array is an object which contains elements of a similar dat.
type.

The elements of an array are stored in a contiguous memor
location

the size of an array is fixed and cannot increase to accommodat
more elements

It is also known as static data structure because size of an arra
must be specified at the time of its declaration.

Array in Java is index-based, the first element of the array i
stored at the Oth index

ava provides the feature of anonymous arrays which is n
vailable in C/C++.

Element
First index (at index 8

|
o1 2 3 4 5 & ?\a 9 — Indices

- Array length is 10 >

dvantage of Java Array

ode Optimization: It makes the code optimized, we can retrieve
ort the data easily.

landom access: We can get any data located at any index positior

Disadvantage of Java Array

Size Limit: We can store the only fixed size of elements in th
array. It doesn't grow its size at runtime. To solve this problenr
collection framework is used in java.

Features of Array

t is always indexed. The index begins from O.
t is a collection of similar data types.

t occupies a contiguous memory location.
Types of Java Array

Single Dimensional Array

Multidimensional Array

»* Single Dimensional Array in java
>Array Declaration
Syntax: datatype[] arrayname;
g: int[]arr;
char[] name;
short[| arr;
long|[| arr;
int[][] arr; //two dimensional array

n C program datatype arraynamel];

83

>Initialization of Array
new operator is used to initializing an array.

g1l: int[]arr=new int[10];
or
int[] arr = {10,20,30,40,50};

g 2: String][] cars = {"Volvo", "BMW", "Ford", "Mazda"};
g3: double[] myList = new double[10];

>Accessing array element

xample: To access 4th element of a given array
int[] arr = {10,24,30,50};
System.out.printIn("Element at 4th place" + arr[3]);

>To find the length of an array, we can use the following synta
array_name.length

xample: public class MyClass

{

public static void main(String[] args)

{
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

System.out.printin(cars.length);

}
J Output 4

85

>Loop Through an Array
ublic class MyClass

public static void main(String[] args)

{
String]] cars ={"Volvo", "BMW", "Ford", "Mazda"};

for (inti=0; i< cars.length; i++)

{

System.out.printin(carsli]);

J

>Loop Through an Array with For-Each
ublic class MyClass

public static void main(String[] args)

{
String]] cars ={"Volvo", "BMW", "Ford", "Mazda"};

for (String i : cars)

{

System.out.printin(i);

ass ArrayDemo]
public static void main(5tring args[]){
int array[] = new int[7];
for (int count=8;count<7;count++)q
array[count]=count+1;

I

for (int count=0;count<7;count++)q

System.out.println({"array["+count+"]

"t+array[count]);

Output

array[C]
array[i]
array[Z]
array[2]
array[4]
array[s]
array[s]

88

¢ class ArrayExample {

public static wvoid main(5tring[] args) {

double[] myList = {3.9, 5.9, 22.4, 31.5};

/f Print all the array elements
for (int i = ©@; i < mylist.length;

System.out.println({myList[i] + "
I

ff Summing all elements

double total = &;

for (int i = @; i < mylist.length;
total += mylList[i];

I

i++) {

")

i++) {

System.out.println("Total is " + total);

[/ Finding the largest element
double max = mylist[&];

for {(int i = 1; i < mylList.length; i++) {

if (myList[i] > max) max = mylList[i];

¥

System.out.printIn{"Max is " + max);

89

Two Dimensional array Column0 Column1 Column:

Array Declaration Row 0 mm x[0][2]
ntax : datatypel[][] arrayname; (g, 1 | x[1][0] | x[11[1] | x[1][2]

s int[][] myNumbers ; Row 2 mm x[2][2]

Array Initialization
int[][] arrName = new int[10][10];
Or

t[][] arrName = {{1,2,3,4,5},{6,7,8,9,10},{11,12,13,14,15}}; // 3 |
s the size of the array.

90

Java Program to illustrate the use of multidimensional array
lass Testarray3q

ublic static void main{5tring args[])1

‘declaring and initializing 2D array
warrll[1=1{{1,2,3},12,4,557,1{4.4,5} ;

‘printing 2D array

or(int i=0;i<3;i++){

or(int j=0;j<3;j++){

System.out.print(arr[il[jI1+" ");

%—

system.out.printin);

Output

Bt
2 4 5
4 4 5

91

Ia Program to demonstrate the addition of two matrices in Java
» Testarray s

ic static void main{String args[])1{

ating two matrices

[1[1=44{1,3,47 43,455 };

[111=1{1,3,4}.1{3,4,5}};

ating another matrix to store the sum of two matrices

1[]=new int[2][3];

ling and printing addition of 2 matrices
| e R et e R Y

it j=0;j<3;j++)1

1=alil[j1+blilljl;
m.out.print{c[il[i]1+" ");

m.out.println();//new line

Output

2 b B
B & 1@

92

» Strings are used for storing text

» A String variable contains a collection of characters surrounded
by double quotes

Eg: Create a variable of type String and assign it a value

String greeting = "Hello";
a O 0 Output

MyClass. java

Hello

v

public class MyClass 4
public static void main(S5tring[] args) {
S5tring greeting = "Hello™;

System.out.println(greeting);

¥

I
J

93

n Java, string is basically an object that represents sequence
“har values

An array of characters works same as Java string. For example:

Char[] Chz{ljl’lOI’ISI’(eI’Ipl’IhI};
String s=new String(ch); //converting char array to string
IS same as

String s="joseph"; //creating string by java string literal

94

String Length
The length of a string can be found with the length() method
a O 0

NMyClass java

pubhlic class MyClass {
public static weoid main(5tring[] args) {
S5tring txt = "ABCDEFGHIJKLMNOPQRSTUVIXYL™ ;
System.out.println("The length of the txt string is: " + txt.length());
i 4

|4
|

utput
1e length of the txt string is: 26

95

toUpperCase() and toLowerCase()

@ S O

WiyClass java

public class MyClass A
public static void main(String[] args) {
String: txt = "Hello World™;
System.out.println{txt.toclUpperCase());

System.out.println(txt.toLowerCase());

atput

-LLO WORLD

|lo world

96

Finding a Character in a String

The indexOf() method returns the index (the position) of the fit
yccurrence of a specified text in a string (including whitespace)

a O o0
MyClass java

public class MyClass {
public static wvoid main(String[] args) {
S5tring txt = "Please locate where "locate’ occurs!™;
System.out.println(txt.index0f({"locate™));

I

1
i

atput 7

97

String Concatenation

‘he + operator can be used between strings to combine them. Tt
s called concatenation

a o o
MyClass java

public class MyClass 1

public static void main(String args[]) {

String firstMName = "John";
5tring lastName = "Doe”,;
System.out.println(firstMame + " " + lastName);

¥
h

Jtput John Doe

98

concat() method
Ne can also use the concat() method to concatenate two strings:

a 0

WMyClass java

public class MyClass {
public static void main(String[] args) {
String firsthMame = “"John ™;
String lastiame = "Doe™;

System.out.println({firstMame.concat{lastName));

¥
h

Jtput John Doe

99

Special Characters
)nsider the following example
String txt = "We are the so-called "Vikings" from the north.";

3ecause strings must be written within quotes, Java w
nisunderstand this string

‘he solution to avoid this problem, is to use the backslash escaj
haracter

Escape character Result Description
\ ' Single quote
i " Double quote

Wi \ Backslash

100

a & 0
MyClass. java

public class MyClass {
public static void main(5tring[] args) {
String txt = "We are the so-called \"Vikings\" from the north.”;
System.out.println(txt);
i)

h

utput We are the so-called "Vikings" from the north.

ne sequence \" inserts a double quote in a string
ne sequence \' inserts a single quote in a string

ne sequence \\ inserts a single backslash in a string

Adding Numbers and Strings
ava uses the + operator for both addition and concatenation.
f we add two strings, the result will be a string concatenation

A O O
MyClass java Output

public class MyClass 1020
public static void main(5tring[] args) {

String. x = "10%;

String v = "28%;

String z = X + ¥,

System.out.println(z);

b

f we add a number and a string, the result will be a stril
oncatenation

.) 4
(1] @ s fr"

MyClass java

Output

public class My(Class { 1020
public static void main(String[] args) {
String ac=:-""18";
int vy = 20;
SERLINE £ = 3 A0

System.out.println(z);

INHERITANCE IN JAVA

Inheritance in Java is a mechanism in which one object acquire
all the properties and behaviors of a parent object.

The idea behind inheritance in Java is that you can create ne\
classes that are built upon existing classes.

When you inherit from an existing class, you can reuse method
and attributes of the parent class. Moreover, you can add ne\
methods and attributes in your current class also

Inheritance represents the IS-A relationship which is also know
as a parent-child relationship.

EDPULINE

Terms used in Inheritance

ass: A class is a template or blueprint from which objects al
eated.

1b Class/Child Class: Subclass is a class which inherits the othe
ass. It is also called a derived class, extended class, or child class.

Jper Class/Parent Class: Superclass is the class from where
Ibclass inherits the features. It is also called a base class or
arent class.

~usability: As the name specifies, reusability is a mechanism whic
cilitates you to reuse the attributes and methods of the existir
ass when you create a new class. We can use the same attribute
1d methods already defined in the previous class.

EPULINB

Access Modifiers - There are four types of Java access modifiers:

rivate: The access level of a private modifier is only within tf
ass. It cannot be accessed from outside the class.

efault: The access level of a default modifier is only within tf
ackage. It cannot be accessed from outside the package. If you ¢
ot specify any access level, it will be the default.

rotected: The access level of a protected modifier is within tf
ackage and outside the package through child class. If you do n
ake the child class, it cannot be accessed from outside tf
ckage.

ublic: The access level of a public modifier is everywhere. It can k
cessed from within the class, outside the class, within tf
ackage and outside the package.

EPULINE

Access Modifier

Private

Default

Protected

Public

within class
\ y

X

within package

outside package by subclass only

outside package

EPULING

The syntax of Java Inheritance

class Subclass-name extends Superclass-name

1
ffmethods and fields

h

The extends keyword indicates that you are making a new cla
that derives from an existing class.

The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called
parent or superclass, and the new class is called child or subclass.

EPULINE

Programmer is the subclass (child class)

Employee is the superclass (Parent class)

The relationship between the two classes
is Programmer IS-A Employee

't means that Programmer is a type of
Employee.

~
Employee
salary: float
~
'\\ﬁ
Programmer
bonus: int
7

EPULINYE

lass Employee{

float salary=40000;

Output
lass Programmer extends Employeeq Programmer salary 1is:40088.8
int bonus=10000; Bonus of programmer is:1866e

public static void main(String args[]){

Programmer p=new Programmer();
System.out.printin{"Programmer salary is:"+p.salary);

System.out.printin{"Bonus of Programmer is:"+p.bonus);

Programmer object can access the attribute of its own class
well as of Employee class i.e. code reusability.

EPULTIN®

Types of inheritance in java

On the basis of class, there can be three types of inheritance in
java: single, multilevel and hierarchical.

ClassA

|

ClassB

1) Single

ClassA

|

ClassA

L OR

ClassB

ClassB

|

ClassC

2) Multilevel

ClassC

3) Hierarchical

EPULINE

"lass Vehicle {

protected String brand = "Ford"; // Vehicle attribute

public wvoid honk() { J/ Vehicle method
System.out.println{"Tuut, tuut!™);

¥

“lass Car extends Vehicle {
private S5tring modellName = "Mustang™; // Car attribute

public static void main(String[] args) {

[/ Create a myCar object

Car myCar = new Car();

/f Call the honk() method (from the Vehicle class) on the myCar object
myCar.honk();

// Display the value of the brand attribute (from the Vehicle class) and the wvalue of the modellam

System.out.println{myCar.brand + + myCar.modellame);

EPULIN®

SUPER KEYWORD

The super keyword in Java is a reference variable which is used !
efer immediate parent class object.

Usage of Java super Keyword

super can be used to refer immediate parent class instanc
/ariable.

super can be used to invoke immediate parent class method.
super() can be used to invoke immediate parent class constructor

We can use super keyword to access the data member (attribut
of parent class. It is used if parent class and child class have san
attribute.

EPULINE

Animal{

] color="white";

, Dog extends Animal{

] color="black";

printColor{ }{

m.out.printin{color);//prints color of Dog class

m.out.printin{super.color);//prints color of Animal class

, TestSuperi{
ic static void main{String args[]){
i=new Dog();

tColor(};

output
black

white

Animal and Dog both classes ha\
common property color. If we pri
color property, it will print the cc
of current class by default. To acc
the parent property, we need to
super keyword.

EPULIN®

ss Animaly OUtpUt

id eat{}{System.out.printin{"eating..."); F =3t 1”5

55 Dog extends Animal{ bar klf"E Sk

id eat{){System.out.printin{"eating bread...");

id bark(){System.out.printin{"barking..."); r

id work()4

per.eat();

i The super keyword can also b
used to invoke(call) parent cla

method.
55 TestSuperz{

blic static void main{String args[]1)1
q d=new Dog();
rork(]);

EPULIN®

In the above example Animal and Dog both classes have eat

method

If we ca
of Dog ¢

To call t

| eat() method from Dog class, it will call the eat() methc
ass by default because priority is given to local.

ne parent class method, we need to use super keyword.

EPULINE

55 Animalq

mal(){System.out.printin("animal is created"); }

55 Dog extends Animalq
g1
per();

stem.out.printin{"dog is created"};

55 TestSuper3{
blic static void main{5tring args[]){
g d=new Dog();

The super keyword can also
be used to invoke the parel
class constructor.

Output

animal 1s created

dog is created

EPULIN®

Calling order of constructors in inheritance

Order of execution of constructors in inheritance relationship
rom base (parent) class to derived (child)class.

We know that when we create an object of a class then t
onstructors get called automatically.

In inheritance relationship, when we create an object of a ch
lass, then first base class constructor and then derived clc
onstructor get called implicitly.

In simple word, we can say that the parent class constructor g
-alled first, then of the child class constructor.

EPULINE

class A {
A4
System.out.printin("Inside A's constructor.");
}
1

// Create a subclass by extending class A.
class B extends A {

B() {
System.out.printin("Inside B's constructor.”);
}
}

// Create another subclass by extending B.
class C extends B {
c() {
System.out.printin{"Inside C's constructor.");
}
}

public class Main{
public static void main{String args|[])

{

C c=new ({);

}

Output

Inside A's constructor.
Inside B's constiuctor.
Inside C's ¢constructor.

EPULIN®E

METHOD OVERRIDING

f subclass (child class) has the same method as declared in tl
yarent class, it is known as method overriding in Java.

In other words, If a subclass provides the specific implementatic
f the method that has been declared by one of its parent class,
s known as method overriding

Jsage of Java Method Overriding

Viethod overriding is used to provide the specific implementatic
f a method which is already provided by its superclass.

Viethod overriding is used for runtime polymorphism

EPULINE

Qules for Java Method Overriding

‘he method must have t
‘he method must have t

‘here must be an IS-A re
emember.......

ne same name as in the parent class
ne same parameter as in the parent class

ationship (inheritance).

\ static method cannot be overridden. It is because the stat

nethod is bound with

class whereas instance method is boul

vith an object. Static belongs to the class area, and an instan
)elongs to the heap area.

“an we override java main method? - No, because the main is

tatic method.

EPULINE

xample - method overriding

va Program to illustrate the use of Java Method Owverriding
reating a parent class.

55 Vehicle{

defining a method

id run(){System.out.printin{"Vehicle is running"}; ¥

reating a child class
55 Bike? extends Vehicle{
defining the same method as in the parent class

did run(){System.out.printin{"Bike is running safely");

tblic static void main{String args[])4
ke2 obj = new Bike2();//creating object

j.run{);//calling method

Output

Bike is running sately

we have defined the run
method in the subclass as
defined in the parent class
but it has some specific
implementation. The name
and parameter of the methoc
are the same, and there is IS-
relationship between the
classes, so there is method
overriding.

EPULINE

method overloading Vs. method overriding

Method Overloading

Method overloading is used to increase the readability of the program.

Method Overriding

Method overriding is used to provide the
spedcific implementation of the method th

is already provided by its super class.

Method overloading is performed within cfass.

Method overriding occurs in two cfasses t

have IS-A (inheritance) relationship.

In case of method overloading, parameter must be different.

In case of method overriding, parameter

must be same.

' Method overloading is the example of campile time polymorphism.

Method overriding is the example of run

time polymorphism.

In java, method overloading can't be performed by changing return type
of the method only. Return type can be same or different in method

overloading. But you must have to change the parameter.

Retuin type must be same or covariant i

method overriding.

EPULTINE

The final keyword in java is used to restrict the user. The java final
eyword can be used in many context. Final can be:

1. variable
2. method
3. class

Java final variable

[you make any variable as final, you cannot change the value
inal variable(It will be constant)

EPULIN®

lass Bike9{

final int speedlimit=90;//final variable
vaid run(){

speedlimit=400;

I

public static void main{5String args[]}{
Biked obj=new Biked();

obj.run();

I

/fend of class

Qutput:Compile Time Error

There is a final variable
speedlimit, we are going to
change the value of this
variable, but It can't be
changed because final variable
once assigned a value can
never be changed.

EPULINE

Java final method
If we make any method as final, we cannot override it

class Bike{

final void run(){System.out.printin{"running"); ¥

¥

class Honda extends Bike{

void run(){5System.out.printin{"running safely with 100kmph"}; ﬂ]utput:[umplla Time Error

public static void main{5tring args[]){
Honda honda= new Hondal();

honda.run();

¥
¥

EDULIN®

Java final class

If we make any class as final, we cannot extend it.

final class Bike{}

class Hondal extends Bike{

void run()4System.out.printin{"running safely with 100kmph");

public static void main{String args[]){
Hondal honda= new Hondal();

honda.runi);

¥

Qutput:Compile Time Errol

EPULIN®

Is final method inherited?

Yes, final method is inherited but you cannot override it. For
“Xample:

lass Bike{

final void run{){System.out.println{"running..."); ;

, Qutput:running...
lass Honda? extends Bike{

public static void main{5String argsl]}{
new HondaZ().run();

¥

EDULIN®

Points to Remember

A constructor cannot be declared as final.

Local final variable must be initializing during declaration.
We cannot change the value of a final variable.

A final method cannot be overridden.

A final class not be inherited.

If method parameters are declared final then the value of the:
)rameters cannot be changed.

final, finally and finalize are three different terms. finally is used
ception handling and finalize is a method that is called by JV
Iring garbage collection.

EDPULINE

ABSTRACT CLASSES AND METHODS

Data abstraction is the process of hiding certain details an
showing only essential information to the user.

Abstract class: is a restricted class that cannot be used to creat
objects (to access it, it must be inherited from another class).

Abstract method: can only be used in an abstract class, and
does not have a body. The body is provided by the subcla:
(inherited from).

An abstract class can have both abstract and regular methods:

EPULINE

Abstract class

Rules for Java Abstract class

it can have abstract and
non-abstract methods.

It cannot be Instantlated.

It can have final methods

It can have constructors and statlc
methods also.

EPULIN®

abstract class Animal |
public abstract woid animalSound();
public woid sleep() {

System.out.println("Zzz");

1
J

From the example above, it is not possible to create an object «
he Animal class

Animal myObj = new Animal(); // will generate an error

To access the abstract class, it must be inherited from anoth:e
lass

EPULIN®

ample

S o Abstract class
abstract class Animal {
SS Abstract method (does not hawve a body)
public abstract woid animalSound();
S Regular method
public wvoid sleep() {
Syvstem.out.println("Zzz"");

4 Subclass (inherit from Animal)
class Pig extends Animal {
public wvoid animalSound{} {
/4 The body of animalSound() is prowvided here
Syvstem.out.println{“The pig says: wee wee™};

class MyMainClass
public static wvoid main{Stringl[] args) {
Pig myPig = new Pig(); // Create a Pig obiject
myPig.animalSound() ;

myPig.sleap();

EPULTINE

ample - Here Bike is an abstract class that contains only or
stract method run. Its implementation is provided by the Honc
SS.

bstract class Bike{ Output

abstract void run{);

running safely

lass Honda4d extends Bikeq{

oid run{){System.out. println{"running safely"};
ublic static void main{String args[1)1

Jike obj = new Honda4{);

ybi.run();

EPULINE

THE OBJECT CLASS

[he Object class is the parent class of all the classes in java |
lefault. In other words, it is the topmost class of java.

[he Object class provides some common behaviors to all tk
bbjects such as object can be compared, object can be clone
bbject can be notified etc.

Dbject class is present in java.lang package

-very class in Java is directly or indirectly derived from the Obje
“lass

EPULINE

Methods of Object class

Method Description

public final Class getClass() returns the Class class object of this object. The Class class can further be used to

get the metadata of this class.

public int hashCode() returns the hashcode number for this object.
public boolean equals{Object obj) compares the given object to this object.
protected Object clone() throws creates and returns the exact copy (clone) of this object.

CloneMotSupportedException

public String toString() returns the string representation of this object.

public final void notify()} wakes up single thread, waiting on this object's monitor.

public final void notifyAll() wakes up all the threads, waiting on this object's monitor.

public final void wait{long causes the current thread to wait for the specified milliseconds, until another thread
timeout)throws InterruptedException notifies (invokes notify() or notifyall{) method).

EDULINE

