
 

 

 

 

 

 

Module 1 

Introduction to machine learning 

 
In this chapter, we consider different definitions of the term “machine learning” and explain what 

is meant by “learning” in the context of machine learning. We also discuss the various components 

of the machine learning process. There are also brief discussions about different types learning like 

supervised learning, unsupervised learning and reinforcement learning. 

 
 Introduction 

 Definition of machine learning 

Arthur Samuel, an early American leader in the field of computer gaming and artificial intelligence, 

coined the term “Machine Learning” in 1959 while at IBM. He defined machine learning as “the field 

of study that gives computers the ability to learn without being explicitly programmed.” However, 

there is no universally accepted definition for machine learning. Different authors define the term 

differently. We give below two more definitions. 

1. Machine learning is programming computers to optimize a performance criterion using exam- 

ple data or past experience. We have a model defined up to some parameters, and learning is 

the execution of a computer program to optimize the parameters of the model using the train- 

ing data or past experience. The model may be predictive to make predictions in the future, or 

descriptive to gain knowledge from data, or both (see [2] p.3). 

2. The field of study known as machine learning is concerned with the question of how to con- 

struct computer programs that automatically improve with experience (see [4], Preface.). 

 
Remarks 

In the above definitions we have used the term “model” and we will be using this term at several 

contexts later in this book. It appears that there is no universally accepted one sentence definition 

of this term. Loosely, it may be understood as some mathematical expression or equation, or some 

mathematical structures such as graphs and trees, or a division of sets into disjoint subsets, or a set 

of logical “if . . . then . . . else . . .” rules, or some such thing. It may be noted that this is not an 

exhaustive list. 

 
 Definition of learning 

Definition 

A computer program is said to learn from experience E with respect to some class of tasks T and 

performance measure P , if its performance at tasks T , as measured by P , improves with experience 

E. 
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Data Concepts Inferences 

 

Examples 

i) Handwriting recognition learning problem 

• Task T : Recognising and classifying handwritten words within images 

• Performance P : Percent of words correctly classified 

• Training experience E: A dataset of handwritten words with given classifications 

ii)A robot driving learning problem 

• Task T : Driving on highways using vision sensors 

• Performance measure P : Average distance traveled before an error 

• training experience: A sequence of images and steering commands recorded while 

observing a human driver 

iii) A chess learning problem 

• Task T : Playing chess 

• Performance measure P : Percent of games won against opponents 

• Training experience E: Playing practice games against itself 

 
Definition 

A computer program which learns from experience is called a machine learning program or simply 

a learning program. Such a program is sometimes also referred to as a learner. 

 
 How machines learn 

 Basic components of learning process 

The learning process, whether by a human or a machine, can be divided into four components, 

namely, data storage, abstraction, generalization and evaluation. Figure 1.1 illustrates the various 

components and the steps involved in the learning process. 

Data storage Abstraction Generalization Evaluation 
 

Figure 1.1: Components of learning process 

1. Data storage 

Facilities for storing and retrieving huge amounts of data are an important component of   

the learning process. Humans and computers alike utilize data storage as a foundation for 

advanced reasoning. 

• In a human being, the data is stored in the brain and data is retrieved using electrochem- 

ical signals. 

• Computers use hard disk drives, flash memory, random access memory and similar de- 

vices to store data and use cables and other technology to retrieve data. 
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2. Abstraction 

The second component of the learning process is known as abstraction. 

Abstraction is the process of extracting knowledge about stored data. This involves creating 

general concepts about the data as a whole. The creation of knowledge involves application 

of known models and creation of new models. 

The process of fitting a model to a dataset is known as training. When the model has been 

trained, the data is transformed into an abstract form that summarizes the original information. 

3. Generalization 

The third component of the learning process is known as generalisation. 

The term generalization describes the process of turning the knowledge about stored data into 

a form that can be utilized for future action. These actions are to be carried out on tasks that 

are similar, but not identical, to those what have been seen before. In generalization, the goal 

is to discover those properties of the data that will be most relevant to future tasks. 

4. Evaluation 

Evaluation is the last component of the learning process. 

It is the process of giving feedback to the user to measure the utility of the learned knowledge. 

This feedback is then utilised to effect improvements in the whole learning process. 

 
 Applications of machine learning 

Application of machine learning methods to large databases is called data mining. In data mining, a 

large volume of data is processed to construct a simple model with valuable use, for example, having 

high predictive accuracy. 

The following is a list of some of the typical applications of machine learning. 

1.In retail business, machine learning is used to study consumer behaviour. 

2. In finance, banks analyze their past data to build models to use in credit applications, fraud 

detection, and the stock market. 

3. In manufacturing, learning models are used for optimization, control, and troubleshooting. 

4.In medicine, learning programs are used for medical diagnosis. 

5. In telecommunications, call patterns are analyzed for network optimization and maximizing 

the quality of service. 

6. In science, large amounts of data in physics, astronomy, and biology can only be analyzed fast 

enough by computers. The World Wide Web is huge; it is constantly growing and searching 

for relevant information cannot be done manually. 

7. In artificial intelligence, it is used to teach a system to learn and adapt to changes so that the 

system designer need not foresee and provide solutions for all possible situations. 

8. It is used to find solutions to many problems in vision, speech recognition, and robotics. 

9.Machine learning methods are applied in the design of computer-controlled vehicles to steer 

correctly when driving on a variety of roads. 

10.Machine learning methods have been used to develop programmes for playing games such as 

chess, backgammon and Go. 
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 Understanding data 

Since an important component of the machine learning process is data storage, we briefly consider 

in this section the different types and forms of data that are encountered in the machine learning 

process. 

 
 Unit of observation 

By a unit of observation we mean the smallest entity with measured properties of interest for a study. 

 
Examples 

• A person, an object or a thing 

• A time point 

• A geographic region 

• A measurement 

Sometimes, units of observation are combined to form units such as person-years. 

 
 Examples and features 

Datasets that store the units of observation and their properties can be imagined as collections of 

data consisting of the following: 

• Examples 

An “example” is an instance of the unit of observation for which properties have been recorded. 

An “example” is also referred to as an “instance”, or “case” or “record.” (It may be noted that 

the word “example” has been used here in a technical sense.) 

• Features 

A “feature” is a recorded property or a characteristic of examples. It is also referred to as 

“attribute”, or “variable” or “feature.” 

 
Examples for “examples” and “features” 

1. Cancer detection 

Consider the problem of developing an algorithm for detecting cancer. In this study we note 

the following. 

(a) The units of observation are the patients. 

(b) The examples are members of a sample of cancer patients. 

(c) The following attributes of the patients may be chosen as the features: 

• gender 

• age 

• blood pressure 

• the findings of the pathology report after a biopsy 

2. Pet selection 

Suppose we want to predict the type of pet a person will choose. 

(a) The units are the persons. 

(b) The examples are members of a sample of persons who own pets. 
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Figure 1.2: Example for “examples” and “features” collected in a matrix format (data relates to 

automobiles and their features) 

 

 
(c) The features might include age, home region, family income, etc. of persons who own 

pets. 

3. Spam e-mail 

Let it be required to build a learning algorithm to identify spam e-mail. 

(a)The unit of observation could be an e-mail messages. 

(b)The examples would be specific messages. 

(c)The features might consist of the words used in the messages. 

Examples and features are generally collected in a “matrix format”. Fig. 1.2 shows such a data 

set. 

 
 Different forms of data 

1. Numeric data 

If a feature represents a characteristic measured in numbers, it is called a numeric feature. 

2. Categorical or nominal 

A categorical feature is an attribute that can take on one of a limited, and usually fixed, number 

of possible values on the basis of some qualitative property. A categorical feature is also called 

a nominal feature. 

3. Ordinal data 

This denotes a nominal variable with categories falling in an ordered list. Examples include 

clothing sizes such as small, medium, and large, or a measurement of customer satisfaction 

on a scale from “not at all happy” to “very happy.” 

 
Examples 

In the data given in Fig.1.2, the features “year”, “price” and “mileage” are numeric and the features 

“model”, “color” and “transmission” are categorical. 
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the form P (Y |X) where Y is the product the customer may buy and X is the product or the set of 

products the customer has already purchased. 

 

 General classes of machine learning problems 

 Learning associations 

1. Association rule learning 

Association rule learning is a machine learning method for discovering interesting relations, called 

“association rules”, between variables in large databases using some measures of “interestingness”. 

 
2. Example 

Consider a supermarket chain. The management of the chain is interested in knowing whether 

there are any patterns in the purchases of products by customers like the following: 

“If a customer buys onions and potatoes together, then he/she is likely to also buy 

hamburger.” 

From the standpoint of customer behaviour, this defines an association between the set of 

products {onion, potato} and the set {burger}. This association is represented in the form of 

a rule as follows: 

onion, potato burger 

The measure of how likely a customer, who has bought onion and potato, to buy burger also 

is given by the conditional probability 

P onion, potato burger . 

If this conditional probability is 0.8, then the rule may be stated more precisely as follows: 

“80% of customers who buy onion and potato also buy burger.” 

3. How association rules are made use of 

Consider an association rule of the form 

X ⇒ Y, 

that is, if people buy X then they are also likely to buy Y . 

Suppose there is a customer who buys X and does not buy Y . Then that customer is a potential 

Y customer. Once we find such customers, we can target them for cross-selling. A knowledge of 

such rules can be used for promotional pricing or product placements. 

 
4. General case 

In finding an association rule X ⇒ Y , we are interested in learning a conditional probability of 

 

If we may want to make a distinction among customers, we may estimate P  Y  X, D  where  

D is a set of customer attributes, like gender, age, marital status, and so on, assuming that we have 

access to this information. 

 
5. Algorithms 

There are several algorithms for generating association rules. Some of the well-known algorithms 

are listed below: 

a) Apriori algorithm 

b) Eclat algorithm 

c) FP-Growth Algorithm (FP stands for Frequency Pattern) 
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 Classification 

1. Definition 

In machine learning, classification is the problem of identifying to which of a set of categories a 

new observation belongs, on the basis of a training set of data containing observations (or instances) 

whose category membership is known. 

 
2. Example 

Consider the following data: 

 
Score1 29 22 10 31 17 33 32 20 

Score2 43 29 47 55 18 54 40 41 

Result Pass Fail Fail Pass Fail Pass Pass Pass 

Table 1.1: Example data for a classification problem 

 

Data in Table 1.1 is the training set of data. There are two attributes “Score1” and “Score2”. The 

class label is called “Result”. The class label has two possible values “Pass” and “Fail”. The data 

can be divided into two categories or classes: The set of data for which the class label is “Pass” and 

the set of data for which the class label is“Fail”. 

Let us assume that we have no knowledge about the data other than what is given in the table. 

Now, the problem can be posed as follows: If we have some new data, say “Score1 = 25” and 

“Score2 = 36”, what value should be assigned to “Result” corresponding to the new data; in other 

words, to which of the two categories or classes the new observation should be assigned? See Figure 

1.3 for a graphical representation of the problem. 
 

Score2 

60 

50 
 

 

40 

? 
30 

 

20 

10
      Score1 

0 10 20 30 40 

Figure 1.3: Graphical representation of data in Table 1.1. Solid dots represent data in “Pass” class 

and hollow dots data in “Fail” class. The class label of the square dot is to be determined. 

 

To answer this question, using the given data alone we need to find the rule, or the formula, or 

the method that has been used in assigning the values to the class label “Result”. The problem of 

finding this rule or formula or the method is the classification problem. In general, even the general 

form of the rule or function or method will not be known. So several different rules, etc. may have 

to be tested to obtain the correct rule or function or method. 
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3. Real life examples 

i) Optical character recognition 

Optical character recognition problem, which is the problem of recognizing character codes 

from their images, is an example of classification problem. This is an example where there 

are multiple classes, as many as there are characters we would like to recognize. Especially 

interesting is the case when the characters are handwritten. People have different handwrit- 

ing styles; characters may be written small or large, slanted, with a pen or pencil, and there 

are many possible images corresponding to the same character. 

ii) Face recognition 

In the case of face recognition, the input is an image, the classes are people to be recognized, 

and the learning program should learn to associate the face images to identities. This prob- 

lem is more difficult than optical character recognition because there are more classes, input 

image is larger, and a face is three-dimensional and differences in pose and lighting cause 

significant changes in the image. 

iii) Speech recognition 

In speech recognition, the input is acoustic and the classes are words that can be uttered. 

iv) Medical diagnosis 

In medical diagnosis, the inputs are the relevant information we have about the patient and 

the classes are the illnesses. The inputs contain the patient’s age, gender, past medical 

history, and current symptoms. Some tests may not have been applied to the patient, and 

thus these inputs would be missing. 

v) Knowledge extraction 

Classification rules can also be used for knowledge extraction. The rule is a simple model 

that explains the data, and looking at this model we have an explanation about the process 

underlying the data. 

vi) Compression 

Classification rules can be used for compression. By fitting a rule to the data, we get an 

explanation that is simpler than the data, requiring less memory to store and less computation 

to process. 

vii) More examples 

Here are some further examples of classification problems. 

(a) An emergency room in a hospital measures 17 variables like blood pressure, age, etc. 

of newly admitted patients. A decision has to be made whether to put the patient in an 

ICU. Due to the high cost of ICU, only patients who may survive a month or more are 

given higher priority. Such patients are labeled as “low-risk patients” and others are 

labeled “high-risk patients”. The problem is to device a rule to classify a patient as a 

“low-risk patient” or a “high-risk patient”. 

(b) A credit card company receives hundreds of thousands of applications for new cards. 

The applications contain information regarding several attributes like annual salary, 

age, etc. The problem is to devise a rule to classify the applicants to those who are 

credit-worthy, who are not credit-worthy or to those who require further analysis. 

(c) Astronomers have been cataloguing distant objects in the sky using digital images cre- 

ated using special devices. The objects are to be labeled as star, galaxy, nebula, etc. 

The data is highly noisy and are very faint. The problem is to device a rule using which 

a distant object can be correctly labeled. 
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IF Score1 ≥ 20 AND Score2 ≥ 40 THEN “Pass” ELSE “Fail”. 

IF Score1 ≥ m1 AND Score2 ≥ m2 THEN “Pass” ELSE “Fail”. 

x2 − 0, 2x1 can also be considered as the discriminant. 

5. Algorithms 

 

4. Discriminant 

A discriminant of a classification problem is a rule or a function that is used to assign labels to new 

observations. 

 
Examples 

i) Consider the data given in Table 1.1 and the associated classification problem. We may 

consider the following rules for the classification of the new data: 

 

IF Score1 + Score2 ≥ 60, THEN “Pass” ELSE “Fail”. 

Or, we may consider the following rules with unspecified values for M, m1, m2 and then by 
some method estimate their values. 

 
IF Score1 + Score2 ≥ M , THEN “Pass” ELSE “Fail”. 

ii) Consider a finance company which lends money to customers. Before lending money, the 

company would like to assess the risk associated with the loan. For simplicity, let us assume 

that the company assesses the risk based on two variables, namely, the annual income and 

the annual savings of the customers. 

Let x1 be the annual income and x2 be the annual savings of a customer. 

• After using the past data, a rule of the following form with suitable values for θ1 and 

θ2 may be formulated: 

IF x1 θ1 AND x2 θ2 THEN “low-risk” ELSE “high-risk”. 

This rule is an example of a discriminant. 

• Based on the past data, a rule of the following form may also be formulated: 

IF x2 0.2x1 0 THEN “low-risk” ELSE “high-risk”. 

In this case the rule may be thought of as the discriminant. The function f (x1, x2) = 
 

 

There are several machine learning algorithms for classification. The following are some of the 

well-known algorithms. 

a) Logistic regression 

b) Naive Bayes algorithm 

c) k-NN algorithm 

d) Decision tree algorithm 

e) Support vector machine algorithm 

f) Random forest algorithm 
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Remarks 

• A classification problem requires that examples be classified into one of two or more classes. 

• A classification can have real-valued or discrete input variables. 

• A problem with two classes is often called a two-class or binary classification problem. 

• A problem with more than two classes is often called a multi-class classification problem. 

• A problem where an example is assigned multiple classes is called a multi-label classification 

problem. 

 
 Regression 

1. Definition 

In machine learning, a regression problem is the problem of predicting the value of a numeric vari- 

able based on observed values of the variable. The value of the output variable may be a number, 

such as an integer or a floating point value. These are often quantities, such as amounts and sizes. 

The input variables may be discrete or real-valued. 

 
2. Example 

Consider the data on car prices given in Table 1.2. 

 
Price Age Distance Weight 

(US$) (years) (KM) (pounds) 

13500 23 46986 1165 

13750 23 72937 1165 

13950 24 41711 1165 

14950 26 48000 1165 

13750 30 38500 1170 

12950 32 61000 1170 

16900 27 94612 1245 

18600 30 75889 1245 

21500 27 19700 1185 

12950 23 71138 1105 

 
Table 1.2: Prices of used cars: example data for regression 

 
Suppose we are required to estimate the price of a car aged 25 years with distance 53240 KM 

and weight 1200 pounds. This is an example of a regression problem beause we have to predict the 

value of the numeric variable “Price”. 

 
3. General approach 

Let x denote the set of input variables and y the output variable. In machine learning, the general 

approach to regression is to assume a model, that is, some mathematical relation between x and y, 

involving some parameters say, θ, in the following form: 

y f x, θ 
 

The function f x, θ is called the regression function. The machine learning algorithm optimizes 

the parameters in the set θ such that the approximation error is minimized; that is,  the estimates  

of the values of the dependent variable y are as close as possible to the correct values given in the 

training set. 
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Example 

For example, if the input variables are “Age”, “Distance” and “Weight” and the output variable 

is “Price”, the model may be 

y f x, θ 

Price a0 a1 (Age)   a2 (Distance)   a3 (Weight) 

where x Age, Distance, Weight  denotes the the set of input variables and θ a0, a1, a2, a3 

denotes the set of parameters of the model. 

 
4. Different regression models 

There are various types of regression techniques available to make predictions. These techniques 

mostly differ in three aspects, namely, the number and type of independent variables, the type of 

dependent variables and the shape of regression line. Some of these are listed below. 

• Simple linear regression: There is only one continuous independent variable x and the as- 

sumed relation between the independent variable and the dependent variable y is 

y a   bx. 

 
• Multivariate linear regression: There are more than one independent variable, say x1, . . . , xn, 

and the assumed relation between the independent variables and the dependent variable is 

y a0 a1x1 anxn. 

 
• Polynomial regression: There is only one continuous independent variable x and the assumed 

model is 

y a0 a1x anxn. 

• Logistic regression: The dependent variable is binary, that is, a variable which takes only the 

values 0 and 1. The assumed model involves certain probability distributions. 

 
 Different types of learning 

In general, machine learning algorithms can be classified into three types. 

 
 Supervised learning 

Supervised learning is the machine learning task of learning a function that maps an input to an 

output based on example input-output pairs. 

In supervised learning, each example in the training set is a pair consisting of an input object 

(typically a vector) and an output value. A supervised learning algorithm analyzes the training  

data and produces a function, which can be used for mapping new examples. In the optimal case, 

the function will correctly determine the class labels for unseen instances. Both classification and 

regression problems are supervised learning problems. 

A wide range of supervised learning algorithms are available, each with its strengths and weak- 

nesses. There is no single learning algorithm that works best on all supervised learning problems. 
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Figure 1.4: Supervised learning 

 

 
Remarks 

A “supervised learning” is so called because the process of an algorithm learning from the training 

dataset can be thought of as a teacher supervising the learning process. We know the correct answers 

(that is, the correct outputs),  the algorithm iteratively makes predictions on the training data and  

is corrected by the teacher. Learning stops when the algorithm achieves an acceptable level of 

performance. 

 
Example 

Consider the following data regarding patients entering a clinic. The data consists of the 

gender and age of the patients and each patient is labeled as “healthy” or “sick”. 

 
gender age label 

M 48 sick 

M 67 sick 

F 53 healthy 

M 49 healthy 

F 34 sick 

M 21 healthy 

Based on this data, when a new patient enters the clinic, how can one predict whether he/she 

is healthy or sick? 

 
 Unsupervised learning 

Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets 

consisting of input data without labeled responses. 

In unsupervised learning algorithms, a classification or categorization is not included in the 

observations. There are no output values and so there is no estimation of functions. Since the 

examples given to the learner are unlabeled, the accuracy of the structure that is output by the 

algorithm cannot be evaluated. 

The most common unsupervised learning method is cluster analysis, which is used for ex- 

ploratory data analysis to find hidden patterns or grouping in data. 

 
Example 

Consider the following data regarding patients entering a clinic. The data consists of the 

gender and age of the patients. 
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gender age 

M 48 

M 67 

F 53 

M 49 

F 34 

M 21 

Based on this data, can we infer anything regarding the patients entering the clinic? 

 
 Reinforcement learning 

Reinforcement learning is the problem of getting an agent to act in the world so as to maximize its 

rewards. 

A learner (the program) is not told what actions to take as in most forms of machine learning, but 

instead must discover which actions yield the most reward by trying them. In the most interesting 

and challenging cases, actions may affect not only the immediate reward but also the next situations 

and, through that, all subsequent rewards. 

For example, consider teaching a dog a new trick: we cannot tell it what to do, but we can 

reward/punish it if it does the right/wrong thing. It has to find out what it did that made it get the 

reward/punishment. We can use a similar method to train computers to do many tasks, such as 

playing backgammon or chess, scheduling jobs, and controlling robot limbs. 

Reinforcement learning is different from supervised learning. Supervised learning is learning 

from examples provided by a knowledgeable expert. 
 

 

 Sample questions 

(a) Short answer questions 

1. What is meant by “learning” in the context of machine learning? 

2.List out the types of machine learning. 

3. Distinguish between classification and regression. 

4. What are the differences between supervised and unsupervised learning? 

5.What is meant by supervised classification? 

6.Explain supervised learning with an example. 

7.What do you mean by reinforcement learning? 

8.What is an association rule? 

9. Explain the concept of Association rule learning. Give the names of two algorithms for gen- 

erating association rules. 

10. What is a classification problem in machine learning. Illustrate with an example. 

11.Give three examples of classification problems from real life situations. 

12. What is a discriminant in a classification problem? 

13. List three machine learning algorithms for solving classification problems. 

14. What is a binary classification problem? Explain with an example. Give also an example for 

a classification problem which is not binary. 

15. What is regression problem. What are the different types of regression? 
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(b) Long answer questions 

1. Give a definition of the term “machine learning”. Explain with an example the concept of 

learning in the context of machine learning. 

2. Describe the basic components of the machine learning process. 

3. Describe in detail applications of machine learning in any three different knowledge domains. 

4.Describe with an example the concept of association rule learning. Explain how it is made 

use of in real life situations. 

5. What is the classification problem in machine learning? Describe three real life situations in 

different domains where such problems arise. 

6. What is meant by a discriminant of a classification problem? Illustrate the idea with examples. 

7.Describe in detail with examples the different types of learning like the supervised 

learning,etc.



 

 

 

 
 Input representation 

The general classification problem is concerned with assigning a class label to an unknown instance 

from instances of known assignments of labels. In a real world problem, a given situation or an 

object will have large number of features which may contribute to the assignment of the labels. 

But in practice, not all these features may be equally relevant or important. Only those which are 

significant need be considered as inputs for assigning the class labels. These features are referred to 

as the “input features” for the problem. They are also said to constitute an “input representation” 

for the problem. 

 
Example 

Consider the problem of assigning the label “family car” or “not family car” to cars. Let us 

assume that the features that separate a family car from other cars are the price and engine 

power. These attributes or features constitute the input representation for the problem. While 

deciding on this input representation, we are ignoring various other attributes like seating 

capacity or colour as irrelevant. 

 
 Hypothesis space 

In the following discussions we consider only “binary classification” problems; that is, classification 

problems with only two class labels. The class labels are usually taken as “1” and “0”. The label “1” 

may indicate “True”, or “Yes”, or “Pass”, or any such label. The label “0” may indicate “False”, or 

“No” or “Fail”, or any such label. The examples with class labels 1 are called “positive examples” 

and examples with labels “0” are called “negative examples”. 

 
 Definition 

1. Hypothesis 

In a binary classification problem, a hypothesis is a statement or a proposition purporting to 

explain a given set of facts or observations. 
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2. Hypothesis space 

The hypothesis space for a binary classification problem is a set of hypotheses for the problem 

that might possibly be returned by it. 

3. Consistency and satisfying 

Let x be an example in a binary classification problem and let c x  denote the class label 

 
hypothesis for the problem and h x be the class label assigned to x by the hypothesis h. 

(a)We say that the hypothesis  h is consistent with the set of training examples D if h(x) = 

(b) We say that an example x satisfies the hypothesis h if h(x) = 1. 

 Examples 

1. Consider the set of observations of a variable x with the associated class labels given in Table 

2.1: 
 

x 27 15 23 20 25 17 12 30 6 10 

Class 1 0 1 1 1 0 0 1 0 0 

Table 2.1: Sample data to illustrate the concept of hypotheses 

 

 
Figure 2.1 shows the data plotted on the x-axis. 

 

 
0 6 10 

 
12 15  17 20 

x 

23  25  27 30 
 

Figure 2.1: Data in Table 2.1 with hollow dots representing positive examples and solid dots repre- 

senting negative examples 

 
 

Looking at Figure 2.1, it appears that the class labeling has been done based on the following 

rule. 

h′ :    IF x 20 THEN “1” ELSE “0”. (2.1) 

Note that h′ is consistent with the training examples in Table 2.1. For example, we have: 

h′ 27 1, c 27 1, h′ 27 c 27 

h′(15) = 0, c(15) = 0, h′(15) = c(15) 

Note also that, for x = 5 and x = 28 (not in training data), 

h′(5) = 0, h′(28) = 1. 

The hypothesis h′ explains the data. The following proposition also explains the data: 

h′′ :    IF x 19 THEN “0” ELSE “1”. (2.2) 

It is not enough that the hypothesis explains the given data; it must also predict correctly the 

class label of future observations. So we consider a set of such hypotheses and choose the 

“best” one. The set of hypotheses can be defined using a parameter, say m, as given below: 

hm :   IF x ≥ m THEN “1” ELSE ”0”. (2.3) 
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The set of all hypotheses obtained by assigning different values to m constitutes the hypothesis 

space H; that is, 

H hm  m is a real number . (2.4) 

For the same data, we can have different hypothesis spaces. For example, for the data in Table 

2.1, we may also consider the hypothesis space defined by the following proposition: 

h′
m : IF x m THEN “0” ELSE “1”. 

2. Consider a situation with four binary variables x1, x2, x3, x4 and one binary output variable 

y. Suppose we have the following observations. 

 

x1 x2 x3 x4 y 

0 0 0 1 1 

0 1 0 1 0 

1 1 0 0 1 

0 0 1 0 0 

The problem is to predict a function f of x1, x2, x3, x4 which predicts the value of y for any 
combination of values of x1, x2, x3, x4. In this problem, the hypothesis space is the set of all 

possible functions f . It can be shown that the size of the hypothesis space is 2(2
4 ) 65536. 

3. Consider the problem of assigning the label “family car” or “not family car” to cars. For 

convenience, we shall replace the label “family car” by “1” and “not family car” by “0”. 

Suppose we choose the features “price (’000 $)” and “power (hp)” as the input representation 

for the problem. Further, suppose that there is some reason to believe that for a car to be a 

family car, its price and power should be in certain ranges. This supposition can be formulated 

in the form of the following proposition: 

IF  p1 price p2   AND  e1 power e2    THEN “1” ELSE ”0” (2.5) 

for suitable values of p1, p2, e1 and e2. Since a solution to the problem is a proposition of the 
form Eq.(2.5) with specific values for p1, p2, e1 and e2, the hypothesis space for the problem 
is the set of all such propositions obtained by assigning all possible values for p1, p2, e1 and 
e2. 

 

power (hp) 

 
e2 

x2 

e1 

 
p1 x1 p2 

(’000 $) 
 

 

Figure 2.2: An example hypothesis defined by Eq. (2.5) 

 

 
It is interesting to observe that the set of points in the power–price plane which satisfies the 

condition 

p1 price p2   AND  e1 power e2 

defines a rectangular region (minus the boundary) in the price–power space as shown in Figure 

2.2.  The sides of this rectangular region are parallel to the coordinate axes.  Such a rectangle 

 

 hypothesis h 

h(x1, x2) = 1 
 

 

 

 
price 
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S′ = {x ∈ X ∶ h′(x) = 1} 

S′′ = {x ∈ X ∶ h′′(x) = 1} 

is any point in the price–power plane, then h(x , x )  =  1 if and only if (x , x )  is within1

 2 1 2 

( ) 

′ ′′ 

h′ h′′ h′ h′′ h′′ 

h′ h′′ h′ h′′ h′′ 

defines a partial ordering relation in hypothesis space. 

1.We say that h′ is more general than h′′ if and only if for every x ∈ X, if x satisfies h′′ then x 

 

is called an axis-aligned rectangle If h is the hypothesis defined by Eq.(2.5), and x1, x2 

 

the rectangular region. Hence we may identify the hypothesis h with the rectangular region. 

Thus, the hypothesis space for the problem can be thought of as the set of all axis-aligned 

rectangles in the price–power plane. 

4. Consider the trading agent trying to infer which books or articles the user reads based on 

keywords supplied in the article. Suppose the learning agent has the following data (“1"  

indicates “True” and “0” indicates “False”): 

 
article crime academic local music reads 

a1 true false false true 1 

a2 true false false false 1 

a3 false true false false 0 

a4 false false true false 0 

a5 true true false false 1 

The aim is to learn which articles the user reads. The aim is to find a definition such as 

IF (crime OR (academic AND (NOT music))) THEN ”1” ELSE ”0”. 

The hypothesis space H could be all boolean combinations of the input features or could be 

more restricted, such as conjunctions or propositions defined in terms of fewer than three 

features. 

 
 Ordering of hypotheses 

Definition 

Let X be the set of all possible examples for a binary classification problem and let h and h be  

two hypotheses for the problem. 

 

 

 

 

 

 

 

 

Figure 2.3: Hypothesis h′ is more general than hypothesis h′′ if and only if S′′ ⊆ S′ 

satisfies h′ also; that is, if h′′(x) = 1 then h′(x) = 1 also. The relation “is more general than” 

2.We say that h′ is more specific than h′′, if h′′ is more general than h′. 

3. We say that is strictly more general than if is more general than and is not 

more general than h′. 

4. We say that is strictly more specific than if is more specific than and is not 

more specific than h′. 
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h′(x) = 1 then h′′(x) = 1 also. So, h′′ is more general than h′. But, h′ is not more general 

and so h 

 

Example 

Consider the hypotheses h′ and h′′ defined in Eqs.(2.1),(2.2). Then it is easy to check that if 

′′ ′′ 

 

 Version space 

Definition 

Consider a binary classification problem. Let D be a set of training examples and H a hypothesis 

space for the problem. The version space for the problem with respect to the set D and the space H 

is the set of hypotheses from H consistent with D; that is, it is the set 

 

 
 Examples 

Example 1 

VSD,H = {h ∈ H ∶ h(x) = c(x) for all x ∈ D}. 

Consider the data D given in Table 2.1 and the hypothesis space defined by Eqs.(2.3)-(2.4). 
 

 

 
0 6 10 

 

 
12 15 

m 

 
17 20 

 
x 

23  25  27 30 
 

Figure 2.4: Values of m which define the version space with data in Table 2.1 and hypothesis space 

defined by Eq.(2.4) 

 

From Figure 2.4 we can easily see that the hypothesis space with respect this dataset D and 

hypothesis space H is as given below: 

VSD,H = {hm ∶ 17 < m ≤ 20}. 
 

Example 2 

Consider the problem of assigning the label “family car” (indicated by “1”) or “not family car” 

(indicated by “0”) to cars. Given the following examples for the problem and assuming that the 

hypothesis space is as defined by Eq. (2.5), the version space for the problem. 
 

x1: Price in ’000 ($) 

x2: Power (hp) 

32 

170 

82 

333 

44 

220 

34 

235 

43 

245 

80 

315 

38 

215 

Class 0 0 1 1 1 0 1 

 

x1 

x2 

47 

260 

27 

290 

56 

320 

28 

305 

20 

160 

25 

300 

66 

250 

75 

340 

Class 1 0 0 0 0 0 0 0 

 
Solution 

Figure 2.5 shows a scatter plot of the given data. In the figure, the data with class label “1” (family 

car) is shown as hollow circles and the data with class labels “0” (not family car) are shown as solid 

dots. 

A hypothesis as given by Eq.(2.5) with specific values for the parameters p1, p2, e1 and e2 

specifies an axis-aligned rectangle as shown in Figure 2.2. So the hypothesis space for the problem 

can be thought as the set of axis-aligned rectangles in the price-power plane. 

than h is strictly more general than h′. 
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power (hp) 

350 

 

300 

 

250 

 

200 

 
150 

 

 
 

price (’000 $) 

10 20 30 40 50 60 70 80 90 
 

Figure 2.5: Scatter plot of price-power data (hollow circles indicate positive examples and solid dots 

indicate negative examples) 

 

 

 
350 

 
300 

 
250 

 

power (hp) 

 

 
 

(27, 290) 

(34, 235) 

 
   (47, 260) 

 
 

(66, 250) 

200 

 
150 

(38, 215) 

(32, 170) 

 
 

 
price (’000 $) 

10 20 30 40 50 60 70 80 90 

Figure 2.6: The version space consists of hypotheses corresponding to axis-aligned rectangles con- 

tained in the shaded region 

 

 
The version space consists of all hypotheses specified by axis-aligned rectangles contained in 

the shaded region in Figure 2.6. The inner rectangle is defined by 

34 price 47  AND  215 power 260 

and the outer rectangle is defined by 

(27 < price < 66) AND (170 < power < 290). 

Example 3 

Consider the problem of finding a rule for determining days on which one can enjoy water sport. The 

rule is to depend on a few attributes like “temp”, ”humidity”, etc. Suppose we have the following 

data to help us devise the rule. In the data, a value of “1” for “enjoy” means “yes” and a value of 

“0” indicates ”no”. 
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x  = strong, Y4 

x  = warm, cold, Y2 

= Y5 

( = ) ∧ ( =  ) ∧ ( =  )∧1
   2   3 

Y 

ø 

( ) 

 
Example sky temp humidity wind water forecast enjoy 

1 sunny warm normal strong warm same 1 

2 sunny warm high strong warm same 1 

3 rainy cold high strong warm change 0 

4 sunny warm high strong cool change 1 

Find the hypothesis space and the version space for the problem. (For a detailed discussion of this 

problem see [4] Chapter2.) 

 
Solution 

We are required to find a rule of the following form, consistent with the data, as a solution of the 

problem. 
 

 

 

 
where 

sky x temp x humidity x 

(wind = x4) ∧ (water = x5) ∧ (forecast = x6) ↔ yes (2.6) 

x1  = sunny, warm, Y 

x3  = normal, high, Y 

x     warm, cool, 

x6  = same, change, Y 

(Here a “ ” indicates other possible values of the attributes.) The hypothesis may be represented 

compactly as a vector 

a1, a2, a3, a4, a5, a6 

where, in the positions of a1, . . . , a6, we write 

• a “?” to indicate that any value is acceptable for the corresponding attribute, 

• a ” ” to indicate that no value is acceptable for the corresponding attribute, 

• some specific single required value for the corresponding attribute 

For example, the vector 

(?, cold, high, ?, ?, ?) 

indicates the hypothesis that one enjoys the sport only if “temp” is “cold” and “humidity” is “high” 

whatever be the values of the other attributes. 

It can be shown that the version space for the problem consists of the following six hypotheses 

only: 
 

(sunny, warm, ?, strong, ?, ?) 

(sunny, ?, ?, strong, ?, ?) 

(sunny, warm, ?, ?, ?, ?) 

(?, warm, ?, strong, ?, ?) 

(sunny, ?, ?, ?, ?, ?) 

(?, warm, ?, ?, ?, ?) 



 22 
 

 

 

For a given x, ideally only one of hi(x) is 1 and then we assign the class Ci to x. But, when 

h (x) = 

r
ı
{

1    if x is in class Ci 

 

 Noise 

 Noise and their sources 

Noise is any unwanted anomaly in the data ([2] p.25). Noise may arise due to several factors: 

1.There may be imprecision in recording the input attributes, which may shift the data points in 

the input space. 

2. There may be errors in labeling the data points, which may relabel positive instances as nega- 

tive and vice versa. This is sometimes called teacher noise. 

3. There may be additional attributes, which we have not taken into account, that affect the label 

of an instance. Such attributes may be hidden or latent in that they may be unobservable. The 

effect of these neglected attributes is thus modeled as a random component and is included in 

“noise.” 

 
 Effect of noise 

Noise distorts data. When there is noise in data, learning problems may not produce accurate results. 

Also, simple hypotheses may not be sufficient to explain the data and so complicated hypotheses 

may have to be formulated. This leads to the use of additional computing resources and the needless 

wastage of such resources. 

For example, in a binary classification problem with two variables, when there is noise, there 

may not be a simple boundary between the positive and negative instances and to separate them. A 

rectangle can be defined by four numbers, but to define a more complicated shape one needs a more 

complex model with a much larger number of parameters. So, when there is noise, we may make a 

complex model which makes a perfect fit to the data and attain zero error; or, we may use a simple 

model and allow some error. 

 
 Learning multiple classes 

So far we have been discussing binary classification problems. In a general case there may be more 

than two classes. Two methods are generally used to handle such cases. These methods are known 

by the names “one-against-all" and “one-against-one”. 

 
 Procedures for learning multiple classes 

“One-against all” method 

Consider the case where there are K classes denoted by C1, . . . , CK. Each input instance belongs 
to exactly one of them. 

We view a K-class classification problem as K two-class problems. In the i-th two-class prob- 

lem, the training examples belonging to Ci are taken as the positive examples and the examples of 

all other classes are taken as the negative examples. So, we have to find K hypotheses h1, . . . , hK 
where hi is defined by 

 

i 
ı›0    otherwise 

no, or, two or more, hi(x) is 1, we cannot choose a class. In such a case, we say that the classifier 

 rejects such cases. 
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( − )/ 

1)/2 = 3 binary classifiers. Now, if any x is to be classified, we apply each of the three classifiers to 

( − 
arbitrarily. 

 

“One-against-one” method 

In the one-against-one (OAO) (also called one-vs-one (OVO)) strategy, a classifier is constructed 

for each pair of classes. If there are K different class labels, a total of K K 1 2 classifiers are 

constructed. An unknown instance is classified with the class getting the most votes. Ties are broken 

For example, let there be three classes, A, B and C. In the OVO method we construct 3 3 
 

x. Let the three classifiers assign the classes A, B, B respectively to x. Since a label to x is assigned 

by the majority voting, in this example, we assign the class label of B to x. 

 
 Model selection 

As we have pointed earlier in Section 1.1.1, there is no universally accepted definition of the term 

“model”. It may be understood as some mathematical expression or equation, or some mathematical 

structures such as graphs and trees, or a division of sets into disjoint subsets, or a set of logical “if 

. . . then . . . else . . .” rules, or some such thing. 

In order to formulate a hypothesis for a problem, we have to choose some model and the term 

“model selection” has been used to refer to the process of choosing a model. However, the term has 

been used to indicate several things. In some contexts it has been used to indicates the process of 

choosing one particular approach from among several different approaches. This may be choosing 

an appropriate algorithms from a selection of possible algorithms, or choosing the sets of features 

to be used for input, or choosing initial values for certain parameters. Sometimes “model selection” 

refers to the process of picking a particular mathematical model from among different mathematical 

models which all purport to describe the same data set. It has also been described as the process of 

choosing the right inductive bias. 

 
 Inductive bias 

In a learning problem we only have the data. But data by itself is not sufficient to find the solution. 

We should make some extra assumptions to have a solution with the data we have. The set of 

assumptions we make to have learning possible is called the inductive bias of the learning algorithm. 

One way we introduce inductive bias is when we assume a hypothesis class. 

 
Examples 

• In learning the class of family car, there are infinitely many ways of separating the positive 

examples from the negative examples. Assuming the shape of a rectangle is an inductive bias. 

• In regression, assuming a linear function is an inductive bias. 

The model selection is about choosing the right inductive bias. 

 
 Advantages of a simple model 

Even though a complex model may not be making any errors in prediction, there are certain advan- 

tages in using a simple model. 

1.A simple model is easy to use. 

2.A simple model is easy to train. It is likely to have fewer parameters. 

It is easier to find the corner values of a rectangle than the control points of an arbitrary shape. 

3.A simple model is easy to explain. 
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4.A simple model would generalize better than a complex model. This principle is known as 

Occam’s razor, which states that simpler explanations are more plausible and any unnecessary 

complexity should be shaved off. 

 
Remarks 

A model should not be too simple! With a small training set when the training instances differ a 

little bit, we expect the simpler model to change less than a complex model: A simple model is thus 

said to have less variance. On the other hand, a too simple model assumes more, is more rigid, and 

may fail if indeed the underlying class is not that simple. A simpler model has more bias. Finding 

the optimal model corresponds to minimizing both the bias and the variance. 

 
 Generalisation 

How well a model trained on the training set predicts the right output for new instances is called 

generalization. 

Generalization refers to how well the concepts learned by a machine learning model apply to 

specific examples not seen by the model when it was learning. The goal of a good machine learning 

model is to generalize well from the training data to any data from the problem domain. This allows 

us to make predictions in the future on data the model has never seen. Overfitting and underfitting 

are the two biggest causes for poor performance of machine learning algorithms. The model should 

be selected having the best generalisation. This is said to be the case if these problems are avoided. 

• Underfitting 

Underfitting is the production of a machine learning model that is not complex enough to 

accurately capture relationships between a datasetâĂ Ź s features and a target variable. 

• Overfitting 

Overfitting is the production of an analysis which corresponds too closely or exactly to a 

particular set of data, and may therefore fail to fit additional data or predict future observations 

reliably. 

 
Example 1 

 
 

(a) Given dataset (b) “Just right” model 

  

(c) Underfitting model (d) Overfitting model 

Figure 2.7: Examples for overfitting and overfitting models 
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Consider a dataset shown in Figure 2.7(a). Let it be required to fit a regression model to the data. The 

graph of a model which looks “just right” is shown in Figure 2.7(b). In Figure 2.7(c)we have a linear 

regression model for the same dataset and this model does seem to capture the essential features of 

the dataset. So this model suffers from underfitting. In Figure 2.7(d) we have a regression model 

which corresponds too closely to the given dataset and hence it does not account for small random 

noises in the dataset. Hence it suffers from overfitting. 

 
Example 2 

 

 

 

(a) Underfitting  (b) Right fitting (c) Overfitting 

Figure 2.8: Fitting a classification boundary 

 
Suppose we have to determine the classification boundary for a dataset two class labels. An example 

situation is shown in Figure 2.8 where the curved line is the classification boundary. The three figures 

illustrate the cases of underfitting, right fitting and overfitting. 

 

 Testing generalisation: Cross-validation 

We can measure the generalization ability of a hypothesis, namely, the quality of its inductive bias, 

if we have access to data outside the training set. We simulate this by dividing the training set we 

have into two parts. We use one part for training (that is, to find a hypothesis), and the remaining 

part is called the validation set and is used to test the generalization ability. Assuming large enough 

training and validation sets, the hypothesis that is the most accurate on the validation set is the best 

one (the one that has the best inductive bias). This process is called cross-validation. 
 

 

 Sample questions 

(a) Short answer questions 

1. Explain the general-to-specific ordering of hypotheses. 

2. In the context of classification problems explain with examples the following: (i) hypothesis 

(ii) hypothesis space. 

3. Define the version space of a binary classification problem. 

4.Explain the “one-against-all” method for learning multiple classes. 

5.Describe the “one-against-one” method for learning multiple classes. 

6.What is meant by inductive bias in machine learning? Give an example. 

7.What is meant by overfitting of data? Explain with an example. 

8.What is meant by overfitting and underfitting of data with examples. 
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(b) Long answer questions 

1. Define version space and illustrate it with an example. 

2.Given the following data 

 

x 0 3 5 9 12 18 23 

Label 0 0 0 1 1 1 1 
 

and the hypothesis space 

where hm is defined by 

H = {hm | m a real number} 

IF x ≤ m THEN 1 ELSE 0, 

find the version space the problem with respect to D and H. 

3.What is meant by “noise” in data? What are its sources and how it is affecting results? 

4.Consider the following data: 

 

x 2 3 5 8 10 15 16 18 20 

y 12 15 10 6 8 10 7 9 10 

Class label 0 0 1 1 1 1 0 0 0 

Determine the version space if the hypothesis space consists of all hypotheses of the form 

IF  x1 x x2    AND  y1 y y2 THEN “1” ELSE ”0”. 

5. For the date in problem 4, what would be the version space if the hypothesis space consists of 

all hypotheses of the form 

IF   x   x1  2 y y1  2 r2  THEN “1” ELSE ”0”. 

 
6. What issues are to be considered while selecting a model for applying machine learning in a 

given problem



 

 

 

( ) 
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VC dimension and PAC learning 

 
The concepts of Vapnik-Chervonenkis dimension (VC dimension) and probably approximate correct 

(PAC) learning are two important concepts in the mathematical theory of learnability and hence are 

mathematically oriented. The former is a measure of the capacity (complexity, expressive power, 

richness,  or flexibility) of a space of functions that can be learned by a classification algorithm.   

It was originally defined by Vladimir Vapnik and Alexey Chervonenkis in 1971. The latter is a 

framework for the mathematical analysis of learning algorithms. The goal is to check whether the 

probability for a selected hypothesis to be approximately correct is very high. The notion of PAC 

learning was proposed by Leslie Valiant in 1984. 

 
 Vapnik-Chervonenkis dimension 

Let H be the hypothesis space for some machine learning problem. The Vapnik-Chervonenkis  

dimension of H, also called the VC dimension of H, and denoted by V C H , is a measure of the 

complexity (or, capacity, expressive power, richness, or flexibility) of the space H. To define the VC 

dimension we require the notion of the shattering of a set of instances. 

 
 Shattering of a set 

Let D be a dataset containing N examples for a binary classification problem with class labels 0 
and 1. Let H be a hypothesis space for the problem. Each hypothesis h in H partitions D into two 

disjoint subsets as follows: 
 

x   D  h x 0   and   x   D  h x 1 . 

Such a partition of S is called a “dichotomy” in D. It can be shown that there are 2N possible 

dichotomies in D. To each dichotomy of D there is a unique assignment of the labels “1” and “0” 

to the elements of D. Conversely, if S is any subset of D then, S defines a unique hypothesis h as 

follows: 
r
1 if x S 

ı›0 otherwise 

Thus to specify a hypothesis h, we need only specify the set x D h x 1 . 
Figure 3.1 shows all possible dichotomies of D if D has three elements. In the figure, we have 

shown only one of the two sets in a dichotomy, namely the set x D h x 1 .  The circles and 

ellipses represent such sets. 
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a 

b 

a 

c 

a 

b 

= { } 

∈ ∈ 

= { } 

∈ 

x 3.25 

Label 0 

 

x 3.25 

Label 1 

 

a a a 
 

b c b c c b 

(i) Emty set (ii) (iii) (iv) 

 
a 

 

b c 

(v) (vi) (vii) (viii) Full set D 

Figure 3.1: Different forms of the set {x ∈ S ∶ h(x) = 1} for D = {a, b, c} 

We require the notion of a hypothesis consistent with a set of examples introduced in Section 2.4 

in the following definition. 

 
Definition 

A set of examples D is said to be shattered by a hypothesis space H if and only if for every di- 

chotomy of D there exists some hypothesis in H consistent with the dichotomy of D. 

 
 Vapnik-Chervonenkis dimension 

The following example illustrates the concept of Vapnik-Chervonenkis dimension. 

 
Example 

Let the instance space X be the set of all real numbers. Consider the hypothesis space defined by 

Eqs.(2.3)-(2.4): 

 
where 

H = {hm ∶ m is a real number}, 

hm ∶ IF x ≥ m THEN ”1” ELSE “0”. 
 

i) Let D be a subset of X containing only a single number, say, D 3.5 . There are 2 

dichotomies for this set. These correspond to the following assignment of class labels: 

 

 

h4  H is consistent with the former dichotomy and h3   H is consistent with the latter. So, 

to every dichotomy in D there is a hypothesis in H consistent with the dichotomy. Therefore, 

the set D is shattered by the hypothesis space H. 

ii) Let D be a subset of X  containing two  elements,  say, D 3.25, 4.75 . There are 4 di- 

chotomies in D and they correspond to the assignment of class labels shown in Table 3.1. 

 
In these dichotomies, h5 is consistent with (a), h4 is consistent with (b) and h3 is consistent 

with (d). But there is no hypothesis hm H consistent with (c). Thus the two-element set D 
is not shattered by H. In a similar way it can be shown that there is no two-element subset 

of X which is shattered by H. 

It follows that the size of the largest finite subset of X shattered by H is 1. This number is the 

VC dimension of H. 

c 

b c 

a 

b c 
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• Consider a three-element subset   D = {x , x , x }. Let us assume that x  < x  < x . H1
 2 3 1 2  3 { } 

( 
ı + + >

x, y) 
= { 

x 3.25 4.75 

Label 1 0 

 

x 3.25 4.75 

Label 1 1 

 

 

  
(a) (b) 

 

(c) (d) 

Table 3.1: Different assignments of class labels to the elements of {3.25, 4.75} 

Definition 

The Vapnik-Chervonenkis dimension (VC dimension) of a hypothesis space H defined over an in- 

stance space (that is, the set of all possible examples) X, denoted by V C H , is the size of the 

largest finite subset of X shattered by H. If arbitrarily large subsets of X can be shattered by H, 

then we define V C H . 

 
Remarks 

It can be shown that V C(H) ≤ log2(|H|) where H is the number of hypotheses in H. 

 Examples 

1. Let X be the set of all real numbers (say, for example, the set of heights of people). For any 

real numbers a and b define a hypothesis ha,b as follows: 

 

ha,b 

r
1 if a x b 

ı›0 otherwise 

Let the hypothesis space H consist of all hypotheses of the form ha,b. We show that V C H 

2. We have to show that there is a subset of X of size 2 shattered by H and there is no subset 

of size 3 shattered by H. 

• Consider the two-element set  D  3.25, 4.75  .   The various dichotomies of D are   

given in Table 3.1. It can be seen that the hypothesis h5,6 is consistent with (a), h4,5 is 
consistent with (b), h3,4 is consistent with (c) and h3,5 is consistent with (d). So the set 
D is shattered by H. 

 
cannot shatter this subset because the dichotomy represented by the set x1, x3 cannot 
be represented by a hypothesis in H (any interval containing both x1 and x3 will contain 

 

Therefore, the size of the largest subset of X shattered by H is 2 and so V C H 2. 

2. Let the instance space X be the set of all points x, y in a plane. For any three real numbers, 

a, b, c define a class labeling as follows: 

 

ha,b,c 

r
1 if ax  by c 0 

ı›0 otherwise 

x2 also). 

x 3.25 4.75 

Label 0 1 

 

x 3.25 4.75 

Label 0 0 
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ax + by + c < 0 

ax + by + c > 0 

ax + by + c = 0 
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B C 

 

y 
 
 
 
 
 

 

ha,b,c(x, y) = 0 
O

 

 
ha,b,c(x, y) = 1 

x 
 
 
 

 

ha,b,c  x, y 0 

(assume c < 0) 
 

Figure 3.2: Geometrical representation of the hypothesis ha,b,c 

 
Let H be the set of all hypotheses of the form ha,b,c. We show that V C H  3.  We  have 

show that there is a subset of size 3 shattered by H and there is no subset of size 4 shattered 

by H. 

• Consider a set D A, B, C of three non-collinear points in the plane. There are 8 sub- 

sets of D and each of these defines a dichotomy of D. We can easily find 8 hypotheses 

corresponding to the dichotomies defined by these subsets (see Figure 3.3). 

Figure 3.3: A hypothesis ha,b,c consistent with the dichotomy defined by the subset 

A, C of A, B, C 
 

• Consider a set S  A, B, C, D  of four points in the plane. Let no three of these points 

be collinear. Then, the points form a quadrilateral. It can be easily seen that, in this case, 

there is no hypothesis for which the two element set formed by the ends of a diagonal is 

the corresponding dichotomy (see Figure 3.4). 
 

D 

 
 

B 
 

Figure 3.4: There is no hypothesis ha,b,c consistent with the dichotomy defined by the 

subset A, C of A, B, C, D 

So the set cannot be shattered by H. If any three of them are collinear, then by some 

trial and error, it can be seen that in this case also the set cannot be shattered by H. No 

set with four elements cannot be shattered by H. 

From the above discussion we conclude that V C H 3. 

3. Let X be set of all conjunctions of n boolean literals. Let the hypothesis space H consists of 

conjunctions of up to n literals. It can be shown that V C H  n.  (The full details of the  

proof of this is beyond the scope of these notes.) 

A 

C 
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algorithm A which, for samples drawn with any probability distribution F and any concept c ∈ C, 

Additional notions 

 

MODULE  2 

 

 Probably approximately correct learning 

In computer science, computational learning theory (or just learning theory) is a subfield of artificial 

intelligence devoted to studying the design and analysis of machine learning algorithms. In compu- 

tational learning theory, probably approximately correct learning (PAC learning) is a framework for 

mathematical analysis of machine learning algorithms. It was proposed in 1984 by Leslie Valiant. 

In this framework, the learner (that is, the algorithm) receives samples and must select a hypoth- 

esis from a certain class of hypotheses. The goal is that, with high probability (the “probably” part), 

the selected hypothesis will have low generalization error (the “approximately correct” part). 

In this section we first give an informal definition of PAC-learnability. After introducing a few 

nore notions, we give a more formal, mathematically oriented, definition of PAC-learnability. At the 

end, we mention one of the applications of PAC-learnability. 

 

 PAC-learnability 

To define PAC-learnability we require some specific terminology and related notations. 

• Let X be a set called the instance space which may be finite or infinite. For example, X may 

be the set of all points in a plane. 

• A   concept class C for X  is a family of functions c  X 0, 1  . A member of C is called a 

concept. A concept can also be thought of as a subset of X. If C is a subset of X, it defines a 
 

µ 

r
1 if x C 

C 
ı›0    otherwise 

• A   hypothesis h is also a function h  X 0, 1 . So, as in the case of concepts, a hypothesis 

can also be thought of as a subset of X. H will denote a set of hypotheses. 

• We assume that F is an arbitrary, but fixed, probability distribution over X. 

• Training examples are obtained by taking random samples from X. We assume that the 

samples are randomly generated from X according to the probability distribution F . 

Now, we give below an informal definition of PAC-learnability. 

 
Definition (informal) 

Let X be an instance space,  C a concept class for X, h a hypothesis in C and F  an arbitrary,    

but fixed, probability distribution. The concept class C is said to be PAC-learnable if there is an 

 

will with high probability produce a hypothesis h ∈ C whose error is small. 

 

• True error 

To formally define PAC-learnability, we require the concept of the true error of a hypothesis 

h with respect to a target concept c denoted by errorF h . It is defined by 

errorF h Px F  h x c x 

where the notation Px F indicates that the probability is taken for x drawn from X according 

to the distribution F . This error is the probability that h will misclassify an instance x drawn 

at random from X according to the distribution F . This error is not directly observable to the 

learner; it can only see the training error of each hypothesis (that is, how often h x c x 

over training instances). 

unique function µC  X 0, 1 as follows: 
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( ) 

size(c). 

(
F over X , s such that 0 < s < 1/2 and δ such that 0 < δ < 1/2, learner L will with probability at least 

∈ 

( ) 

 

• Length or dimension of an instance 

We require the notion of the length or dimension or size of an instance in the instance space X. 

If the instance space X is the n-dimensional Euclidean space, then each example is specified 

by n real numbers and so the length of the examples may be taken as n. Similarly, if X is the 

space of the conjunctions of n Boolean literals, then the length of the examples may be taken 

as n. These are the commonly considered instance spaces in computational learning theory. 

• Size of a concept 

We need the notion of the size of a concept c. For any concept c, we define size c to be the 

size of the smallest representation of c using some finite alphabet Σ. 

(For a detailed discussion of these and related ideas, see [6] pp.7-15.) 

 
Definition ([4] p.206) 

Consider a concept class C defined over a set of instances X of length n and a learner (algorithm) L 

using hypothesis space H. C is said to be PAC-learnable by L using H if for all c   C, distribution 

 

1 − δ) output a hypothesis h such that errorF (h) ≤ s, in time that is polynomial in 1/s, 1/δ, n and 

 Examples 

To illustrate the definition of PAC-learnability, let us consider some concrete examples. 
y 

 
 

 

d 

y 

c 
 

 

x 
a x b 

 

Figure 3.5: An axis-aligned rectangle in the Euclidean plane 

 
Example 1 

• Let the instance space be the set X of all points in the Euclidean plane. Each point is repre- 

sented by its coordinates x, y . So, the dimension or length of the instances is 2. 

• Let the concept class C be the set of all “axis-aligned rectangles” in the plane; that is, the set 

of all rectangles whose sides are parallel to the coordinate axes in the plane (see Figure 3.5). 

• Since an axis-aligned rectangle can be defined by a set of inequalities of the following form 

having four parameters 

 
the size of a concept is 4. 

a ≤ x ≤ b, c ≤ y ≤ d 

• We take the set H of all hypotheses to be equal to the set C of concepts, H = C. 

 

 
concept/hypothesis 

(x, y) 
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x 

{   = ( ) ∈ | = = = } 

1 to n boolean variables x1, . . . , xn. The set X is sometimes denoted by {0, 1}n. 

( ) 

we mean, a Boolean variable xi or its negation x/ i.  We consider conjunctions of literals over 

The concept class C of all subsets of X = {0, 1} defined by conjunctions of Boolean literals 

 

• Given a set of sample points labeled positive or negative, let L be the algorithm which outputs 

the hypothesis defined by the axis-aligned rectangle which gives the tightest fit to the posi- 

tive examples (that is, that rectangle with the smallest area that includes all of the positive 

examples and none of the negative examples) (see Figure 3.6). 

y 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3.6: Axis-aligned rectangle which gives the tightest fit to the positive examples 

It can be shown that, in the notations introduced above, the concept class C is PAC-learnable by 

the algorithm L using the hypothesis space H of all axis-aligned rectangles. 

 
Example 2 

• Let X the set of all n-bit strings. Each n-bit string may be represented by an ordered n-tuple 

a1, . . . , an where each ai is either 0 or 1. This may be thought of as an assignment of 0 or 

 
• To define the concept class, we distinguish certain subsets of   X in a special way.  By a literal 

 
x1, . . . , xn. Each conjunction defines a subset of X . for example, the conjunction x1∧ x/ 2  ∧x4 

 

a a1, . . . , an X a1 1, a2 0, a4 1 
 

The concept class C consists of all subsets of X defined by conjunctions of Boolean literals 

over x1, . . . , xn. 

• The hypothesis class H is defined as equal to the concept class C. 

• Let L be a certain algorithm called “Find-S algorithm” used to find a most specific hypothesis 

(see [4] p.26). 

n 

over x1, . . . , xn is PAC-learnable by the Find-S algorithm using the hypothesis space H = C. 

 Applications 

To make the discussions complete, we introduce one simple application of the PAC-learning theory. 

The application is the derivation of a mathematical expression to estimate the size of samples that 

would produce a hypothesis with a given high probability and which has a generalization error of 

given low probability. 

We use the following assumptions and notations: 

• We assume that the hypothesis space H is finite. Let |H| denote the number of elements in H. 

defines the following subset of X: 
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• We assume that the concept class C be equal to H. 

• Let m be the number of elements in the set of samples. 

• Let  s and δ be such that 0 s, δ 1. 

• The algorithm can be any consistent algorithm, that is, any algorithm which correctly classifies 

the training examples. 

It can be shown that, if m is chosen such that 

m 
1  

ln  H ln  1 δ 

then any consistent algorithm will successfully produce any concept in H with probability 1 δ 
and with an error having a maximum probability of s. 

 

 Sample questions 

(a) Short answer questions 

1. What is VC dimension? 

2. Explain Vapnik-Chervonenkis dimension. 

3.Give an informal definition of PAC learnability. 

4.Give a precise definition of PAC learnability. 

5.Give an application of PAC learnable algorithm. 

 
(b) Long answer questions 

1. Let X be the set of all real numbers. Describe a hypothesis for X for which the VC dimension 

is 0. 

2. Let X be the set of all real numbers. Describe a hypothesis for X for which the VC dimension 

is 1. 

3. Let X be the set of all real numbers. Describe a hypothesis for X for which the VC dimension 

is 2. Describe an example for which the VC dimension is 3. 

4. Describe an example of a PAC learnable concept class. 

5. An open interval in   R is defined as a, b x   R a x b . It has two parameters a and b. 

Show that the sets of all open intervals has a VC dimension of 2.



 

 

 

( − ) 

 

Dimensionality reduction 

 
The complexity of any classifier or regressor depends on the number of inputs. This determines both 

the time and space complexity and the necessary number of training examples to train such a clas- 

sifier or regressor. In this chapter, we discuss various methods for decreasing input dimensionality 

without losing accuracy. 

 
 Introduction 

In many learning problems, the datasets have large number of variables. Sometimes, the number  

of variables is more than the number of observations. For example, such situations have arisen in 

many scientific fields such as image processing, mass spectrometry, time series analysis, internet 

search engines, and automatic text analysis among others. Statistical and machine learning methods 

have some difficulty when dealing with such high-dimensional data. Normally the number of input 

variables is reduced before the machine learning algorithms can be successfully applied. 

In statistical and machine learning, dimensionality reduction or dimension reduction is the pro- 

cess of reducing the number of variables under consideration by obtaining a smaller set of principal 

variables. 

Dimensionality reduction may be implemented in two ways. 

• Feature selection 

In feature selection, we are interested in finding k of the total of n features that give us the 

most information and we discard the other n k dimensions. We are going to discuss subset 

selection as a feature selection method. 

• Feature extraction 

In feature extraction, we are interested in finding a new set of k features that are the combina- 

tion of the original n features. These methods may be supervised or unsupervised depending 

on whether or not they use the output information. The best known and most widely used 

feature extraction methods are Principal Components Analysis (PCA) and Linear Discrimi- 

nant Analysis (LDA), which are both linear projection methods, unsupervised and supervised 

respectively. 

 
Measures of error 

In both methods we require a measure of the error in the model. 

• In regression problems, we may use the Mean Squared Error (MSE) or the Root Mean 

Squared Error (RMSE) as the measure of error. MSE is the sum,  over all the data points,  

of the square of the difference between the predicted and actual target variables, divided by 
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= Σ( 

= 

 

the number of data points.  If y1, . . . , yn are the observed values and ŷi, . . . , ŷn are the pre- 

dicted values, then 

MSE 
1 n 

y 
n i=1 

− ŷi)
2

 

• In classification problems, we may use the misclassification rate as a measure of the error. 

This is defined as follows: 

misclassification rate 
no. of misclassified examples 

total no. of examples 

 

 Why dimensionality reduction is useful 

There are several reasons why we are interested in reducing dimensionality. 

• In most learning algorithms, the complexity depends on the number of input dimensions, d,  

as well as on the size of the data sample, N, and for reduced memory and computation, we 

are interested in reducing the dimensionality of the problem. Decreasing d also decreases the 

complexity of the inference algorithm during testing. 

• When an input is decided to be unnecessary, we save the cost of extracting it. 

• Simpler models are more robust on small datasets. Simpler models have less variance, that is, 

they vary less depending on the particulars of a sample, including noise, outliers, and so forth. 

• When data can be explained with fewer features, we get a better idea about the process that 

underlies the data, which allows knowledge extraction. 

• When data can be represented in a few dimensions without loss of information, it can be 

plotted and analyzed visually for structure and outliers. 

 
 Subset selection 

In machine learning subset selection, sometimes also called feature selection, or variable selection, 

or attribute selection, is the process of selecting a subset of relevant features (variables, predictors) 

for use in model construction. 

Feature selection techniques are used for four reasons: 

• simplification of models to make them easier to interpret by researchers/users 

• shorter training times, 

• to avoid the curse of dimensionality 

• enhanced generalization by reducing overfitting 

The central premise when using a feature selection technique is that the data contains many 

features that are either redundant or irrelevant, and can thus be removed without incurring much loss 

of information. 

There are several approaches to subset selection. In these notes, we discuss two of the simplest 

approaches known as forward selection and backward selection methods. 

 
 Forward selection 

In forward selection, we start with no variables and add them one by one, at each step adding the one 

that decreases the error the most, until any further addition does not decrease the error (or decreases 

it only sightly). 

i 
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calculate E(F ∪ {x }) on the validation set.i
 j 

= ∪ { }+ 

( ) 
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and calculate E(Fi − {xj}) on the validation set. 

 

Procedure 

We use the following notations: 

n : number of input variables 

x1, . . . , xn : input variables 

Fi : a subset of the set of input variables 

E Fi : error incurred on the validation sample when only the inputs 

in Fi are used 

1. Set   F0 and E F0 . 

2. For  i 0, 1, . . ., repeat the following until E Fi 1 E Fi : 

(a) For all possible input variables xj, train the model with the input variables Fi ∪{xj} and 

(b) Choose that input variable xm that causes the least error E(Fi ∪ {xj}): 

m = arg min E(Fi ∪ {xj}) 
 

(c) Set  Fi 1 Fi xm . 

3. The set Fi is outputted as the best subset. 

 
Remarks 

1. In this procedure, we stop if adding any feature does not decrease the error  E.  We  may  

even decide to stop earlier if the decrease in error is too small, where there is a user-defined 

threshold that depends on the application constraints. 

2. This process may be costly because to decrease the dimensions from n to k, we need to train 

and test the system 

 
times, which is O n2 . 

 
 Backward selection 

n + (n − l) + (n − 2) + … + (n − k) 

In sequential backward selection, we start with the set containing all features and at each step remove 

the one feature that causes the least error. 

 
Procedure 

We use the following notations: 

n : number of input variables 

x1, . . . , xn : input variables 

Fi : a subset of the set of input variables 

E Fi : error incurred on the validation sample when only the inputs 

in Fi are used 

1. Set   F0 x1, . . . , xn  and E F0 . 

2. For  i 0, 1, . . ., repeat the following until E Fi 1 E Fi : 

(a) For all possible input variables xj, train the model with the input variables Fi − {xj}) 

(b) Choose that input variable xm that causes the least error E(Fi − {xj}): 

m = arg min E(Fi − {xj}) 

j 

j 
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(c) Set  Fi 1 Fi xm . 

3. The set Fi is outputted as the best subset. 

 
 Principal component analysis 

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transforma- 

tion to convert a set of observations of possibly correlated variables into a set of values of linearly 

uncorrelated variables called principal components. The number of principal components is less 

than or equal to the smaller of the number of original variables or the number of observations. This 

transformation is defined in such a way that the first principal component has the largest possible 

variance (that is, accounts for as much of the variability in the data as possible), and each succeeding 

component in turn has the highest variance possible under the constraint that it is orthogonal to the 

preceding components. 

 
 Graphical illustration of the idea 

Consider a two-dimensional data, that is, a dataset consisting of examples having two features. Let 

each of the features be numeric data. So, each example can be plotted on a coordinate plane (x- 

coordinate indicating the first feature and y-coordinate indicating the second feature). Plotting the 

example, we get a scatter diagram of the data. Now let us examine some typical scatter diagram 

and make some observations regarding the directions in which the points in the scatter diagram are 

spread out. 

Let us examine the figures in Figure 4.1. 

(i) Figure 4.1a shows a scatter diagram of a two-dimensional data. 

(ii) Figure 4.1b shows spread of the data in the x direction and Figure 4.1c shows the spread of 

the data in the y-direction. We note that the spread in the x-direction is more than the spread 

in the y direction. 

(iii) Examining Figures 4.1d and 4.1e, we note that the maximum spread occurs in the direction 

shown in Figure 4.1e. Figure 4.1e also shows the point whose coordinates are the mean 

values of the two features in the dataset. This direction is called the direction of the first 

principal component of the given dataset. 

(iv) The direction which is perpendicular (orthogonal) to the direction of the first principal com- 

ponent is called the direction of the second principal component of the dataset. This direc- 

tion is shown in Figure 4.1f. (This is only with reference to a two-dimensional dataset.) 

(v) The unit vectors along the directions of principal components are called the principal com- 

ponent vectors, or simply, principal components. These are shown in Figure 4.1g. 

 
Remark 

let us consider a dataset consisting of examples with three or more features. In such a case, we have 

an n-dimensional dataset with n 3. In this case, the first principal component is defined exactly as 

in item iii above. But, for the second component, it may be noted that there would be many directions 

perpendicular to the direction of the first principal component. The direction of the second principal 

component is that direction, which is perpendicular to the first principal component, in which the 

spread of data is largest. The third and higher order principal components are constructed in a similar 

way. 
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(a) Scatter diagram (b) Spread along x-direction 

 

(c) Spread along y-direction (d) Largest spread 

 

(e) Direction of largest spread : Direction of the first 

principal component (solid dot is the point whose coor- 

dinates are the means of x and y) 

(f) Directions of principal components 

 

 

(g) Principal component vectors (unit vectors in the di- 

rections of principal components) 

Figure 4.1: Principal components 

 

A warning! 

The graphical illustration of the idea of PCA as explained above is slightly misleading. For the sake 

of simplicity and easy geometrical representation, in the graphical illustration we have used range 

as the measure of spread. The direction of the first principal component was taken as the direction of 

maximum range. But, due to theoretical reasons, in the implementation of PCA in practice, it is the 

variance that is taken as as the measure of spread. The first principal component is the the direction 

in which the variance is maximum. 
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( ) 

N 

element in the i-th row j-th column is the covariance Cov (X , X ):i
 j 

( ) … 
⋮ 

ı> 
( ) ( )     … ( )ız 

− 

(   − ) = 

We calculate the following n × n matrix S called the covariance matrix of the data. The 

 

 Computation of the principal component vectors (PCA 

algorithm) 

The following is an outline of the procedure for performing a principal component analysis on a 

given data. The procedure is heavily dependent on mathematical concepts. A knowledge of these 

concepts is essential to carry out this procedure. 

Step 1.Data 

We consider a dataset having n features or variables denoted by X1, X2, . . . , Xn. Let there 
be N examples. Let the values of the i-th feature Xi be Xi1, Xi2, . . . , XiN (see Table 4.1). 

 

Features Example 1 Example 2 … Example N 

X1 

X2 

X
⋮ 

i

 

X
⋮

n

 

X11 

X21 

Xi1 

Xn1 

X12 

X22 

Xi2 

Xn2 

… 

… 

… 

X1N 

X2N 

XiN 

XnN 

Table 4.1: Data for PCA algorithm 

 

 
Step 2.Compute the means of the variables 

We compute the mean X̄i of the variable Xi: 

X̄i =  
N 

(Xi1 + Xi2 + … + XiN ). 

Step 3.Calculate the covariance matrix 

Consider the variables Xi and Xj (i and j need not be different). The covariance of the 

ordered pair  Xi, Xj is defined as1    
 

Cov (X , X ) = 
1 

Σ( − ¯ )( − ¯ )  (4.1) 
i j 

N − 1 k=1 

Xik Xi Xjk Xj . 

 
 

<

ı
Cov 

(
X1, X1

)
 
 

Cov X1, X2 Cov 

(
X1, Xn

)

=

ı
 

S = 
ı

Cov X2, X1 Cov X2, X2 Cov X2, Xn 

ı 
Cov  Xn, X1 Cov  Xn, X2 Cov  Xn, Xn 

 
Step 4.Calculate the eigenvalues and eigenvectors of the covariance matrix 

Let S be the covariance matrix and let I be the identity matrix having the same dimension 

as the dimension of S. 

i) Set up the equation: 

det  S  λI    0. (4.2) 

This is a polynomial equation of degree n in λ. It has n real roots (some of the 

roots may be repeated) and these roots are the eigenvalues of S. We find the n roots 

λ1, λ2, . . . , λn of Eq. (4.2). 

1There is an alternative definition of covariance. In this definition, covariance is defined as in Eq. (4.1) with N 1 

replaced by N . There are certain theoretical reasons for adopting the definition as given here. 
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ii) If λ = λ′ is an eigenvalue, then the corresponding eigenvector is a vector 

U 
u2 

ı>
unız 

such that 

(S − λ′I)U = 0. 

(This is a system of n homogeneous linear equations in u1, u2, . . ., un and it al- 

ways has a nontrivial solution.) We next find a set of n orthogonal eigenvectors 

U1, U2, . . . , Un such that Ui is an eigenvector corresponding to λi.2 

iii) We now normalise the eigenvectors. Given any vector X we normalise it by dividing 

X by its length. The length (or, the norm) of the vector 

<

ı
x1 

=

ı

 

 

 

is defined as 

||X|| = 
.

x2 + x2 + … + x2 . 

Given any eigenvector U , the corresponding normalised eigenvector is computed as 

1 

U 
U. 

We compute the n normalised eigenvectors e1, e2, . . . , en by 

 

 
 

Step 5.Derive new data set 

ei = 
|| 

1
 Ui, i = 1, 2, . . . , n. 

Order the eigenvalues from highest to lowest. The unit eigenvector corresponding to the 

largest eigenvalue is the first principal component. The unit eigenvector corresponding to 

the next highest eigenvalue is the second principal component, and so on. 

i) Let the eigenvalues in descending order be λ1 λ2 . . . λn and let the corre- 
sponding unit eigenvectors be e1, e2, . . . , en. 

ii) Choose a positive integer   p such that 1 p n. 

iii) Choose the eigenvectors corresponding to the eigenvalues λ1, λ2, . . ., λp and form 
the following p n matrix (we write the eigenvectors as row vectors): 

 
ı 1 ı 

eT 

 

where T in the superscript denotes the transpose. 

2For i ≠ j, the vectors Ui and Uj are orthogonal means UT Uj = 0 where T denotes the transpose. 
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× 

ı>
Xn1 − X̄n Xn2 − X̄n …     XnN − X̄nız 

<
ıX11 − X1 X12 − X1 … X1N − X1 

=
ı 

= 

× 

X = (4 + 8 + 13 + 7) = 8,1 

X = (11 + 4 + 5 + 14) = 8.5.2 

 

iv) We form the following n N matrix: 

¯ ¯ ¯ 

X = 
ı

X21 

⋮
− X̄2 X22 − X̄2 … X2N − X̄2 

ı

 

v) Next compute the matrix: 

Xnew FX. 

Note that this is  a p N matrix. This gives us a dataset of N samples having p 

features. 

Step 6.New dataset 

The matrix Xnew is the new dataset. Each row of this matrix represents the values of a 

feature. Since there are only p rows, the new dataset has only features. 

Step 7.Conclusion 

This is how the principal component analysis helps us in dimensional reduction of the 

dataset.  Note that it is not possible to get back the original n-dimensional dataset from  

the new dataset. 

 
 Illustrative example 

We illustrate the ideas of principal component analysis by considering a toy example. In the discus- 

sions below, all the details of the computations are given. This is to give the reader an idea of the 

complexity of computations and also to help the reader do a “worked example” by hand computa- 

tions without recourse to software packages. 

 
Problem 

Given the data in Table 4.2, use PCA to reduce the dimension from 2 to 1. 

 

Feature Example 1 Example 2 Example 3 Example 4 

X1 4 8 13 7 

X2 11 4 5 14 

Table 4.2: Data for illustrating PCA 

 

 
 

Solution 

1. Scatter plot of data 

We have 

¯ 1 
 

4 
¯ 1 

4 

Figure 4.2 shows the scatter plot of the data together with the point (X̄1, X̄2). 
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−
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X2 
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2 

0    2    4    6    8 10  12  14 X1 
 

Figure 4.2: Scatter plot of data in Table 4.2 
 

2. Calculation of the covariance matrix 

The covariances are calculated as follows: 

Cov (X , X ) =  
    1     

Σ
N  

( 
 

 

 
− ¯ )2

 

1 2 
N − 1 

k=1 

X1k X1 

= 1 ((4 − 8)2 + (8 − 8)2 + (13 − 8)2 + (7 − 8)2) 
 

Cov ( ) = Σ( 
 

 

− ¯ )( − ¯ ) 

X1, X2 
N 1 

= 1 (( 
k=1 

X1k X1    X2k X2 

13    8   5   8.5 7    8    14   8.5 

11 

Cov (X2, X1) = Cov (X1, X2) 

 

Cov (X2, X2 
1 

N − 1 
 

 

 

N 

X 
k=1 

− X̄2)2
 

 
The covariance matrix is 

= 1 ((11 − 8.5)2 + (4 − 8.5)2 + (5 − 8.5)2 + (14 − 8.5)2) 

 
S = [

Cov(X1, X1) Cov (X1, X2)
]
 

11 23 
 

3. Eigenvalues of the covariance matrix 

The characteristic equation of the covariance matrix is 

0 det S λI 
 

= (    

11 23 − λ 

= 

14 − λ)(23 − λ) − (−11) × (−11) 

3 

) = 

3 

  
 
  

 

( ¯ ¯ ) 

 

 X1, X2  
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λ =    ( 
√
37 ± 

 565) 

u2 

0 

−

( −   1)  1 − 2 = 

11u  + (23 − λ )u1 1

 2 

= [
− 

] 

+ ( − ) = 

= = 

= = ( − ) 

−  

= 

= [
− 

] 

− )/ 

= 

= [ ] 

14 − λ1 

||U1|| = 
√

112 + (14 − λ1)2 

14 − λ1)/||U1|| 

that is 

 

Solving the characteristic equation we get 

1 
 

2 

30.3849, 6.6151 

= λ1, λ2 (say) 
 

4. Computation of the eigenvectors 

To find the first principal components, we need only compute the eigenvector corresponding to the 

largest eigenvalue. In the present example, the largest eigenvalue is λ1 and so we compute the 

eigenvector corresponding to λ1. 

The eigenvector corresponding to λ = λ1 is a vector U = [
u1] satisfying the following equation: 

 

[
0

] = (S − λ1I)X 

= [
14

−
− λ1 −11 

][
u1] 

(  

11 23 − λ1 u2 

14 − λ1)u1 − 11u2 

This is equivalent to the following two equations: 

14   λ  u 11u 0 

11u1 23   λ1  u2 0 

Using the theory of systems of linear equations, we note that these equations are not independent 

and solutions are given by 
u1  u2  

t, 
 

u1 11t, u2 14 λ1 t, 

where t is any real number. Taking t = 1, we get an eigenvector corresponding to λ1 as 

U1 = [ 
11 

] . 
  14    λ1  

To find a unit eigenvector, we compute the length of X1 which is given by 

 

= 112 + (14 − 30.3849)2 

19.7348 

Therefore, a unit eigenvector corresponding to lambda1 is 

e1 = [
(
 

11/||U1|| 
]
 

= [
(

 11/19.7348 
]
 

14 30.3849 19.7348 

0.5574 
0.8303 

By carrying out similar computations, the unit eigenvector e2 corresponding to the eigenvalue 

λ λ2 can be shown to be 

e2 

 
0.8303 

0.5574 
.
 

11 
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e2 

(X̄1, X̄2) 

e1 

[ ] 

− 

= −4.30535 

( ) 

eT [
X1k − X̄1] = [0.5574    −0.8303] [

X1k − X̄1] 

For example, the first principal component corresponding to the first example [
X11] = [ 

4 
] is 

X21 X̄2 11 1 21 2 

 

X2 

14 

12 

10 

8 

6 

4 

2 

0    2    4    6    8 10  12  14 X1 
 

Figure 4.3: Coordinate system for principal components 

 

 
5. Computation of first principal components 

Let 
X1k 

be the k-th sample in Table 4.2. The first principal component of this example is given 
X2k 

by (here “T ” denotes the transpose of the matrix) 

 

1     X2k − X̄2 X2k X̄2 

= 0.5574(X1k − X̄1) − 0.8303(X2k − X̄2). 

 

X21 11 
calculated as follows: 

[0.5574    −0.8303] [
X11 

− 
X̄1] = 0.5574(X − X̄  ) − 0.8303(X − X̄  ) 

= 0.5574(4 − 8) − 0.8303(11 − 8, 5) 

The results of calculations are summarised in Table 4.3. 
 

X1 4 8 13 7 

X2 11 4 5 14 

First principal components -4.3052 3.7361 5.6928 -5.1238 

Table 4.3: First principal components for data in Table 4.2 

 

 
 

6. Geometrical meaning of first principal components 

As we have seen in Figure 4.1, we introduce new coordinate axes. First we shift the origin to the 

“center”   X̄1, X̄2     and then change the directions of coordinate axes to the directions of the 
eigenvectors e1 and e2 (see Figure 4.3). 

Next, we drop perpendiculars from the given data points to the e1-axis (see Figure 4.4). The first 
principal components are the e1-coordinates of the feet of perpendiculars, that is, the projections on 
the e1-axis. The projections of the data points on e1-axis may be taken as approximations of the 
given data points hence we may replace the given data set with these points. Now, each of these 
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e2 

(8, 4) 
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e1 
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0 2 4 6 8 10 12 14 X1 

Figure 4.4: Projections of data points on the axis of the first principal component 

 

 
PC1 components -4.305187 3.736129 5.692828 -5.123769 

 

Table 4.4: One-dimensional approximation to the data in Table 4.2 

 

 
approximations can be unambiguously specified by a single number, namely, the e1-coordinate of 

approximation. Thus the two-dimensional data set given in Table 4.2 can be represented approxi- 

mately by the following one-dimensional data set (see Figure 4.5): 
 

X2    X2   

14 
  

(7,14) 

 
14 

 

12   e2 12  e2 

10 (4,11)   10   

8 

6 

4 

 
(X̄1, X̄2) 

(8,4) 

 

 

(13, 5) 

8 

6 

4 

(X̄1, X̄2) 
 

2   
e1 

2  
e1 

0 2 4 6 8    10   12  14  X1 2 4 6 8    10   12   14 X1 
 

Figure 4.5: Geometrical representation of one-dimensional approximation to the data in Table 4.2 

 

 Sample questions 

(a) Short answer questions 

1. What is dimensionality reduction? How is it implemented? 

2.Explain why dimensionality reduction is useful in machine learning. 

3.What are the commonly used dimensionality reduction techniques in machine learning? 

4.How is the subset selection method used for dimensionality reduction? 

5.Explain the method of principal component analysis in machine learning. 

6.What are the first principal components of a data? 

7. Is subset selection problem an unsupervised learning problem? Why? 
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8. Is principal component analysis a supervised learning problem? Why? 

 
(b) Long answer questions 

1. Describe the forward selection algorithm for implementing the subset selection procedure for 

dimensionality reduction. 

2. Describe the backward selection algorithm for implementing the subset selection procedure 

for dimensionality reduction. 

3. What is the first principal component of a data? How one can compute it? 

4.Describe with the use of diagrams the basic principle of PCA. 

5. Explain the procedure for the computation of the principal components of a given data. 

6. Describe how principal component analysis is carried out to reduce dimensionality of data 

sets. 

7. Given the following data, compute the principal component vectors and the first principal 

components: 

 
x 2 3 7 

y 11 14 26 

8. Given the following data, compute the principal component vectors and the first principal 

components: 

 
x -3 1 -2 

y 2 -1 3 



 

 

 

 

 

Module 3 

 
In machine learning, there are several classification algorithms and, given a certain problem, more 

than one may be applicable. So there is a need to examine how we can assess how good a se- 

lected algorithm is. Also, we need a method to compare the performance of two or more different 

classification algorithms. These methods help us choose the right algorithm in a practical situation. 

 
 Methods of evaluation 

 Need for multiple validation sets 

When we apply a classification algorithm in a practical situation, we always do a validation test. 

We keep a small sample of examples as validation set and the remaining set as the training set. The 

classifier developed using the training set is applied to the examples in the validation set. Based on 

the performance on the validation set, the accuracy of the classifier is assessed. But, the performance 

measure obtained by a single validation set alone does not give a true picture of the performance of a 

classifier. Also these measures alone cannot be meaningfully used to compare two algorithms. This 

requires us to have different validation sets. 

Cross-validation in general, and k-fold cross-validation in particular, are two common method 

for generating multiple training-validation sets from a given dataset. 

 
 Statistical distribution of errors 

We use a classification algorithm on a dataset and generate a classifier. If we do the training once, 

we have one classifier and one validation error. To average over randomness (in training data, initial 

weights, etc.), we use the same algorithm and generate multiple classifiers. We test these classifiers 

on multiple validation sets and record a sample of validation errors. We base our evaluation of the 

classification algorithm on the statistical distribution of these validation errors. We can use this 

distribution for assessing the expected error rate of the classification algorithm for that problem, or 

compare it with the error rate distribution of some other classification algorithm. 

A detailed discussion of these ideas is beyond the scope of these notes. 

 
 No-free lunch theorem 

Whatever conclusion we draw from our analysis is conditioned on the dataset we are given. We  

are not comparing classification algorithms in a domain-independent way but on some particular 

application. We are not saying anything about the expected error-rate of a learning algorithm, or 

comparing one learning algorithm with another algorithm, in general. Any result we have is only 

true for the particular application. There is no such thing as the “best” learning algorithm. For any 
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V  = X , T  = X  ∪ X  ∪ . . . ∪ X2 2

  2 1 3 K 

= 

another one of the K parts out, we get K pairs (V , T ):i
 i 

− 

−  

 

learning algorithm, there is a dataset where it is very accurate and another dataset where it is very 

poor. This is called the No Free Lunch Theorem.1 

 
 Other factors 

Classification algorithms can be compared based not only on error rates but also on several other 

criteria like the following: 

• risks when errors are generalized using loss functions 

• training time and space complexity, 

• testing time and space complexity, 

• interpretability, namely, whether the method allows knowledge extraction which can be checked 

and validated by experts, and 

• easy programmability. 

 
 Cross-validation 

To test the performance of a classifier, we need to have a number of training/validation set pairs 

from a dataset X. To get them, if the sample X is large enough, we can randomly divide it then 

divide each part randomly into two and use one half for training and the other half for validation. 

Unfortunately, datasets are never large enough to do this. So, we use the same data split differently; 

this is called cross-validation. 

Cross-validation is a technique to evaluate predictive models by partitioning the original sample 

into a training set to train the model, and a test set to evaluate it. 

The holdout method is the simplest kind of cross validation. The data set is separated into two 

sets, called the training set and the testing set. The algorithm fits a function using the training set 

only. Then the function is used to predict the output values for the data in the testing set (it has never 

seen these output values before). The errors it makes are used to evaluate the model. 

 
 K-fold cross-validation 

In K-fold cross-validation, the dataset  X  is  divided  randomly  into  K equal-sized  parts,  Xi,  i 
1, . . . , K. To generate each pair, we keep one of the K parts out as the validation set Vi, and combine 

the remaining K 1 parts to form the training set Ti. Doing this K times, each time leaving out 

 

V1 = X1, T1 = X2 ∪ X3 ∪ . . . ∪ XK 

V

…

K  = XK , TK = X1 ∪ X2 ∪ . . . ∪ XK−1 

 

Remarks 

1. There are two problems with this: First, to keep the training set large, we allow validation sets 

that are small. Second, the training sets overlap considerably, namely, any two training sets 

  share K   2 parts.  

1“We have dubbed the associated results NFL theorems because they demonstrate that if an algorithm performs well on 

a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining prob- 

lems.”(David Wolpert and William Macready in [7]) 
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− 

1 
( ) 

In this method, the dataset X is divided into two equal parts X 1 and X 2 . We take as the training 

1 1 

1 1 

1 1 T2 = X
(2)

, V2 = X
(1)

 

2 2 T3 = X
(1)

, V3 = X
(2)

 

2 2 

T9

⋮ 

= X
(1)

, V3 = X
(2)

 

5 5 

T1 = X
(1)

, V1 = X
(2)

 

T4 = X
(2)

, V4 = X
(1)

 

5 5 

 

2. K is typically 10 or 30. As K increases, the percentage of training instances increases and we 

get more robust estimators, but the validation set becomes smaller. Furthermore, there is the 

cost of training the classifier K times, which increases as K is increased. 

 

 
1- st fold 

 

2- nd fold 

 

3- rd fold 

 

4- th fold 

 

5- th fold 

 

Figure 5.1: One iteration in a 5-fold cross-validation 

 

 

Leave-one-out cross-validation 

An extreme case of K-fold cross-validation is leave-one-out where given a dataset of N instances, 

only one instance is left out as the validation set and training uses the remaining N 1 instances.  

We then get N separate pairs by leaving out a different instance at each iteration. This is typically 

used in applications such as medical diagnosis, where labeled data is hard to find. 

 5 × 2 cross-validation  
( ) ( ) 

  

set and X(2) as the validation set. We then swap the two sets and take X(2) as the training set and 

X 1 as the validation set. This is the first fold. the process id repeated four more times to get ten 
pairs of training sets and validation sets. 

 

 

T10 = X
(2)

, V10  = X
(1)

 

It has been shown that after five folds, the validation error rates become too dependent and do 

not add new information. On the other hand, if there are fewer than five folds, we get fewer data 

(fewer than ten) and will not have a large enough sample to fit a distribution and test our hypothesis. 

1 1 

test set training set 

training set test set training set 

training set test set training set 

training set test set training set 

training set test set 



51 
 

 

 

¬ 

¬ 

¬ 

¬ ¬ 

 

 Bootstrapping 

Bootstrapping in statistics 

In statistics, the term “bootstrap sampling”, the “bootstrap” or “bootstrapping” for short, refers to 

process of “random sampling with replacement”. 

 
Example 

For example, let there be five balls labeled A, B, C, D, E in an urn. We wish to select different 

samples of balls from the urn each sample containing two balls. The following procedure may be 

used to select the samples. This is an example for bootstrap sampling. 

1.We select two balls from the basket. Let them be A and E. Record the labels. 

2.Put the two balls back in the basket. 

3.We select two balls from the basket. Let them be C and E. Record the labels. 

4.Put the two balls back into the basket. 

This is repeated as often as required. So we get different samples of size 2, say, A, E; B, E; etc. 

These samples are obtained by sampling with replacement, that is, by bootstrapping. 

 
Bootstrapping in machine learning 

In machine learning, bootstrapping is the process of computing performance measures using several 

randomly selected training and test datasets which are selected through a precess of sampling with 

replacement, that is, through bootstrapping. Sample datasets are selected multiple times. 

The bootstrap procedure will create one or more new training datasets some of which are re- 

peated. The corresponding test datasets are then constructed from the set of examples that were not 

selected for the respective training datasets. 

 
 Measuring error 

 True positive, false positive, etc. 

Definitions 

Consider a binary classification model derived from a two-class dataset. Let the class labels be c and 

c. Let x be a test instance. 

1. True positive 

Let the true class label of x be c. If the model predicts the class label of x as c, then we say 

that the classification of x is true positive. 

2. False negative 

Let the true class label of x be c. If the model predicts the class label of x as c, then we say 

that the classification of x is false negative. 

3. True negative 

Let the true class label of x be c. If the model predicts the class label of x as c, then we say 

that the classification of x is true negative. 

4. False positive 

Let the true class label of x be c. If the model predicts the class label of x as c, then we say 

that the classification of x is false positive. 



52 
 

 

 

 
 Actual label of x is c Actual label of x is ¬c 

Predicted label of x is c ¬ True positive False positive 

Predicted label of x is c False negative True negative 
 

 Confusion matrix 

A confusion matrix is used to describe the performance of a classification model (or “classifier”) on 

a set of test data for which the true values are known. A confusion matrix is a table that categorizes 

predictions according to whether they match the actual value. 

 
Two-class datasets 

For a two-class dataset, a confusion matrix is a table with two rows and two columns that reports the 

number of false positives, false negatives, true positives, and true negatives. 

Assume that a classifier is applied to a two-class test dataset for which the true values are known. 

Let TP denote the number of true positives in the predicted values, TN the number of true negatives, 

etc. Then the confusion matrix of the predicted values can be represented as follows: 

 

 Actual condition 

is true 

Actual condition 

is false 

Predicted condi- 

tion is true 
TP FP 

Predicted condi- 

tion is false 
FN FN 

Table 5.1: Confusion matrix for two-class dataset 

 

 

Multiclass datasets 

Confusion matrices can be constructed for multiclass datasets also. 

 
Example 

If a classification system has been trained to distinguish between cats, dogs and rabbits, a confusion 

matrix will summarize the results of testing the algorithm for further inspection. Assuming a sample 

of 27 animals - 8 cats, 6 dogs, and 13 rabbits, the resulting confusion matrix could look like the table 

below: This confusion matrix shows that, for example, of the 8 actual cats, the system predicted that 

 
 Actual “cat” Actual “dog” Actual “rabbit” 

Predicted “cat” 5 2 0 

Predicted “dog” 3 3 2 

Predicted “ rabbit” 0 1 11 

 

three were dogs, and of the six dogs, it predicted that one was a rabbit and two were cats. 

 
 Precision and recall 

In machine learning, precision and recall are two measures used to assess the quality of results 

produced by a binary classifier. They are formally defined as follows. 
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TN = Number of true negatives 

= 

= 
+ 

 

= 

FP = 3 

FP = 7 − 2 = 5 

The recall R is 
TP 5 5 

The recall R is 
TP 2 1 

 

Definitions 

Let a binary classifier classify a collection of test data. Let 

TP  = Number of true positives 

FP Number of false positives 

FN = Number of false negatives 

The precision P is defined as 

 

The recall R is defined as 

 

 
Problem 1 

 
TP 

P 
TP FP 

TP 
R 

TP + FN 

Suppose a computer program for recognizing dogs in photographs identifies eight dogs in a picture 

containing 12 dogs and some cats. Of the eight dogs identified, five actually are dogs while the rest 

are cats. Compute the precision and recall of the computer program. 
 

Solution 

We have: 

 

 

 

 
The precision P is 

 
TP = 5 

FN = 7 

TP 5 5 

P =
 TP + FP 

= 
 5 + 3 

= 
8 

 

 
Problem 2 

R = 
TP + FN 

= 
5 + 7 

= 
12 

Let there be 10 balls (6 white and 4 red balls) in a box and let it be required to pick up the red balls 

from them. Suppose we pick up 7 balls as the red balls of which only 2 are actually red balls. What 

are the values of precision and recall in picking red ball? 
 

Solution 

Obviously we have: 

 

 

 

 
The precision P is 

 
TP = 2 

FN = 4 − 2 = 2 

TP 2 2 

P = 
TP + FP 

= 
2 + 5 

= 
7 

 

R = 
TP + FN 

= 
2 + 2 

= 
2 
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FP = 10 

TN  + FP  

2 × TP + FP + FN 

TP + TN + FP + FN 

+ + 

TP + FN 

 

Problem 3 

Assume the following: A database contains 80 records on a particular topic of which 55 are relevant 

to a certain investigation. A search was conducted on that topic and 50 records were retrieved. Of the 

50 records retrieved, 40 were relevant. Construct the confusion matrix for the search and calculate 

the precision and recall scores for the search. 

 
Solution 

Each record may be assigned a class label “relevant" or “not relevant”. All the 80 records were 

tested for relevance. The test classified 50 records as “relevant”. But only 40 of them were actually 

relevant. Hence we have the following confusion matrix for the search: 
 

 
Actual ”relevant” 

Actual “not rele- 

vant” 

Predicted “rele- 

vant” 
40 10 

Predicted “not 

relevant” 
15 25 

 

 

 

 

 

 

 
 

The precision P is 

Table 5.2: Example for confusion matrix 

 

 
TP = 40 

FN = 15 

TP 40 4 

P =
 TP + FP 

=
 40 + 10 

= 
5 

 
   

 

R =  
TP    FN 

=  
40 15 

=  
55 

 Other measures of performance 

Using the data in the confusion matrix of a classifier of two-class dataset, several measures of per- 

formance have been defined. A few of them are listed below. 

1.Accuracy  =
  TP + TN  

2.Error rate = 1− Accuracy 

3.Sensitivity  = 
TP

 

4.Specificity  = 
TN

 

5. F -measure = 
2 × TP

 

 Receiver Operating Characteristic (ROC) 

The acronym ROC stands for Receiver Operating Characteristic, a terminology coming from signal 

detection theory. The ROC curve was first developed by electrical engineers and radar engineers 

during World War II for detecting enemy objects in battlefields. They are now increasingly used in 

machine learning and data mining research. 

40 40 TP 
The recall R is 
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= 
+ 

= 

= 
+ 

FPR = False Positive Rate 

TN = Number of true negatives 

FN = Number of false negatives 

ROC space. 

( ) 

(
with coordinates (FPR, TPR).  The ROC space is the part of the plane whose points correspond to 

) 

= = 

( ) 

= = 

( ) 

( ) 

( ) ( ) 

 

TPR and FPR 

Let a binary classifier classify a collection of test data. Let, as before, 

TP = Number of true positives 

FP = Number of false positives 

Now we introduce the following terminology: 

TPR True Positive Rate 

TP 
 

TP FN 

Fraction of positive examples correctly classified 

= Sensitivity 

FP 

FP TN 

Fraction of negative examples incorrectly classified 

= 1 − Specificity 
 

ROC space 

We plot the values of FPR along the horizontal axis (that is , x-axis) and the values of TPR along 

the vertical axis (that is, y-axis) in a plane.  For each classifier, there is a unique point in this plane 

FPR, TPR . Each prediction result or instance of a confusion matrix represents one point in the 

The position of the point FPR, TPR in the ROC space gives an indication of the performance 

of the classifier. For example, let us consider some special points in the space. 

 
Special points in ROC space 

1. The left bottom corner point 0, 0 : Always negative prediction 

A classifier which produces this point in the ROC space never classifies an example as positive, 

neither rightly nor wrongly, because for this point TP  0 and FP  0.  It always makes  

negative predictions. All positive instances are wrongly predicted and all negative instances 

are correctly predicted. It commits no false positive errors. 

2. The right top corner point 1, 1 : Always positive prediction 

A classifier which produces this point in the ROC space always classifies an example as posi- 

tive because for this point FN  0 and TN  0. All positive instances are correctly predicted 

and all negative instances are wrongly predicted. It commits no false negative errors. 

3. The left top corner point 0, 1 : Perfect prediction 

A classifier which produces this point in the ROC space may be thought as a perfect classifier. 

It produces no false positives and no false negatives. 

4. Points along the diagonal: Random performance 

Consider a classifier where the class labels are randomly guessed, say by flipping a coin. Then, 

the corresponding points in the ROC space will be lying very near the diagonal line joining 

the points 0, 0 and 1, 1 . 
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False Positive Rate (FPR) 

Always negative prediction 

Figure 5.2: The ROC space and some special points in the space 

 

 
ROC curve 

In the case of certain classification algorithms, the classifier may depend on a parameter. Different 

values of the parameter will give different classifiers and these in turn give different values to TPR 

and FPR. The ROC curve is the curve obtained by plotting in the ROC space the points TPR , FPR 

obtained by assigning all possible values to the parameter in the classifier. 
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Figure 5.3: ROC curves of three different classifiers A, B, C 

 
 

The closer the ROC curve is to the top left corner 0, 1 of the ROC space, the better the accuracy 

of the classifier. Among the three classifiers A, B, C with ROC curves as shown in Figure 5.3, the 

classifier C is closest to the top left corner of the ROC space. Hence, among the three, it gives the 

best accuracy in predictions. 

 
Example 

 
 

Cut-off value of BMI 
Breast cancer Normal persons 

TPR FPR 
TP FN FP TN 

18 100 0 200 0 1.00 1.000 

20 100 0 198 2 1.00 0.990 

22 99 1 177 23 0.99 0.885 

24 95 5 117 83 0.95 0.585 

26 85 15 80 120 0.85 0.400 

28 66 34 53 147 0.66 0.265 

30 47 53 27 173 0.47 0.135 

32 34 66 17 183 0.34 0.085 

34 21 79 14 186 0.21 0.070 

36 17 83 6 194 0.17 0.030 

38 7 93 4 196 0.07 0.020 

40 1 99 1 199 0.01 0.005 

Table 5.3: Data on breast cancer for various values of BMI 

 
The body mass index (BMI) of a person is defined as (weight(kg)/height(m)2). Researchers have 

established a link between BMI and the risk of breast cancer among women. The higher the BMI 

the higher the risk of developing breast cancer. The critical threshold value of BMI may depend on 

several parameters like food habits, socio-cultural-economic background, life-style, etc. Table 5.3 
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gives real data of a breast cancer study with a sample having 100 patients and 200 normal persons.2 

The table also shows the values of TPR and FPR for various cut-off values of BMI. The ROC curve 

of the data in Table 5.3 is shown in Figure 5.4. 
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Figure 5.4: ROC curve of data in Table 5.3 showing the points closest to the perfect prediction point 

0, 1 
 

 
Area under the ROC curve 

The measure of the area under the ROC curve is denoted by the acronym AUC (see Figure 5.4). The 

value of AUC is a measure of the performance of a classifier. For the perfect classifier, AUC 1.0.  

 

 Sample questions 

(a) Short answer questions 

1. What is cross-validation in machine learning? 

2.What is meant by 5 2 cross-validation? 

3. What is meant by leave-one-out cross validation? 

4. What is meant by the confusion matrix of a binary classification problem. 

5.Define the following terms: precision, recall, sensitivity, specificity. 

6. What is ROC curve in machine learning? 

7. What are true positive rates and false positive rates in machine learning? 

8.What is AUC in relation to ROC curves? 

2https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC3755824/ 

http://www.ncbi.nlm.nih.gov/
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(b) Long answer questions 

1. Explain cross-validation in machine learning. Explain the different types of cross-validations. 

2.What is meant by true positives etc.? What is meant by confusion matrix of a binary classifi- 

cation problem? Explain how this can be extended to multi-class problems. 

3. What are ROC space and ROC curve in machine learning? In ROC space, which points 

correspond to perfect prediction, always positive prediction and always negative prediction? 

Why? 

4. Consider a two-class classification problem of predicting whether a photograph contains a 

man or a woman. Suppose we have a test dataset of 10 records with expected outcomes and a 

set of predictions from our classification algorithm. 

 
 Expected Predicted 

1 man woman 

2 man man 

3 woman woman 

4 man man 

5 woman man 

6 woman woman 

7 woman woman 

8 man man 

9 man woman 

10 woman woman 

(a) Compute the confusion matrix for the data. 

(b) Compute the accuracy, precision, recall, sensitivity and specificity of the data. 

5. Suppose 10000 patients get tested for flu; out of them, 9000 are actually healthy and 1000  

are actually sick. For the sick people, a test was positive for 620 and negative for 380. For 

the healthy people, the same test was positive for 180 and negative for 8820. Construct a 

confusion matrix for the data and compute the accuracy, precision and recall for the data. 

6. Given the following data, construct the ROC curve of the data. Compute the AUC. 

 
Threshold TP TN FP FN 

1 0 25 0 29 

2 7 25 0 22 

3 18 24 1 11 

4 26 20 5 3 

5 29 11 14 0 

6 29 0 25 0 

7 29 0 25 0 

7. Given the following hypothetical data at various cut-off points of mid-arm circumference of 

mid-arm circumference to detect low birth-weight construct the ROC curve for the data. 
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Mid-arm circumference (cm) Normal birth-weight 

TP 

Low birth-weight 

TN 

8.3 
≤ 8.4 

8.5 
≤ 8.6 

8.7 
≤ 8.8 

8.9 

≤ 
9.0 

9.1 
≤ 9.2 and above 

13 

24 

73 

90 

113 

119 

121 

125 

127 

130 

867 

844 

826 

800 

783 

735 

626 

505 

435 

0 



 

 

 

( | ) 

P (B) 

P (C ∩ A) = P (C)P (A) 

P (C ∩ A) = P (C)P (A) (6.2) 

P (A ∩ B ∩ C) = P (A)P (B)P (C) (6.4) 

(    ∩    ) = ( ) ( ) 

(    ∩    ) = ( ) ( ) 
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Bayesian classifier and ML 

estimation 

 
The Bayesian classifier is an algorithm for classifying multiclass datasets. This is based on the 

Bayes’ theorem in probability theory. Bayes in whose name the theorem is known was an English 

statistician who was known for having formulated a specific case of a theorem that bears his name. 

The classifier is also known as “naive Bayes Algorithm” where the word “naive” is an English word 

with the following meanings: simple, unsophisticated, or primitive. We first explain Bayes’ theorem 

and then describe the algorithm. Of course, we require the notion of conditional probability. 

 
 Conditional probability 

The probability of the occurrence of an event A given that an event B has already occurred is called 
 

P (A|B) = 
P (A ∩ B) 

if   P (B) ≠ 0. 

 

 Independent events 

1. Two events A and B are said to be independent if 

P A   B P A P B . 
 

2. Three events A, B, C are said to be pairwise independent if 

P (B ∩ C) = P (B)P (C) 

P A   B P A P B 
 

3. Three events A, B, C are said to be mutually independent if 

P (B ∩ C) = P (B)P (C) (6.1) 

P (A ∩ B) = P (A)P (B) (6.3) 

4. In general, a family of k events A1, A2, . . . , Ak is said to be mutually independent if for any 
subfamily consisting of Ai1 , . . . Aim we have 

P (Ai1 ∩ . . . ∩ Aim ) = P (Ai1 ) . . . P (Aim ). 

 

the conditional probability of A given B and is denoted by P A B . We have 
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P (A) 

(   |   ) ( | ) 

(   ) ( ) 

 

Remarks 

Consider events and respective probabilities as shown in Figure 6.1. It can be seen that, in this case, 

the conditions Eqs.(6.1)–(6.3) are satisfied, but Eq.(6.4) is not satisfied. But if the probabilities are 

as in Figure 6.2, then Eq.(6.4) is satisfied but all the conditions in Eqs.(6.1)–(6.2) are not satisfied. 
 

Figure 6.1: Events A, B, C which are not mutually independent: Eqs.(6.1)–(6.3) are satisfied, but 

Eq.(6.4) is not satisfied. 

 

 
 

 

Figure 6.2: Events A, B, C which are not mutually independent: Eq.(6.4) is satisfied but Eqs.(6.1)– 

(6.2) are not satisfied. 

 

 

 

 Bayes’ theorem 

 Theorem 

Let A and B any two events in a random experiment. If P (A) ≠ 0, then 

P (B|A) = 
P (A|B)P (B) 

.
 

 

 Remarks 

1. The importance of the result is that it helps us to “invert” conditional probabilities, that is, to 

express the conditional probability P A B in terms of the conditional probability P B A . 

2. The following terminology is used in this context: 

• A is called the proposition and B is called the evidence. 

• P A is called the prior probability of proposition and P B is called the prior proba- 

bility of evidence. 
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  P (B) 

P (B) = 5% = 0.05 

= 

P ( 
P (B|A)P 

(A)
A|B) =

 

= 
0.015 × 0.35 

P (A|D) = 
P (D|A)P (A) 

= 
× + × + × 

(   ) = (   ) = ( ) = 

(    |  ) = (    |  ) = ( | ) = 

( | ) ( ) + ( | ) ( ) + ( | ) ( ) 

P (B |A) =
 P (A|Bk)P (Bk)  

0.05 

 

• P A B is called the posterior probability of A given B. 

• P B A is called the likelihood of B given A. 

 
 Generalisation 

Let the sample space be divided into disjoint events B1, B2, . . . , Bn and A be any event. Then we 
have 

k 
∑

n
=

 P (A|B )P (B ) 

 
 Examples 

Problem 1 

i 1 i i 

Consider a set of patients coming for treatment in a certain clinic.   Let A denote the event that      

a “Patient has liver disease” and B the event that a “Patient is an alcoholic.” It is known from 

experience that 10% of the patients entering the clinic have liver disease and 5% of the patients are 

alcoholics. Also, among those patients diagnosed with liver disease, 7% are alcoholics. Given that 

a patient is alcoholic, what is the probability that he will have liver disease? 

 
Solution 

Using the notations of probability, we have 

P (A) = 10% = 0.10 

P (B|A) = 7% = 0.07  

0.07 × 0.10 

= 0.14 
 

Problem 2 

Three factories A, B, C of an electric bulb manufacturing company produce respectively 35%. 35% 

and 30% of the total output. Approximately 1.5%, 1% and 2% of the bulbs produced by these 

factories are known to be defective. If a randomly selected bulb manufactured by the company was 

found to be defective, what is the probability that the bulb was manufactures in factory A? 

 
Solution 

Let A, B, C denote the events that a randomly selected bulb was manufactured in factory A, B, C 

respectively. Let D denote the event that a bulb is defective. We have the following data: 

P  A 0.35, P  B 0.35, P C 0.30 

P D A 0.015, P D B 0.010, P D C 0.020 

We are required to find P (A|D). By the generalisation of the Bayes’ theorem we have: 

 
 

P  D A P A P  D B P B P D C P C 

 
0.015 0.35 0.010 0.35 0.020 0.30 
0.356. 
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(   |    ) (   |    ) ( | ) 

Suppose we are given a test instance having the feature vector 

be named as (F , . . . , F  ).  A feature vector is of the form (f , f , . . . , f  ).  Associated with each1

 n 1     2 n 

“x  |c  ”, …, x  |c   are independent (because they are all conditioned on the same class label c  ).2       

k n  k k 

(    | k) 

= 

((  1 2 n)| k) 

(    |    ) ∝ ( |    )   ( |    )…   ( | ) ( ) 

( ) 

P (c |X) = 
P (x1|ck)P (x2|ck)…P (xn|ck)P (ck) 

.
 

Hence we have 

Using this in Eq,(6.6) we get 

 

 Naive Bayes algorithm 

 Assumption 

The naive Bayes algorithm is based on the following assumptions: 

• All the features are independent and are unrelated to each other. Presence or absence of a 

feature does not influence the presence or absence of any other feature. 

• The data has class-conditional independence, which means that events are independent so 

long as they are conditioned on the same class value. 

These assumptions are, in general, true in many real world problems. It is because of these assump- 

tions, the algorithm is called a naive algorithm. 

 
 Basic idea 

Suppose we have a training data set consisting of N examples having n features. Let the features 

example, there is a certain class label. Let the set of class labels be {c1, c2, . . . , cp}. 

X x1, x2, . . . , xn . 

We are required to determine the most appropriate class label that should be assigned to the test 

instance. For this purpose we compute the following conditional probabilities 

P  c1 X , P  c2 X , . . . , P cp X . (6.5) 

and choose the maximum among them. Let the maximum probability be P  ci X . Then, we choose 

ci as the most appropriate class label for the training instance having X as the feature vector. 

The direct computation of the probabilities given in Eq.(6.5) are difficult for a number of reasons. 

The Bayes’ theorem can b applied to obtain a simpler method. This is explained below. 

 
 Computation of probabilities 

Using Bayes’ theorem, we have: 

P (c |X) = 
P (X|ck)P (ck)  (6.6) 

k 
P (X) 

Since, by assumption, the data has class-conditional independence, we note that the events “x1|ck”, 
 

 

P  X c P x , x , . . . , x c 

P (x1|ck)P (x2|ck)…P (xn|ck) 
 

 

k 
P (X) 

Since the denominator P X is independent of the class labels, we have 

P  ck X P  x1  ck  P x2 ck P  xn ck  P  ck . 

So it is enough to find the maximum among the following values: 

P (x1|ck)P (x2|ck)…P (xn|ck)P (ck), k = 1, . . . , p. 
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Remarks 

The various probabilities in the above expression are computed as follows: 
No. of examples with class label ck 

P (ck) = 

P (xj |ck) = 

 
Total number of examples 

No. of examples with jth feature equal to xj and class label ck 
 

 No. of examples with class label c 
k 

 

 The algorithm 

Algorithm: Naive Bayes 

Let there be a training data set having n features F1, . . . , Fn. Let f1 denote an arbitrary value of F1, 
f2 of F2, and so on. Let the set of class labels be c1, c2, . . . , cp . Let there be given a test instance 
having the feature vector 

X x1, x2, . . . , xn . 

We are required to determine the most appropriate class label that should be assigned to the test 

instance. 

Step 1.Compute the probabilities P  ck  for k 1, . . . , p. 

Step 2.Form a table showing the conditional probabilities 

P  f1 ck , P  f2 ck , . . . , P fn ck 

for all values of f1, f2, . . . , fn and for k 1, . . . , p. 

Step 3.Compute the products 

for k = 1, . . . , p. 

qk = P (x1|ck)P (x2|ck)…P (xn|ck)P (ck) 

Step 4.Find j such qj max q1, q2, . . . , qp . 

Step 5.Assign the class label cj to the test instance X. 
 

 

Remarks 

In the above algorithm, Steps 1 and 2 constitute the learning phase of the algorithm. The remaining 

steps constitute the testing phase. For testing purposes, only the table of probabilities is required; 

the original data set is not required. 

 
 Example 

Problem 

Consider a training data set consisting of the fauna of the world. Each unit has three features named 

“Swim”, “Fly” and “Crawl”. Let the possible values of these features be as follows: 

Swim Fast, Slow, No 

Fly Long, Short, Rarely, No 

Crawl Yes, No 

For simplicity, each unit is classified as “Animal”, “Bird” or “Fish”. Let the training data set be as in 

Table 6.1. Use naive Bayes algorithm to classify a particular species if its features are (Slow, Rarely, 

No)? 
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Sl. No. Swim Fly Crawl Class 

1 Fast No No Fish 

2 Fast No Yes Animal 

3 Slow No No Animal 

4 Fast No No Animal 

5 No Short No Bird 

6 No Short No Bird 

7 No Rarely No Animal 

8 Slow No Yes Animal 

9 Slow No No Fish 

10 Slow No Yes Fish 

11 No Long No Bird 

12 Fast No No Bird 
 

Table 6.1: Sample data set for naive Bayes algorithm 

 

 
Solution 

In this example, the features are 

F1 = “Swim”, F2 = “Fly”, F3  = “Crawl”. 

The class labels are 

c1 = “Animal”, c2  = “ Bird”, c3  = “Fish”. 

The test instance is (Slow, Rarely, No) and so we have: 

x1 “Slow”, x2 “Rarely”, x3 “No”. 

We construct the frequency table shown in Table 6.2 which summarises the data. (It may be noted 

that the construction of the frequency table is not part of the algorithm.) 
 

 

Class 

Features  

Total Swim (F1) Fly (F2) Crawl (F3) 

Fast Slow No Long Short Rarely No Yes No 

Animal (c1) 2 2 1 0 0 1 4 2 3 5 

Bird (c2) 1 0 3 1 2 0 1 1 3 4 

Fish (c3) 1 2 0 0 0 0 3 0 3 3 

Total 4 4 4 1 2 1 8 4 8 12 

Table 6.2: Frequency table for the data in Table 6.1 

 

 
Step 1.We compute following probabilities. 

No. of records with class label “Animal” 

P (c1) = 
 

 

Total number of examples 

5 12  
No. of records with class label “Bird” 

P (c2) =  
Total number of examples 

4 12  
No of records with class label “Fish” 

P (c3) = 

= 3/12 

 
Total number of examples 
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= 

(2/5) × (1/5) × (3/5) × (5/12) 

= 

(0/4) × (0/4) × (3/4) × (4/12) 

= 

(2/3) × (0/3) × (3/3) × (3/12) 

= 

 

Step 2.We construct the following table of conditional probabilities: 

 

 
Class 

Features 

Swim (F1) 

f1 

Fly (F2) 

f2 

Crawl  

f3 

(F3) 

Fast Slow No Long Short Rarely No Yes No 

Animal (c1) 2/5 2/5 1/5 0/5 0/5 1/5 4/5 2/5 3/5 

Bird (c2) 1/4 0/4 3/4 1/4 2/4 0/4 1/4 0/4 4/4 

Fish (c3) 1 3 2/3 0/3 0/3 0/3 0/3 3/3 0/3 3/3 

Table 6.3: Table of the conditional probabilities P (fi|ck) 

Note: The conditional probabilities are calculated as follows: 
No. of records with F1 = Slow and class label c1 

P ((F1 = Slow)|c1) = 

= 2/5. 

 
No. of records with class label c1 

 

Step 3.We now calculate the following numbers: 

q1 = P (x1|c1)P (x2|c1)P (x3|c1)P (c1) 

0.02 

q2 = P (x1|c2)P (x2|c2)P (x3|c2)P (c2) 

0 

q3 = P (x1|c3)P (x2|c3)P (x3|c3)P (c3) 

0 
 

Step 4.Now 

max{q1, q2, q3} = 0.05. 

Step 5.The maximum is q1 an it corresponds to the class label 

c1 “ Animal”. 

So we assign the class label “Animal” to the test instance “(Slow, Rarely, No)”. 

 
 Using numeric features with naive Bayes algorithm 

The naive Bayes algorithm can be applied to a data set only if the features are categorical. This is 

so because, the various probabilities are computed using the various frequencies and the frequencies 

can be counted only if each feature has a limited set of values. 

If a feature is numeric, it has to be discretized before applying the algorithm. The discretization 

is effected by putting the numeric values into categories known as bins. Because of this discretization 

is also known as binning. This is ideal when there are large amounts of data. 

There are several different ways to discretize a numeric feature. 

1. If there are natural categories or cut points in the distribution of values, use these cut points to 

create the bins. For example, let the data consists of records of times when certain activities 

were carried out. The the categories, or bins, may be created as in Figure 6.3. 
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the probability mass function or probability density function p(x|θ) where x denotes a value of the 

= { } 

 

 
 

Figure 6.3: Discretization of numeric data: Example 

 

 
2. If there are no obvious cut points, we may discretize the feature using quantiles. We may 

divide the data into three bins with tertiles, four bins with quartiles, or five bins with quintiles, 

etc. 

 
 Maximum likelihood estimation (ML estimation) 

To develop a Bayesian classifier, we need the probabilities P x ck for the class labels c1, . . . , ck. 

These probabilities are estimated from the given data. There is need to know whether the sample  

is truly random so that the computed probabilities are good approximations to true probabilities. If 

they are good approximations of true probabilities, then there would be an underlying probability 

distribution. Suppose we have reasons to believe that the underlying distribution has a particular 

form, say binomial, Poisson or normal. These forms are defined by probability functions or proba- 

bility density functions. There are parameters which define these functions, and these parameters are 

to be estimated to test whether a given data follow some particular distribution. Maximum likelihood 

estimation is particular method to estimate the parameters of a probability distribution. 

 
Definition 

Maximum likelihood estimation (MLE) is a method of estimating the parameters of a statistical 

model, given observations. MLE attempts to find the parameter values that maximize the likelihood 

function, given the observations. The resulting estimate is called a maximum likelihood estimate, 

which is also abbreviated as MLE. 

 
 The general MLE method 

Suppose we have a random sample X x1, . . . , xn taken from a probability distribution having 

 

random variable and θ denotes the set of parameters that appear in the function. 

The likelihood of sample X is a function of the parameter θ and is defined as 

l θ p x1 θ p x2 θ  . . . p xn θ  . 
 

In maximum likelihood estimation, we find the value of θ that makes the value of the likelihood 

function maximum. For computation convenience, we define the log likelihood function as the 

logarithm of the likelihood function: 

L θ log l θ 

log p(x1|θ) + log p(x2|θ) + … + log p(xn|θ). 
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L(p) = log f (x |p) + … + log f (x  |p)1
 n 

dL 
0,

 

= (  −   ) + … + ( − ) 

= [ + (  − ) (  −   )] + … + [ + (  − ) ( − )] 

− − 

function f (x|p). The log likelihood function is 

+ … + = 

We represent each outcome by an ordered K-tuple x = (x , . . . , x   ) where exactly one of x , . . . , x1 K

 1 K 

= ( ) 

1 K 

1 

Solving this equation, we have the maximum likelihood estimate of p as 

Here, p1, . . . , pK are the parameters. 

 

A value of θ that maximizes L θ will also maximise l θ and vice-versa. Hence, in maximum like- 
lihood estimation, we find θ that maximizes the log likelihood function. Sometimes the maximum 

likelihood estimate of θ is denoted by θˆ. 

 
 Special cases 

1. Bernoulli density 

In a Bernoulli distribution there are two outcomes: An event occurs or it does not, for example, an 

instance is a positive example of the class, or it is not. The event occurs and the Bernoulli random 

variable X takes the value 1 with probability p, and the nonoccurrence of the event has probability 

1 p and this is denoted by X taking the value 0. 

The probability function of X is given by 

f x p px  1   p 1−x, x 0, 1. 

In this function, the probability p is the only parameter. 

 
Estimation of p 

Consider a random sample X = {x1, . . . , xn} taken from a Bernoulli distribution with the probability 

log px1   1   p 1 x1 log pxn 1 p 1 xn
 

x1 log p 1    x1    log 1   p xn log p 1 xn log 1 p 

To find the value of p that maximizes L(p) we set up the equation 

dp 

that is, 
[ 

x1 
− 

1 − x1 
] + … + [ 

xn 
− 

1 − xn 
] = 0. 

p 1 − p p 1 − p 

 
 

2. Multinomial density 

p̂  =  
1 

(x  + … + x  ). 
n 

Suppose that the outcome of a random event is one of K classes, each of which has a probability of 

occurring pi with 

p1 pK 1. 

 
is 1 and all others are 0. xi = 1 if the outcome in the i-th class occurs. The probability function can 

 
f (x|p, . . . , pK) = px1 . . . pxK . 

We choose n random samples. The i-the sample may be represented by 

xi x1i, . . . , xKi . 

The values of the parameters that maximizes the likelihood function can be shown to be 

p̂k = (x + x + … + x   ). 1 
k2 kn 

(We leave the details of the derivation as an exercise.) 

be expressed as 

n 

n 
k1 
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(  | ) = 
2π 2σ2 , x . 

n  1  
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dµ dσ 

1 

1 

 

3. Gaussian (normal) density 

A continuous random variable X has the Gaussian or normal distribution if its density function is 

 
f x µ, σ 

σ
 

Here µ and σ are the parameters. 

√
1 

exp (− 
(x − µ)2 

) −∞ < < ∞ 

Given a sample x1, x2, . . . , xn from the distribution. the log likelihood function is 

L(µ, σ) = −   log(2π) − n log σ − [(x − µ)2 + … + (x − µ)2] . 

2 

Setting up the equations 

2σ2 1 n 

dL 
= 0, 

dL 
= 0 

 

and solving for µ and σ we get the maximum likelihood estimates of µ and σ as 

µ̂ =  
1 

(x  + … + x  ) 
n 

σ̂2  =  
1 

((x  − µ̂)2 + … + (x 
n − µ̂)2) 

 

(We leave the details of the derivation as an exercise.) 
 

 

 Sample questions 

(a) Short answer questions 

1. What are the assumptions under the naive Bayes algorithm? 

2.Why is naive Bayes algorithm “naive”? 

3. Given an instance X of a feature vector and a class label ck, explain how Bayes theorem is 

used to compute the probability P ck X . 

4. What does a naive Bayes classifier do? 

5.What is naive Bayes used for? 

6. Is naive Bayes supervised or unsupervised? Why? 

7. What is meant by the likelihood of a random sample taken from population? 

8.How do we use numeric features in naive Bayes algorithm? 

(b) Long answer questions 

1. State Bayes theorem and illustrate it with an example. 

2.Explain naive Bayes algorithm. 

3. Use naive Bayes algorithm to determine whether a red domestic SUV car is a stolen car or not 

using the following data: 

n 

n 
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Example no. Colour Type Origin Whether stolen 

1 red sports domestic yes 

2 red sports domestic no 

3 red sports domestic yes 

4 yellow sports domestic no 

5 yellow sports imported yes 

6 yellow SUV imported no 

7 yellow SUV imported yes 

8 yellow SUV domestic no 

9 red SUV imported no 

10 red sports imported yes 
 

4. Based on the following data determine the gender of a person having height 6 ft., weight 130 

lbs. and foot size 8 in. (use naive Bayes algorithm). 

 
person height (feet) weight (lbs) foot size (inches) 

male 6.00 180 10 

male 6.00 180 10 

male 5.50 170 8 

male 6.00 170 10 

female 5.00 130 8 

female 5.50 150 6 

female 5.00 130 6 

female 6.00 150 8 

5. Given the following data on a certain set of patients seen by a doctor, can the doctor conclude 

that a person having chills, fever, mild headache and without running nose has the flu? 

 
chills running nose headache fever has flu 

Y N mild Y N 

Y Y no N Y 

Y N strong Y Y 

N Y mild Y Y 

N N no N N 

N Y strong Y Y 

N Y strong N N 

Y Y mild Y Y 

6. Explain the general MLE method for estimating the parameters of a probability distribution. 

7.Find the ML estimate for the parameter p in the binomial distribution whose probability func- 
tion is 

f x 
n  

px  1    p n x, x 0, 1, 2, . . . , n 
x 

8.Compute the ML estimate for the parameter λ in the Poisson distribution whose probability 

function is 

f (x) = e 
x! 

, x = 0, 1, 2, . . . 

Find the ML estimate of the parameter p in the geometric distribution defined by the proba- 

bility mass function 

f (x) = (1 − p)px, x = 1, 2, 3, . . . 



 

 

 

=  ( ) 

( ) 

 
 
 
 
 

Regression 

 
We have seen in Section 1.5.3 that regression is a supervised learning problem where there is an 

input x an output y and the task is to learn the mapping from the input to the output. We have also 

seen that the approach in machine learning is that we assume a model, that is, a relation between x 

and y containing a set of parameters, say, θ in the following form: 

y g  x, θ . 

g x, θ is the regression function. The machine learning program optimizes the parameters θ such 

that the approximation error is minimized, that is, our estimates are as close as possible to the correct 

values given in the training set. In this chapter we discuss a method, known as ordinary least squares 

method, to estimate the parameters. In fact this method can be derived from the maximum likelihood 

estimation method discussed in Section 6.5. 

 
 Definition 

A regression problem is the problem of determining a relation between one or more independent 

variables and an output variable which is a real continuous variable, given a set of observed values 

of the set of independent variables and the corresponding values of the output variable. 

 

 Examples 

1. Let us say we want to have a system that can predict the price of a used car. Inputs are the car 

attributes âĂŤ  brand, year, engine capacity, mileage, and other information âĂŤ  that we 
believe affect a car’s worth. The output is the price of the car. 

2. Consider the navigation of a mobile robot, say an autonomous car. The output is the angle by 

which the steering wheel should be turned at each time, to advance without hitting obstacles 

and deviating from the route. Inputs are provided by sensors on the car like a video camera, 

GPS, and so forth. 

3. In finance, the capital asset pricing model uses regression for analyzing and quantifying the 

systematic risk of an investment. 

4. In economics, regression is the predominant empirical tool. For example, it is used to predict 

consumption spending, inventory investment, purchases of a country’s exports, spending on 

imports, labor demand, and labor supply. 

 

 Different regression models 

The different regression models are defined based on type of functions used to represent the relation 

between the dependent variable y and the independent variables. 
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1. Simple linear regression 

Assume that there is only one independent variable x. If the relation between x and y is 

modeled by the relation 

 
then we have a simple linear regression. 

2. Multiple regression 

y = a + bx 

Let there be more than one independent variable, say x1, x2, . . ., xn, and let the relation 
between y and the independent variables be modeled as 

y α0 α1x1 αnxn 
 

then it is case of multiple linear regression or multiple regression. 

3. Polynomial regression 

Let there be only one variable x and let the relation between x y be modeled as 

y a0 a1x  a2x2 anxn 

for some positive integer n 1, then we have a polynomial regression. 

4. Logistic regression 

Logistic regression is used when the dependent variable is binary (0/1, True/False, Yes/No) 

in nature. Even though the output is a binary variable, what is being sought is a probability 

function which may take any value from 0 to 1. 

 
 Criterion for minimisation of error 

In regression, we would like to write the numeric output y, called the dependent variable, as a 

function of the input x, called the independent variable. We assume that the output is the sum of a 

function f x of the input and some random error denoted by s: 

y f x s. 
 

Here the function f x is unknown and we would like to approximate it by some estimator g x, θ 
containing a set of parameters θ. We assume that the random error s follows normal distribution 

with mean 0. 

Let x1, . . . , xn be a random sample of observations of the input variable x and y1, . . . , yn the 
corresponding observed values of the output variable y. 

Using the assumption that the error s follows normal distribution, we can apply the method of 

maximum likelihood estimation to estimate the values of the parameter θ. It can be shown that the 

values of θ which maximizes the likelihood function are the values of θ that minimizes the following 

sum of squares: 

E θ y1 g x1, θ  2 yn g xn, θ 2. 

The method of finding the value of θ as that value of θ that minimizes E θ is known as the ordinary 

least squares method. 

The full details of the derivation of the above result are beyond the scope of these notes. 
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= + 

n 

i=1 

= Σ( −  )i
  i 

= Σ[ − (   + )] 

= 

Σ yi = na + b Σ xi 

 
x x1 x2 

… 
xn 

y y1 y2 yn 
 

Table 7.1: Data set for simple linear regression 

 
 

y 
 

 

Regression model 

Error 

 

 

 

 
 

Actual value 

 

Predicted value 
 

x 
 

Figure 7.1: Errors in observed values 

 
 

 Simple linear regression 

Let x be the independent predictor variable and y the dependent variable. Assume that we have a set 

of observed values of x and y: 

A simple linear regression model defines the relationship between x and y using a line defined 

by an equation in the following form: 

y α   βx 

In order to determine the optimal estimates of α and β, an estimation method known as Ordinary 

Least Squares (OLS) is used. 

 
The OLS method 

In the OLS method, the values of y-intercept and slope are chosen such that they minimize the sum 

of the squared errors; that is, the sum of the squares of the vertical distance between the predicted 

y-value and the actual y-value (see Figure 7.1). Let ŷi be the predicted value of yi. Then the sum of 

squares of errors is given by 
 

n 

E y ŷ      2 

i 1 

yi α   βxi  2 

 
So we are required to find the values of α and β such that E is minimum. Using methods of calculus, 

we can show that the values of a and b, which are respectively the values of α and β for which E is 

minimum, can be obtained by solving the following equations. 
 

n n 

i=1 i=1 
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n 

n − 1 

n − 1 

Var (x) 

= Σ [ − (  +  )]i i
  i = 

i 

 
n n n 

Σ xiyi = a Σ xi + b Σ x2 

 
Formulas to find a and b 

i=1 i=1 i=1 

Recall that the means of x and y are given by 

x̄ =  
1 
Σ x 

ȳ  =  
1 
Σ y 

n 
i 

and also that the variance of x is given by 

Var (x) =  
   1    

Σ(x  − x¯ )2. 
i 

The covariance of x and y, denoted by Cov(x, y) is defined as 

Cov(x, y) = 
1 

Σ(x  − x̄)(y 
i i − ȳ) 

 

It can be shown that the values of a and b can be computed using the following formulas: 

b = 
Cov (x, y) 

a = ȳ − bx̄ 
 

Remarks 

It is interesting to note why the least squares method discussed above is christened as “ordinary” 

least squares method. Several different variants of the least squares method have been developed 

over the years. For example, in the weighted least squares method, the coefficients a and b are 

estimated such that the weighted sum of squares of errors 
 

n 

E w y a  bx 2, 
i 1 

 

for some positive constants w1, . . . , wn, is minimum. There are also methods known by the names 

generalised least squares method, partial least squares method, total least squares method, etc. The 

reader may refer to Wikipedia, a free online encyclopedia, to obtain further information about these 

methods. 

The OLS method has a long history. The method is usually credited to Carl Friedrich Gauss 

(1795), but it was first published by Adrien-Marie Legendre (1805). 

 
Example 

Obtain a linear regression for the data in Table 7.2 assuming that y is the independent variable. 

 
x 1.0 2.0 3.0 4.0 5.0 
y 1.00 2.00 1.30 3.75 2.25 

Table 7.2: Example data for simple linear regression 

i 

i 
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= 0.425 

5 

5 

4 

4 

= 

− × 

= 

= 2.5 

= 3.0 

= 2.06 

= 1.0625 

 

 

 

 
 

Figure 7.2: Regression model for Table 7.2 

 

 
Solution 

In the usual notations of simple linear regression, we have 

n = 5 

x̄ =  
1 

(1.0 + 2.0 + 3.0 + 4.0 + 5.0) 

ȳ =  
1 

(1.00 + 2.00 + 1.30 + 3.75 + 2.25) 

Cov (x, y) = 
1 

[(1.0 − 3.0)(1.00 − 2.06) + … + (5.0 − 3.0)(2.25 − 2.06)] 

Var (x) = 
1 

[(1.0 − 3.0)2 + … + (5.0 − 3.0)2] 

b 
1.0625 

2.5 

 
a 2.06 0.425 3.0 

0.785 
 

Therefore, the linear regression model for the data is 

y = 0.785 + 0.425x. (7.1) 

 
Remark 

Figure 7.2 in page 76 shows the data in Table 7.2 and the line given by Eq. (7.1). The figure was 

created using R. 
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= + + + … + 

i 

= = 

( + ) 

Σ = + (Σ ) + … + ( )Σ 

ı 

˙ = ( )  ̇

E = Σ[yi − (α0 + α1xi + α2x2 + … + αkxk)]2. 

Σ yixi = α0(Σ xi) + α1(Σ x2) + … + αk(Σ xk+1) 

Σ yix2  = α0(Σ x2) + α1(Σ x3) + … + αk(Σ xk+2) 

i i i i 

= 

n 

i i 

i i i i 

Solving this system of linear equations we get the optimal values for the parameters. 

 

 Polynomial regression 

Let x be the independent predictor variable and y the dependent variable. Assume that we have a set 

of observed values of x and y as in Table 7.1 in page 74. 

A polynomial regression model defines the relationship between x and y by an equation in the 

following form: 

y α0 α1x   α2x2 αkxk. 

To determine the optimal values of the parameters α0, α1, . . ., αk the method of ordinary least 
squares is used. The values of the parameters are those values which minimizes the sum of squares: 

 

i i 

i 1 

The optimal values of the parameters are obtained by solving the following system of equations: 

∂E 

∂αi 
= 0, i = 0, 1, . . . , k. (7.2) 

Let the values of values of the parameters which minimizes E be 

αi ai, i 0, 1, 2, . . . , n. (7.3) 

Simplifying Eq. (7.2) and using Eq. (7.3), we can see that the values of ai can be obtained by 

solving the the following system of  k 1 linear equations: 

yi α0n  α1 xi αk xk 
 

 

Σ yixk

⋮ 

= α0(Σ xk) + α1(Σ xk+1) + … + αk(Σ x2k) 
 

 

Remarks 

The linear system of equations to find ai’s, has a compact matrix representation. We write: 
<
ı1 x1 x2 … xk 

=
ı 

<
ıy1 

=
ı 

<
ıa0 

=
ı 

ı 1 1 ı ı ı ı ı 
ı1 x2 x2 … xk ı ıy2 ı ıa1 ı 

D = 

ı 
⋮ 

2 2 , ẏ  = 
ı  ⋮  ı 

, ȧ = 
ı  ⋮  ı

 
ı1    xn x2 …     xk ı ıynı ıakı 

 

Then we have 

> n nz > z > z 

a DT D −1DT y, 

where the superscript T denotes the transpose of the matrix. 

 
 Example 

Find a quadratic regression model for the following data: 
 

x 3 4 5 6 7 

y 2.5 3.2 3.8 6.5 11.5 
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Σ y  = na  + a ( x ) + a ( x )Σ 
   Σi 0  1  i

 2 

158.8 = 25a  + 135a  + 775a0  1

 2 = + + 

a2 = 0.7642857 

… 

0 = 

= − + 

Σ yixi = a0(Σ xi) + a1(Σ x2) + a2(Σ x3) 

i i i i 

i i 

Using the given data we have 

 

 

 
 

 
 

Figure 7.3: Plot of quadratic polynomial model 

 

 

Solution 

Let the quadratic regression model be 

y = α0 + α1x + α2x2. 

The values of α0, α1 and α2 which minimises the sum of squares of errors are a0, a1 and a2 which 
satisfy the following system of equations: 

2 
i 

 

Σ yix2  = a0(Σ x2) + a1(Σ x3) + a2(Σ x4) 
 

27.5 = 5a0 + 25a1 + 135a2 

966.2 135a0 775a1 4659a2 

Solving this system of equations we get 
 

a 12.4285714 

a1  = −5.5128571 

The required quadratic polynomial model is 

y 12.4285714 5.5128571x 0.7642857x2. 

Figure 7.3 shows plots of the data and the quadratic polynomial model. 

 
 Multiple linear regression 

We assume that there are N independent variables  x1, x2, , xN . Let the dependent variable be y. 
Let there also be n observed values of these variables: 



79 
 

 

 

… 

= + + … + 

= = 

= + + 

ı
1 2 2

ı
 

ı 
3.5 

ı
 

X = ı
1   1   2

ı , Y = ı 
6.5 

ı , B = ıβ1ı 

 
Variables 

(features) 

  Values (examples) …   

… 
x1 

x2 

x
…

N

 

x11 

x21 

 

xN 1 

x12 

x22 

 

xN 2 

… 

… 

x1n 

x2n 

 

xNn 

y (outcomes) y1 y2  yn 
 

Table 7.3: Data for multiple linear regression 

 

 
The multiple linear regression model defines the relationship between the N independent vari- 

ables and the dependent variable by an equation of the following form: 

y β0 β1x1 βN xN 
 

As in simple linear regression, here also we use the ordinary least squares method to obtain the 

optimal estimates of β0, β1, , βN . The method yields the following procedure for the computation 

of these optimal estimates. Let 

<

ı
1 x11 x21 

… 
xN 1 

=

ı
 

<

ı
y1 

=

ı

 <

ı 
β0 

=

ı

 

X = ı
1
⋮
 

x12 x22 xN 2 
ı , Y  = ı

y
⋮
2 
ı , B = ı 

β
⋮
1 
ı 

ı>
1    x1n x2n …     xNnız ı>

ynız ı>
βN ız 

Then it can be shown that the regression coefficients are given by 

B = (XT X)−1XT Y 
 

 Example 

Example 

Fit a multiple linear regression model to the following data: 

 
x1 1 1 2 0 

x2 1 2 2 1 

y 3.25 6.5 3.5 5.0 

Table 7.4: Example data for multi-linear regression 

 

 

Solution 

In this problem, there are two independent variables andfour sets of values of the variables. Thus, 

in the notations used above, we have n 2 and N 4. The multiple linear regression model for this 

problem has the form 

y β0 β1x1 β2x2. 

The computations are shown below. 

<

ı
1    1    1

=

ı
 

<

ı
3.25

=

ı
 <

ıβ0
=
ı 

ı>
1    0    1ız ı> 

5.0 ız 
ı>β2ız 
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y = 2.0625 − 2.3750x1 + 3.2500x2. 

y 

 
(1,2,6.25) 

(0,1,5.0) 

(1,1,3.25) 
(2,2,3.25) 

y = 2.0625 − 2.3750x1 + 3.2500x2 

XT X = 
ı
4  6 7 

ı
 

> 2 

<   2.0625= 

ı 

= + ( − ) 

>6 7 10z 

ı −
2 

−1 2ız 

ı− ı 

ı 4 

<
ı

4    4 6 =
ı

 

 

T −1 <   11 1 −2=
ı

 
 

 
 

 (X X) = ı    1 1 −1ı 

B = (XT X)−1XT Y 
 

 
 
 

The required model is 

= 
ı
>

 
 

2.3750 
3.2500z 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
x2 

1 

 

 
Figure 7.4: The regression plane for the data in Table 7.4 

 
 
 

 Sample questions 

(a) Short answer questions 

1. What are the different types of regression. 

2.Is regression a supervised learning? Why? 

3. Explain the ordinary least squares method for regression. 

4. What are linear, multinomial and polynomial regressions. 

5.If model used for regression is 

y a   b  x   1 2, 

is it a multinomial regression? If not, what type of regression is it? 

6.What does the line of regression tell you? 

2 

x 
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(b) Long answer questions 

1. Discuss linear regression with an example. 

2. In the table below, the xi row shows scores in an aptitude test. Similarly, the yi row shows 

statistics grades. If a student made an 80 on the aptitude test, what grade would we expect her 

to make in statistics? 
 

Student i 1 2 3 4 5 

xi 95 85 80 70 60 

yi 85 95 70 65 70 

3. Use the following data to construct a linear regression model for the auto insurance premium 

as a function of driving experience. 

 
Driving experience (in years) 5 2 12 9 15 6 25 16 

Monthly auto insurance premium ($) 64 87 50 71 44 56 42 60 

4. Determine the regression equation by finding the regression slope coefficient and the intercept 

value using the following data. 

 
x 55 60 65 70 80 

y 52 54 56 58 62 

5. The following table contains measurements of yield from an experiment done at five different 

temperature levels. The variables are y = yield and x = temperature in degrees Fahrenheit. 

Compute a second degree polynomial regression model to predict the yield given the temper- 

ature. 
 

Temperature (x) Yield (y) 
50 3.0 

70 2.7 

80 2.6 

90 2.9 

100 3.3 

6. An experiment was done to assess how moisture content and sweetness of a pastry product 

affect a tasterâĂ Ź s rating of the product. The following table summarises the findings. 

 
Rating Moisture Sweetness 

64 4 2 

73 4 4 

61 4 2 

76 4 4 

72 6 2 

80 6 4 

71 6 2 

83 6 4 

83 8 2 

89 8 4 

86 8 2 

93 8 4 

88 10 2 

95 10 4 

94 10 2 

100 10 4 
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Compute a linear regression model to predict the rating of the pastry product. 

7. The following data contains the Performance IQ scores (PIQ) (in appropriate scales), brain 

sizes (in standard units), heights (in inches) and weights (in pounds) of 15 American college 

students. Obtain a linear regression model to predict the PIQ given the values of the other 

features. 
 

PIQ Brain Height Weight 
124 81.69 64.5 118 

150 103.84 73.3 143 

128 96.54 68.8 172 

134 95.15 65.0 147 

110 92.88 69.0 146 

131 99.13 64.5 138 

98 85.43 66.0 175 

84 90.49 66.3 134 

147 95.55 68.8 172 

124 83.39 64.5 118 

128 107.95 70.0 151 

124 92.41 69.0 155 

147 85.65 70.5 155 

90 87.89 66.0 146 

96 86.54 68.0 135 

8. Use the following data to generate a linear regression model for annual salary as function of 

GPA and number of months worked. 
 

Example no. Annual salary ($) GPA Months worked 

1 20000 2.8 48 

2 24500 3.4 24 

3 23000 3.2 24 

4 25000 3.8 24 

5 20000 3.2 48 

6 22500 3.4 36 

7 27500 4.0 24 

8 19000 2.6 48 

9 24000 3.2 36 

10 28500 3.8 12 



 

 

 

Yes 
 

Decline offer 

No 

Offers free coffee? 

Commute one hour? 

Yes 

Salary ≥ Rs.50000? 

Root node 

No 

Decline offer 

Yes 

Accept offer 

No 
 

Decline offer 

Module 4 

Decision trees 

 
“Decision tree learning is a method for approximating discrete valued target functions, in which the 

learned function is represented by a decision tree. Decision tree learning is one of the most widely 

used and practical methods for inductive inference.” ([4] p.52) 

 
 Decision tree: Example 

Consider the following situation. Somebody is hunting for a job. At the very beginning, he decides 

that he will consider only those jobs for which the monthly salary is at least Rs.50,000. Our job 

hunter does not like spending much time traveling to place of work. He is comfortable only if the 

commuting time is less than one hour. Also, he expects the company to arrange for a free coffee 

every morning! The decisions to be made before deciding to accept or reject a job offer can be 

schematically represented as in Figure 8.6. This figure represents a decision tree1. 
 

 

 

 

Figure 8.1: Example for a decision tree 

 

Here, the term “tree” refers to the concept of a tree in graph theory in mathematics2. In graph 

theory, a tree is defined as an undirected graph in which any two vertices are connected by exactly 

one path. Using the conventions of graph theory, the decision tree shown in Figure 8.6 can be 

represented as a graph-theoretical tree as in Figure 8.2. Since a decision tree is a graph-theoretical 

tree, all terminology related to graph-theoretical trees can be applied to describe decision trees also. 

For example, in Figure 8.6, the nodes or vertices shown as ellipses are called the leaf nodes. All 

other nodes, except the root node, are called the internal nodes. 

1In such diagrams, the “tree” is shown upside down with the root node at the top and all the leaves at the bottom. 
2The term “tree” was coined in 1857 by the British mathematician Arthur Cayley (see Wikipedia). 
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Yes No 

Yes No 

Yes No 

 

Root node 

Figure 8.2: The graph-theoretical representation of the decision tree in Figure 8.6 

 
 

 Two types of decision trees 

There are two types of decision trees. 

1. Classification trees 

Tree models where the target variable can take a discrete set of values are called classification 

trees. In these tree structures, leaves represent class labels and branches represent conjunc- 

tions of features that lead to those class labels. 

2. Regression trees 

Decision trees where the target variable can take continuous values (real numbers) like the 

price of a house, or a patient’s length of stay in a hospital, are called regression trees. 

 
 Classification trees 

We illustrate the concept with an example. 

 
 Example 

Data 

 

Nam 
Features 

Class label 

gives birth 
aquatic 

animal 

aerial 

animal 
has legs 

human yes no no yes mammal 

python no no no no reptile 

salmon no yes no no fish 

frog no semi no yes amphibian 

bat yes no yes yes bird 

pigeon no no yes yes bird 

cat yes no no yes mammal 

shark yes yes no no fish 

turtle no semi no yes amphibian 

salamander no semi no yes amphibian 

Table 8.1: The vertebrate data set 
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Yes 

Table 8.2: 

aquatic? 

Table 8.1: 

gives birth? 

 

Consider the data given in Table 8.1 which specify the features of certain vertebrates and the class 

to which they belong. For each species, four features have been identified: “gives birth”, ”aquatic 

animal”, “aerial animal” and “has legs”. There are five class labels, namely, “amphibian”, “bird”, 

“fish”, “mammal” and “reptile”. The problem is how to use this data to identify the class of a newly 

discovered vertebrate. 

 
Construction of the tree 

Step 1 

We split the set of examples given in Table 8.1 into disjoint subsets according to the values of the 

feature “gives birth”. Since there are only two possible values for this feature, we have only two 

subsets: One subset consisting of those examples for which the value of “gives birth” is “yes” and 

one subset for which the value is “no”. The former is given in Table 8.2 and the latter in Table 8.3. 

This stage of the classification can be represented as in Figure 8.3. 

 

Name Gives 

birth 

Aquatic 

animal 

Aerial 

animal 

Has legs Class la- 

bel 

human yes no no yes mammal 

bat yes no yes yes bird 

cat yes no no yes mammal 

shark yes yes no no fish 

Table 8.2: The subset of Table 8.1 with “gives birth” = ”yes" 

 

 
 

Name gives birth aquatic 

animal 

aerial 

animal 

has legs Class la- 

bel 

python no no no no reptile 

salmon no yes no no fish 

frog no semi no yes amphibian 

pigeon no no yes yes bird 

turtle no semi no yes amphibian 

salamander no semi no yes amphibian 

Table 8.3: The subset of Table 8.1 with “gives birth” = ”no" 

Root node 

Figure 8.3: Classification tree 

 

 
Step 2 

We now consider the examples in Table 8.2. We split these examples based on the values of the 

feature “aquatic animal”. There are three possible values for this feature. However, only two of 

No 

Table 8.3: 

aquatic? 
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no 

Table 8.2: 

aquatic? 

Yes 

Table 8.1: 

gives birth? 

yes 

Table 8.4 

 
Name gives birth aquatic 

animal 

aerial 

animal 

has legs Class la- 

bel 

human yes no no yes mammal 

bat yes no yes yes bird 

cat yes no no yes mammal 
 

Table 8.5: The vertebrate data set 

 

Root node 

 

 

 

 

 

Part of 

Table 8.5 

Part of 

Table 8.5 

   

 

 

Figure 8.4: Classification tree 

 

 
these appear in Table 8.2. Accordingly, we need consider only two subsets. These are shown in 

Tables 8.4 and 8.5. 

Name gives birth  aquatic 

animal 

aerial 

animal 

has legs Class la- 

bel 
 

shark yes  yes no no fish 

Table 8.4: The vertebrate data set 

 
 

• Table 8.4 contains only one example and hence no further splitting is required. It leads to the 

assignment of the class label “fish”. 

• The examples in Table 8.5 need to be split into subsets based on the values of “aerial animal”. 

It can be seen that these subsets immediately lead to unambiguous assignment of class labels: 

The value of “no” leads to “mammal” and the value “yes” leads to ”bird”. 

At this stage, the classification tree is as shown in Figure 8.4 

 

 

 
fish 

yes 

Table 8.5: 

aerial? 

bird 

no 

mammal 

no 

Table 8.3: 

aquatic? 
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Step 3 

Next we consider the examples in Table 8.3 and split them into disjoint subsets based on the values 

of “aquatic animal”. We get the examples in Table 8.6 for “yes”, the examples in Table ?? for “no” 

and the examples in Table ?? for “semi”. We now split the resulting subsets based on the values of 

 
 

Name gives birth aquatic 

animal 

aerial 

animal 

has legs Class la- 

bel 
 

 

salmon no  yes no no fish 

Table 8.6: The vertebrate data set 

 

 
 

Name gives birth aquatic 

animal 

aerial 

animal 

has legs Class la- 

bel 
 

 

frog no semi no yes amphibian 

turtle no semi no yes amphibian 

salamander   no semi no yes amphibian 
 

Table 8.7: The vertebrate data set 

 

 

 
Name gives birth aquatic 

animal 

aerial 

animal 

has legs Class la- 

bel 

python no no no no reptile 

pigeon no no yes yes bird 
 

Table 8.8: The vertebrate data set 

 

“has legs”, etc. Putting all these together, we get the the diagram in Figure 8.5 as the classification 

tree for the data in Table 8.1. 

 
 Classification tree in rule format 

The classification tree shown in Figure 8.5 can be presented as a set of rules in the form of an 

algorithm. 

 
Algorithm for classification of vertebrates 

1. if give birth = ”yes” then 

2. if aquatic = “yes” then 

3. return class = “fish” 

4. else 

5. if aerial = “yes” then 

6. return class = “bird” 

7. else 

8. return class = “mammal” 

9. end if 

10. end if 

11. else 

12. if aquatic = “yes” then 

13. return class = “fish” 
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Table 8.6 
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Part of 

Table 8.8 

Part of 

Table 8.8 

   

 

 

 

 

amph 

 

Root node 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 8.5: Classification tree 

 

 

14. end if 

15. if aquatic = “semi” then 

16.  return class = “amphibian” 

17. else  

18.  if aerial = “yes” then 

19.  return class = “amphibian” 

20.  else 

21.  return class = “reptile” 

22.  end if 

23. end if 

24. end if  

 Some remarks 

1. On the elements of a classification tree 

The various elements in a classification tree are identified as follows. 

• Nodes in the classification tree are identified by the feature names of the given data. 

• Branches in the tree are identified by the values of features. 

• The leaf nodes identified by are the class labels. 

yes 

 
yes 

Table 8.4 

 

 

 

fish 

 

no 

Table 8.2: 

aquatic? 

 

yes 

Table 8.5: 

aerial? 

bird 

 

no 

mammal 

 

no 

Table 8.1: 

gives birth? 

 

no 

Table 8.3: 

aquatic? 

 

yes 

Table 8.8 

aerial? 

bird 

 

no 

reptile 
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( ) 

(  ) = Σ −  i 2( i) 
= 

 

2. On the order in which the features are selected 

In the example discussed above, initially we chose the feature “gives birth” to split the data set  

into disjoint subsets and then the feature “aquatic animal”, and so on. There was no theoretical 

justification for this choice. We could as well have chosen the feature “aquatic animal”, or any other 

feature, as the initial feature for splitting the data. The classification tree depends on the order in 

which the features are selected for partitioning the data. 

 
3. Stopping criteria 

A real-world data will contain much more example record than the example we considered earlier. 

In general, there will be a large number of features each feature having several possible values. Thus, 

the corresponding classification trees will naturally be more complex. In such cases, it may not be 

advisable to construct all branches and leaf nodes of the tree. The following are some of commonly 

used criteria for stopping the construction of further nodes and branches. 

• All (or nearly all) of the examples at the node have the same class. 

• There are no remaining features to distinguish among the examples. 

• The tree has grown to a predefined size limit. 

 
 Feature selection measures 

If a dataset consists of n attributes then deciding which attribute is to be to placed at the root or at 

different levels of the tree as internal nodes is a complicated problem. It is not enough that we just 

randomly select any node to be the root. If we do this, it may give us bad results with low accuracy. 

The most important problem in implementing the decision tree algorithm is deciding which 

features are to be considered as the root node and at each level. Several methods have been developed 

to assign numerical values to the various features such that the values reflect the relative importance 

of the various features. These are called the feature selection measures. Two of the popular feature 

selection measures are information gain and Gini index. These are explained in the next section. 

 
 Entropy 

The degree to which a subset of examples contains only a single class is known as purity, and any 

subset composed of only a single class is called a pure class. Informally, entropy3 is a measure of 

“impurity” in a dataset. Sets with high entropy are very diverse and provide little information about 

other items that may also belong in the set, as there is no apparent commonality. 

Entropy is measured in bits. If there are only two possible classes, entropy values can range from 

0 to 1. For n classes, entropy ranges from 0 to log2 n . In each case, the minimum value indicates 

that the sample is completely homogeneous, while the maximum value indicates that the data are as 
diverse as possible, and no group has even a small plurality. 

 
 Definition 

Consider a segment S of a dataset having c number of class labels. Let pi be the proportion of 

examples in S having the i th class label. The entropy of S is defined as 
 

c 

Entropy  S p  log    p . 
i 1 

3From German Entropie “measure of the disorder of a system,” coined in 1865 (on analogy of Energie) by German 

physicist Rudolph Clausius (1822-1888), in his work on the laws of thermodynamics, from Greek entropia “a turning toward,” 

from en “in” + trope “a turning, a transformation,” 
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(   ) = − (  ) − (  −  ) ( − ) 

( ) 

(  ) = Σ 

 

 

 

 
 

 
 

Figure 8.6: Plot of p vs. Entropy 

 

 
Remark 

In the expression for entropy, the value of 0 log2 0 is taken as zero. 

 
Special case 

Let the data segment S has only two class labels, say, “yes” and “no”. If p is the proportion of 

examples having the label “yes” then the proportion of examples having label “no” will be 1 p. In 

this case, the entropy of S is given by 

Entropy  S p log2  p 1    p  log2   1    p . 

If we plot the values of graph of Entropy S for all possible values of p, we get the diagram shown 

in Figure 8.64. 

 

 Examples 

Let “xxx” be some class label. We denote by pxxx the proportion of examples with class label “xxx”. 

1. Entropy of data in Table 8.1 

Let S be the data in Table 8.1. The class labels are ”amphi”, “bird”, ”fish”, ”mammal” and 

”reptile”. In S we have the following numbers. 
 

Number of examples with class label “amphi” = 3 

Number of examples with class label “bird” = 2 

Number of examples with class label “fish” = 2 

Number of examples with class label “mammal” = 2 

Number of examples with class label “reptile” = 1 

Total number of examples = 10 
 

Therefore, we have: 

  Entropy S 
for all classes “xxx” 

−pxxx log2(pxxx) 

4Plot created using R language. 
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p log  (p )reptile 

 reptile2 

= 

− (1/10) log2(1/10) 

= 

− 

2( ) − 2( ) 

− 

= − (  /     ) (  /     ) − (  /     )  (  /     )2
  2 

(  ) = Σ 

= 

− 

2( ) − 2( ) 

( )2 

1.5 (8.1) 

= − (  /  ) (  /  ) − (  /  )  (  /  ) − (  /  )  (  /  )2
  2  2 

 

pamphi log  pamphi pbird log   pbird 

pfish  log2(pfish) − pmammal log2(pmammal) 

3  10  log   3 10 2  10  log    2 10 

− (2/10) log2(2/10) − (2/10) log2(2/10) 

2.2464 

2. Entropy of data in Table 8.2 

Consider the segment S of the data in Table 8.1 given in Table 8.2. For quick reference, the 

table has been reproduced below: 

 

Name Gives 

birth 

Aquatic 

animal 

Aerial 

animal 

Has legs Class la- 

bel 
human yes no no yes mammal 

bat yes no yes yes bird 

cat yes no no yes mammal 

shark yes yes no no fish 

Three class labels appear in this segment, namely, “bird”, “fish” and “mammal”. We have: 

Number of examples with class label “bird” 1 

Number of examples with class label “fish” 1 

Number of examples with class label “mammal” 2 

Total number of examples 4 

Therefore we have 

Entropy  S 
for all classes “xxx” 

−pxxx log2(pxxx) 

pbird log  pbird pfish log pfish 

pmammal log pmammal 

1  4  log   1 4 1  4  log   1 4 2 4 log 2 4 

= 

− (1/4) × (−2) − (1/4) × (−2) − (2/4) × (−1) 

 

3. Entropy of data in Table 8.3 

Consider the segment S of the data in Table 8.1 given in Table 8.3. For quick reference, the 

table has been reproduced below: 

 
Name gives birth aquatic 

animal 

aerial 

animal 

has legs Class la- 

bel 

python no no no no reptile 

salmon no yes no no fish 

frog no semi no yes amphibian 

pigeon no no yes yes bird 

turtle no semi no yes amphibian 

salamander no semi no yes amphibian 

Four class labels appear in this segment, namely, “amphi”, “bird”, “fish” and “reptile”. We 

have: 
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(  ) = Σ 

= 

− 

2( ) − 2( ) − 2( ) 

= 

− (1/6) log2(1/6) 

( )2 

relative to the set S, denoted by Gain (S, A), is defined as 

( ) 

Entropy (S) = 2.2464. 

| 

SA1 =no = Data in Table 8.3 

| 

SA1 =yes = Data in Table 8.2 

=1 

| =A  =1 

| =A  =1 

and Values (A) be the set of all possible values of A. Then the information gain of an attribute A 

 
Number of examples with class label “amphi” 3 

Number of examples with class label “bird” 1 

Number of examples with class label “fish” 1 

Number of examples with class label “reptile” 1 

Total number of examples 6 
 

Therefore, we have: 

Entropy  S 
for all classes “xxx” 

−pxxx log2(pxxx) 

pamphi log  pamphi pbird log  pbird pfish log pfish 

preptile log preptile 

= − (3/6) log2(3/6) − (1/6) log2(1/6) − (1/6) log2(1/6) 

1.7925 (8.2) 

 
 Information gain 

 Definition 

 

Gain(S, A) = Entropy(S) − Σ 
|Sv | 

× Entropy(S ). 
 

 

where |S| denotes the number of elements in S. 

 Example 1 

v∈Values (A) |S| 
v
 

Consider the data S given in Table 8.1. We have have already seen that 

|S| = 10 

We denote the information gain corresponding to the feature “xxx” by Gain S, xxx . 

1. Computation of Gain (S, gives birth) 
 

 
 
 
 
 
 
 
 

 
Now we have 

A gives birth 

Values of A1 = {“yes”, “no”} 

S yes 4 

Entropy (SA1 =yes) = 1.5 (See Eq.(8.1)) 

S no 6 

Entropy (SA1 =no) = 1.7925 (See Eq.(8.2)) 

Gain(S, A ) = Entropy(S) − Σ 
 

 

|Sv | 
× Entropy(S ) 

 
 

v∈Values(A1 ) |S| 
v
 

1 

Let S be a set of examples, A be a feature (or, an attribute), S be the subset of S with A = v,v 
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S| 

| 

SA2 =yes = See Table 8.1 

|   

A2 = = 

= 

− (2/5) × log2(2/5) 

S | = 5A  

=no2 (   A2 =   ) = 

−

− 2( ) − 2( ) 

= 

−(2/2) log2(2/2) 

= 

−(3/3) × log2(3/3)    

| 

=2 

( ) 

= 

− (  /   ) × − ( / ) × 

( )2 

| =A  =2 

| =A  =2 

S| 

( ) ( ) 

= 

− (  /    ) ×    − (  /   ) × − ( / ) × 

= Entropy(S) − 
|SA

|
1 =yes| 

× Entropy(SA1 =yes) 

= Entropy(S) − 
|SA

|
1 =yes| 

× Entropy(SA1 =yes) 

| 

| 

2 

 

| 

S| 

 
−  

SA1 =no| 
× Entropy(SA1 =no) 

= 
2.2464 4 10 1.5 6 10 1.7925 

0.5709 

 
2. Computation of Gain S, aquatic 

A aquatic 

Values of A2 = {“yes”, “no”, “semi”} 

S yes 2 

Entropy (SA2 =yes) = −pfish log2(pfish) 

0 

SA2 =no  = See Table 8.1 

Entropy  S no pmammal log  pmammal preptile log preptile 

pbird log   pbird 

= −(2/5) × log2(2/5) − (1/5) × log2(1/5) 

1.5219 

S semi See Table 8.1 

S semi 3 

Entropy (SA2 =semi) = −pamphi log2(pamphi) 

0 

Gain(S, A ) = Entropy(S) −  Σ     
|Sv |  

× Entropy(S ) 

v∈Values(A2 ) 

|S| 
v
 

| 

S| 

 − 
SA

| 
1 =no| 

× Entropy(SA1 =no) 
 

| 

S| 
− 

SA1 =semi| 
× Entropy(SA1 =semi) = 2.2464 2 10 0 5 10 1.5219 3 3 0 

1.48545 

 
3. Computations of Gain S, aerial animal and Gain S, has legs 

These are left as exercises. 

 
 Gini indices 

The Gini split index of a data set is another feature selection measure in the construction of classifi- 

cation trees. This measure is used in the CART algorithm. 
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r 

( ) 

Gini(S) = 1 − Σ p 

= 

− ( / ) 

denoted by Gini (S, A), is defined 

assplit 

(   ) ( ) 

( ) = − Σ 
|S| 

| |i 

( ) 

and Values (A) be the set of all possible values of A. Then the Gini split index of A relative to S, 

v∈Values(A) |S| 
v 

We now define thesplit information of A relative to S, dented by SplitInformation(S, A), by 

 

8.7.1 Gini index 

Consider a data set S having r class labels c1, . . . , cr. Let pi be the proportion of examples having 
the class label ci. The Gini index of the data set S, denoted by Gini S , is defined by 

 

Gini(S) = 1 − Σ p2. 

 

Example 

i=1 

Let S be the data in Table 8.1. There are four class labels ”amphi”, “bird”, ”fish”, ”mammal” and 

”reptile”. The numbers of examples having these class labels are as follows: 
 

Number of examples with class label “amphi” = 3 

Number of examples with class label “bird” = 2 

Number of examples with class label “fish” = 2 

Number of examples with class label “mammal” = 2 

Number of examples with class label “reptile” = 1 

Total number of examples = 10 

The Gini index of S is given by 

r 
2 
i 

= 

i=1 
 

   2 2 2 1 3 10 

0.78 

 

8.7.2 Gini split index 

− (2/10) − (2/10) − (2/10) − (1/10) 

 

Ginisplit(S, A) = Σ 
|Sv | 

× Gini(S ). 
 

 

v∈Values (A) 

where |S| denotes the number of elements in S. 

 Gain ratio 

|S| 
v
 

 

The gain ratio is a third feature selection measure in the construction of classification trees. 

Let S be a set of examples, A a feature having c different values and let the set of values of A be 

denoted by Values A . We defined the information gain of A relative to S, denoted by Gain S, A , 

by 

Gain(S, A) = Entropy(S) − Σ 
|Sv |  

× Entropy(S ). 

 
 

 
c 

SplitInformation S, A 
i=1 

|Si| 
log

 
 

S 
2 |S| 

where S1, . . . Sc are the c subsets of examples resulting from partitioning S into the c values of the 
attribute A. The gain ratio of A relative to S, denoted by GainRatio S, A , by 

Gain(S,A) 

SplitInformation(S, A) 
.
 

Let S be a set of examples, A be a feature (or, an attribute), S be the subset of S with A = v,v 

2 2 

i 

GainRatio(S, A) = 
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Entropy (S) = 2.2464 

  |S| 2
 |S| |S| |S| 

= − 

= 

= 

= 

× × 

 

8.8.1 Example 

Consider the data S given in Table 8.1. Let A denote the attribute “gives birth”.We have have already 

seen that 

 

 

 

 
Now we have 

|S| = 10 

Gain(S, A) = 0.5709 

SplitInformation(S, A) = −
|Syes| 

log 
|Syes| 

− 
|Sno| 

log
 |Sno| 

 
4 

log 
10 

4 

2 10 

 
6 

log 
10 

 6 

2 10 

0.9710 

GainRatio 
0.5709

 
0.9710 
0.5880 

 

In a similar way we can compute the gain ratios Gain(S, “aquatic”), Gain(S, “aerial”) and Gain(S, “has legs”). 

 Decision tree algorithms 

 Outline 
 

Decision tree algorithm: Outline 

1. Place the “best” feature (or, attribute) of the dataset at the root of the tree. 

2. Split the training set into subsets. Subsets should be made in such a way that each subset 

contains data with the same value for a feature. 

3. Repeat Step 1 and Step 2 on each subset until we find leaf nodes in all the branches of the tree. 
 

 

 Some well-known decision tree algorithms 

1. ID3 (Iterative Dichotomiser 3) developed by Ross Quinlan 

2.C4.5 developed by Ross Quinlan 

3. C5.0 developed by Ross Quinlan 

4. CART (Classification And Regression Trees) 

5.1R (One Rule) developed by Robert Holte in 1993. 

6.RIPPER (Repeated Incremental Pruning to Produce Error Reduction) Introduced in 1995 by 

William W. Cohen. 

As an example of decision tree algorithms, we discuss the details of the ID3 algorithm and illustrate 

it with an example. 

− 

2 
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= 

labels “+” are called positive examples and others negative examples. 

( − { }) 

 

 The ID3 algorithm 

Ross Quinlan, while working at University of Sydney, developed the ID3 (Iterative Dichotomiser 

3)5 algorithm and published it in 1975. 

 
Assumptions 

• The algorithm uses information gain to select the most useful attribute for classification. 

• We assume that there are only two class labels, namely, “ +” and “−”. The examples with class 

 The algorithm 

Notations 

The following notations are used in the algorithm: 

S The set of examples 

C The set of class labels 

F The set of features 

A An arbitrary feature (attribute) 

Values(A) The set of values of the feature A 

v An arbitrary value of A 

Sv The set of examples with A v 

Root The root node of a tree 
 

Algorithm ID3(S, F , C) 

1. Create a root node for the tree. 

2. if (all examples in S are positive) then 

3. return single node tree Root with label “+” 

4. end if 

5. if (all examples are negative) then 

6. return single node tree Root with label “–” 

7. end if 

8. if (number of features is 0) then 

9. return single node tree Root with label equal to the most common class label. 

10. else 

11. Let A be the feature in F with the highest information gain. 

12. Assign A to the Root node in decision tree. 

13. for all (values v of A) do 

14. Add a new tree branch below Root corresponding to v. 

15. if (Sv is empty) then 

16. Below this branch add a leaf node with label equal to the most common class 

label in the set S. 

17. else 

18. Below this branch add the subtree formed by applying the same algorithm ID3 

with the values ID3 Sv, C, F A . 
19. end if 

20. end for 

21. end if 
 
 

 

5dichotomy: A division into two parts or classifications especially when they are sharply distinguished or opposed 
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( ) 

0.9405 

(   ) = − ( ) − ( ) 

Table 8.9 

 

 Example 

Problem 

Use ID3 algorithm to construct a decision tree for the data in Table 8.9. 
 

Day outlook temperature humidity wind playtennis 
D1 sunny hot high weak no 

D2 sunny hot high strong no 

D3 overcast hot high weak yes 

D4 rain mild high weak yes 

D5 rain cool normal weak yes 

D6 rain cool normal strong no 

D7 overcast cool normal strong yes 

D8 sunny mild high weak no 

D9 sunny cool normal weak yes 

D10 rain mild normal weak yes 

D11 sunny mild normal strong yes 

D12 overcast mild high strong yes 

D13 overcast hot normal weak yes 

D14 rain mild high strong no 

Table 8.9: Training examples for the target concept “PlayTennis” 

 

 

Solution 

Note that, in the given data, there are four features but only two class labels (or, target variables), 

namely, “yes” and “no”. 

 
Step 1 

We first create a root node for the tree (see Figure 8.7). 

 

Root node 

Figure 8.7: Root node of the decision tree for data in Table 8.9 

 

 

Step 2 

Note that not all examples are positive (class label “yes”) and not all examples are negative (class 

label “no”). Also the number of features is not zero. 

 
Step 3 

We have to decide which feature is to be placed at the root node. For this, we have to calculate the 

information gains corresponding to each of the four features. The computations are shown below. 

(i) Calculation of Entropy S 

Entropy  S pyes log2 pyes pno log2 pno 

= 

−(9/14) × log2 (9/14) − (5/14) × log2 (5/14) 
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( ) 

= 

−(  / ) × (  /  ) − (  /  ) × ( / ) 

( ) 

= 

−(  / ) × ( / ) 

( ) 

= 

−(  / ) × (  /  ) − (  /  ) × ( / ) 

( ) = = = 

( ) 

|S| 

0.2469 
− (

(          /   ) × − ( / ) × 

( ) 

= 

−(  / ) × (  /  ) − (  /  ) × ( / ) 

( ) 

= 

−(  / ) × (  /  ) − (  /  ) × ( / ) 

( ) 

= 

−(  / ) × (  /  ) − (  /  ) × ( / ) 

( ) = = = 

( ) 

|S| 

| 

|S| 

|S| 

0.0293 

− (

(          /   ) × − ( / ) × 

( ) = 

( ) ( ) 

Gain (S, outlook) = Entropy (S) − 
|Ssunny| 

× Entropy (Ssunny) 

| 

 

(ii) Calculation of Gain S, outlook 

The values of the attribute “outlook” are “sunny”, “ overcast” and “rain”. We have to calculate 

Entropy  Sv  for v sunny, v overcast and v rain. 

Entropy  Ssunny 3 5 log2   3 5 2 5 log2 2 5 

0.9710 

Entropy Sovercast 4 4 log2 4 4 

0 

Entropy  Srain 3 5 log2   3 5 2 5 log2 2 5 

0.9710 
 

|   

|S| 

 − 
So

|
vercast| 

× Entropy (Sovercast) 
 

| 

S| − 
Srain| 

× Entropy (Srain) = 0.9405 5 14 0.9710 4 14 0 

= 

5/14) × 0.9710 

 

(iii) Calculation of Gain S, temperature 

The values of the attribute “temperature” are “hot”, “mild” and “cool”. We have to calculate 

Entropy  Sv  for v hot, v mild and v cool. 

Entropy  Shot 2 4 log2   2 4 2 4 log2    2 4 

1.0000 

Entropy  Smild 4 6 log2   4 6 2 6 log2    2 6 

0.9186 

Entropy  Scool 3 4 log2   3 4 1 4 log2    1 4 

0.8113 

Gain (S, temperature) = Entropy (S) − 
|Shot| 

× Entropy (Shot) 
 
 

− 
Smild| 

× Entropy (Smild) 

− 
Scool| 

× Entropy (Scool) 

= 
0.9405 4 14 1.0000 6 14 0.9186 

= 

4/14) × 0.8113 

 

(iv) Calculation of Gain S, humidity and Gain S, wind 

The following information gains can be calculated in a similar way: 

Gain  S, humidity 0.151 

Gain (S, wind) = 0.048 
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sunny 

Node 2 

Table 8.9 

outlook? 

Node 1 

= 

{ } 

Gain(S, humidity) and Gain(S, wind). Therefore, we have: 

= | | = 

|   ( 

)S 
temp = hot 

− 
|S( ) 

temp = mild 

− 
|S( ) 

temp = cool 

= 

− ( / ) × 

= [−(2/5) log2(2/5) − (3/5) log2(3/5)] 

1 5 

0.5709 

−(1/1 log(1/1) 

| 

temp = mild| 

temp = cool| 

 

Step 4 

We find the highest information gain whic is the maximum among Gain(S, outlook), Gain(S, temperature), 

highest information gain max 0.2469, 0.0293, 0.151, 0.048 

0.2469 
 

This corresponds to the feature “outlook”. Therefore, we place “outlook” at the root node. We now 

split the root node in Figure 8.7 into three branches according to the values of the feature “outlook” 

as in Figure 8.8. 

 
Root node 

 

 

 

overcast 

 

 

 
Figure 8.8: Decision tree for data in Table 8.9, after selecting the branching feature at root node 

 

 

Step 5 

Let S(1) Soutlook=sunny. We have S(1) 5. The examples in S(1)are shown in Table 8.10. 

 

Day outlook temperature humidity wind playtennis 

D1 sunny hot high weak no 

D2 sunny hot high strong no 

D8 sunny mild high weak no 

D9 sunny cool normal weak yes 

D11 sunny mild normal strong yes 

Table 8.10: Training examples with outlook = “sunny” 

 

 

Gain(S(1), temp) = Entropy(S(1)) − 

 

1 
temp = hot 

 
 

|S(1)| 
× Entropy(S(1) ) 

1 

|S(1)| 
×

 
Entropy(S(1) ) 

1 

|S(1)| 
×

 
Entropy(S(1) ) 

 

− (2/5) × 

[

−(2/2

) 

log(2/2))] 

/ )

 
( / )] 

− (2/5) × 

[

−(1/2

) 

log(1/2)

]

− (1 2 log2 1 2 

 
rain 

Node 3 
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normal 

Node 5 

 
rain 

Node 2 

Table 8.9 

outlook? 

Node 3 

|   ( 

)S 
hum = high 

− 
|S( ) 

hum = normal 

= [−(   ]/ 
) (  /  ) − ( /  ) ( / ) 

= 

− ( / ) × 

− 
|S( ) Entropy( 

( 

)
S 

= [

−

−

(

(  /  ) (  /  ) − (  /  ) (  /  )] 

](  

/ ))

 

= 

− ( / ) × 

(   (  )  (  )   (  )   (  )) (
  ) (  ) (  ) 

we convert Node 2 as a leaf node with value “ yes. Finally, let S( ) = Soutlook = rain. The highest 

(  ( ) ) 

− (3/5) × 

[

−(3/3

) 

log(3/3))

]

] 

2 5 

0.0110 

−(1/2) log(1/2) − (1/2) log(1/2)] 

| 

hum = normal| 

wind = strong| 

 

Gain(S(1), hum) = Entropy(S(1)) − 

1 
hum = high 

 
 

|S(1)| 
× Entropy(S(1) ) 

1 

|S(1)| 
×

 
Entropy(S(1) ) 

 

 
 

 

2 5 

0.9709 

−(2/2 log(2/2) 

|S(1) | 
 

 

 
Gain(S(1), wind) = Entropy(S(1)) − 

wind = weak 
|S(1)| 

× Entropy(S(1) ) 

1 

|S(1)| 
×

 
1 

wind = strong 

2  5  log2  2 5 3 5 log2 3 5 

3/5) × 

[

−(2/3) log(2/3) − (1/3) log2 1 3 

 
 

The maximum of Gain S 1 , temp , Gain S 1 , hum and Gain S 1 , wind is Gain  S 1  , hum  . 

Hence we place “humidity” at Node 1 and split this node into two branches according to the values 

of the feature “humidity” to get the tree in Figure 8.9. 

 
Root node 

 

 
 

sunny 
 

overcast 
 

 

Figure 8.9: Decision tree for data in Table 8.9, after selecting the branching feature at Node 1 

 

 

Step 6 

It can be seen that all the examples in the the data set corresponding to Node 4 in Figure 8.9 have 

the same class label “no” and all the examples corresponding to Node 5 have the same class label 

“yes”. So we represent Node 4 as a leaf node with value “no” and Node 5 as a leaf node with value 

“yes”. Similarly, all the examples corresponding to Node 2 have the same class label “yes”. So 
2 

information gain for this data set is Gain S 2 , humidity . The branches resulting from splitting this 

node corresponding to the values “high” and “normal” of “humidity” lead to leaf nodes with class 

labels “no” and ”yes”. With these changes, we get the tree in Figure 8.10. 

 

high 

Node 4 

Node 1: 

humidity? 

wind = weak 

2  5  log2  2 5 3 5 log2 3 5 

) 
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overcast rain 

yes 

Table 8.9 

outlook? 

set defined by x ≥ 6. This splits the data into two parts. This yields the tree in Figure ??.1 

of x2 into two sets: one specified by x2 < 21 and one specified by x2 ≥ 21. Similarly, the 

high 

 
no 

Node 1: 

humidity? 

high 

 
no 

Node 3: 

humidity? 

 

Root node 

 

 
 

sunny 
 

 

Figure 8.10: Decision tree for data in Table 8.9 

 

 

 Regression trees 

A regression problem is the problem of determining a relation between one or more independent 

variables and an output variable which is a real continuous variable and then using the relation     

to predict the values of the dependent variables. Regression problems are in general related to 

prediction of numerical values of variables. Trees can also be used to make such predictions. A tree 

used for making predictions of numerical variables is called a prediction tree or a regression tree. 

 
 Example 

Using the data in Table 8.11, construct a tree to predict the values of y. 

 
x1 1 3 4 6 10 15 2 7 16 0 

x2 12 23 21 10 27 23 35 12 27 17 

y 10.1 15.3 11.5 13.9 17.8 23.1 12.7 43.0 17.6 14.9 

Table 8.11: Data for regression tree 

 

 

Solution 

We shall construct a raw decision tree (a tree constructed without using any standard algorithm) to 

predict the value of y corresponding to any untabulated values of x1 and x2. 

Step 1.We arbitrarily split the values of x1 into two sets: One set defined by x1 < 6 and the other 

 

 

x1 1 3 4 2 0 

x2 12 23 21 35 17 

y 10.1 15.3 11.5 12.7 14.9 

Table 8.12: Data for regression tree 

 

 
Step 2.In Figure 8.12, consider the node specified by Table 8.12. We arbitrarily split the values 

node specified by Table 8.13, we split the values of x2 into sets: one specified by x2 < 23 

normal 

yes 

normal 

yes 
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x1 < 6 

≥ 

2 
( + ) = 

x1 1 0 

x2 12 17 

y 10.1 14.9 

 

x1 3 4 2 

x2 23 21 35 

y 15.3 11.5 12.7 

 

x1 6 7 

x2 10 12 

y 13.9 43.0 

 

x1 10 15 16 

x2 27 23 27 

y 17.8 23.1 17.6 

 

x1 < 6 

Tab 8.12 

Tab 8.11 

x2 ≥ 21 

Tab 8.14(b) 

Tabe 8.12 

Tab 8.11 

x2 ≥ 23 

Tab 8.14(d) 

Tab 8.13 

 
x1 6 10 15 7 16 

x2 10 27 23 12 27 

y 13.9 17.8 23.1 43.0 17.6 
 

Table 8.13: Data for regression tree 

 

Figure 8.11: Part of a regression tree for Table 8.11 

 

 
and one specified by x2 23. The split data are given in Table 8.14(a) - (d). This gives us 

the tree in Figure 8.12. 

 
 

Figure 8.12: Part of regression tree for Table 8.11 

 

 
Step 3.We  next make the nodes specified by Table 8.14(a), . . . , Tab  8.14(d) into leaf nodes. In 

each of these leaf nodes, we write the average of the values in the corresponding table (this 
is a standard procedure).  For, example, at Table 8.14(a), we write  1   10.1 14.9 12.5. 
Then we get Figure 8.13. 

 
 

(a) (b) 

 

(c) (d) 

Table 8.14: Data for regression tree 

x1 ≥ 6 

Tab 8.13 

x1 ≥ 6 

x2 < 21 

Tab 8.14(a) 

x2 < 23 

Tab 8.14(c) 
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= 
∈ 

Σ 

12.5 13.17 28.45 19.5 

  x1 < 6   x1 ≥ 6  

    x2 < 21  x2 ≥ 21   x2 < 23  x2 ≥ 23  

 

Figure 8.13: A regression tree for Table 8.11 

 

 
Step 4.Figure 8.13 is the final raw regression tree for predicting the values of y based on the data 

in Table 8.11. 

 
 An algorithm for constructing regression trees 

Starting with a learning sample, three elements are necessary to determine a regression tree: 

1.A way to select a split at every intermediate node 

2.A rule for determining when a node is terminal 

3.A rule for assigning a value for the output variable to every terminal node 
 

Notations 

 

 

 

 

 

 

 

 

 

 

 

We have 

 

x1, x2, . . . , xn : The input variables 

N : Number of samples in the data set 

y1, y2, . . . , yN   :   The values of the output variables 

T : A tree 

c : A leaf of T 

nc : Number of data elements in the leaf c 

C : The set of indices of data elements which 

are in the leaf c 

mc : The mean of the values of y which are in 

the leaf c 

ST : Sum of squares of errors in T 

 1 
mc 

n 
yi 

ST = 
c i C 

Σ Σ(yi − mc)2
 

 
Algorithm 

c∈leaves(T )  i∈C 

Step 1. Start with a single node containing all data points. Calculate mc and ST . 

Step 1. If all the points in the node have the same value for all the independent variables, stop. 

Step 1. Otherwise, search over all binary splits of all variables for the one which will reduce ST as 

much as possible. 
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= 
∈ 

< ≥ 

= 817.669 

∈ ∈(   

) 

(   ) = { } 

∈ ∈(    ) 

= 

∈ 

5 

= Σ (yi − mc )
2 + Σ (yi − mc )

2
 

Σ 

 1 

= 12.9 

 

(a) If the largest decrease in ST would be less than some threshold δ, or one of the 

resulting nodes would contain less than q points, stop and if c is a node where we 

have stopped, then assign the value mc to the node. 

(b) Otherwise, take that split, creating two new nodes. 

Step 1. In each new node, go back to Step 1. 

 
Remarks 

1. We have seen entropy and information defined for discrete variables. We can define them for 

continuous variables also. But in the case of regression trees, it is more common to use the 

sum of squares. The above algorithm is based on sum of squares of errors. 

2. The CART algorithm mentioned below searches every distinct value of every predictor vari- 

able to find the predictor variable and split value which will reduce ST as much as possible. 

3. In the above algorithm, we have given the simplest criteria for stopping growing of trees. 

More sophisticated criteria which produce much less error have been developed. 

 
 Example 

Consider the data given in Table 8.11. 

1. Computation of ST for the entire data set. Initially, there is only one node. So, we have: 

 1 
mc 

n 
yi 

 

c c C 

= 
10 

(10.1 + 15.3 + … + 14.9) 

17.99 

ST = Σ Σ(yi − mc)2
 

c leaves T i C 

= (10.1 − 17.99)2 + (15.3 − 17.99)2 + … + (14.9 − 17.99)2
 

2. As suggested in the remarks above, we have to search every distinct value of x1 and x2 to find 
the predictor variable and split value which will reduce ST as much as possible. 

3. Let us consider the value 6 of x1. This splits the data set into two parts c1 and c2. Let c1 be 

the part defined by x1   6 and c2 the part defined by x1    6. S1 is given in Table 8.12 and S2  

by Table 8.13.Now 

leaves T c1, c2  . 

Let T1 be the tree corresponding to this partition. Then 

ST1  = Σ Σ(yi − mc) 
2 

c  leaves  T1     i C 
 

 
 

mc1 

 
i C1 

1 
n 

1 
 
 

Σ yi 

 

 

i∈C2 

c1  i∈C1 

= 
1 

(10.1 + 15.3 + 11.5 + 12.7 + 14.9) 

2 
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= 

= 23.08 
5 

[( 2

 213.9 − 23.08) + … + 
(17.6 − 23.08) ] 

− = − = 

Σ 

 

 
mc2 

  1  
n 

yi 

 
 
 

 
ST1 

c2  i∈C2 

= 
1 

(13.9 + 17.8 + 23.1 + 43.0 + 17.6) 

= [(10.1 − 12.9)2 + … + (14.9 − 12.9)2]+ 

= 558.588 

The reduction in sum of squares of errors is 

ST ST1 817.669   558.588 259.081. 

 
4. In this way, we have compute the reduction in the sum of squares of errors corresponding to 

all other values of x1 and each of the values of x2 and choose the one for which the reduction 

is maximum. 

5. The process has be continued. (Software package may be required to complete the problem.) 

 
 CART algorithm 

We have seen how decision trees can be used to create a model that predicts the value of a target (or 

dependent variable) based on the values of several input or independent variables. 

The CART, or Classification And Regression Trees methodology, was introduced in 1984 by Leo 

Breiman, Jerome Friedman, Richard Olshen and Charles Stone as an umbrella term to refer to the 

following types of decision trees: 

• Classification trees where the target variable is categorical and the tree is used to identify the 

“class” within which a target variable would likely fall into. 

• Regression trees where the target variable is continuous and tree is used to predict it’s value. 

The main elements of CART are: 

• Rules for splitting data at a node based on the value of one variable 

• Stopping rules for deciding when a branch is terminal and can be split no more 

• A prediction for the target variable in each terminal node 

 
 Other decision tree  algorithms 

 The C4.5 algorithm 

The C4.5 algorithm is an algorithm developed by Ross Quinlan as an improvement of the ID3 

algorithm. The following are some of the improvements incorporated in C4.5. 

• Handling both continuous and discrete attributes 

• Handling training data with missing attribute values 

• Handling attributes with differing costs 

• Pruning trees after creation 
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 The C5.0 algorithm 

The C5.0 algorithm represents a further improvement on the C4.5 algorithm. This was also devel- 

oped by Ross Quinlan. 

• Speed - C5.0 is significantly faster than C4.5. 

• Memory usage - C5.0 is more memory efficient than C4.5. 

• C5.0 gets similar results to C4.5 with considerably smaller decision trees. 

The C5.0 algorithm is one of the most well-known implementations of the the decision tree 

algorithm. The source code for a single-threaded version of the algorithm is publicly available,  

and it has been incorporated into programs such as R. The C5.0 algorithm has become the industry 

standard to produce decision trees. 

 
 Issues in decision tree learning 

In thie next feww sections, we discuss some of the practical issues in learning decision trees. 

 
 Avoiding overfitting of data 

When we construct a decision tree, the various branches are grown (that is, sub-branches are con- 

structed) just deeply enough to perfectly classify the training examples. This leads to difficulties 

when there is noise in the data or when the number of training examples are too small. In these 

cases the algorithm can produce trees that overfit the training examples. 

 
Definition 

We say that a hypothesis overfits the training examples if some other hypothesis that fits the train- 

ing examples less well actually performs better over the entire distribution of instances, including 

instances beyond the training set. 

 
Impact of overfitting 

Figure 8.14 illustrates the impact of overfitting in a typical decision tree learning. From the figure, 

we can see that the accuracy of the tree over training examples increases monotonically whereas the 

accuracy measured over independent test samples first increases then decreases. 

 
 Approaches to avoiding overfitting 

The main approach to avoid overfitting is pruning.   Pruning is a technique that reduces the size   

of decision trees by removing sections of the tree that provide little power to classify instances. 

Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by 

the reduction of overfitting. 

• We may apply pruning earlier, that is, before it reaches the point where it perfectly classifies 

the training data. 

• We may allow the tree to overfit the data, and then post-prune the true. 

Now there is the problem of what criterion is to be used to determine the correct final tree  

size. One commonly used criterion is to use a separate set of examples, distinct from the training 

examples, to evaluate the utility of post-pruning nodes from the tree. 
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Figure 8.14: Impact of overfitting in decision tree learning 

 
 

Case Temperature Headache Nausea Decision (Flue) 

1 high ? no yes 

2 very high yes no yes 

3 ? no no no 

4 high yes yes yes 

5 high ? yes no 

6 normal yes no no 

7 normal no yes no 

8 ? yes ? yes 
 

Table 8.15: A dataset with missing attribute values 

 

 
 Reduced error pruning 

In reduced-error pruning, we consider each of the decision tress to be a candidate for pruning. Prun- 

ing a decision node consists of removing the subtree rooted at that node, making it a leaf node, and 

assigning it the most common classification of the training examples affiliated to that node. Nodes 

are removed only if the resulting pruned tree performs no worse than the original over validation set. 

Nodes are pruned iteratively, always choosing the node whose removal most increases the accuracy 

over the validation set. Pruning of nodes is continued until further pruning decreases the accuracy 

over the validation set. 

 
 Problem of missing attributes 

Table 8.15 shows a dataset with missing attribute values. the missing values are indicated by “?”s. 

The following are some of the methods used to handle the problem of missing attributes. 

• Deleting cases with missing attribute values 

• Replacing a missing attribute value by the most common value of that attribute 
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2 + T T 

4 + F F 

6 − F T 

 

• Assigning all possible values to the missing attribute value 

• Replacing a missing attribute value by the mean for numerical attributes 

• Assigning to a missing attribute value the corresponding value taken from the closest t cases, 

or replacing a missing attribute value by a new value 

 
 

 Sample questions 

(a) Short answer questions 

1. Explain the concept of a decision tree with an example. 

2.What are the different types of decision trees? 

3. Define the entropy of a dataset. 

4. Write a formula to compute the entropy of a two-class dataset. 

5.Define information gain and Gini index. 

6. Give the names of five different decision-tree algorithms. 

7. Can decision tree be used for regression? If yes, explain how. If no, explain why. 

8.What is the difference between classification and regression trees? 

(b) Long answer questions 

1. Explain classification tree using an example. 

2.Consider the following set of training examples: 

Instance Classification a1 a2 
 

1 + T T 

3 − T F 

  5 − F T  

(a) What is the entropy of this collection of training examples with respect to the target 

function “classification”? 

(b) What is the information gain of a2 relative to these training examples? 

3.Explain the ID3 algorithm for learning decision trees. 

4.Explain CART algorithm. 

5.What are issues in decision tree learning? How are they overcome? 

6.Describe an algorithm to construct regression trees. 

7. What do you mean by information gain and entropy? How is it used to build the decision 

trees? Illustrate using an example. 

8. Use ID3 algorithm to construct a decision tree for the data in the following table. 
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Instance no. Class label x1 x2 

1 1 T T 

2 1 T T 

3 0 T F 

4 1 F F 

5 0 F T 

6 0 F T 
 

9. Use ID3 algorithm to construct a decision tree for the data in the following table. 

 

Gender Car ownership Travel cost Income level Class 

(mode of transportation) 

Male 0 Cheap Low Bus 

Male 1 Cheap Medium Bus 

Female 1 Cheap Medium Train 

Female 0 Cheap Low Bus 

Male 1 Cheap Medium Bus 

Male 0 Standard Medium Train 

Female 1 Standard Medium Train 

Female 1 Expensive High Car 

Male 2 Expensive Medium Car 

Female 2 Expensive High Car 

10. Use ID3 algorithm to construct a decision tree for the data in the following table. 

 

Age Competition Type Class (profit) 

Old Yes Software Down 

Old No Software Down 

Old No Hardware Down 

Mid Yes Software Down 

Mid Yes Hardware Down 

Mid No Hardware Up 

Mid No Software Up 

New Yes Software Up 

New No Hardware Up 

New No Software Up 

11. Construct a decision tree for the following data. 
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Class label (risk) Collateral Income Debt Credit history 

high none low high bad 

high none middle high unknown 

moderate none middle low unknown 

high none low low unknown 

low none upper low unknown 

low adequate upper low unknown 

high none low low bad 

moderate adequate upper low bad 

low none upper low good 

low adequate upper high good 

high none low high good 

moderate none middle high good 

low none upper high good 

high none middle high bad 



 

 

 

 

 

 

 

 

 

 

 

Neural networks 

 
 Introduction 

An Artificial Neural Network (ANN) models the relationship between a set of input signals and an 

output signal using a model derived from our understanding of how a biological brain responds to 

stimuli from sensory inputs. Just as a brain uses a network of interconnected cells called neurons 

to create a massive parallel processor, ANN uses a network of artificial neurons or nodes to solve 

learning problems. 

 
 Biological motivation 

Let us examine how a biological neuron functions. Figure 9.2 gives a schematic representation of 

the functioning of a biological neuron. 

In the cell, the incoming signals are received by the cell’s dendrites through a biochemical pro- 

cess. The process allows the impulse to be weighted according to its relative importance or fre- 

quency. As the cell body begins accumulating the incoming signals, a threshold is reached at which 

the cell fires and the output signal is transmitted via an electrochemical process down the axon. At 

the axon’s terminals, the electric signal is again processed as a chemical signal to be passed to the 

neighboring neurons across a tiny gap known as a synapse.1 

Biological learning systems are built of very complex webs of interconnected neurons. The hu- 
man brain has an interconnected network of approximately 1011 neurons, each connected, on an 
average, to 104 other neurons. Even though the neuron switching speeds are much slower than than 

1Neuron. (2018, February 15). In Wikipedia, The Free Encyclopedia. Retrieved 01:44, February 23, 2018. 

 

 

 

Figure 9.1: Anatomy of a neuron 
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Figure 9.2: Flow of signals in a biological neuron 

 

 
computer switching speeds, we are able to take complex decisions relatively quickly. Because of 

this, it is believed that the information processing capabilities of biological neural systems is a con- 

sequence of the ability of such systems to carry out a huge number of parallel processes distributed 

over many neurons. The developments in ANN systems are motivated by the desire to implement 

this kind of highly parallel computation using distributed representations. 

 
 Artificial neurons 

Definition 

An artificial neuron is a mathematical function conceived as a model of biological neurons. Artificial 

neurons are elementary units in an artificial neural network. The artificial neuron receives one or 

more inputs (representing excitatory postsynaptic potentials and inhibitory postsynaptic potentials 

at neural dendrites) and sums them to produce an output. Each input is separately weighted, and the 

sum is passed through a function known as an activation function or transfer function. 

 
Schematic representation of an artificial neuron 

The diagram shown in Figure ?? gives a schematic representation of a model of an artificial neuron. 

The notations in the diagram have the following meanings: 

 

 

 

 

 

 

 

y = f 
 

 

 

 

⎞
Σ wixi

⎞

J
 

 
 
 
 

Figure 9.3: Schematic representation of an artificial neuron 

 

x , x , . . . x input signals 

w1, w2, . . . wn ∶ weights associated with input signals 

  Output (y)  



113 
 

 

 

y ∶ output signal 

=    ( Σ )i  i 

x0 ∶ input signal taking the constant value 1 

  x0 = 1 

x1 

x2 

   

w0 

w1 

w2 Output (y) 

. . . 
wn 

y = f w 
ƒ n 

⎞ i=0 
Σ i i x 

⎞ 

J 

xn 

 

 

w0 weight associated with x0 (called bias) 

Σ ∶ indicates summation of input signals 

f ∶ function which produces the output 

The function f can be expressed in the following form: 

 

 

 
Remarks 

 

n 

y f w x (9.1) 
i=0 

The small circles in the schematic representation of the artificial neuron shown in Figure 9.3 are 

called the nodes of the neuron. The circles on the left side which receives the values of x0, x1, . . . , xn 

are called the input nodes and the circle on the right side which outputs the value of y is called 

output node. The squares represent the processes that are taking place before the result is outputted. 

They need not be explicitly shown in the schematic representation. Figure 9.4 shows a simplified 

representation of an artificial neuron. 

 

 

Figure 9.4: Simplified representation of an artificial neuron 

 

 
 

 Activation function 

 Definition 

In an artificial neural network, the function which takes the incoming signals as input and produces 

the output signal is known as the activation function. 

 
Remark 

Eq.(9.1) represents the activation function of the ANN model shown in Figure ??. 

 
 Some simple activation functions 

The following are some of the simple activation functions. 
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1 

f (x) 

ı›− ≤ 

f ( 
ı

 ≥
x) = { 
ı› < 

r 

1 + xe 

1 if x 0 

The graph of this function is shown in Figure 9.5. 

 

1. Threshold activation function 

The threshold activation function is defined by 

f (x) = 

r
ı
{
ı

 

 
1 if x > 0 

 
 
 
 

 

x 
 
 
 

 
Figure 9.5: Threshold activation function 

 

 
2. Unit step functions 

Sometimes, the threshold activation function is also defined as a unit step function in which case it 

is called a unit-step activation function. This is defined as follows: 

1 if x 0 

0 if x 0 

The graph of this function is shown in Figure 9.6. 

 

 

 
 

x 
 
 
 

 
Figure 9.6: Unit step activation function 

 

 
3. Sigmoid activation function (logistic function) 

One of the must commonly used activation functions is the sigmoid activation function. It is defined 

as follows: 

f (x) = 
1 

−
 

 

 

 

 

x 
0 

Figure 9.7: The sigmoid activation function 

  1  

0 

  −1  

  1  

0 

−1 

The graph of the function is shown in Figure 9.7. 
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(  ) = + 

f (x) = {
ı

mx + c if xmin ≤ x ≤ xmax 

√ 
− ( − )     1  

 

4. Linear activation function 

The linear activation function is defined by 

F  x mx   c. 
 

This defines a straight line in the xy-plane. 

 

 

 
 

x 

 
 
 

 
Figure 9.8: Linear activation function 

 

 
5. Piecewise (or, saturated) linear activation function 
This is defined by 

r

ı
0 if x < xmin 

ı›
0 if x > xmax 

1    

 

0 
x
 

   −1 

 

Figure 9.9: Piecewise linear activation function 

 

 

6. Gaussian activation function 

This is defined by  
f (x) =  e 

 
 

 

 
x µ 2 

 
 

2σ2 . 
 
 
 
 
 

x 
 
 
 

 
Figure 9.10: Gaussian activation function 
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0 
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1 

0 

−1 

σ 2π 
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f (x) = 
e + e 

ex − e−x 

x − x 
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1 

0 

−1 

… … 

ı›− + + … + ≤ 

  x0 = 1 

x1 

 
 

    
x2 

w0 

w1 

w2 
∑ 

Output (y) 
  

. . . 
w n 

i=0 
Σ 
n 

wixi 
y = 

ı Σ 

ı 
› − 

1   if wixi > 0 
n 

1 otherwise 

i= 0 

xn 

 

7. Hyperbolic tangential activation function 

This is defined by 
 

 

 

 

 

 

x 
 

 
 

 
Figure 9.11: Hyperbolic tangent activation function 

 

 
 Perceptron 

The perceptron is a special type of artificial neuron in which thee activation function has a special 

form. 

 
 Definition 

A perceptron is an artificial neuron in which the activation function is the threshold function. 

Consider an artificial neuron having x1, x2, , xn as the input signals and w1, w2, , wn as the 
associated weights. Let w0 be some constant. The neuron is called a perceptron if the output of the 
neuron is given by the following function: 

o(x1, x2, . . . , xn) = 

r

{
ı
 1 if w0 + w1x1 + … + wnxn > 0 

1 if w0 w1x1 wnxn 0 

Figure 9.12 shows the schematic representation of a perceptron. 
 

Figure 9.12: Schematic representation of a perceptrn 
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− 

sum w x + … + w x  in order for the neuron to output a “1”.1  

1 n n 

∑ 

ı›− 

w0 = −0.8 

=  

x2 

1 otherwise 

 

Remarks 

1. The quantity −w0 can be looked upon as a “threshold” that should be crossed by the weighted 

 Representations of boolean functions by perceptrons 

In this section we examine whether simple boolean functions like x1 AND x2 can be represented by 

perceptrons. To be consistent with the conventions in the definition of a perceptron we assume that 

the values 1 and 1 represent the boolean constants “false” and “true” respectively. 

 
 Representation of x1 AND x2 

Let x1 and x2 be two boolean variables. Then the boolean function x1 AND x2 is represented by 
Table 9.1. It can be easily verified that the perceptron shown in Figure 9.13 represents the function 

 

x1 x2 x1 AND x2 

−1 

−1 

1 

1 

−1 

1 

−1 

1 

−1 

−1 

−1 

1 

Table 9.1: The boolean function x1 AND x2 

 
x1 AND x2. 

  x0 = 1 
 

 
 

     w1 0.5 
x1   

r
ı

 
  

Output (y) 

   w  = 0.5 
Σ wixi 

y = 
ı
{
ı

 
 
 
 

1 if Σ wixi > 0 
 

3 i=0 

ı− 
i=0 

Figure 9.13: Representation of x1 AND x2 by a perceptron 

In the perceptron shown in Figure 9.13, the output is given by 

y = 

r
ıı
{ 

 
 

1 if Σ wixi > 0 
ı− 

i=0 

= 

ı›
r
ı
{
ı

 

1 otherwise 

1 if − 0.8 + 0.5x1 + 0.5x2 > 0 

1 otherwise 

 
Representations of OR, NAND and NOR 

The functions x1 OR x2, x1 NAND x2 and x1 NOR x2 can also be represented by perceptrons. Table 

9.2 shows the values to be assigned to the weights w0, w1, w2 for getting these boolean functions. 

3 

3 3 

ı› 
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+ + 

xj = (xj0, xj1, . . . , xjn) : The n-dimensional input vector 

( ) 

= ( ) 

 
Boolean function w0 w1 w2 

x1 AND x2 

x1 OR x2 

x1 NAND x2 

x1 NOR x2 

−0.8 

−0.3 

0.8 

0.3 

0.5 

0.5 

−0.5 

−0.5 

0.5 

0.5 

−0.5 

−0.5 
 

Table 9.2: Representations of boolean functions by perceptrons 

 

 
Remarks 

Not all boolean functions can be represented by perceptrons. For example, the boolean function  

x1 XOR x2 cannot be represented by a perceptron.  This means that we cannot assign values to  

w0, w1, w2 such that the expression w0  w1x1   w2x2 takes the values of x1 XOR x2, and that this 

is the case can be easily verified also. 

 
 Learning a perceptron 

By “learning a perceptron” we mean the process of assigning values to the weights and the thresh- 

old such that the perceptron produces correct output for each of the given training examples. The 

following are two algorithms to solve this learning problem: 

 
 Perceptron learning algorithm 

Definitions 

In the algorithm, we use the following notations: 

n : Number of input variables 

y f z : Output from the perceptron for an input 

vector z 

D = {(x1, d1), . . . , (xs, ds)} : Training set of s samples 

dj : Desired output value of the perceptron for 

the input xj 

xji : Value of the i-th feature of the j-th training 

input vector 

xj0 : 1 

wi : Weight of the i-th input variable 

wi t : Weight i at the t-th iteration 

 
Algorithm 

Step 1.Initialize the weights and the threshold. Weights may be initialized to 0 or to a small 

random value. 

Step 2.For each example j in the training set D, perform the following steps over the input xj 

and desired output dj: 

a)Calculate the actual output: 

yj(t) = f [w0(t)xj0 + w1(t)xj1 + w2(t)xj2 + … + wn(t)xjn] 
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≤ ≤ 

− 

= + + … + 

s j 
Step 3.Step 2 is repeated until the iteration error 1  ∑

s
=1 |dj − yj(t)| is less than a user-specified 

 

b)Update the weights: 

wi(t + 1) = wi(t) + (dj − yj(t))xji 
 

 

 

error threshold γ, or a predetermined number of iterations have been completed, where s 

is again the size of the sample set. 

 
Remarks 

The above algorithm can be applied only if the training examples are linearly separable. 

 
 Artificial neural networks 

An artificial neural network (ANN) is a computing system inspired by the biological neural networks 

that constitute animal brains. An ANN is based on a collection of connected units called artificial 

neurons. Each connection between artificial neurons can transmit a signal from one to another. The 

artificial neuron that receives the signal can process it and then signal artificial neurons connected to 

it. 

each connection between artificial neurons has a weight attached to it that get adjusted as learning 

proceeds. Artificial neurons may have a threshold such that only if the aggregate signal crosses that 

threshold the signal is sent. Artificial neurons are organized in layers. Different layers may perform 

different kinds of transformations on their inputs. Signals travel from the input layer to the output 

layer, possibly after traversing the layers multiple times. 

 
 Characteristics of an ANN 

An ANN can be defined and implemented in several different ways. The way the following charac- 

teristics are defined determines a particular variant of an ANN. 

• The activation function 

This function defines how a neuron’s combined input signals are transformed into a single 

output signal to be broadcasted further in the network. 

• The network topology (or architecture) 

This describes the number of neurons in the model as well as the number of layers and manner 

in which they are connected. 

• The training algorithm 

This algorithm specifies how connection weights are set in order to inhibit or excite neurons 

in proportion to the input signal. 

 
 Activation functions 

The activation function is the mechanism by which the artificial neuron processes incoming informa- 

tion and passes it throughout the network. Just as the artificial neuron is modeled after the biological 

version, so is the activation function modeled after nature’s design. 

Let x1, x2, . . . , xn be the input signals, w1, w2, . . . , wn be the associated weights and w0 the 
threshold. Let 

x w0 w1x1 wnxn. 

The activation function is some function of x. Some of the simplest and commonly used activations 

are given in Section 9.4. 

for all features 0 i n. 
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 Network topology 

By “network topology” we mean the patterns and structures in the collection of interconnected 

nodes. The topology determines the complexity of tasks that can be learned by the network. Gener- 

ally, larger and more complex networks are capable of identifying more subtle patterns and complex 

decision boundaries. However, the power of a network is not only a function of the network size, 

but also the way units are arranged. 

Different forms of forms of network architecture can be differentiated by the following charac- 

teristics: 

• The number of layers 

• Whether information in the network is allowed to travel backward 

• The number of nodes within each layer of the network 

 
1. The number of layers 

In an ANN, the input nodes are those nodes which receive unprocessed signals directly from the 

input data. The output nodes (there may be more than one) are those nodes which generate the final 

predicted values. A hidden node is a node that processes the signals from the input nodes (or other 

such nodes) prior to reaching the output nodes. 

The nodes are arranged in layers. The set of nodes which receive the unprocessed signals from 

the input data constitute the first layer of nodes. The set of hidden nodes which receive the outputs 

from the nodes in the first layer of nodes constitute the second layer of nodes. In a similar way we 

can define the third, fourth, etc. layers. Figure 9.14 shows an ANN with only one layer of nodes. 

Figure 9.15 shows an ANN with two layers. 

 

Input layer Output layer 

 

 

 

 

 

 

 

 
 

Figure 9.14: An ANN with only one layer 

 

 

2. The direction of information travel 

Networks in which the input signal is fed continuously in one direction from connection to connec- 

tion until it reaches the output layer are called feedforward networks. The network shown in Figure 

9.15 is a feedforward network. 

Networks which allows signals to travel in both directions using loops are called recurrent net- 

works (or, feedback networks). 

In spite of their potential,  recurrent networks are still largely theoretical and are rarely used   

in practice. On the other hand, feedforward networks have been extensively applied to real-world 

problems. In fact, the multilayer feedforward network, sometimes called the Multilayer Perceptron 

(MLP), is the de facto standard ANN topology. If someone mentions that they are fitting a neural 

network, they are most likely referring to a MLP. 
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Figure 9.15: An ANN with two layers 

 

 
3. The number of nodes in each layer 

The number of input nodes is predetermined by the number of features in the input data. Similarly, 

the number of output nodes is predetermined by the number of outcomes to be modeled or the 

number of class levels in the outcome. However, the number of hidden nodes is left to the user to 

decide prior to training the model. Unfortunately, there is no reliable rule to determine the number 

of neurons in the hidden layer. The appropriate number depends on the number of input nodes, the 

amount of training data, the amount of noisy data, and the complexity of the learning task, among 

many other factors. 

 
 The training algorithm 

There are two commonly used algorithms for learning a single perceptron, namely, the perceptron 

rule and the delta rule. The former is used when the training data set is linearly separable and the 

latter when the training data set is not linearly separable. 

The algorithm which is now commonly used to train an ANN is known simply as backpropaga- 

tion. 

 
 The cost function 

Definition 

In a machine learning algorithm, the cost function is a function that measures how well the algorithm 

maps the target function that it is trying to guess or a function that determines how well the algorithm 

performs in an optimization problem. 

 
Remaarks 

The cost function is also called the loss function, the objective function, the scoring function, or the 

error function. 

 
Example 

Let y be the the output variable. Let y1, . . . , yn be the actual values of y in n examples and ŷ1, . . . , ŷn 

be the values predicted by an algorithm. 

x0 

x1 

x2 Output 

     …  

xn 



122 
 

 

 

= Σ( −  )i
  i 

= Σ( 

 

 
 

Input 

layer 

Hidden 

layer 

Output 

layer 

 

 

(a) Network with one hidden layer and two output nodes 

 

 

Input 

layer 

 

Hidden 

layer 1 

 

Hidden 

layer 2 

 

Output 

layer 

 

 

(b) Network with two hidden layers 

Figure 9.16: Examples of different topologies of networks 

 

 
1. The sum of squares of the differences between the predicted and actual values of y, denoted 

by SSE and defined below, can be taken as a cost function for the algorithm. 
 

n 

SSE y ŷ    2. 
i=1 

2. The mean of the sum of squares of the differences between the predicted and actual values of 

y, denoted by MSE and defined below, can be taken as a cost function for the algorithm. 

 

 
 Backpropagation 

MSE 
1 n 

y 
n i=1 

− ŷi)
2. 

 

The backpropagation algorithm was discovered in 1985-86. Here is an outline of the algorithm. 

x0 

x1 

x2 Output 

     …  

xn 

x0 

 
x1 Output 1 

x2 

 
     …  Output 2 

xn 

i 
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Figure 9.17: A simplified model of the error surface showing the direction of gradient 

 

 

 Outline of the algorithm 

1. Initially the weights are assigned at random. 

2. Then the algorithm iterates through many cycles of two processes until a stopping criterion is 

reached. Each cycle is known as an epoch. Each epoch includes: 

(a) A forward phase in which the neurons are activated in sequence from the input layer to 

the output layer, applying each neuron’s weights and activation function along the way. 

Upon reaching the final layer, an output signal is produced. 

(b) A backward phase in which the network’s output signal resulting from the forward phase 

is compared to the true target value in the training data. The difference between the 

network’s output signal and the true value results in an error that is propagated backwards 

in the network to modify the connection weights between neurons and reduce future 

errors. 

3. The technique used to determine how much a weight should be changed is known as gradient 

descent method. At every stage of the computation, the error is a function of the weights. If 

we plot the error against the wights, we get a higher dimensional analog of something like a 

curve or surface. At any point on this surface, the gradient suggests how steeply the error will 

be reduced or increased for a change in the weight. The algorithm will attempt to change the 

weights that result in the greatest reduction in error (see Figure 9.17). 

 

 Illustrative example 

To illustrate the various steps in the backpropagation algorithm, we consider a small network with 

two inputs, two outputs and one hidden layer as shown in Figure 9.18.2 

We assume that there are two observations: 
 

Sample Input 1 Input 2 Output target 1 Output target 2 

i1 i2 T1 T2 

1 0.05 0.10 0.01 0.99 

2 0.25 0.18 0.23 0.79 

We are required to estimate the optimal values of the weights w1, . . . , w8, b1, b2. Here b1 and b2 are 
the biases. For simplicity, we have assigned the same biases to both nodes in the same layer. 

Step 1.We initialise the connection weights to small random values. These initial weights are 

shown in Figure 9.19. 

2Thanks to https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation- 

example/ for this example. 



124 
 

 

 

= 
h
 = 

o
 

=  =  

1 + xe 

= 

f (0.3775)  

= 

f (0.3925)  

= 
+ − 

= 
+ − 

h1 

= 

( 1 × 1 + 2 × 2 + 1 × ) 

h2 

= 

( 3 × 1 + 4 × 2 + 2 × ) 

= 

=  

= 
2 

1 

1 

 

 
 

Figure 9.18: ANN for illustrating backpropagation algorithm 

 

i1 = .05 
 

w1     .15  

w3 = .25 

 

w5     .40  
1 

w7 .50 

 

T1 .01 
1 

 

i2 = .10 

   

w2     .20  

w4 = .30 

b1 = .35     

w6     .45  
h2 

w8 .55 

 
b3 = .60 

o 
T2 = .99 

1 b2 = .35 1 b4 = .60 

 

Figure 9.19: ANN for illustrating backpropagation algorithm with initial values for weights 

 

 
Step 2.Present the first sample inputs and the corresponding output targets to the network. This is 

shown in Figure 9.19. 

Step 3.Pass the input values to the first layer (the layer with nodes h1 and h2). 

Step 4.We calculate the outputs from h1 and h2. We use the logistic activation function 

f (x) = 
1 

−  
. 

 

out f w i w i b 1 

= 

f (0.15 × 0.05 + 0.20 × 0.10 + 0.35 × 1) 

1 e 0.3775 

0.59327 

out f w i w i b 1 

= 

f (0.25 × 0.05 + 0.30 × 0.10 + 0.35 × 1) 

1 e 0.3925 

0.59689 

Input 1 w1 
h1 

w5 
o1 

Output 1 

w3 w7 

Input 2 
w2 w6 

Output 2 

w4 
h2 w o2 

8 

b1 b3 

  1  
b2 

  1  
b4 
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= 
1 + e−1.22492 

= 

f (1.10591)  

f (1.22492)  

= 

= 
+ − 

o1  

=    

(  5 × h1 
+   6 × h2 

+ 3 × ) 

o2  

=    

(  7 × h1 
+   8 × h2 

+ 4 × ) 

2 2 

w5 

= 

w5 + η × δo1 × outh1 

0.53075 

= 0.298371 

= 

+ × (− ) × 

+ 

= −0.13850 

0.03810 

3 

= 

3 + × o1 
× 

= 

0.45 + 0.5 × (−0.13850) × 0.59689 

7  

=    

7 +    ×  o2 
× h1 

w+ w η δ out 

rate. In the following we have taken η = 0.5. 

o1  = (  1 − o1 ) × o1  × (  − o1 ) 

o2  = (  2 − o2 ) × o2  × (  − o2 ) 

1 2 

1 

1 

0.40867 

 

Step 5.We repeat this process for every layer. We get the outputs from the nodes in the output 

layer as follows: 

out f w out w out b 1 

= 

f (0.40 × 0.59327 + 0.45 × 0.59689 + 0.60 × 1) 

1 e 1.10591 

0.75137 

out f w out w out b 1 

= 

f (0.50 × 0.59327 + 0.55 × 0.59689 + 0.60 × 1) 

0.77293 

The sum of the squares of the output errors is given by 

E = 
1 

(T  − out  )2 + 
1 

(T  − out  ) 
o1 o2 

= (0.01 − 0.75137)2 + (0.99 − 0.77293)2
 

Step 6.We begin backward phase. We adjust the weights.  We  first adjust the weights leading to 

the nodes o1 and o2 in the output layer and then the weights leading to the nodes h1 and h2 

in the hidden layer. The adjusted values of the weights w1, . . . , w8, b1, . . . , b4 are denoted 

by w1
+, . . . , w8

+, b+
1 , . . . , b+

4 .  The computations use a certain constant η called the learning 

(a) Computation of adjusted weights leading to o1 and o2: 

δ T out out 1 out 

= (0.01 − 0.75137) × 0.75137 × (1 − 0.75137) 

0.40   0.5 0.13850 0.59327 

0.35892 

w6
+ 

= 

w6 + η × δo1  × outh2 

b+ b η δ 1 

= 

0.60 + 0.5 × (−0.13850) × 1 

δ T out out 1 out 

= 

(0.99 − 0.77293) × 0.77293 × (1 − 0.77293) 

0.50 + 0.5 × 0.03810 × 0.59327 

2 
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w8 

= 

w8 + η × δo2 × outh2 

= 

0.60 + 0.5 × 0.03810 × 1 

0.14978 

0.34562 

0.24975 

0.34503 

= 

= 

+ × × 

0.00877 

0.00995 

1 

= 

1 + × h1 
× 

= 

0.20 + 0.5 × (−0.00877) × 0.10 

2 

= 

2 + × h2 
× 

= 

0.30 + 0.5 × (−0.00995) × 0.10 

1 

= 

1 + × h1 
× 1 w+ w η δ i 

3 

= 

3 + × h2 
× 1 w+ w η δ i 

= (   ×  +   ×  ) ×   × (   −   )h 

 o  5  o  7  h  h1  1  
   2     1   1 

= (   ×  +   ×  ) ×   × (   −   )h 

 o  6  o  8  h  h2  1  
   2     2   2 

w5  = w5
+,

+    

w6  = w6
+

+

, w7  = w
+ 

7
+, w8  =

+

w8
+
 

0.19956 

0.29950 

= 0.51130 

0.55 0.5 0.03810 0.59689 

0.56137 

b+
4 b4 + η × δo2  × 1 

0.61905 

(b) Computation of adjusted weights leading to h1 and h2: 

δ δ w δ w out 1 out 

= −

(−0.13850 × 0.40 + 0.03810 × 0.50) × 0.59327 × (1 − 0.59327) 

= 

0.15 + 0.5 × (−0.00877) × 0.05 

w2
+ 

= 

w2 + η × δh1  × i2 

b+ b η δ 1 

= 

0.35 + 0.5 × (−0.00877) × 1 

δ δ w δ w out 1 out 

= 

(

−

(−0.13850) × 0.45 + 0.03810 × 0.55) × 0.59689 × (1 − 0.59689) 

= 

0.25 + 0.5 × (−0.00995) × 0.05 

w4
+ 

= 

w4 + η × δh2  × i2 

b+ b η δ 1 

= 

0.35 + 0.5 × (−0.00995) × 1 

 

Step 7.Now we set: 

w1  = w1
+, w2  = w2

+, w3  = w3
+, w4  = w4

+
 

b1 = b1 , b2 = b2 , b3 = b3 , b4 = b4 

We choose the next sample input and the corresponding output targets to the network and 

repeat Steps 2 to 6. 

Step 8.The process in Step 7 is repeated until the root mean square of output errors is minimised. 

+ 
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Remarks 

1. The constant 1 is included in the expression for E so that the exponent is cancelled when we 
2 

differentiate it. The result has been multiplied by a learning rate η 

matter that we introduce the constant 1 in E. 

0.5 and so it doesnâĂ Ź t 

2. In the above computations, the method used to calculate the adjusted weights is known as the 

delta rule. 

3. The rule for computing the adjusted weights can be succinctly stated as follows. Let w be a 

weight and w its adjusted weight.  Let E be the the total sum of squares of errors.  Then w 

is computed by 

w w η
 ∂E 

. 
∂w 

Here ∂E is the gradient of E with respect to w; that is, the rate at which E is changing with 

respect to w. (The set of all such gradients specifies the direction in which E is decreasing 

the most rapidly, that is, the direction of quickest descent.) For example, it can be shown that 

∂E 
∂w5 

= −(T1 − outo1 ) × outo1 × (1 − outo1 ) × outh1 

 
 

and so 

= −δo1 × outh1 

w5
+ = w5 

 
 

η 
∂E 

∂w 

 
 

 The algorithm 

= w5 + η × δo1 × outh1 

The backpropagation algorithm trains a given feed-forward multilayer neural network for a given set 

of input patterns with known classifications. When each entry of the sample set is presented to the 

network, the network examines its output response to the sample input pattern. The output response 

is then compared to the known and desired output and the error value is calculated. Based on the 

error, the connection weights are adjusted. The adjustments are based on the mean square error of 

the output response to the sample input and it is known as the delta learning rule. The set of these 

sample patterns are repeatedly presented to the network until the error value is minimized. 

 
Notations 

Figures 9.20 and 9.21 show the various notations used in the algorithm. 

M : Number of layers (excluding the input layer 

which is assigned the layer number 0) 

Nj : Number of neurons (nodes) in j-th layer 

X X  , X  , . . . , X : p-th training sample 

Tp Tp1, Tp2, . . . , TpNM : Known output corresponding to 

the p-th training sample 

Op Op1, Op2, . . . , OpNM : Actual output by the network corresponding to 

the p-th training sample 

Yji : Output from the i-th neuron in layer j 

Wjik : Connection weight from k-th neuron in 

layer  j 1 to i-th neuron in layer j 

δji : Error value associated with the i-th neuron in layer j 

5 



128 
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     … 
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Figure 9.20: Notations of backpropagation algorithm 

 

Y(j−1)1 

Y(j−1)2 Wji1 

Wji2 

Y(j−1)3 Wji3 
 

 

 

 

δij 

 

Yij  = f (∑
N

=
j−1  Y(  −  )  Wjik) 

 
Y(j−1)Nj−1 

. . . 
WjiNj−1 

 

Figure 9.21: Notations of backpropagation algorithm: The i-th node in layer j 

 

 
The algorithm 

Step 1.Initialize connection weights into small random values. 

Step 2.Present the pth sample input vector of pattern 

Xp Xp1, Xp2, ..., XpN0 

and the corresponding output target 

Tp = (Tp1, Tp2, ..., TpNM ) 

to the network. 

Step 3.Pass the input values to the first layer, layer 1.  For every input node i in layer 0, perform: 

Y0i Xpi. 

   
ij 
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= − 

(  ) = 
+ (− ) 
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( − ) 

= + 

Yji = f (∑
N

=
j−1  Y(  −  )  Wjik), 

k 1 j 1 k j 1 ki 

Step 4.For every neuron i in every layer j = 1, 2, ..., M , find the output from the neuron: 

 

 

where 

k 1 j 1 k 

  1  
f x 

1   exp x 
.
 

Step 5.Obtain output values. For every output node i in layer M , perform: 

Opi YMi. 

 
Step 6.Calculate error value δji for every neuron i in every layer in backward  order j M, M 

1, . . . , 2, 1, from output to input layer, followed by weight adjustments. For the output 

layer, the error value is: 

 

 
and for hidden layers: 

δMi = YMi(1 − YMi)(Tpi − YMi), 

δji = Yji(1 − Yji) ∑
N

=
j+1  δ(  +  )  W(  +  )   . 

The weight adjustment can be done for every connection from neuron k in layer j 1 to 

every neuron j in every layer i: 

Wj
+
ik Wjik ηδjiYji, 

where η represents weight adjustment factor (called the learning rate) normalized between 

0 and 1. 

Step  7.The actions in steps 2 through 6 will be repeated for every training sample pattern p, and 

repeated for these sets until the sum of the squares of output errors is minimized. 

 
 Introduction to deep learning 

 Definition 

A neural network with multiple hidden layers is called a Deep Neural Network (DNN) and the 

practice of training such network is referred to as deep learning. 

 
Remarks 

In the terminology “deep learning”, the term “deep” is a technical term. It refers to the number of 

layers in a neural network. A shallow network has one so-called hidden layer, and a deep network 

has more than one. Multiple hidden layers allow deep neural networks to learn features of the data 

in a so-called feature hierarchy, because simple features recombine from one layer to the next, to 

form more complex features. Networks with many layers pass input data (features) through more 

mathematical operations than networks with few layers, and are therefore more computationally 

intensive to train. Computational intensivity is one of the hallmarks of deep learning. 

Figure 9.22 shows a shallow neural network and Figure 9.23 shows a deep neural network with 

three hidden layers. 
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Figure 9.22: A shallow neural network 

 
 

 

Figure 9.23: A deep neural network with three hidden layers 

 

 
 Some applications 

Deep learning applications are used in industries from automated driving to medical devices. 

1. Automated driving: 

Automotive researchers are using deep learning to automatically detect objects such as stop 

signs and traffic lights. In addition, deep learning is used to detect pedestrians, which helps 

decrease accidents. 

2. Aerospace and defense: 

Deep learning is used to identify objects from satellites that locate areas of interest, and iden- 

tify safe or unsafe zones for troops. 

3. Medical research: 

Cancer researchers are using deep learning to automatically detect cancer cells. Teams at 

UCLA built an advanced microscope that yields a high-dimensional data set used to train a 

deep learning application to accurately identify cancer cells. 

4. Industrial automation: 

Deep learning is helping to improve worker safety around heavy machinery by automatically 

detecting when people or objects are within an unsafe distance of machines. 

5. Electronics: 
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Deep learning is being used in automated hearing and speech translation. For example, home 

assistance devices that respond to your voice and know your preferences are powered by deep 

learning applications. 

 
 

 Sample questions 

(a) Short answer questions 

1. Explain the biological motivation for the formulation of the concept of artificial neural net- 

works. 

2. With the aid of a diagram, explain the concept of an artificial neuron. 

3.What is an activation function in an artificial neuron? Give some examples. 

4.Define a perceptron. 

5.Is neural network supervised or unsupervised learning? Why? 

6.Is deep learning supervised or unsupervised? Why? 

7.What is the basic idea of the backpropagation algorithm? 

8.In the context of ANNs, what is meant by network topology? 

9.Explain the different types of layers in an ANN. 

10.What is the gradient descent method? How is used in the backpropagation algorithm? 

11.A neuron with 4 inputs has the weights 1, 2, 3, 4 and bias 0. The activation function is linear, 

say the function f x 2x. If the inputs are 4, 8, 5, 6, compute the output. Draw a diagram 

representing the neuron. 

 
(b) Long answer questions 

1. Design a two layer network of perceptrons to implement A XOR B. 

2.Explain the backpropagation algorithm. 

3. Describe the perceptron learning algorithm. 

4. What are the characteristics of an artificial neural networks. 

5. Explain the concept of deep learning. Give some real life problems where this concept has 

been successfully applied. 

6. Compute the output of the following neuron if the activation function is (i) the threshold 

function (ii) the sigmoid function (iii) the hyperbolic tangent function (assume the same bias 

0.5 for each node). 
 

x0 3.5 
 

     w0 = 0.89     

x1 = 2.9 w1 = −2.07 Output (y) 
 

 

x  = 1.2 
w2  = 0.08 
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= − 

w  = 35 

=2 

= −3 

=  =  

= .18 
1 

w = 

= 

 

7. Which of the boolean functions AND, OR, XOR (or none of these) is represented by the 

following network of perceptrons (with unit step function as the activation function)? 

   b1 0.5 
x1 

b3 == −1.5 

x2 

w 1 

     w1 = 1      

w 1 

w4 = −1 

b2 = −0.5 

  Output (y) 

b4 = 0.5 

8. Given the following network, compute the outputs from o1 and o2 (assume that the activation 

function is the sigmoid function). 

Input i1 = .25 w1 = .17 
h
 

 

w5 = .52 
o
 

  

 
    Output 1  

 

 

 

Input i2 = .30 

   

 
w2     .21  

w4 = .27 

b1 = .12     

 
w6     .61  

h2 
w8 .72 

 
b3 = .48 

 
    Output 2  

o2 

1 b2 = .24 1 b4 = .36 

 
 

9.(Assignment question) Given the following data, use ANN with one hidden layer, appropriate 

initial weights and biases to compute the optimal values of the weights. Perform one iteration 

of the forward and phases of the backpropagation algorithm for each samples. 
 

Sample Input 1 Input 2 Output target 1 Output target 2 

1 1.20 2.30 0.53 0.76 

2 0.23 0.37 1.17 2.09 

.55 7 3 w 

   

1 



 

 

 

Module 5 

Support vector machines 

 
We begin this chapter by illustrating the basic concepts and terminology of the theory of support 

vector machines by a simple example. We then introduce the necessary mathematical background, 

which is essentially an introduction to finite dimensional vector spaces, for describing the general 

concepts in the theory of support vector machines. The related algorithms without proofs are then 

presented. 

 
 An example 

 Problem statement 

Suppose we want to develop some criteria for determining the weather conditions under which tennis 

can be played. To simplify the matters it has been decided to use the measures of temperature and 

humidity as the critical parameters for the investigation. We have some data as given in Table 10.1 

regarding the values of the parameters and the decisions taken as to whether to play tennis or not. 

We are required to develop a criteria to know whether one would be playing tennis on a future date 

if we know the values of the temperature and humidity of that date in advance. 

 
 Discussion and solution 

We shall now see the various steps that lead to a solution of the problem using the ideas of support 

vector machines. 

 
 

temperature humidity play 
85 85 no 

60 70 yes 

80 90 no 

72 95 no 

68 80 yes 

74 73 yes 

69 70 yes 

75 85 no 

83 78 no 

Table 10.1: Example data with two class labels 
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correspond to the decision “yes” on playing tennis has been plotted as filled squares (.) and which 

+ − > 

( ) 

+ − < 

( ) 

 

1. Two-class data set 

This is our first observation regarding the data in Table 10.1. In Table 10.1, the data are classified 

based on the values of the variable “play”. This variable has only two values or labels, namely “yes” 

and ”no”. When there are only two class labels the data is said to be a “two-class data set”. So the 

data in Table 10.1 is a two-class data set. 

 
2. Scatter plot of the data 

Since there are only two features or parameters, we may plot the values of one of the parameters, say 

“temperature”, along the horizontal axis (that is, the x-axis) and the values of the other parameter 

“humidity”, along the vertical axis (that is, the y-axis). The data can be plotted in a coordinate plane 

to get a scatter plot of the data. Figure 10.1 shows the scatter plot. In the figure the points which 

 

correspond to the decision “no” has been marked as hollow circles (○). 
 

Figure 10.1: Scatter plot of data in Table 10.1 (filled circles represent “yes” and unfilled circles 

“no”) 

 

 

3. A separating line 

If we examine the plot in Figure 10.1, we can see that we can draw a straight line in the plane 

separating the two types of points in the sense that all points plotted as filled squares are on one side 

of the line and all points marked as hollow circles are on the other side of the line. Such a line is 

called a “separating line” for the data. Figure 10.2 shows a separating line for the data in Table 10.1. 

The equation of the separating line shown in Figure 10.2 is 

5x + 2y − 535 = 0. (10.1) 

It has the following property: 

• If the data point with values x′, y′ has the value “yes” for “play” (filled square), then 

5x′ 2y′ 535 0. (10.2) 

• If the data point with values x, y has the value “no” for “play” (hollow circle), then 

5x′ 2y′ 535 0. (10.3) 

If such a separating line exists for a given data then the data is said to be “linearly separable”. 

Thus the data in table 10.1 is linearly separable. However note that not all data are linearly separable. 
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Figure 10.2: Scatter plot of data in Table 10.1 with a separating line 

 

 
4. Several separating lines 

Apparently, the conditions given in Eqs. (10.2) and (10.3) may be used as the criteria to know 

whether one would be playing tennis on a future date if we know the values of the temperature  

and humidity of that date in advance. But there are several separating lines and the problem of 

determining which one to choose arises. Figure 10.3 shows two separating lines for the given data. 

 

Figure 10.3: Two separating lines for the data in Table 10.1 

 

 

4. Margin of a separating line 

To choose the “best” separating line, we introduce the concept of the margin of a separating line. 

Given a separating line for the data, we consider the perpendicular distances of the data points 

from the separating line. Th double of the shortest perpendicular distance is called the “margin of the 

separating line”. Figure ?? shows some of the perpendicular distances and the shortest perpendicular 

distance for the data in Table 10.1 and for the separating line given by Eq. (10.1). 

 
5. Maximal margin separating line 

The “best” separating line is the one with the maximum margin. 
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Figure 10.4: Shortest perpendicular distance of a separating line from data points 

 

 
The separating line with the maximum margin is called the “maximum margin line” or the “op- 

timal separating line”. This line is also called the “support vector machine” for the data in Table 

10.1. 

Unfortunately, finding the equation of the maximum margin line is not a trivial problem. Figure 

10.5 shows the maximum margin line for the data in Table 10.1. The equation of the maximum 

margin line can be shown to be 

7x + 6y − 995.5 = 0. (10.4) 

 

 
 

Figure 10.5: Maximum margin line for data in Table 10.1 

 

 
 

6. Support vectors 

The data points which are closest to the maximum margin line are called the “support vectors”. The 

support vectors are shown in Figure 10.6. 

 
7. The required criterion 

As per theory of support vector machines, the equation of the maximum margin line is used to 

devise a criterion for taking a decision on whether to play tennis or not. Let x′ and y′ be the values 



137 
 

 

 

 
 

 
 

Figure 10.6: Support vectors for data in Table 10.1 

 

 
of temperature and humidity on a given day. Then the decision as to whether play tennis on that day 

is “yes” if 

 
and “no” if 

7x + 6y − 995.5 < 0 

7x + 6y − 995.5 > 0. 
 

8. “Street” of maximum width separating “yes” points and “no” points 

Considering Figure 10.6, we may draw a line through the support vectors 1 and 2 parallel to the 

maximum margin line, and a line through support vector 3 parallel to the maximum margin line. 

The two lines are shown as dashed lines in Figure 10.7. The region between these two dashed lines 

can be thought of as a “road” or a “street” of maximum width that separates the “yes” data points 

and the “no” data points. 

 

 
 

 

Figure 10.7: Boundaries of “street” of maximum width separating “yes” points and “no” points in 

Table 10.1 
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9. Final comments 

i) Any line given an equation of the form 

ax + by + c = 0 

separates the coordinate plane into two halves.  One half consists of all points for which  

ax  by  c  0 and the other half consists of all points for which ax  by   c   0. Which half 

is which depends the signs of the coefficients a, b, c. 

ii) Figure 10.8 shows the plot of the maximum margin line produced using the R programming 

language. 

 
 

 

Figure 10.8: Plot of the maximum margin line of data in Table 10.1 produced by the R programming 

language 

 

 
iii) In the sections below, we generalise the concepts introduced above to data sets having more 

than two features. 

 
 Finite dimensional vector spaces 

In Section 10.1 we have geometrically examined in detail the concepts of the theory of support 

vector machines with an example having only two features. But, obviously, such a geometrical 

approach is infeasible if there are more than two features. In such cases we have to resort to formal 

algebraic/mathematical formalism to investigate the problem. The theory of what are known as 

“finite dimensional vector spaces” provides such a formalism. We present below the absolutely 

essential parts of this theory. Those who are interested in learning about the abstract concept of a 

vector space may refer to any well written book on linear algebra. 

 

 Definition 

We give the definition of a finite dimensional vector space here. We once again warn the reader 

that we are introducing the terms with reference to a very special case of a finite dimensional vector 
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( ) ˙ ˙ 
˙  

˙ = ( ) 

˙ 
˙ = ( )  ̇

˙ 
 ̇

( ) 

˙ = ( ) 

˙ + ˙ ˙ =̇    
+ 

˙ + ˙ +̇ 

˙ + =̇ 

L

˙
et ẋ =

˙ 
(x1, x2, . . . , 

˙
xn

+
)
˙
and ẏ  = (y1, y2, . . . , yn) be two n-dimensional vectors. The sum of 

Let ẋ
˙

= (x1, x2, . . . , xn) be any n-dimensional vector.  The negative of ẋ is a vector denoted 

Let n be a positive integer. Let ẋ, ẏ, ż  be arbitrary vectors in Rn and let α, β, γ be arbitrary scalars. 

 

space and that all the terms given below have more general meanings. 

 
Definition 

Let n be a positive integer. By a n-dimensional vector we mean an ordered n-tuple of real numbers 

of the form x1, x2, . . . , xn . We denote vectors by x, y, etc. In the vector x x1, x2, . . . , xn , the 

numbers x1, x2, . . . xn are called the coordinates or the components of x. In the following, we call 

real numbers as scalars. 

The set of all n-dimensional vectors with the operations of addition of vectors and multiplication 

of a vector by a scalar and with the definitions of the zero vector and the negative of a vector as 

defined below is a n-dimensional vector space. It is denoted by Rn. 

1. Addition of vectors 

 

x and y, denoted by x y, is defined by 

ẋ + ẏ  = (x1 + y1, x2 + y2, . . . , xn + yn). 
 

2. Multiplication by scalar 

Let α be a scalar and x x1, x2, . . . , xn be a n-dimensional vector. The product of x by α, 
denoted by αx, is defined by 

 

αx αx1, αx2, . . . , αxn . 
 

When we write the product of x by α, we always write the scalar α on the left side of the 

vector x as we have done above. 

3. The zero vector 

The n-dimensional vector 0, 0, . . . , 0 , which has all components equal to 0, is called the 

zero vector. It is also denoted by 0. From the context of the usage we can understand whether 

0 denotes the scalar 0 or the zero vector. 

4. Negative of a vector 
 

by −x and is defined by 

−˙ = (− − − )
 

We write ẋ + (−ẏ) as ẋ − ẏ. 

 Properties 

x x1, x2, . . . , xn . 

 

1. Closure under addition:   ẋ + ẏ  is also a n-dimensional vector. 

2. Commutativity:   x   y y x 

3. Associativity:   ẋ + (ẏ + ż) = (ẋ + ẏ) + ż   
˙ + (˙ + )̇ 

 
(˙ + ˙) + ˙ 

(Because of this property, we can write the sums x  

x   y z.) 

4. Existence of identity for addition:   x   0 x 

5. Existence of inverse for addition:   ẋ + (−ẋ) = 0 

y z  and   x y z in the form 

6. Closure under scalar multiplication:   αẋ is also a n-dimensional vector. 
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αβ)x (  ̇

(˙ ˙ ˙  +̇   
) =  + 

( ˙ ˙  +̇    
)                                              =  + 

˙ = ̇  

Let n =  3.  Let

˙
ẋ  = 

˙
(−1,

˙
2, 3), ẏ  =  (2, 0, −1), ż  =  (1, 1, 0), α =  2, β =  −3, γ =  4 and λ =  5.  The 

5(−4, 8, 9) = 

5((−8, 4, 9) + (4, 4, 0)) 

.   
2  2  2x

  x x x  . 

(   ˙ +    ˙ +    ̇ ) 

=   

(  (− ) + (−  )( −  ) +   ( )) 

cos θ =  
  ẋ ⋅ ẏ   

. 

˙  =  ( )̇  =  
( ) 

ǁ˙ǁ = + + … + 

Note that we have 

ǁ˙ǁ = 
√

˙ ⋅ ̇
 

below. 

7. Compatibility of multiplication of a vector by a scalar with multiplication of scalars:   α(βẋ) = 

8. Distributivity of scalar multiplication over vector addition:   α x   y αx   αy 

9.Distributivity of scalar multiplication over addition of scalars:  α   β  x  αx   βx 

10.Existence of identity element for scalar multiplication:   1x x 

Example of computation 

 
expression λ(αx+βy +γz) can be computed in several different ways. One of the methods is shown 

 

λ αx   βy γz 5 2 1, 2, 3 3   2, 0,  1 4 1, 1, 0 

= 

5((−2, 4, 6) + (−6, 0, 3) + (4, 4, 0)) 

= (−20, 40, 45) 

 Norm and inner product 

1. Norm 

The norm of the n-dimensional vector ẋ =  (x1, x2, . . . , xn), denoted by ||ẋ||, is defined by 

 

 

2. Inner product 

1 2 n 

The inner product of ẋ = (x1, x2, . . . , xn) and ẏ  = (y1, y2, . . . , yn), denoted by ẋ⋅ ẏ, is defined 

ẋ ⋅ ẏ  = x1y1 + x2y2 + … + xnyn. 

 

 
3. Angle between two vectors 

x x x. 

The angle θ between two vectors ẋ and ẏ  is defined by 

ǁẋǁǁẏǁ 
 

4. Perpendicularity 

Two vectors x x1, x2, . . . , xn  and y y1, y2, . . . , yn are said to be perpendicular (or, 

orthogonal) if 

ẋ ⋅ ẏ  = 0. 

by 
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= 
√

14 

x 
√ 

1 2 22 02 32 

⋅   

= 

(

−

−  ) ×    +    ×    +    ×    +    × (−  ) 

= − 

˙ = ( ) 

+ + + … + = 

˙ 

ǁẏǁ = 
√

22 + 32 + 12 + (−4)2 

14 30 

 

Example 

Let n = 4 and let ẋ = (−1, 2, 0, 3) and ẏ  = (2, 3, 1, −4).  

ǁ˙ǁ = 
√

(− )  + + + 

 

˙   ˙

= 30 

x y 1 2 2 3 0 1 3 4 

8 

cos θ =  √
  −

√
8   

 
 

0.39036 

θ = 112.98 degrees 

Since ẋ ⋅ ẏ  ≠ 0 the vectors ẋ and ẏ  are not orthogonal. 

 Hyperplanes 

Hyperplanes are certain subsets of finite dimensional vector spaces which are similar to straight lines 

in planes and planes in three-dimensional spaces. 

 
 Definition 

Consider the n-dimensional vector space Rn. The set of all vectors 

x x1, x2, . . . , xn 

in Rn whose components satisfy an equation of the form 

α0 α1x1 α2x2 αnxn 0, (10.5) 

where α0, α1, α2, . . . , αn are scalars, is called a hyperplane in the vector space Rn. 

Remarks 1 

Let  ẋ  =  (x1, x2, . . . , xn)  and  α̇   =  (α1, α2, . . . , αn),  then  using  the  notation  of  inner  product, 

Eq.(10.5) can be written in the following form: 

α0 + α̇ ⋅ ẋ = 0. 
 

Remarks 2 

The hyperplane in Rn defined by Eq.(10.5) divides the space Rn into two disjoint halves. One of 

the two halves consists of all vectors x for which 

α0 + α1x1 + α2x2 + … + αnxn > 0 

and the other half consists of all vectors ẋ for which 

α0 + α1x1 + α2x2 + … + αnxn < 0. 
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(x , x ).  Choosing appropriate coordinate axes, such a vector can be represented by a point with1
 2 

in a plane. In this special case, the norm ǁxǁ is the distance of the point (x1, x2) in the plane from 

α  + α x  + α x  = 00
 1    1 2    2 

+ 

lines joining the origin to the points (x , x ) and (y , y ).1
 2 1 2 

+ + > 

+ + < 

+ + > 

α  + α x  + α x  = 00
 1    1 2    2 

ǁ  ǁ ( ) 

(x  , x  , x  ).   Choosing appropriate coordinate axes,  such a vector can be represented by a point1
 2 3 ˙ = ( ) 

x1, x2, x3) and (y1, y2, y3). 

x1, x2) and y = (y1, y2) is the angle between the ˙ = (  ̇

n

˙
o

=
rm

(  
x   is the distan

˙
ce of the point   x1, x2, x3     from the origin.  The angle between the vectors 

the origin. The angle between the vectors x 

α0 + α1x1 + α2x2 + α3x3 = 0 

 

 Special cases 

Hyperplanes in 2-dimensional vector spaces: Straight lines 

Consider the 2-dimensional vector space R2. Vectors in this space are ordered pairs of the form 

coordinates ẋ = (x1, x2) in the plane. So, the vector space R2  can be identified with the set of points 

Consider the set of all vectors ẋ = (x1, x2) in R2  which satisfy the following equation: 

where α0 α1, α2 are scalars. From elementary analytical geometry we can see that the correspond- 

ing set of points in the plane form a straight line in the plane. This straight line divides the plane 

into two disjoint halves (see Figure 10.9). It can be proved that one of the two halves consists of all 

points for which 

α0 α1x1 α2x2 0 

and the other half consists of all points for which 

α0 + α1x1 + α2x2  < 0. 

x2 

 

 
 

 

 
Half plane where  

O 

α0 α1x1 α2x2 0 

Half plane where 

α0 α1x1 α2x2 0 
 

x1 

 

 

 
 

Equation of line: 

(assume α0 < 0) 

Figure 10.9: Half planes defined by a line 

 

 
 

Hyperplanes in 3-dimensional vector spaces: Planes 

Consider the 3-dimensional vector space R3. Vectors in this space are ordered triples of the form 

with coordinates x x1, x2, x3    in the ordinary three-dimensional space. So, the vector space R3
 

can be identified with the set of points in the three-dimensional space.  As in the case of R2, the 

( 
x1, x2, x3) and y = (y1, y2, y3) is the angle between the lines joining the origin to the points 

Consider the set of all vectors ẋ = (x1, x2, x3) in R3  which satisfy the following equation: 

x 
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˙ = ( ) 

( ) 

+ + + > 

+ + + < 

α2    + 
2α 

( ) 

α2 +   2

 2

α + α 

+ + + = 

1 2 3 

 

where α0, α1, α2, α3 are scalars. From elementary analytical geometry we can see that the corre- 
sponding set of points in space form a plane. This plane divides the space into two disjoint halves. 

It can be proved that one of the two halves consists of all points for which 

α0 α1x1 α2x2 α3x3 0 
 

and the other half consists of all points for which 

α0 α1x1 α2x2 α3x3 0. 

 
Geometry of hyperplanes in n-dimensional vector spaces 

By analogy with a plane (which is a geometrical object having two dimensions) and the space of 

our experience (which is a geometrical world having three dimensions) we imagine that there is a 

geometrical world or object having n dimensions for any value of n. We also imagine that the points 

in this world can be represented by ordered n tuples of the form x x1, x2, . . . , xn . We now 

identify the set of n-dimensional vectors with the points in this geometrical world of n-dimensions. 

Because of this identification, vectors in the n-dimensional vector space Rn are also referred as 

points in a n-dimensional space. The hyperplanes in Rn are defined by analogy with the geometrical 

straight lines and planes. 

 
 Distance of a hyperplane from a point 

In two-dimensional space, that is, in a plane, using elementary analytical geometry, it can be shown 

that the perpendicular distance PN of a point P  x′
1, y1

′    from a line 

α0 + α1x1 + α2x2  = 0 

is given by 

PN =  
|α0 +

√
α1x′

1 + α2x′
2| 

.
 

 

  

Similarly, in three-dimensional space, using elementary analytical geometry, it can be shown that 

the perpendicular distance PN of a point P x′
1, x′

2, x′
3 from a plane 

α0 + α1x1 + α2x2 + α3x3  = 0 

is given by (see Figure 10.10) 

PN =  
|α0 + α

√
1x′

1 + α2x′
2 + α3x′

3| 
.
 

 

P (x′
1, x′

2, x′
3) 

 
 
 
 
 

N 

α0 α1x1 α2x2 α3x3 0 
 

Figure 10.10: Perpendicular distance of a point from a plane 

 
 

Motivated by these special cases, we introduce the following definition. 

2 1 
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α2 + α2 + 2. . 

. + α 

ǁ˙′x ǁ 

˙′ = (  ′ ′ ′ ) ˙ = ( ) 

0, 1}, or {−1, +1} or any such similar set. { 
{ } { } 

space Rn, say 

Consider a two

˙
-class data set having n numeric features and two possible class labels −1 and +1. 

= ( ) 

+ + + … + = 

 

Definition 

In Rn, the perpendicular distance PN of a point P (x′
1, x′

2, . . . , x′
n) from a hyperplane 

α0 + α1x1 + α2x2 + . . . + αnxn = 0 

is given by 

PN =  
|α0 + α

√
1x′

1 + α2x′
2 + . . . + αnx′

n| 
. (10.6)

 

 

Remarks 

1 2 n 

Let x x1, x2, . . . , xn   and α α1, α2, . . . , αn , then using the notations of inner product and 

norm, Eq.(10.6) can be written in the following form: 

PN =  
|α0 + α̇ ⋅ ẋ′| 

.
 

 

 Two-class data sets 

In a machine learning problem, the variable being predicted is called the output variable, the target 

variable, the dependent variable or the response. A two-class data set is a data set in which the 

target variable takes only one of two possible values only. If the target variable takes more than two 

possible values, the data set is called a multi-class dataset. 

or 

In a two-class data set, the set of values of the target variable may be “yes”, “no” , or “TRUE”, ”FALSE” , 

The methods of support vector machines were originally developed for classification problems 

involving two-class data sets. So in this chapter we consider mainly two-class data sets. 

 
 Linearly separable data 

 Definitions 

 
Let the vector x x1, . . . , xn represent the values of the features in one instance of the data set. 
We say that the data set is linearly separable if we can find a hyperplane in the n-dimensional vector 

 

α0 α1x1 α2x2 αnxn 0 (10.7) 

having the following two properties: 

1. For each instance 

 

 

2. For each instance 

ẋ with class label −1 we have 

α0 + α1x1 + α2x2 + … + αnxn < 0. 

ẋ with class label +1 we have 

α0 + α1x1 + α2x2 + … + αnxn > 0. 
 

A hyperplane given by Eq.(10.7) having the two properties given above is called a separating hy- 

perplane for the data set. 

 
Remarks 1 

If a data set with two class labels is linearly separable, then, in general, there will be several sepa- 

rating hyperplanes for the data set. This is illustrated in the example below. 
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− + 

 

Remarks 2 

Given a two-class data set, there is no simple method for determining whether the data set is linearly 

separable. One of the efficient ways for doing this is to apply the methods of linear programming. 

We omit the details. 

 
 Example 

Example 1 

We have seen in Section 10.1 that the data in Table 10.1 is linearly separable. 

 
Example 2 

Show that the data set given in Table 10.2 is not separable. 

 

x y Class label 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Table 10.2: Example of a two-class data that is not linearly separable 

 

 

Solution 

The scatterplot of data in TableTableVXOR shown in Figure 10.11 shows that the data is not linearly 

separable. 

 

 
 

 

 
Figure 10.11: Scatterplot of data in Table 10.2 

 

 
 

 Maximal margin hyperplanes 

 Definitions 

Consider a linearly separable data set having two class labels “ 1” and “ 1”. Consider a separating 

hyperplane H for the data set. 
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1. Consider the perpendicular distances from the training instances to the separating hyperplane 

H and consider the smallest such perpendicular distance. The double of this smallest distance 

is called the margin of the separating hyperplane H. 

2. The hyperplane for which the margin is the largest is called the maximal margin hyperplane 

(also called maximum margin hyperplane) or the optimal separating hyperplane. 

3. The maximal margin hyperplane is also called the support vector machine for the data set. 

4.The data points that lie closest to the maximal margin hyperplane are called the support vec- 

tors. 

 

Figure 10.12: Maximal separating hyperplane, margin and support vectors 

 

 

 Special cases 

To fix ideas, let us consider two special datasets in 2-dimensional space, namely, datasets having 2 

and 3 examples. 

 
Dataset with two examples 

Consider the dataset in Table 10.3. 
 

Example no. x1 x2 Class + 
1 

2 

2 1 

4 3 

1 
−1 

Table 10.3: 2-dimensional dataset with 2 examples 

 

Geometrically it can be easily seen that the maximum margin hyperplane for this data is the 

perpendicular bisector of the line segment joining the points 2, 1 and 4, 3  (see Figure 10.13).  

This is true for any two-sample dataset in two-dimensional space. 

 
Dataset with three examples 

Consider a dataset with three examples from a two-dimensional space. Let these examples corre- 

spond to the points A, B, C in the coordinate plane. Two of these examples, say B and C, must have 

the same class label say 1 and the other point A must have a different class label, say 1. 

The maximal margin hyperplane of the dataset can be obtained as follows. Draw the line joining 

B and C and draw the line through A parallel to BC. The line midway between these two lines in 

the maximal margin hyperplane of the three-sample dataset 
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x2 

 

 

 

 

 

 

 

 
(0, 0) 

 

 
A (2, 1) 

B (4, 3) 

(3, 2) Midpoint of AB 
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Figure 10.13: Maximal margin hyperplane of a 2-sample set in 2-dimensional space 
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x1 + 3x2 − 27 = 0 
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Figure 10.14: Maximal margin hyperplane of a 3-sample set in 2-dimensional space 

 

 

 Mathematical formulation of the SVM problem 

The SVM problem is the problem of finding the equation of the SVM, that is, the maximal margin 

hyperplane, given a linearly separable two-class data set. By the very definition of SVM, this is an 

optimisation problem. The give below the mathematical formulation of this optimisation problem. 

 
 Notations and preliminaries 

• Assume that we are given a two-class training dataset of N points of the form 

x1, y1  , x2, y2  , . . . , xN , yN . 
 

where the yi’s are either 1 or 1 (the class labels). Each xi is a n-dimensional real vector. 

• We assume that the dataset is linearly separable. 

• Any hyperplane can be written as the set of points 

the form 

ẋ = (x1, . . . , xn) satisfying an equation of 

ẇ ⋅ ẋ − b = 0. 
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− 

˙ ⋅ ˙ −    = + 

˙ ⋅ ˙  −  ≥ + = + 

+ 

˙ ⋅ ˙ −    = − 

2 

2 

w 

˙ ⋅ ˙  −  ≤ − = − 

( ˙   ⋅̇ −   ) ≥ ≤    ≤ 

note that ǁẇǁ is minimum when 1 ǁ ˙  2wǁ   is minimum. (The square of the norm is used to avoid 

2 
ǁ ̇ ǁ 

+  ̇

(˙ ˙   )̇  ( 
 ) (  ) 

˙ = ˙ =  ̇

+ ˙ ˙   ⋅ ̇ − > 

square-roots and the factor “ 1 ” is introduced to simplify certain expressions.) 

 

• Since the training data is linearly separable, we can select two parallel hyperplanes that sep- 

arate the two classes of data, so that the distance between them is as large as possible. The 

maximum margin hyperplane is the hyperplane that lies halfway between them. It can be 

shown that these hyperplanes can be described by equations of the following forms: 

w x  b 1 (10.8) 

w x  b 1 (10.9) 

 
• For any point on or “above” the hyperplane Rq.(10.8), the class label is 1. This implies that 

w xi b 1, if yi 1 (10.10) 

Similarly, for any point on or “below” the hyperplane Eq.(10.9), the class label is 1. This 

implies that 

w xi b 1, if yi 1. (10.11) 

• The two conditions in Eq.10.10 and Eq.10.11 can be written as a single condition as follows: 

yi w xi b 1, for all 1 i N. 

 
• Now, the distance between the two hyperplanes in Eq.(10.8) and Eq.(10.9) is 

ǁ 
2
˙ǁ 

. 

So, to maximize the distance between the planes we have to minimize ǁẇǁ.  Further we also 
 

 Formulation of the problem 

Based on the above discussion, we now formulate the SVM problem as the following optimization 

problem. 

 
Problem 

Given a two-class linearly separable dataset of N points of the form 

x1, y1 , x2, y2 , . . . , xN , yN . 

where the yi’s are either 1 or 1, find a vector w and a number b which 

minimize 
1 

w 2 

subject to yi(ẇ ⋅ ẋi − b) ≥ 1, for i = 1, . . . N 

 The SVM classifier 

The solution of the SYM problem gives us a claasifier for classifying unclassified data instances. 

This is known as the SVM classifier for a given dataset. 

 
The classifier 

Let w w∗ and b b∗ be a solution of the SVM problem. Let x be an unclassified data instance. 

• Assign the class label 1 to x if w∗ x  b∗ 0. 

• Assign the class label   −1 to ẋ if ẇ∗ ⋅ ẋ − b∗ < 0. 
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i=1 

i=1 

i=1 

˙ 

˙  ̇

i=1 

i=1 

2 i∶yi=+1 
i 

i∶yi=−1 
i 

where the yi’s are either +1 or 1: 

N 

N 1 N 

N 1 N 

 

 Solution of the SVM problem 

The SVM optimization problem as formulated above is an example of a constrained optimization 

problem. The general method for solving it is to convert it into a quadratic programming problem 

and then apply the algorithms for solving quadratic programming problems. These methods yield 

the following solution to the SVM problem. The details of these processes are beyond the scope of 

these notes. 

 

 Solution 

The vector ẇ and the scalar b are given by 
 

ẇ = Σ αiyiẋi (10.12) 

b =  
1 

(  min  (ẇ ⋅ ẋ  ) +  max (ẇ ⋅ ẋ  )) (10.13) 

where α̇ = (α1, α2, . . . , αN ) is a vector which maximizes 
 

 

 
subject to 

Σ αi − 
2

 
i=1
Σ
,j=1 

αiαjyiyj(ẋi ⋅ ẋj) 

 
 
 

 
Remarks 

 

 

Σ αiyi = 0 

αi > 0 for i = 1, 2, . . . , N. 

It can be proved that an αi is nonzero only if xi lies on the two margin boundaries, that is, only if xi 

is a support vector. So, to specify a solution to the SVM problem, we need only specify the support 

vectors xi and the corresponding coefficients αiyi. 

 

 An algorithm to find the SVM classifier 

The solution of the SVM problem given in Section ?? can be used to develop an algorithm to find a 

SVM classifier for linearly separable two-class dataset. Here is an outline of such an algorithm. 

 
Algorithm to find SVM classifier 

Given a two-class linearly separable dataset of N points of the form 

 

 
 

Step 1.Find α̇ = (α1, α2, . . . , αN ) which maximizes 
 

 

 
subject to 

φ(α̇) = Σ αi − 
2

 
i=1
Σ
,j=1 

αiαjyiyj(ẋi ⋅ ẋj) 

 
 

Σ αiyi = 0 

αi > 0 for i = 1, 2, . . . , N. 

N 

N 

(ẋ1, y1), (ẋ2, y2), . . . , (ẋN , yN ), 
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i 

ẋ2  = 

˙

(4, 3), y2  = −1 

i=1 i=1,j=1 

2 

1 2 
2 

1 1 1 1 1 1 1 2 1 2 2 

1 2 
2 1 1 2 2 

Σ αiyi = α1y1 + α2y2 

1 2 

N 

Step 2.Compute ẇ = ∑
N
=1 αiyiẋi. 

 

   

Step 3.Compute b =  1  (mini∶y =+1(ẇ ⋅ ẋi) + maxi∶y =−1(ẇ ⋅ ẋi)). 

Step 4.The SVM classifier function is given by 

f (ẋ) = ẇ ⋅ ẋ − b (10.14) 

  where αi is nonzero only if ẋi is a support vector.  

Remarks 

There are specialised software packages for solving the SVM optimization problem. For example, 

there is a special package called svm in the R programming language to solve such problems. 

 

 Illustrative example 

Problem 1 

Using the SVM algorithm, find the SVM classifier for the follwoing data. 
 

Example no. x1 x2 Class + 
1 

2 

2 1 

4 3 

1 
−1 

 

Solution 

For this data we have: 

˙ 

N = 2 
 
 
 
 

Step 1.We have: 

x1  = (2, 1), y1 = +1 

α = (α1, α2) 

 
N 1 N 

φ(α̇) = Σ αi − 
2 

Σ       αiαjyiyj(ẋi ⋅ ẋj) 

= (α  + α ) − 
1 

[α α y y (ẋ   ⋅ ẋ  ) + α α y y (ẋ ⋅ ẋ  )+ 

= (α1 + α2)− 

 
 

α2α1y2y1(ẋ2 ⋅ ẋ1) + α2α2y2y2(ẋ2 ⋅ ẋ2)] 

 
 
 

1 
[α2(+1)(+1)(2 × 2 + 1 × 1) + α α (+1)(−1)(2 × 4 + 1 × 3)+ 

α2α1(−1)(+1)(4 × 2 + 3 × 1) + α2(−1)(−1)(4 × 4 + 3 × 3)] 

= (α + α ) − 
1 

[5α2 − 22α α + 25α2] 
 

i=1 
= α1 − α2 

We have to solve the following problem. 

1 

i i 2 

1 

2 
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= 

1 

= 

4 
= (− − ) 

2 

2 
4 

> 0.) 

1 dα2 1 

ẇ = Σ αiyiẋi 

α1y1x1 α2y2x2 

= 
1 

(+1)(2, 1) + 
1 

(−1)(4, 3) 

2 i∶yi=+1 
i 

i∶yi=−1 
i 

2 
1 2 

= 
1 

(− 10 ) 

N 

 

Problem 

Find values of α1 and α2 which maximizes 

φ(α̇) = (α + α ) − 
1 

[5α2 − 22α α + 25α2] 

 
subject to the conditions 

1 2 2 1 1   2 2 

 

Solution 

α1 − α2 = 0, α1 > 0, α2 > 0. 

To find the required values of α1 and α2, we note that from the constraints we have α2 α1. 
Using this in the expression for φ we get 

φ(α̇) = 2α1 − 4α2. 

For φ to be maximum we must have 

dφ  
= 2 − 8α  = 0 

 
that is 

 

and so we also have 

dα1 

 

 

 
 

   

1 

 

 
1 

α1 
4 

 

α = 
1 

. 

(For this value of α , clearly d
2 f < 0 and f is indeed maximum. Also we have α > 0 and 

  

Step 2.Now we have 
 

= i=1      ̇    + ˙ 

 

4 4 
1 

2,  2 

= (− 1 , − 1 ) 
2 2 

 

Step 3.Next we find 
 

b =  
1 

(  min  (ẇ ⋅ ẋ  ) +  max (ẇ ⋅ ẋ  )) 

=  
1 

((ẇ ⋅ ẋ  ) + (ẇ ⋅ ẋ  )) 

 
= 

1 
((− 1 × 2 − 1 × 1) + (− 1 × 4 − 1 × 3)) 

 

2 2 

= − 
5
 

1 

α 2 

2 4 2 2 2 



152 
 

 

 

(˙) =  ˙ ⋅ ̇ − 

˙ = ( ) 

− + 

2 

( ) ( ) 

+ − = 

x3 

˙

= (7, 4), y3  = +1 

= ( )  = −1 

 1 

=

˙ 

(   1 2 3) 

˙ 

i=1 

i=1 

(ẋ2 ⋅ ẋ1) = 18, (ẋ2 ⋅ ẋ2) = 41, (ẋ2 ⋅ ẋ3) = 48, 

1 

1 

 

Step 4.Let x x1, x2 . The SVM classifier function is given by 

f x w x b 

= (−        1 , − 1 ) ⋅ (x1, x2) − (− 5 ) 

 

2 
= − 

1 
x 

2 2 

1 5 
2 

x2 
2 

= − 
1 

(x  + x − 5) 2 Step 5.The equation of the maximal margin hyperplane is 

f (ẋ) = 0 

that is 

 

that is 

− 
1 

(x + x2 − 5) = 0 

x1 x2 5 0. 

Note that this the equation of the perpendicular bisector of the line segment joining the 

points 2, 1 and 4, 3 (see Figure 10.13). 

 
Problem 2 

Using the SVM algorithm, find the SVM classifier for the follwoing data. 
 

Example no. x1 x2 Class − 
1 

2 

3 

2 2 

4 5 

7 4 

1 

+
1 

1 
 

Solution 

For this data we have: 

˙ 

N = 3 

 
 
 
 

 
Srep 1.We have 

x 2, 2 , y 1 

ẋ2  = (4, 5), y2  = +1 

α  α , α , α 

x = (x1, x2) 

N 1 N 

φ(α̇) = Σ α1 − 
2

 
i=1
Σ
,j=1 

αiαjyiyj(ẋi ⋅ ẋj) 

3 1 3 

We have 

= Σ α1 − 
2
 
i=1
Σ
,j=1 

αiαjyiyj(ẋi ⋅ ẋj) 

(ẋ1 ⋅ ẋ1) = 08, (ẋ1 ⋅ ẋ2) = 18, (ẋ1 ⋅ ẋ3) = 22 

(ẋ3 ⋅ ẋ1) = 22, (ẋ3 ⋅ ẋ2) = 48, (ẋ3 ⋅ ẋ3) = 65 

2 

2 

1 
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i=1 
Σ = − + + 

− − = − − = 

= 
  6  

= − = 

Srep 2.Now we have 

value for φ(α̇).  It can be shown that the values for α2  and α3  obta

˙
ined above do indeed 

˙ = Σ  i̇   i   i       

1 2 3 
2 1 2 3 1 2 1 2 3 

2 3 
2 2 2 3 

11 11 

 

Substituting these and simplifying we get 

φ(α̇) = (α + α + α ) − 
1 

[8α2 + 41α2 + 65α2 − 36α α − 44α α + 96α α ] 
1 

 
We also have 

2 3 2 1 2 3 

 
N 

1   2 1   3 2 3 

αiyi α1 α2 α3 

 
Now we have to solve the following problem. 

Problem 

Find α̇ = (α1, α2, α3) which maximizes 

φ(α̇) = (α  + α  + α ) − 
1 

[8α2 + 41α2 + 65α2 − 36α α  − 44α α + 96α α ] 
 

subject to the conditions 

−α1 + α2 + α3 = 0, α1 > 0, α2 > 0, α3 > 0. 
 

Solution 

From the constraints we have 

α1 = α2 + α3. 

Using this in the expression for φ(α̇) and simplifying we get 

φ(α̇) = 2(α  + α ) − 
1 

(13α2 + 32α α + 29α2) 

When φ(α̇) is maximum we have        

 

 

 
that is 

∂φ 

∂α2 
0, 

∂φ 

∂α3 
= 0 (10.15) 

2   13α2 16α3 0, 2   16α2 29α3 0. 

Solving these equations we get 

 

 
 

Hence 

 26 
α2 

121 
, α3 = − 

121 

 26 
α 

  6  20 
. 

(The conditions given in Eq.(??) are only necessary conditions for getting a maximum 

satisfy the sufficient conditions for yielding a maximum value of φ(α).) 

 
N 

w α y x 
i=1 

= 
20 

(−1)(2, 2) + 
26 

(+1)(4, 5) − 
6 

(+1)(7, 4) 
 

 

= ( 2 , 6 ) 121 121 

121 

= 

3 

3 

1 
121 121 121 
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= 

= 

− = 

2 

i 

If ξi = 0, then ẋi is correctly classified and there i

˙
s no problem with ẋi.  If 0 < ξi < 1 then ẋi is 

> ∑ = 

(˙ ˙   )̇  ( 
 ) (  ) 

+ Σ i 

2 i∶yi=+1 
i 

i∶yi=−1 
i 

2 
2 3 1 

2 11 11 11 

= 
1 

( 
38 

+ 
16 

)
 

factor C to the soft error. 

1 2 
N 

 

Srep 3.We have 

b =  
1 

(  min  (ẇ ⋅ ẋ  ) +  max (ẇ ⋅ ẋ  )) 

=  
1 

(min{(ẇ ⋅ ẋ  ), (ẇ ⋅ ẋ  )} + max{(ẇ ⋅ ẋ  )}) 

= 
1 

(min{ 38 , 38 } + max{ 16 }) 
 
 

2   11 11 

27 
 

11 

Srep 4.The SVM classifier function is 

f (ẋ) = ẇ ⋅ ẋ − b 

2 
x
 

11 
1
 

Srep 5.The equation of the maximal hyperplane is 

 6 

11 
x2

 

27 
.
 

11 

 
 

that is 

f (ẋ) = 0 

 
 

that is 

 2 

11 
x1

 

 6 

11 
x2

 

27 
0

 

11 

 
 

(See Figure 10.14.) 

x1 + 3x2 − 
27 

= 0. 

 

 Soft margin hyperlanes 

The algorithm for finding the SVM classifier will give give a solution only if the the given two-class 

dataset is linearly separable. But, in real life problems, two-class datasets are only rarely linearly 

separable. In such a case we introduce additional variables, ξi, called slack variables which store 

deviations from the margin. There are two types of deviation: An instance may lie on the wrong 

side of the hyperplane and be misclassified. Or, it may be on the right side but may lie in the margin, 

namely, not sufficiently away from the hyperplane (see Figure 10.15). 

 
correctly classified but it is in the margin.  If ξi   1, xi is misclassified.  Th sum   N1 ξi is defined  

as the soft error and this is added as a penalty to the function to be minimized. We also introduce a 

With these modifications, we now reformulate the SVM problem as follows (see Section 10.7.2 

for the original formulation of the problem): 

 
Reformulated problem 

Given a two-class linearly separable dataset of N points of the form 

x1, y1 , x2, y2 , . . . , xN , yN . 

where the yi’s are either +1 or 1, find vectors ẇ and ξ̇ and a number b which 
 

minimize 

2 
ǁẇǁ C ξ 

i=1 

+ − 

+ 
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( ˙   ⋅̇  −   ) ≥    −  =i 
 i   i 

(˙  ˙ ˙ )̇ 

that K(x, y) = φ(x) ⋅ φ(y). 

˙ 

Let ẋ and ẏ  be arbitrary vectors in the n
˙

-d

˙
imensional vector space R  . Let φ be a mapping from R 

˙ = ( ) ∈ 

 

 
 

 

 

 

 
 

Remarks 

Figure 10.15: Soft margin hyperplanes 

 

 
subject to y  w x b 1    ξ , for i 1, . . . N 

ξi ≥ 0, for i = 1, . . . , N 

1. There are algorithms for solving the reformulated SVM problem given above. The details of 

these algorithms are beyond the scope of these notes. 

2. The hyperplanes given by the equations 

ẇ ⋅ ẋi − b = +1    and    ẇ ⋅ ẋi − b = −1 

with the values of w and b obtained as solutions of the reformulated problem, are called the 

soft margin hyperplanes for the SVM problem. 

 
 Kernel functions 

In the context of SVM’s, a kernel function is a function of the form K x, y , where x and y are n-

dimensional vectors, having a special property. These functions are used to obtain SVM-like 

classifiers for two-class datasets which are not linearly separable. 

 
 Definition 

n n 

to some

˙
ve

˙
ctor spa

˙
ce.  A

˙
function K(x, y) is called a kernel function if there is a function φ such 

 Examples 

Example 1 

Let 

 

 

 
We define 

x x1, x2 R2 

ẏ  = (y1, y2) ∈ R2 

K(ẋ, ẏ) = (ẋ ⋅ ẏ)2. 
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= ( 

 2x y  + 
x y )1   1 2   2 

1 2 

(˙ ˙) 

= ˙  (̇ 
 ) 

˙ = ( ) ∈ 

= ( 

 2x y  + x y  

+ θ)1   1 2   2 

˙ = ( )̇  = 
( ) 

(˙  ˙) = (˙ ⋅ ̇ +   ) 

= x2y2 + 2x1y1x2y2 + x2y2 

φ(ẋ) = (x2, 
√

2x1x2, x2) ∈ R3 

φ(ẋ) ⋅ φ(ẏ) = x2y2 + (
√

2x1x2)(
√

2y1y2) + x2y2 

= x2y2 + 2x1x2y1y2 + x2y2 
1 1 2 2 

1 1 2 2 

 

We show that this is a kernel function. To do this, we note that 

K(ẋ, ẏ) = (ẋ ⋅ ẏ)2
 

 

 
Now we define 

1   1 2 2 

 
 

 

 

 
Then we have 

1 

φ(ẏ) = (y2, 
2 

2y1y2, y2) ∈ R3 

 
  

 

 

K  x, y 
 

This shows that K x, y is indeed a kernel function. 

 
Example 2 

Let 
 

 

 

 
We define 

x x1, x2 R2 

ẏ  = (y1, y2) ∈ R2 

K(ẋ, ẏ) = (ẋ ⋅ ẏ + θ)2. 

We show that this is a kernel function. To do this, we note that 

K(ẋ, ẏ) = (ẋ ⋅ ẏ + θ)2
 

= φ(ẋ) ⋅ φ(ẏ)       

 
 

where 
˙ 2 2 

√ √ √ √ 6 
φ(x) = (x1, x2, 2x1x2, 2θx1, 2θx2, θ) ∈ R . 

This shows that K(ẋ, ẏ) is indeed a kernel function. 

 Some important kernel functions 

In the following we assume that x x1, x2, . . . , xn  and y y1, y2, . . . , yn . 

1. Homogeneous polynomial kernel 
 

 

 
where d is some positive integer. 

K(ẋ, ẏ) = (ẋ ⋅ ẏ)d
 

2. Non-homogeneous polynomial kernel 

 
K x, y x  y θ d 

where d is some positive integer and θ is a real constant. 
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(˙ ˙) = 

(˙ ˙) 

(˙ ˙) 

(˙ ˙) = 

˙ ˙ ˙ ⋅ ˙ (˙  ˙  ) 

i=1 

i 

i=1 

i 

where the yi’s are either +1 or 1 and appropriate kernel function K(ẋ, ẏ): 

N 1 N 

i 

 

3. Radial basis function (RBF) kernel 

 

K  x, y e−ǁẋ−ẏǁ2 /2σ2 

This is also called the Gaussian radial function kernel.1 

4. Laplacian kernel function 
 

K  x, y e−ǁẋ−ẏǁ/σ 

5. Hyperbolic tangent kernel function (Sigmoid kernel function) 

 
K(ẋ, ẏ) = tanh(α(ẋ ⋅ ẏ) + c) 

 The kernel method (kernel trick) 

 Outline 

1. Choose an appropriate kernel function K x, y . 

2. Formulate and solve the optimization problem obtained by replacing each inner product 

by K x, y in the SVM optimization problem. 

 

 

 
ẋ ⋅ ẏ  

3. In the formulation of the classifier function for the SVM problem using the inner products of 

unclassified data z and input vectors xi, replace each inner product z xi with K z, xi to 

obtain the new classifier function. 

 
 Algorithm 

Algorithm of the kernel method 

Given a two-class linearly separable dataset of N points of the form 

(ẋ1, y1), (ẋ2, y2), . . . , (ẋN , yN ), 

 

Step 1.Find α̇ = (α1, α2, . . . , αN ) which maximizes 
 

 

subject to 

Σ αi − 
2

 
i=1
Σ
,j=1 

αiαjyiyjK(ẋi, ẋj) 

 

 
 
 
 

Step 2.Compute 

 
ẇ = ∑

N
=1 αiyiẋi. 

 
 

  

 

 

Σ αiyi = 0 

αi > 0 for i = 1, 2, . . . , N. 

 
 
 
 

Step 3.Compute b =  1  (mini∶y =+1 K(ẇ, ẋi) + maxi∶y =−1 K(ẇ, ẋi)). 

Step 4.The SVM classifier function is given by f (ż) = ∑
N
=1 αiyiK(ẋi, ż) + b. 

 
 

1To represent this kernel as an inner product, we need map φ from Rn into an infinite-dimensional vector space. A 

discussion of these ideas is beyond the scope of these notes. 

N 

i 2 
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+ 

+1 to all instance

˙
s having class label c2 and the class label −1 to all the remaining instances in the 

≠ 

( − )/ 

˙ (˙) (˙) (˙) 

and obtain the corresponding SVM class

−
ifiers. First, we assign the class labels 1 to all instan

(
c

˙
e

)
s 

data set.  Let f2(x) be the SVM classifier function

(˙
for the resu

˙
lting two-class dataset.  We continue 

Two criteria have been developed to assign a class label to a test instance z. 

having class label c1 and the class label 1 to all the remaining instances in the data set. Let f1 x 

 

 Multiclass SVM’s 

In machine learning, the multiclass classification is the problem of classifying instances into one of 

three or more classes. Classifying instances into one of the two classes is called binary classification. 

Support vector machines can be constructed only when the dataset has only two class-labels and 

is linearly separable. We have already discussed a method to extend the concept of SVM’s to the 

case where the dataset is not linearly separable. In this section we consider how the SVM’s can be 

used to obtain classifiers when there are more than two class labels. Two methods are generally used 

to handle such cases known by the names ”One-against-all" and “one-against-one”. 

 
 “One-against-all” method 

The One-Against-All (OAA) SVMs were first introduced by Vladimir Vapnik in 1995. 
 

Figure 10.16: One-against all 

 
 

Let there be p class labels, say, c1, c2, . . . , cp. We construct the following p two-class datasets 
 

be the SVM classifier function for the resulting two-class dataset.  Next, we assign the class labels 

 

like this and generate SVM classifier functions f3  x), . . ., fp(x) 
˙
 

1.A data point   ż would be classified under a certai

˙
n class if and only if that c

(
l

˙
a

)
ss

>
’s SVM ac

(
c

˙
e

)
p

<
ted 

it and all other classes’ SVMs rejected it. Thus z will be assigned ci if fi z 0 and fj z 0 
for all j i. 

2. z is the assigned the class label ci if fi z has the highest value among f1 z , . . . , fp z , 
regardless of sign. 

Figure 10.16 illustrates the one-against-all method with three classes. 

 
 “One-against-one” method 

In the one-against-one (OAO) (also called one-vs-one (OVO)) strategy, a SVM classifier is con- 

structed for each pair of classes. If there are p different class labels, a total of p p 1 2 classifiers 

are constructed. An unknown instance is classified with the class getting the most votes. Ties are 

broken arbitrarily. 
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Figure 10.17: One-against-one 

 
 

For example, let there be three classes, A, B and C. In the OVO method we construct 3 3 

to z. Let the three classifiers assign the classes A, B, B respectively to z. Since a label to z is One-

vs-one (OVO) strategy is not a particular feature of SVM. Indeed, OVO can be applied to 

any binary classifier to solve multi-class classification problem. 
 

 

 Sample questions 

(a) Short answer questions 

1. Define an hyperplane in an n-dimensional space. What are the hyperplanes in 2-dimensional 

and 3-dimensional spaces? 

2. Find the distance of the point 1, 2, 3 from the hyperplane 

3x1 4x2 12x3 1 0. 

 
3. What is a linearly separable dataset? Give an example. Give an example for a dataset which 

is not linearly separable. 

4. What is meant by maximum margin hyperplane? 

5.Define the support vector machine of a two-class dataset. 

6.Define the support vectors of a two-class dataset. 

7.What is a kernel function? Give an example. 

 
(b) Long answer questions 

1. State the mathematical formulation of the SVM problem. Give an outline of the method for 

solving the problem. 

2. Explain the significance of soft margin hyperplanes and explain how they are computed. 

3.Show that the function 

 
is a kernel function. 

K(ẋ, ẏ) = (ẋ ⋅ ẏ)3
 

4. What is meant by kernel trick in context of support vector machines? How is it used to find a 

SVM classifier. 
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5. Given the following dataset, using elementary geometry find the maximum margin hyperplane 

for the data. Verify the result by finding the same using the SVM algorithm. 

 
Example x1 x2 Class label − 

1 

2 

3 

2 1 

4 5 

3 6 

1 

+
1 

1 



 

 

 

+ 

 

 

 

 

 

 

 

 

Hidden Markov models 

 
This chapter contains a brief introduction to hidden Markov models (HMM’s). The HMM is one 

of the most important machine learning models in speech and language processing. To define it 

properly, we need to first understand the concept of discrete Markov processes. So, we begin the 

chapter with a description of Markov processes and then discuss HMM’s. The three basic problems 

associated with a HMM are stated, but algorithms for their solutions are not given as they are beyond 

the scope of these notes. 

 
 Discrete Markov processes: Examples 

 Example 1 

Through this example we introduce the various elements that constitute a discrete homogeneous 

Markov process. 

1. System and states 

Let us consider a highly simplified model of the different states a stock-market is in, in a given 

week. We assume that there are only three possible states: 

 

S1 : Bull market trend 

S2 : Bear market trend 

S3 : Stagnant market trend 
 

2. Transition probabilities 

Week after week, the stock-market moves from one state to another state. From previous data, 

it has been estimated that there are certain probabilities associated with these movements. 

These probabilities are called transition probabilities. 

3. Markov assumption 

We assume that the following statement (called Markov assumption or Markov property) re- 

garding transition probabilities is true: 

• Let the weeks be counted as 1, 2, . . . and let an arbitrary week be the t-th week. Then, 

the state in week t  1 depends only on the state in week t, regardless of the states in  

the previous weeks. This corresponds to saying that, given the present state, the future 

is independent of the past. 

4. Homogeneity assumption 

To simplify the computations, we assume that the following property, called the homogeneity 

assumption, is also true. 
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ı
0.3

ı
 

 

• The probability that the stock market is in a particular state in a particular week   t 1 
given that it is in a particular state in week t, is independent of t. 

5. Representation of transition probabilities Let the probability that a bull week is followed 

by another bull week be 90%, a bear week be 7.5%, and a stagnant week be 2.5%. Similarly, 

let the probability that a bear week is followed by another bull week be 15%, bear week be 

80% and a stagnant week be 5%. Finally, let the probability that a stagnant week be followed 

by a bull week is 25%, a bear week be 25% and a stagnant week be 50%. The transition 

probabilities can be represented in two ways: 

(a) The states and the state transition probabilities can be represented diagrammatically as 

in Figure 11.1. 
 

 
Figure 11.1: A state diagram showing state transition probabilities 

 

(b) The state transition probabilities can also be represented by a matrix called the state 

 
consider the matrix 

<
ı

0.90    0.075    0.025=
ı

 

>0.25 0.50 0.25 z 

In this matrix, the element in the i-th row, j-th column represents the probability that the 

market in state i is followed by market in state j. 

Note that in the state transition matrix P , the sum of the elements in every row is 1. 

6. Initial probabilities 

The initial probabilities are the probabilities that the stock-market is in a particular state ini- 

tially. These are denoted by π1, π2, π3: π1 is the probability that the stock-market is in bull 

state initially; similarly, π2 and π3. the values of these probabilities can be presented as a 
vector: 

<
ı
π1

=
ı

 <
ı

0.5=
ı

 

 
 

7. The discrete Markov process 

>π3z >0.2z 

The functioning of the stock-markets with the three states S1, S2, S3 with the assumption that 
the Markov property is true, the transition probabilities given by the matrix P and the initial 

transition matrix. Let us label the states as “1 bull”, “2 bear” and “3 stagnant” and 
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probabilities given by the vector Π constitute a discrete Markov process. Since we also assume 

the homogeneity property for the transition probabilities is true, it is a homogeneous discrete 

Markov process. 
 

Probabilities for future states 

Consider the matrix: 

<
ı

0.90    0.075    0.025=
ı

 
ΠT P 0.5   0.3   0.2 0.15 0.80 0.05 

>0.25 0.50 0.25 z 

The elements in this row vector represent the probabilities that the stock-market is in the bull state, 

the bear state and the stagnant state respectively in the second week. 

In general, the elements of the row vector ΠT Pn represent the probabilities that the stock-market 

is in the bull state, the bear state and the stagnant state respectively in the n 1 -th week. 

 
 Example 2 

Consider a simplified model of weather. We assume that the weather conditions are observed once 

a day at noon and it is recorded as in one of the following states: 

S1 : Rainy 

S2 : Cloudy 

S3 : Sunny 

Assuming that the Markov property and the homogeneity property are true, we can write the state 

transition probability matrix P . Let the matrix be 

<
ı

0.4    0.3    0.3=
ı

 

>0.1    0.1  0.8z 

Let the initial probabilities be 

Π = [0.25 0.25 0.50] 

The changes in weather with the three sates S1, S2, S3 satisfying the Markov property and the ho- 

mogeneity property, the transition probability matrix P and the initial probabilities given by Π con- 

stitute a discrete homogeneous Markov process. 

 
 Discrete Markov processes: General case 

A Markov process is a random process indexed by time, and with the property that the future is 

independent of the past, given the present. The time space may be discrete taking the values 1, 2, . . . 

or continuous taking any nonnegative real number as a value. In these notes, we consider only 

discrete time Markov processes. 

1. System and states 

Consider a system that at any time is in one of N distinct states: 

S1, S2, . . . , SN 
 

We  denote the state at time t by qt for t 1, 2, . . .. So, qt Si means that the system is in 

state Si at time t. 
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2. Transition probabilities 

At regularly spaced discrete times, the system moves to a new state with a given probability, 

depending on the values of the previous states. These probabilities are called the transition 

probabilities. 

3. Markov assumptions (Markov property) 

We assume the following called the Markov assumption or the Markov property: 

• The state at time t 1 depends only on state at time t, regardless of the states in the 

previous times. This corresponds to saying that, given the present state, the future is 

independent of the past. 

4. Homogeneity property 

We assume that the following property, called the homogeneity property, is true. 

• We also assume that these transition probabilities are independent of time, that is, the 

probabilities P qt 1 Sj  qt Si are constants and do not depend on t. We denote this 

probablity by aij: 

 
We immediately note that 

aij = P (qt+1 = Sj | qt = Si). 

 

N 

a 0 and a 1 for all i. 
j=1 

5. Representation of transition probabilities 

The transition probabilities can be represented in two ways: 

(a) If the number of states is small, the state transition probabilities can be represented 

diagrammatically as in Figure 11.1. 

(b) The state transition probabilities can also be represented by a matrix called the state 

transition matrix. 
<
ı a11 a12 . . . a1N 

=
ı 

ı>
aN1 aN2 . . .   aNN ız 

In this matrix, the element in the i-th row, j-th column represents the probability that the 

system in state Si moves to state Sj. Note that in the state transition matrix A, the sum 

of the elements in every row is 1. 

6. Initial probabilities 

We define the initial probabilities πi which is the probability that the first state in the sequence 

is Si: 

 
We also write 

 

 

 

 
We must have 

π = P (q1 = Si). 

<
ı π1 

=
ı

 

ı>
πN ız 

N 

π 1. 
i=1 
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7. Discrete Markov process 

A system with the states S1, S2, . . . , SN satisfying the Markov property is called a discrete 

Markov process. If it satisfies the homogeneity property, then it is called a homogeneous 

discrete Markov process. 

 
 Probability for an observation sequence 

Observable Markov model 

The discrete Markov process described in Section 11.2 is also called an observable Markov model or 

observable discrete Markov process. It is so called because the state of the system at any time t can 

be directly observed. This is in contrast to models where the state of the system cannot be directly 

observed. If the state of the system cannot be directly observed the system is called a hidden Markov 

model. Such systems are considered in Section ??. 

 
Probability for an observation sequence 

In an observable Markov model, the states are observable. At any time t we know qt, and as the 

system moves from one state to another, we get an observation sequence that is a sequence of states. 

The output of the process is the set of states at each instant of time where each state corresponds to 

a physical observable event. 

Let O be an arbitrary observation sequence of length T . Let us consider a particular observation 

sequence 

Q q1, q2, . . . , qT . 

Now, given the transition matrix A and the initial probabilities Π we can calculate the probability 

P O Q as follows. 
 

P O Q P q1 P q2 q1 P q3 q2 . . . P qT qT 1 

πq1 
aq1 q2 

aq2 q3 
. . . aqT −1 qT 

Here, πq1 is the probability that the first state is q1, aq1 q2 is the probability of going from q1 to q2, 

and so on. We multiply these probabilities to get the probability of the whole sequence. 

 
Example 

Consider the discrete Markov process described in Section 11.1.1. Let us compute the probability 

of having a bull week followed by a stagnant week followed by two bear weeks. In this case the 

observation sequence is 
 

 

 

 
The required probability is 

Q bull, stagnant, bear, bear 

= (S1, S2, S3, S3) 

 

P O Q P S1 P S2 S1 P S3 S2 P S3 S3 

π1a12a23a33 

0.5 0.075 0.05 0.25 

0.00046875 

 
 Learning the parameters 

Consider a homogeneous discrete Markov process with transition matrix A and initial probability 

vector Π. A and Π are the parameters of the process. The following procedure may be applied to 

learn these parameters. 
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O  ∶ S  S  S  S  S2
  2     1     1     3     1 

O  ∶ S  S  S  S  S4
  1     3     3     1     1 

O  ∶ S  S  S  S  S6
  3     1     1     2     1 

O  ∶ S  S  S  S  S8
  2     3     1     2     2 ∶9  3 2 1 1 2 

Π = 
ı
2

/
10

ı
 

= 

= 

>5 10 4/10 1/10z 

number of sequences starting with S3 4 

 

Step 1.Obtain K observation sequences each of length T . Let qtk be the observed state at time t 

in the k-th observation sequence. 

Step 2.Let π̂i be the estimate of the initial probability πi. Then 
number of sequences starting with Si 

π̂i = 
total number of sequences 

.
 

Step 3.Let âij be the estimate of aij . Then 
number of transitions from Si to Sj 

 

 
Example 

âij = 
 

 

number of transitions from Si 

Let there be a discrete Markov process with three states S1, S2 and S3. Suppose we have the 
following 10 observation sequences each of length 5: 

O1 ∶  S1  S2  S1  S1  S1 

O3 ∶  S3  S1  S3  S2  S2 

O5 ∶  S3  S2  S1  S1  S3 

O7  ∶      S1  S1  S2  S3 S2 

O    S  S  S  S  S  

O10  ∶      S1  S2  S2  S1 S1 

We have: 
number of sequences starting with S1 4 

π̂1  = 
total number of sequences 

= 
10 

  
 

 π̂2  = 

total number of sequences 
= 

10 
 

 
Therefor 

π̂3  = 

total number of sequences 
= 

10 

<
ı

4/10=
ı

 

>4 10z 

We illustrate the computation of aij’s with an example. 
number of transitions from S2 to S1 6 

â21  = 
number of transitions from S2 

= 
11 

 â22  = 

â23  = 

number of transitions from S2 to S2 3 

number of transitions from S2 11 
number of transitions from S2 to S3 2 

number of transitions from S2 11 

The remaining transition probabilities can be estimated in a similar way. 

ˆ 
<
ı

9/19    6/19    4/19=
ı

 

A = 
ı

6
/
11    3/11    2/11

ı 
. 

2 number of sequences starting with S2 
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Figure 11.2: A two-coin model of an HMM 

 

 

 Hidden Markov models 

 Coin tossing example 

Let us consider the following scenario: 

Consider a room which is divided into two parts by a curtain through which we cannot see what 

is happening on the other half of the room. Person A is sitting in one half and person B is sitting  

in the other half. Person B is doing some coin tossing experiment, but she will not tell person A 

anything about what she is doing. Person B will only announce the result of each coin flip. Let a 

typical sequence of announcements be 

O O O . . . O 

H H T H H T T T . . . H say 

where as usual H stands for heads and T stands for tails. Person A wants to create a mathematical 

model which explains this sequence of observation. Person A suspects that person B is announcing 

the results based on the outcomes of some discrete Markov process. If that is true, then the Markov 

process that is happening behind the curtain is hidden from the rest of the world and we are left with 

a hidden Markov process. To verify whether actually a Markov process is happening is a daunting 

task. Based on the observations like O alone, we have to decide on the following: 

• A Markov process has different states. What should the states in the process correspond to 

what is happening behind the curtain? 

• How many states should be there? 

• What should be the initial probabilities? 

• What should be the transition probabilities? 

Let us assume that person B is doing something like the following before announcing the outcomes. 

1.Let person B be in possession of two biased coins (or, three coins, or any number of coins) 

and she is flipping these coins in some order. When flipping a particular coin, the system is 

in the state of that coin. So, each of these coins may be identified as a state and there are two 

states, say S1 and S2. 

2. The outcomes of the flips of the coins are the observations. These observations are represented 

by the observation symbols “H” (for “head”) and “T” (for “tail”). 
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3. After flipping coin, one of the two coins should be flipped next. There must be some definite 

procedure for doing this. The procedure is some random process with definite probabilities 

for selecting the coins. These are the transition probabilities and they define the transition 

probability matrix A. 

4. Since the coins are biased, there would be definite probabilities for getting “H” or “T” each 

time the coin is flipped. These probabilities are called the observation probabilities. 

5. There must be some procedure for selecting the first coin. This is specified by the initial 

probabilities vector Π. 

 

 The urn and ball model 

Again, consider a room which is divided into two parts by a curtain through which we cannot see 

what is happening on the other half of the room. Person A is sitting in one half and person B is 

sitting in the other half. Person B is doing some experiment, but she will not tell person A anything 

about what she is doing. Person B will only announce the result of each experiment. Let a typical 

sequence of announcements be 

O O1 O2 . . . OT 

“red”, “green”, “red”, . . . , “blue” 

Person A wants to create a mathematical model which explains this sequence of observations. 

 

Figure 11.3: An N -state urn and ball model which illustrates the general case of a discrete symbol 

HMM 

 
 

Person A suspects that person B is announcing the results based on the outcomes of some discrete 

Markov process. If that is true, then the Markov process that is happening behind the curtain is 

hidden from the rest of the world and we are left with a hidden Markov process. 

In this example, let us assume that person A suspects that something like the following is hap- 

pening behind the curtain. 

There are N large urns behind the curtain. Within each urn there are large number of coloured 

balls. There are M distinct colours of balls. Person B, according to some random process, chooses 

an initial urn. From this urn a ball is chosen at random and the colour of the ball is announced.  

The ball is then replaced in the urn. A new urn is then selected according to some random selection 

process associated with the current urn and the ball selection process is repeated. 

This process is a typical example of a hidden Markov process. Note the following: 

1. Selection of an urn may be made to correspond to a state of the process. Then, there are N 

states in the process. 
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in state Sj: 

 

2. The colours of the balls selected are the observations. The name of the colour may be referred 

to as the “observation symbol”. Hence, there are M observation symbols in the process. 

3. The random selection process associated with the current urn specifies the transition probabil- 

ities. 

4. Each urn contains a mixture of balls of different colours. So, corresponding to each urn, there 

are definite probabilities for getting balls of different colours. These probabilities are called 

the observation probabilities. 

5. The procedure for selecting the first urn provides the initial probabilities. 

 
 Hidden Markov model (HMM): The general case 

A hidden Markov model (HMM) is characterized by the following: 

1. The number of states in the model, say N . Let the states be S1, S2, . . . , SN . 

2. The number of distinct observation symbols, say M . Let the observation symbols be v1, v2, . . . , vM . 
(The observation symbols correspond to the physical outputs of the system.) 

3. The state transition probabilities specified by an  N N matrix A aj : 

aij P qt 1 Sj qt Si , for i, j 1, 2, . . . , N. 

where qt is the state at time t. 

 
bj(k) is the probability that, at time t, the outcome is the symbol vk given that the system is 

bj  k P  vk at t qt Sj  . 

We denote by B the N M matrix whose element in the j-th row k-column is bj  k  . 

5.The initial probabilities  Π πi : 

π P q1 Si  , for i 1, 2, . . . , N. 

 
The values of N and M are implicitly defined in A, B and Π. So, a HMM is completely defined by 

the parameter set 

λ = (A, B, Π). 

 Three basic problems of HMMs 

Given the general model of HMM, there are three basic problems that must be solved for the model 

to be useful for real-world applications. These problems are the following: 

Problem 1.Evaluation problem 

Given the observation sequence 

 

 
and a HMM model 

 
how do we efficiently compute 

O = O1 O2 . . . OT , 

λ = (A, B, Π) 

P (O|λ), 
 

 the probability of the observation sequence O given the model λ? 
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maximizes the probability P (Q|O, λ)? 

( ) 

λv = (Av, Bv, Πv). 

 

Problem 2.Finding state sequence problem 

Given the observation sequence 

 
 

and a HMM model 

 
O = O1 O2 . . . OT , 

λ = (A, B, Π) 

how do we find the the state sequence 

Q q1 q2 . . . , qT 

which has the highest probability of generating O;  that is, how do we find QY that 

Problem 3.Learning model parameters problem 

Given a training set X observation sequences, how do we learn the model 

λ A, B, Π 

that maximizes the probability of generating X; that is, how do we find λ that maxi- 

mizes the probability 

 

 Solutions of the basic problems 

P (X|λ). 

The details of the algorithms for solving these problems are beyond the scope of these notes. Prob- 

lem 1 is solved using the Forwards-Backwards algorithms. Problem 2 is solved by the Viterbi 

algorithm and posterior decoding. Finally, Problem 3 is solved by the Baum-Welch algorithm.1 

 
 HMM application: Isolated word recognition 

Most speech-recognition systems are classified as isolated or continuous. Isolated word recognition 

requires a brief pause between each spoken word, whereas continuous speech recognition does not. 

Speech-recognition systems can be further classified as speaker-dependent or speaker-independent. 

A speaker-dependent system only recognizes speech from one particular speaker’s voice, whereas a 

speaker-independent system can recognize speech from anybody. 

In this section, we consider in an outline form how HMMs are used in building an isolated word 

recogniser. 

1. Assume that we have a vocabulary V of words to be recognised. 

2. For each word in the vocabulary, there is a training set of K occurrences of each spoken word 

(spoken by 1 or more talkers) where each occurrence of the word constitute an observation 

sequence. 

3. The observations are some appropriate representation of the characteristics of the word. These 

representations are obtained via some preprocessing of the speech signal like linear predictive 

coding (LPC). 

4. For each word v ∈ V , we build an HMM, say 

For this, we have to apply the algorithms for learning an HMM to estimate the parameters 

Av, Bv, Πv that maximise the probability of generating the observations in the training set 

of K occurrences of the word v. 
1For a concise presentation of the algorithms, visit http://www.shokhirev.com/ 

nikolai/abc/alg/hmm/hmm.html. 

http://www.shokhirev.com/


171 
 

 

 

= 

v∈V 

(   | ) ∈ 

 

 

Figure 11.4: Block diagram of an isolated word HMM recogniser 

 

 
5. Now consider an unknown word v which needs to be recognised. The following procedure is 

used to recognise the word. 

(a) The speech signal corresponding to the word w is subjected to preprocessing like LPC 

and converted to the representation used in building the HMMs and the measurement of 

the observation sequence O O1 O2 . . . OT is obtained. 

(b) The probabilities P O λv , for each word v V are calculated. 

(c)Choose the word v for which P (O|λv) is highest: 

vY = arg max P (O|λv). 

(d)The word   w is recognised as the word vY. 

 
 

 Sample questions 

(a) Short answer questions 

1. What is the state transition matrix of a discrete Markov process? 

2.What is the Markov property of a discrete Markov process? 

3.Consider a Markov process with two states “Rainy” and “Dry” and the transition probabilities 

as shown in the following diagram. 
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0.2 

 
If P Rain 0.4 and P Dry 0.6 compute the probability for the sequence “Rain, Rain, 

Dry, Dry”. 

 
(b) Long answer questions 

1. Describe a discrete Markov process with an example. 

2.Describe a hidden Markov model. 

3.Explain how hidden Markov models are used in speech recognition. 

4.What are the basic problems associated with a hidden Markov model. 

5.Describe the urn and ball model of a hidden Markov model. 

6. Describe the coin tossing model of a hidden Markov model. 

7. Let there be a discrete Markov process with two states S1 and S2. Given the following se- 

quences of observations of these states, estimate the initial probabilities and the transition 

probabilities of the process. 

S1S2, S2S2, S1S2, S2S1, S1S1, S2S1, S1S2, S1S1. 



 

 

 

 
 
 
 
 
 
 
 

Combining multiple learners 

 
In general there are several algorithms for learning the same task. Though these are generally suc- 

cessful, no one single algorithm is always the most accurate. Now, we shall discuss models com- 

posed of multiple learners that complement each other so that by combining them, we attain higher 

accuracy. 

 
 Why combine many learners 

There are several reasons why a single learner may not produce accurate results. 

• Each learning algorithm carries with it a set of assumptions. This leads to error if the assump- 

tions do not hold. We cannot be fully sure whether the assumptions are true in a particular 

situation. 

• Learning is an ill-posed problem. With finite data, each algorithm may converge to a different 

solution and may fail in certain circumstances. 

• The performance of a learner may be fine-tuned to get the highest possible accuracy on a 

validation set. But this fine-tuning is a complex task and still there are instances on which 

even the best learner is not accurate enough. 

• It has been proved that there is no single learning algorithm that always produces the most 

accurate output. 

 
 Ways to achieve diversity 

When many learning algorithms are combined, the individual algorithms in the collection are called 

the base learners of the collection. 

When we generate multiple base-learners, we want them to be reasonably accurate but do not 

require them to be very accurate individually. The base-learners are not chosen for their accuracy, 

but for their simplicity. What we care for is the final accuracy when the base- learners are combined, 

rather than the accuracies of the bas-learners we started from. 

There are several different ways for selecting the base learners. 

1. Use different learning algorithms 

There may be several learning algorithms for performing a given task. For example, for 

classification, one may choose the naive Bayes’ algorithm, or the decision tree algorithm or 

even the SVM algorithm. 

Different algorithms make different assumptions about the data and lead to different results. 

When we decide on a single algorithm, we give emphasis to a single method and ignore all 

others. Combining multiple learners based on multiple algorithms, we get better results. 
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2. Use the same algorithm with different hyperparameters 

In machine learning, a hyperparameter is a parameter whose value is set before the learning 

process begins. By contrast, the values of other parameters are derived via training. 

The number of layers, the number of nodes in each layer and the initial weights are all hyper- 

parameters in an artificial neural network. When we train multiple base-learners with different 

hyperparameter values, we average over it and reduce variance, and therefore error. 

3. Use different representations of the input object 

For example, in speech recognition, to recognize the uttered words, words may be represented 

by the acoustic input. Words can also be represented by video images of the speaker’s lips as 

the words are spoken. 

Different representations make different characteristics explicit allowing better identification. 

In many applications, there are multiple sources of information, and it is desirable to use all 

of these data to extract more information and achieve higher accuracy in prediction. We make 

separate predictions based on different sources using separate base-learners, then combine 

their predictions. 

4. Use different training sets to train different base-learners 

• This can be done by drawing random training sets from the given sample; this is called bagging. 

• The learners can be trained serially so that instances on which the preceding base- 

learners are not accurate are given more emphasis in training later base-learners; ex- 

amples are boosting and cascading. 

• The partitioning of the training sample can also be done based on locality in the input 

space so that each base-learner is trained on instances in a certain local part of the input 

space. 

5. Multiexpert combination methods 

These base learners work in parallel. All of them are trained and then given an instance,  

they all give their decisions, and a separate combiner computes the final decision using their 

predictions. Examples include voting and its variants. 

6. Multistage combination methods 

These methods use a serial approach where the next base-learner is trained with or tested on 

only the instances where the previous base-learners are not accurate enough. 

 
 Model combination schemes 

 Voting 

This is the simplest procedure for combining the outcomes of several learning algorithms. Let us 

examine some special cases of this scheme 

1. Binary classification problem 

Consider a binary classification problem with class labels 1 and 1. Let there be L base 

learners and let x be a test instance. Each of the base learners will assign a class label to x. If 

the class label assigned is   1, we say that the learner votes for   1 and that the label    1 gets 

a vote. The number of votes obtained by the class labels when the different base learners are 

applied is counted. In the voting scheme for combining the learners, the label which gets the 

majority votes is assigned to x. 
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2. Multi-class classification problem 

Let there be n class labels C1, C2, , Cn. Let x be a test instance and let there be L base 

learners. Here also, each of the base learners will assign a class label to x and when a class 

label is assigned a label, the label gets a vote. In the voting scheme, the class label which gets 

the maximum number of votes is assigned to x. 

3. Regression 

Consider L base learners for predicting the value of a variable y. Let ŷi be the output predicted 

by the i-th base learner. The final output is computed as 

y wiŷ1 w2ŷ2 wLŷL 

where w1, w2, , wL are called the weights attached to the outputs of the various base learn- 

ers and they must satisfy the following conditions: 

wj ≥ 0 for j = 1, 2, .... , L 

This is the weighted voting scheme. In simple voting, we take 

 

 
 Bagging 

w = 
1 

for j = 1, 2, . . . , L. 

Bagging is a voting method whereby base-learners are made different by training them over slightly 

different training sets. 

Generating L slightly different samples from a given sample is done by bootstrap, where given a 

training set X of size N , we draw N instances randomly from X with replacement (see Section ??). 

Because sampling is done with replacement, it is possible that some instances are drawn more than 

once and that certain instances are not drawn at all.  When this is done to generate L samples Xj,  

j 1, . . . , L, these samples are similar because they are all drawn from the same original sample, 

but they are also slightly different due to chance. 

The base-learners are trained with these L samples Xj. A learning algorithm is an unstable 

algorithm if small changes in the training set causes a large difference in the generated learner. 

Bagging, short for bootstrap aggregating, uses bootstrap to generate L training sets, trains L base- 

learners using an unstable learning procedure and then during testing, takes an average. Bagging 

can be used both for classification and regression. In the case of regression, to be more robust, one 

can take the median instead of the average when combining predictions. 

Algorithms such as decision trees and multilayer perceptrons are unstable. 

 
 Boosting 

In bagging, generating complementary base-learners is left to chance and to the unstability of the 

learning method. In boosting, we actively try to generate complementary base-learners by training 

the next learner on the mistakes of the previous learners. The original boosting algorithm combines 

three weak learners to generate a strong learner. A weak learner has error probability less than   

1/2, which makes it better than random guessing on a two-class problem, and a strong learner has 

arbitrarily small error probability. 

 
The boosting method 

1. Let d1, d2, d3 be three learning algorithms for a particular task. Let a large training set X be 
given. 

2. We randomly divide X into three sets, say X1, X2, X3. 
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3. We use X1 and train d1. 

4. We then take X2 and feed it to d1. 

5. We take all instances misclassified by d1 and also as many instances on which d1 is correct 
from X2, and these together form the training set of d2. 

6. We then take X3 and feed it to d1 and d2. 

7. The instances on which d1 and d2 disagree form the training set of d3. 

8. During testing, given an instance, we give it to d1 and d2 if they agree, that is the response; 
otherwise the response of d3 is taken as the output. 

It has been shown that this overall system has reduced error rate, and the error rate can arbitrar- 

ily be reduced by using such systems recursively. One disadvantage of the system is thaaaaaat it 

requires a very large training sample. An improved algorithm known as AdaBoost (short for “adap- 

tive boosting”), uses the same training set over and over and thus need not be large. AdaBoost can 

also combine an arbitrary number of base-learners, not three. 

 
 Ensemble learning 

The word “ensemble” literally means “a group of things or people acting or taken together as a 

whole, especially a group of musicians who regularly play together.” 

In machine learning, an ensemble learning method consists of the following two steps: 

1.Create different models for solving a particular problem using a given data. 

2.Combine the models created to produce improved results. 

The different models may be chosen in many different ways: 

• The models may be created using appropriate different algorithms like k-NN algorithm, Naive- 

Bayes algorithm, decision tree algorithm, etc. 

• The models may be created by using the same algorithm but using different splits of the same 

dataset into training data and test data. 

• The models may be created by assigning different initial values to the parameters in the algo- 

rithm as in ANN algorithms. 

The models created in the ensemble learning methods are combined in several ways. 

• Simple majority voting in classification problems: Every model makes a prediction (votes) 

for each test instance and the final output prediction is the one that receives more than half of 

the votes. 

• Weighted majority voting in classification problem: In weighted voting we count the predic- 

tion of the better models multiple times. Finding a reasonable set of weights is up to us. 

• Simple averaging in prediction problems: In simple averaging method, for every instance of 

test dataset, the average predictions are calculated. 

• Weighted averaging in prediction problems: In this method, the prediction of each model is 

multiplied by the weight and then their average is calculated. 

 
 Random forest 

A random forest is an ensemble learning method where multiple decision trees are constructed and 

then they are merged to get a more accurate prediction. 
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Figure 12.1: Example of random forest with majority voting 

 

 
 Algorithm 

Here is an outline of the random forest algorithm. 

1. The random forests algorithm generates many classification trees. Each tree is generated as 

follows: 

(a) If the number of examples in the training set is N , take a sample of N examples at 

random - but with replacement, from the original data. This sample will be the training 

set for generating the tree. 

(b) If there are M input variables, a number m is specified such that at each node, m vari- 

ables are selected at random out of the M and the best split on these m is used to split 

the node. The value of m is held constant during the generation of the various trees in 

the forest. 

(c) Each tree is grown to the largest extent possible. 

2. To classify a new object from an input vector, put the input vector down each of the trees in 

the forest. Each tree gives a classification, and we say the tree “votes” for that class. The 

forest chooses the classification 

 
 Strengths and weaknesses 

Strengths 

The following are some of the important strengths of random forests. 

• It runs efficiently on large data bases. 

• It can handle thousands of input variables without variable deletion. 

• It gives estimates of what variables are important in the classification. 

• It has an effective method for estimating missing data and maintains accuracy when a large 

proportion of the data are missing. 

• Generated forests can be saved for future use on other data. 
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• Prototypes are computed that give information about the relation between the variables and 

the classification. 

• The capabilities of the above can be extended to unlabeled data, leading to unsupervised 

clustering, data views and outlier detection. 

• It offers an experimental method for detecting variable interactions. 

• Random forest run times are quite fast, and they are able to deal with unbalanced and missing 

data. 

• They can handle binary features, categorical features, numerical features without any need for 

scaling. 

• There are lots of excellent, free, and open-source implementations of the random forest algo- 

rithm. We can find a good implementation in almost all major ML libraries and toolkits. 

 
Weaknesses 

• A weakness of random forest algorithms is that when used for regression they cannot predict 

beyond the range in the training data, and that they may over-fit data sets that are particularly 

noisy. 

• The sizes of the models created by random forests may be very large. It may take hundreds of 

megabytes of memory and may be slow to evaluate. 

• Random forest models are black boxes that are very hard to interpret. 

 
 

 

 Sample questions 

(a) Short answer questions 

1. Explain the necessity of combining several algorithms for accomplishing a particular task. 

2.What is a base learner? How do we select base learners? 

(b) Long answer questions 

1. Explain the following: (i) voting (ii) bagging (iii) boosting. 

2.Explain what is meant by random forests.



 

 

 

− 

Module 6 

Clustering methods 

 
 Clustering 

Clustering or cluster analysis is the task of grouping a set of objects in such a way that objects in the 

same group (called a cluster) are more similar (in some sense) to each other than to those in other 

groups (clusters). 

Clustering is a main task of exploratory data mining and used in many fields, including machine 

learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compres- 

sion, and computer graphics. It can be achieved by various algorithms that differ significantly in 

their notion of what constitutes a cluster and how to efficiently find them. Popular notions of clus- 

ters include groups with small distances between cluster members, dense areas of the data space, 

etc. 

 

 Examples of data with natural clusters 

In many applications, there will naturally be several groups or clusters in samples. 

1. Consider the case of optical character recognition: There are two ways of writing the digit 7; 

the American writing is ‘7’, whereas the European writing style has a horizontal bar in the 

middle (something like 7 ). In such a case, when the sample contains examples from both 

continents, the sample will contain two clusters or groups one corresponding to the American 

7 and the other corresponding to the European 7 . 

2. In speech recognition, where the same word can be uttered in different ways, due to different 

pronunciation, accent, gender, age, and so forth, there is not a single, universal prototype. In 

a large sample of utterances of a specific word, All the different ways should be represented 

in the sample. 

 
 k-means clustering 

 Outline 

The k-means clustering algorithm is one of the simplest unsupervised learning algorithms for solving 

the clustering problem. 

Let it be required to classify a given data set into a certain number of clusters, say, k clusters. 

We start by choosing k points arbitrarily as the “centres” of the clusters, one for each cluster. We 

then associate each of the given data points with the nearest centre. We now take the averages of 

the data points associated with a centre and replace the centre with the average, and this is done for 

each of the centres. We repeat the process until the centres converge to some fixed points. The data 

points nearest to the centres form the various clusters in the dataset. Each cluster is represented by 

the associated centre. 
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 Example 

We illustrate the algorithm in the case where there are only two variables so that the data points 

and cluster centres can be geometrically represented by points in a coordinate plane. The distance 

between the points x1, x2 and y1, y2 will be calculated using the familiar distance formula of 

elementary analytical geometry: 

 

 

Problem 

√
(x1 − y1)2 + (x2 − y2)2. 

Use k-means clustering algorithm to divide the following data into two clusters and also compute 

the the representative data points for the clusters. 

 
x1 1 2 2 3 4 5 

x2 1 1 3 2 3 5 

 
Table 13.1: Data for k-means algorithm example 

 

 
Solution 

 

x2 

 

5 
 

4 
 

3 
 

2 
 

1 

 

0 1 2 3 4 5 x1 
 

Figure 13.1: Scatter diagram of data in Table 13.1 

 

 

1. In the problem, the required number of clusters is  2 and we take k 2. 

2. We choose two points arbitrarily as the initial cluster centres. Let us choose arbitrarily (see 

Figure 13.2) 

v̇1  = (2, 1), v̇2  = (2, 3). 

 

 
3. We compute the distances of the given data points from the cluster centers. 
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ẋi Data point Di

˙
sta

=
nc

(
e Di

˙
stance Minimum Assigned 

˙ 

( 
) 

) 

3 

 

x2 

 

5 
 

4 

 
3 

 
2 

 
1   v̇1  

 

0 1 2 3 4 5 x1 
 

Figure 13.2: Initial choice of cluster centres and the resulting clusters 

 

 
 

from v1 2, 1) from v2  = (2, 3) distance center 
 x1 

(
1, 1) 1 2.24 1 v

˙
1 

x2 2, 1 0 2 0 v1 

x3 v2 

x4 v1 

x5 v2 

x6 5, 5 5 3.61 3.61 v2 
 

(The distances of x4 from v1 and v2 are equal. We have assigned v1 to x4 arbitrarily.) 

This divides the data into two clusters as follows (see Figure 13.2): 

Cluster 1: x1, x2, x4 represented by v1 

Number of data points in Cluster 1: c1 3. 

Cluster 2 : x3, x5, x6 represented by v2 

Number of data points in Cluster 2: c2 3. 

4. The cluster centres are recalculated as follows: 

v̇1 x1 + ẋ2 + ẋ4) 
 

=  
1 

(ẋ   + ẋ   + ẋ  ) 
2 4 

= (2.00, 1.33) 

 
v̇2 

=   
1 

(ẋ   + ẋ   + ẋ  ) 5 6 
=  

1 
(ẋ   + ẋ   + ẋ  ) 

5 6 

3.67, 3.67 

 
5. We compute the distances of the given data points from the new cluster centers. 

1 

 
v̇2 

3 

c2 

 1 

1 

3 
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from v1 2, 1) from v2  = (2, 3) distance center x1 

(
1, 1) 1.05 3.77 1.05 v

˙
1 

x2 2, 1 0.33 3.14 0.33 v1 

x3 v1 

x4 v1 

x5 4, 3 2.60 0.75 0.75 v2 

x6 v2 
 

This divides the data into two clusters as follows (see Figure 13.4): 

Cluster 1 : x1, x2, x3, x4 represented by v1 

Number of data points in Cluster 1: c1 4. 

Cluster 2 : x5, x6 represented by v2 

Number of data points in Cluster 1: c2 2. 

6. The cluster centres are recalculated as follows: 

v̇1 
 1 

   x1 
1 

+ ẋ2 + ẋ3 + ẋ4) 

=  
1 

(ẋ   + ẋ   + ẋ 
2 3 + ẋ4) 

= (2.00, 1.33) 

 
v̇2 

=  
1 

(ẋ   + ẋ  ) = (3.67, 3.67) 6 
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Figure 13.3: Cluster centres after first iteration and the corresponding clusters 

 

 
7. We compute the distances of the given data points from the new cluster centers. 

4.609772 3.905125 2.692582 2.500000 1.118034 1.118034 
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from v1 2, 1) from v2  = (2, 3) distance center x1 

(
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˙
1 
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This divides the data into two clusters as follows (see Figure ??): 

Cluster 1 : x1, x2, x3, x4 represented by v1 

Number of data points in Cluster 1: c1 4. 

Cluster 2 : x5, x6 represented by v2 

Number of data points in Cluster 1: c1 2. 

8. The cluster centres are recalculated as follows: 

v̇1 x1 + ẋ2 + ẋ3 
 

+ ẋ4) 
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Figure 13.4: New cluster centres and the corresponding clusters 

 

 
9. This divides the data into two clusters as follows (see Figure ??): 

Cluster 1 : x1, x2, x3, x4 represented by v1 

Cluster 2 : {ẋ5, ẋ6} represented by v̇2 

1 

v̇1 
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Basic idea 

 

10. The cluster centres are recalculated as follows: 

v̇1 =  
1 

(ẋ + ẋ2 + ẋ3 + ẋ4) = (2.00, 1.75) 

v̇2  =    (ẋ   + ẋ  ) = (4.00, 4.50) 1 
6 

 

We note that these are identical to the cluster centres calculated in Step 8. So there will be no 

reassignment of data points to different clusters and hence the computations are stopped here. 

11. Conclusion: The   k means clustering algorithm with k 2 applied to the dataset in Table 13.1 

yields the following clusters and the associated cluster centres: 

Cluster 1 :   x1, x2, x3, x4 represented by v1 2.00, 1.75 

Cluster 2 :   x5, x6    represented by v2 2.00, 4.75 

 

 The algorithm 

Notations 

We assume that each data point is a n-dimensional vector: 

ẋ = (x1, x2, . . . , xn). 

The distance between two data points 

 

 
and 

 
is defined as 

x y 

ẋ = (x1, x2, . . . , xn) 

ẏ  = (y1, y2, . . . , xn) 

 
(x1 − y1) + …(xn − yn) . 

Let X =  {ẋ1, . . . , ẋN } be the set of data points, V  =  {v̇1, . . . , v̇k} be the set of centres and ci for 

 

 

What the algorithm aims to achieve is to find a partition the set X into k mutually disjoint subsets 

S S1, S2, . . . , Sk and a set of data points V which minimizes the following within-cluster sum of 

errors: 

 

 

Algorithm 

k 

x v 2 

i=1 ẋ∈Si 

Step 1.Randomly select k cluster centers v1, . . . , vk. 

Step 2.Calculate the distance between each data point ẋi and each cluster center v̇j . 

Step 3.For each 

distance ||
j
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˙
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˙
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ici 
), i = 1, 2, . . . , k. 

Step 5.Recalculate the distance between each data point and newly obtained cluster centers. 

Step 6.If no data point was reassigned then stop. Otherwise repeat from Step 3. 

Step 4.Recalculate the cluster centres using 

2 

1 

5 
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Some methods for initialisation 

The following are some of the methods for choosing the initial vi’s. 

• Randomly take some k data points as the initial vi’s. 

• Calculate the mean of all data and add small random vectors to the mean to get the k initial 

vi’s. 

• Calculate the principal component, divide its range into k equal intervals, partition the data 

into k groups, and then take the means of these groups as the initial centres. 

 

 Disadvantages 

Even though the k-means algorithm is fast, robust and easy to understand, there are several disad- 

vantages to the algorithm. 

• The learning algorithm requires apriori specification of the number of cluster centers. 

• The final cluster centres depend on the initial vi’s. 

• With different representation of data we get different results (data represented in form of 

cartesian co-ordinates and polar co-ordinates will give different results). 

• Euclidean distance measures can unequally weight underlying factors. 

• The learning algorithm provides the local optima of the squared error function. 

• Randomly choosing of the initial cluster centres may not lead to a fruitful result. 

• The algorithm cannot be applied to categorical data. 

 
 Application: Image segmentation and compression 

Image segmentation 

The goal of segmentation is to partition an image into regions each of which has a reasonably 

homogeneous visual appearance or which corresponds to objects or parts of objects. Each pixel in 

an image is a point in a 3-dimensional space comprising the intensities of the red, blue, and green 

channels. A segmentation algorithm simply treats each pixel in the image as a separate data point. 

For any value of k, each pixel is replaced by the pixel vector with the R, G, B intensity triplet 

given by the centre µk to which that pixel has been assigned. For a given value of k, the algorithm 

is representing the image using a palette of only k colours. It should be emphasized that this use of 

k-means is a very crude approach to image segmentation. The image segmentation problem is in 

general extremely difficult. 

 
Data compression 

We can also the clustering algorithm to perform data compression. There are two types of data 

compression: lossless data compression, in which the goal is to be able to reconstruct the original 

data exactly from the compressed representation, and lossy data compression, in which we accept 

some errors in the reconstruction in return for higher levels of compression than can be achieved in 

the lossless case. 

We can apply the k-means algorithm to the problem of lossy data compression as follows. For 

each of the N data points, we store only the identity of the cluster to which it is assigned. We also 

store the values of the k cluster centres µk, which requires much less data,  provided we choose    

k much smaller than N . Each data point is then approximated by its nearest centre µk. New data 

points can similarly be compressed by first finding the nearest µk and then storing the label k instead 

of the original data vector. This framework is often called vector quantization, and the vectors Îijµk 

are called code-book vectors. 
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 Multi-modal distributions 

 Definitions 

1. In statistics, a unimodal distribution is a continuous probability distribution with only one 

mode (or “peak”). 

A random variable having the normal distribution is a unimodal distribution. Similarly, the 

t-distribution and the chi-squared distribution are also unimodal distributions. 
 

Unimodal  Bimodal Multimodal 

Figure 13.5: Probability distributions 

 

2.A bimodal distribution is a continuous probability distribution with two different modes. The 

modes appear as distinct peaks in the graph of the probability density function. 

3.A multimodal distribution is a continuous probability distribution with two or more modes. 

 
 Mixture of normal distributions 

 Bimodal mixture 

Consider the following functions which are probability density functions of normally distributed 

random variables. 

f1(x) =  e 

 

x µ1 
2 

2σ2 
1 

 
 

 

 
(13.1) 

σ1     2π 
f2(x) =  e x µ2 

2 
2σ2 

2 
(13.2) 

 
Now consider the following function: 

σ2 2π 

 

f x π1f1  x π2f2  x (13.3) 

where π1 and π2 are some constants satisfying the relation 

π1 π2 1. (13.4) 

It can be shown that the function given in Eq.(13.3) together with Eq.(13.4) defines a probability 

density function. It can also be shown that the graph of this function has two peaks. Hence this 

function defines a bimodal distribution. This distribution is called a mixture of the normal distribu- 

tions defined by Eqs.(13.1) and (13.2). We may mix more than two normal distributions. 
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 Definition 

Consider the following k probability density functions: 
 

fi(x) =  e 
x µi 

2 

2σ2 
i , i = 1, 2, . . . , k. (13.5) 

σi  2π 

Let π1, π2, . . . , πk be constants such that 

πi ≥ 0, i = 1, 2, . . . , k (13.6) 

Then the random variable X whose probability density function is 

f x f1  x f2  x fk x , (13.8) 

is said to be a mixture of the k normal distributions having the probability density functions defined 

in Eq.(13.5). 

 
A natural example 

As a natural example for such mixtures of normal populations, we consider the probability distribu- 

tion of heights of people in a region. This is a mixture of two normal distributions: the distribution 

of heights of males and the distribution of heights of females. Given only the height data and not 

the gender assignments for each data point, the distribution of all heights would follow the weighted 

sum of two normal distributions. 

 
 Example for mixture of two normal distributions 

Data and histogram 

Consider the 100 observations of some attribute X given in Table 13.2. 
 

[1] 5.39 1.30 2.95 2.16 2.37 2.33 4.76 2.99 1.71 2.41 

[11] 2.71 2.79 0.54 1.37 5.16 1.22 1.58 4.34 3.83 3.44 

[21] 3.68 5.03 0.92 2.57 1.97 2.17 5.02 2.73 1.63 3.09 

[31] 4.05 3.76 3.13 6.50 5.10 3.62 3.14 2.36 2.73 4.08 

[41] 3.28 2.28 1.52 3.86 2.10 0.86 2.94 2.18 3.39 2.55 

[51] 3.23 3.30 2.16 3.86 1.92 2.55 4.33 0.86 2.68 2.24 

[61] 2.82 3.63 2.84 3.82 2.49 3.25 2.39 3.18 6.35 4.16 

[71] 6.68 5.26 8.00 6.27 7.98 6.50 6.56 8.50 7.48 6.42 

[81] 5.99 7.44 6.96 7.10 8.48 6.99 7.29 6.87 6.71 7.99 

[91] 8.19 8.28 6.98 7.43 8.33 5.65 8.96 7.36 5.24 7.30 

Table 13.2: A set of 100 observations of a numeric attribute X 

 

To make some sense of this set of observations, let us construct the frequency table for the data 

as in Table 13.3. 
 

Range 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7 -8 8-9 9-10 

Frequency 4 9 26 18 6 9 12 9 7 0 

Relative 

frequency 

 

0.04 
 

0.09 
 

0.26 
 

0.18 
 

0.06 
 

0.09 
 

0.12 
 

0.09 
 

0.07 
 

0.00 

Table 13.3: Frequency table of data in Table 13.2 
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= = 

are values of a normally distributed random variable with µ  = 7 and σ  = 0.87. The weight for the2  2 

= = 

= = = = 

1.20 2π 0.87 2π 

 

Figure 13.6 shows the histogram of the relative frequencies. Notice that the histogram has two 

“peaks”, one near x 2.5 and one near x  6.5. So, the graph of the probability density function of  

the attribute X must have two peaks. Recall that the graph of the probability density function of a 

random variable having the normal distribution has only one peak. 

 
Probability distribution 

The data in Table 13.2 was generated using the R programming language. It is a true “mixture” of 

the values two normally distributed random variables. 70% of the observations are random values 

of a normally distributed random variable with  µ1       3 and σ1       1.20 and 30% of the observations 

first normal distribution is π1       70%     0.7 and that for the second distribution is π2      30%     0.3. 

The probability density function for the mixed distribution is 

f (x) = 0.7 × 
1
√                            e−(x−3)2 /(2×1.202) + 0.3 × 

1
√                               e−(x−7)2 /(2×0.872). (13.9) 

 

Figure 13.6 also shows the curve defined by Eq.(13.9) superimposed on the histogram of the relative 

frequency distribution. 

 
 

Figure 13.6: Graph of pdf defined by Eq.(13.9) superimposed on the histogram of the data in Table 

13.3 

 

 

 

 Mixtures in terms of latent variables 

Consider the mixture of k normal distributions defined by Eqs.(13.5) – (13.8). 

Let us define a k-dimensional random variable 

Ż = (z1, z2, . . . , zk) 
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˙ 
{  

˙ 
} 

p(    ˙ z1  

 zkx|Z) = [f (x)] × 
… × [f  (x)]    .1   k 

( ˙ )̇ 

= (  ) + … + ( ) 

(   ) = Σ
˙    

( ˙)    (   | ˙) 

{( ˙  ˙    )̇  ( 
   ) (    )}1  1 2 

 2   N  N 
probability distribution p(x|Z) be given by 

( ) 

( ) 

P (Ż) = πz1 πz2  . . . πzk . 

The probability function of Z can be written in the form 

1 2 k 

Z 

 

where each z1 is either 0 or 1 and a 1 appears only at one place; that is, 

zi ∈ {0, 1} and z1 + z2 + … + zk = 0. 

We also assume that 

 
˙ 

P (zk = 1) = πk. 

 

 

Now, suppose we have a set of observations x1, x2, . . . , xN . Suppose that, in some way, we 

can associate a value of the random variable Z, say Zi, with each value xi and think of the given set 

of observations as a set of ordered pairs 

x , Z   ,  x , Z   , . . . , x  , Z . 

Here, only the xi-s are know
˙
n; the Żi-s are unknown.  Let us further assume that the conditional 

Then the marginal distribution of x is given by 

p x p Z P x Z 

π1f1   x πkfk x . (13.10) 

The right hand side of Eq.(13.10) is the probability density function of a mixture of k normal distri- 

butions with weights π1, . . . , πk. 
Thus, a mixture of normal distributions is the marginal distribution of a bivariate distribution 

x, Z where Z is an unobserved or latent variable. 

 
 Expectation-maximisation algorithm 

The maximum likelihood estimation method (MLE) is a method for estimating the parameters of a 

statistical model, given observations (see Section 6.5 for details). The method attempts to find the 

parameter values that maximize the likelihood function, or equivalently the log-likelihood function, 

given the observations. 

The expectation-maximisation algorithm (sometimes abbreviated as the EM algorithm) is used 

to find maximum likelihood estimates of the parameters of a statistical model in cases where the 

equations cannot be solved directly. These models generally involve latent or unobserved variables 

in addition to unknown parameters and known data observations. For example, a Gaussian mixture 

model can be described by assuming that each observed data point has a corresponding unobserved 

data point, or latent variable, specifying the mixture component to which each data point belongs. 

The EM Algorithm is not really an algorithm. Rather it is a general procedure to create algo- 

rithms for specific MLE problems. The complete details of this general procedure are beyond the 

scope of this book. However, we present below a minimal outline of the algorithm 

 
Outline of EM algorithm 

Step 1.Initialise the parameters θ to be estimated. 

Step 2. Expectation step (E-step) 

Take the expected value of the complete data given the observation and the current param- 

eter estimate, say, θ̂j . This is a function of θ and θ̂j , say, Q θ, θ̂j   . 

Step 3. Maximization step (M-step) 

Find the values θ that maximizes the function Q θ, θ̂j   . 

Step 4.Repeat Steps 1 and 2 until the parameter values or the likelihood function converge. 
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− 
( − ) 
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= Σ 
⎞

 √ 
√ 

i 

= + … + 

log L(θ) = log f (x1) + … + log f (xN )          

i N 
1 iN N 

σk 2π 

1 1 n k k n 

 

 The EM algorithm for Gaussian mixtures 

In the case of Gaussian mixture problems, because of the nature of the function, finding a maximum 

likelihood estimate by taking the derivatives of the log-likelihood function with respect to all the 

parameters and simultaneously solving the resulting equations is nearly impossible. So we apply the 

EM algorithm to solve the problem. 

As already indicated,  the EM algorithm is a general procedure for estimating the parameters  

in a statistical model. This algorithm can be adapted to develop an algorithm for estimating the 

parameters in a Gaussian mixture model. The adapted EM algorithm has been explained below. 

(The details of how the EM algorithm can be adapted to estimate the parameters in a Gaussian 

mixture model are also beyond the scope of this book. For details on these matters, one may refer to 

[1]). 

 
Problem 

Suppose we are given a set of N observations 

x1, x2, . . . , xN 
 

of a numeric variable X. Let X be a mix of k normal distributions and let the probability density 

function of X be 

 
where 

f (x) = π1f1(x) + … + πkfk(x) 

π 0, i 1, 2, . . . , k 

πi + … + πk = 1 
 

 
fi(x) =  e x µi 

2 
2σ2 

i 

, i = 1, 2, . . . , k. 

σi  2π 

Estimate the parameters µ1, . . . , µk, σ1, . . . , σk and π1 . . . , πk. 

 
Log-likelihood function 

Let θ denote the set of parameters µi, σi, πi i 1, . . . , k . The log-likelihood function for the above 

problem is given below: 

 
N ƒ π − 

(xi−µ1 )
2 

 
 

 

π  − 
(xi−µk )

2 

⎞ 

 
 

The algorithm 

log i=1 
1 e 

σ1 2π 
2σ2 

+ … + 
k 

e 

2σ2 
k (13.11) 

Step 1.Initialise the means µi’s, the variances σ2’s and the mixing coefficients πi’s. 

Step 2.Calculate the following for n = 1, . . . , N and i = 1, . . . , k:  

γ = 
πifi(xn) 

 
in 

π f (x  ) + … + π  f (x ) 
Ni γi1 γiN 

 
Step 3.Recalculate the parameters using the following: 

µ(new) =
 1 

(γ 
 

 

x  + …γ x ) 
i 

1 

     1  

J 

i1 
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{ } 

c, d} and {e} is 15 and between {a, b} and {c, d, e} is 25. 

{ } { } { } { } 

i N 
1 i 1 i 

i N 

{ 

 

σ2(new) =
 1 

(γ 
 

 

(x − µ(new))2 + … + γ (x − µ(new))2) 

π(new) = 
Ni 

 

Step 4.Evaluate the log-likelihood function given in Eq.(13.11) and check for convergence of ei- 

ther the parameters or the log-likelihood function. If the convergence criterion is not satis- 

fied, return to Step 2. 

 
 Hierarchical clustering 

Hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster 

analysis which seeks to build a hierarchy of clusters (or groups) in a given dataset. The hierarchical 

clustering produces clusters in which the clusters at each level of the hierarchy are created by merg- 

ing clusters at the next lower level. At the lowest level, each cluster contains a single observation. 

At the highest level there is only one cluster containing all of the data. 

The decision regarding whether two clusters are to be merged or not is taken based on the mea- 

sure of dissimilarity between the clusters. The distance between two clusters is usually taken as the 

measure of dissimilarity between the clusters. 

In Section ??, we shall see various methods for measuring the distance between two clusters. 

 
 Dendrograms 

Hierarchical clustering can be represented by a rooted binary tree. The nodes of the trees represent 

groups or clusters. The root node represents the entire data set. The terminal nodes each represent 

one of the individual observations (singleton clusters). Each nonterminal node has two daughter 

nodes. 

The distance between merged clusters is monotone increasing with the level of the merger. The 

height of each node above the level of the terminal nodes in the tree is proportional to the value of 

the distance between its two daughters (see Figure 13.9). 

A dendrogram is a tree diagram used to illustrate the arrangement of the clusters produced by 

hierarchical clustering. 

The dendrogram may be drawn with the root node at the top and the branches growing vertically 

downwards (see Figure 13.8(a)). It may also be drawn with the root node at the left and the branches 

growing horizontally rightwards (see Figure 13.8(b)). In some contexts, the opposite directions may 

also be more appropriate. 

Dendrograms are commonly used in computational biology to illustrate the clustering of genes 

or samples. 

 
Example 

Figure 13.7 is a dendrogram of the dataset a, b, c, d, e . Note that the root node represents the en- 

tire dataset and the terminal nodes represent the individual observations. However, the dendrograms 

are presented in a simplified format in which only the terminal nodes (that is, the nodes represent- 

ing the singleton clusters) are explicitly displayed. Figure 13.8 shows the simplified format of the 

dendrogram in Figure 13.7. 

Figure 13.9 shows the distances of the clusters at the various levels. Note that the clusters are at 

4 levels. The distance between the clusters   a  and   b  is 15, between   c  and   d  is 7.5, between 

 
 

 Methods for hierarchical clustering 

There are two methods for the hierarchical clustering of a dataset. These are known as the agglom- 

erative method (or the bottom-up method) and the divisive method (or, the top-down method). 

i 
i1 iN 
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Figure 13.7: A dendrogram of the dataset {a, b, c, d, e} 

e 

d 

 

c 

 
b 

 
 

a b c d e 

(a) 

a 

(b) 
 

Figure 13.8: Different ways of drawing dendrogram 
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25 
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5 
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Level 4 

 
Level 3 

Level 2 

a b c d   e Level 1 

 

Figure 13.9: A dendrogram of the dataset a, b, c, d, e showing the distances (heights) of the clus- 

ters at different levels 

 

 
Agglomerative method 

In the agglomerative we start at the bottom and at each level recursively merge a selected pair of 

clusters into a single cluster. This produces a grouping at the next higher level with one less cluster. 

If there are N observations in the dataset, there will be N 1 levels in the hierarchy. The pair chosen 

for merging consist of the two groups with the smallest “intergroup dissimilarity”. 

For example, the hierarchical clustering shown in Figure 13.7 can be constructed by the agglom- 

erative method as shown in Figure 13.10. Each nonterminal node has two daughter nodes. The 

daughters represent the two groups that were merged to form the parent. 

a, b, c, d, e 

a, b c, d, e 

c, d 

a b c d e 
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c, d, e 
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Step 1 
 

Step 2 
 

Step 3 
 

Step 4 
 

Step 5 

 

Figure 13.10: Hierarchical clustering using agglomerative method 

e d c b a 
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− 

and y = (y , . . . , y  ) be two observations.  Then the following are the commonly used measures of1

 n 

→ 

→ 

( ) 

distances in the hierarchical clustering of numeric data. 

 

Divisive method 

The divisive method starts at the top and at each level recursively split one of the existing clusters at 

that level into two new clusters. If there are N observations in the dataset, there the divisive method 

also will produce N 1 levels in the hierarchy. The split is chosen to produce two new groups with 

the largest “between-group dissimilarity”. 

For example, the hierarchical clustering shown in Figure 13.7 can be constructed by the divi- 

sive method as shown in Figure 13.11. Each nonterminal node has two daughter nodes. The two 

daughters represent the two groups resulting from the split of the parent. 

 
 Measures of dissimilarity 

In order to decide which clusters should be combined (for agglomerative), or where a cluster should 

be split (for divisive), a measure of dissimilarity between sets of observations is required. In most 

methods of hierarchical clustering, the dissimilarity between two groups of observations is measured 

by using an appropriate measure of distance between the groups of observations. The distance 

between two groups of observations is defined in terms of the distance between two observations. 

There are several ways in which the distance between two observations can be defined and also there 

are also several ways in which the distance between two groups of observations can be defined. 

 
 Measures of distance between data points 

Numeric data 

We a

˙
ssume that each observation or data point is a n-dimensional vector.   Let ẋ  =  (x1, . . . , xn) 

 

Name Formula ||˙ − |̇|   = 
√

( − )   + … + ( − ) 

Euclidean distance 

Squared Euclidean distance 

Manhattan distance 

Maximum distance 

x   y 2 x1 y1  
2 xn yn 

2 

||ẋ − ẏ||2  = (x1 − y1)2 + … + (xn − yn)2
 

2 

||ẋ − ẏ||1  = |x1 − y1| + … + |xn − yn| 

||ẋ − ẏ||∞ = max{|x1 − y1|, . . . , |xn − yn|} 

Non-numeric data 

For text or other non-numeric data, metrics such as the Levenshtein distance are often used. 

The Levenshtein distance is a measure of the ”distance” between two words. The Levenshtein 

distance between two words is the minimum number of single-character edits (insertions, deletions 

or substitutions) required to change one word into the other. 

For example, the Levenshtein distance between “kitten” and “sitting” is 3, since the following 

three edits change one into the other, and there is no way to do it with fewer than three edits: 

kitten sitten (substitution of “s” for “k”) 

sitten sittin (substitution of “i” for “e”) 

sittin → sitting (insertion of‘g” at the end) 

 Measures of distance between groups of data points 

Let A and B be two groups of observations and let x and y be arbitrary data points in A and B 

respectively. Suppose we have chosen some formula, say Euclidean distance formula, to measure 

the distance between data points. Let d x, y denote the distance between x and y. We denote by 
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Figure 13.11: Hierarchical clustering using divisive method 

 

a, b, c, d, e 
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in which d(A, B) is defined. 

( ) = {  ( ) ∶ ∈ ∈ } 

( ) = {  ( ) ∶ ∈ ∈ } 

× 

A| |B| x∈A,y∈B 

A and B. 

d(A, B) the distance between the groups A and B. The following are some of the different methods 

1. d A, B max  d x, y x A, y B . 

Agglomerative hierarchical clustering using this measure of dissimilarity is known as complete- 

linkage clustering. The method is also known as farthest neighbour clustering. 

 
 

d 

 
a 

e 
 

b  c 

B 
A 

Figure 13.12: Length of the solid line “ae” is max{d(x, y) ∶ x ∈ A, y ∈ B} 

2. d A, B min  d x, y x A, y B . 

Agglomerative hierarchical clustering using this measure of dissimilarity is known as single- 

linkage clustering. The method is also known as nearest neighbour clustering. 

 
 

d 

 
a 

e 
 

b  c 

B 
A 

Figure 13.13: Length of the solid line “bc” is min{d(x, y) ∶ x ∈ A, y ∈ B} 
 

 

3. d(A, B) = 
|   

1 
Σ d(x, y) where |A|, |B| are respectively the number of elements in 

Agglomerative hierarchical clustering using this measure of dissimilarity is known as mean 

or average linkage clustering. It is also known as UPGMA (Unweighted Pair Group Method 

with Arithmetic Mean). 

 
 Algorithm for agglomerative hierarchical clustering 

Given a set of N items to be clustered and an N N distance matrix, required to construct a 

hierarchical clustering of the data using the agglomerative method. 

Step 1.Start by assigning each item to its own cluster, so that we have N clusters, each containing 

just one item. Let the distances between the clusters equal the distances between the items 

they contain. 
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{ } 

{ } { } { } { } { } 

{ } { } 

{ } { } { } 

({ } { }) = 

{  }  { }  { } { } 

{ } 

({ }  { }) = {  ( )   ( )} = { } = 

({ }  { }) = {  ( )   ( )} = { } = 

({ }  { }) = {  ( )   ( )} = { } = 

 

Step 2.Find the closest pair of clusters and merge them into a single cluster, so that now we have 

one less cluster. 

Step 3.Compute distances between the new cluster and each of the old clusters. 

Step 4.Repeat Steps 2 and 3 until all items are clustered into a single cluster of size N . 

 
 Example 

Problem 1 

Given the dataset a, b, c, d, e and the following distance matrix, construct a dendrogram by complete- 

linkage hierarchical clustering using the agglomerative method. 

 
 a b c d e 

a 0 9 3 6 11 

b 9 0 7 5 10 

c 3 7 0 9 2 

d 6 5 9 0 8 

e 11 10 2 8 0 

Table 13.4: Example for distance matrix 

 

 

Solution 

The complete-linkage clustering uses the “maximum formula”, that is, the following formula to 

compute the distance between two clusters A and B: 

d(A, B) = max{d(x, y) ∶ x ∈ A, y ∈ B} 

1. Dataset : a, b, c, d, e . 

Initial clustering (singleton sets) C1: a , b , c , d , e . 

2. The following table gives the distances between the various clusters in C1: 
 

{ } {a} {b} {c} {d} {e} 
a 

{
b} 

c} 

{
d} 

e} 

0 9 3 6 11 

9 0 7 5 10 

3 7 0 9 2 

6 5 9 0 8 

11 10 2 8 0 

In the above table, the minimum distance is the distance between the clusters c and e  .  

Also 

d   c , e 2. 

We merge c and  e  to form the cluster  c, e . 

The new set of clusters C2: a , b , d , c, e . 

3. Let us compute the distance of c, e from other clusters. 

d  c, e ,  a     max d c, a , d e, a      max 3, 11     11. 

d  c, e ,  b     max d c, b , d e, b     max 7, 10     10.  

d c, e , d max d c, d , d e, d max 9, 8 9. 

The following table gives the distances between the various clusters in C2. 
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{ } { } { } 

{ } { } { } 

{ } 

({ } { }) = 

({ }  { }) = {  ( )   ( )} = { } = 

({ } { }) = {  ( )   ( )   ( )   ( )} = { } = 

{ } { } 

{ } { } { } 

{ } { } 

({  } { }) = 

= 

max{3, 11, 7, 10, 9, 8} 

{ } 

{ } 

11 

 
{ } {a} {b} {d} {c, e} 

a 

{
b} 

d} 
{c, e} 

0 9 6 11 

9 0 5 10 

6 5 0 9 

11 10 9 0 
 

In the above table, the minimum distance is the distance between the clusters b and d .  

Also 

d   b , d 5. 
 

We merge b and d to form the cluster b, d .  

The new set of clusters C3: a , b, d , c, e . 

4. Let us compute the distance of b, d from other clusters. 

d  b, d , a max d b, a , d d, a max 9, 6 9. 

d   b, d , c, e max d b, c , d b, e , d d, c , d d, e max 7, 10, 9, 8 10. 

The following table gives the distances between the various clusters in C3. 

 

{ } {a} {b, d} {c, e} 
a 

{
b, d} 

c, e} 

0 9 11 

9 0 10 

11 10 0 

 

In the above table, the minimum distance is the distance between the clusters a and b, d . 

Also 

d   a  , b, d 9. 
 

We merge a and b, d to form the cluster a, b, d . 

The new set of clusters C4: a, b, d , c, e 

5. Only two clusters are left. We merge them form a single cluster containing all data points. We 

have 

d({a, b, d}, {c, e}) 

= 

max{d(a, c), d(a, e), d(b, c), d(b, e), d(d, c), d(d, e)} 

 

6. Figure 13.14 shows the dendrogram of the hierarchical clustering. 

 
Problem 2 

Given the dataset a, b, c, d, e and the distance matrix given in Table 13.4, construct a dendrogram 

by single-linkage hierarchical clustering using the agglomerative method. 

 
Solution 

The complete-linkage clustering uses the “maximum formula”, that is, the following formula to 

compute the distance between two clusters A and B: 

d(A, B) = min{d(x, y) ∶ x ∈ A, y ∈ B} 

1. Dataset : a, b, c, d, e . 

Initial clustering (singleton sets) C1: {a}, {b}, {c}, {d}, {e}. 
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Figure 13.14: Dendrogram for the data given in Table 13.4 (complete linkage clustering) 

 

 
2. The following table gives the distances between the various clusters in C1: 

 

{ } {a} {b} {c} {d} {e} 
a 

{
b} 

c} 

{
d} 

e} 

0 9 3 6 11 

9 0 7 5 10 

3 7 0 9 2 

6 5 9 0 8 

11 10 2 8 0 

 

In the above table, the minimum distance is the distance between the clusters c and e  .  

Also 

d   c , e 2. 
 

We merge c and  e  to form the cluster  c, e . 

The new set of clusters C2: a , b , d , c, e . 

3. Let us compute the distance of  c, e  from other clusters. 

d  c, e ,  a    min d c, a , d e, a     max 3, 11     3.   

d  c, e ,  b     min d c, b , d e, b     max 7, 10     7.  

d c, e , d min d c, d , d e, d max 9, 8 8. 

The following table gives the distances between the various clusters in C2. 

 

{ } {a} {b} {d} {c, e} 
a 

{
b} 

d} 
{c, e} 

0 9 6 3 

9 0 5 7 

6 5 0 8 

3 7 8 0 

 

In the above table, the minimum distance is the distance between the clusters a and c, e . 

Also 

d   a  , c, e 3. 
 

We merge a and c, e to form the cluster a, c, e . 

The new set of clusters C3: {a, c, e}, {b}, {d}. 



200 
 

 

 

{ } 

({ }  { }) = {  ( )   ( )   ( )} = { } = 
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{ } { } 

({ } { }) = 

{ } { } 

= 

min{9, 6, 7, 9, 10, 8} 

= 

6 

 

4. Let us compute the distance of a, c, e from other clusters. 

d  a, c, e , b min d a, b , d c, b , d e, b 9, 7, 10 7 

d  a, c, e , d min d a, d , d c, d , d e, d 6, 9, 8 6 

The following table gives the distances between the various clusters in C3. 

 

{ } {a, c, e} {b} {d} 
a, c, e 

{
b} 

d} 

0 7 6 

7 0 5 

6 5 0 

 

In the above table, the minimum distance is between b and d . Also 

d   b , d 5. 
 

We merge b and d to form the cluster b, d .  

The new set of clusters C4: a, c, e , b, d 

5. Only two clusters are left. We merge them form a single cluster containing all data points. We 

have 

d({a, c, e}, {b, d}) 

= 

min{d(a, b), d(a, d), d(c, b), d(c, d), d(e, b), d(e, d)} 

 

6. Figure 13.15 shows the dendrogram of the hierarchical clustering. 
 

Distance 
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a c e b d 

 

Figure 13.15: Dendrogram for the data given in Table 13.4 (single linkage clustering) 

 

 

 

 Algorithm for divisive hierarchical clustering 

Divisive clustering algorithms begin with the entire data set as a single cluster, and recursively divide 

one of the existing clusters into two daughter clusters at each iteration in a top-down fashion. To 

apply this procedure, we need a separate algorithm to divide a given dataset into two clusters. 

• The divisive algorithm may be implemented by using the k-means algorithm with k 2 to 

perform the splits at each iteration. However, it would not necessarily produce a splitting 

sequence that possesses the monotonicity property required for dendrogram representation. 
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Step 3.For each object x ∈ C :i 

> 

{ } 

x 

Cj 

 

 DIANA (DIvisive ANAlysis) 

DIANA is a divisive hierarchical clustering technique. Here is an outline of the algorithm. 

Step 1.Suppose that cluster Cl is going to be split into clusters Ci and Cj. 

Step 2.Let Ci = Cl and Cj = ø. 

(a)For the first iteration, compute the average distance of x to all other objects. 

(b)For the remaining iterations, compute 

Dx = average {d(x, y) ∶ y ∈ Ci} − average{d(x, y) ∶ y ∈ Cj}. 
 
 

Ci 
 

Figure 13.16: Dx= (average of dashed lines) − (average of solid lines) 

Step 4.(a)For the first iteration, move the object with the maximum average distance to Cj. 

(b)For the remaining iterations, find an object x in Ci for which Dx is the largest. If 

Dx 0 then move x to Cj. 

Step 5.Repeat Steps 3(b) and 4(b) until all differences Dx are negative. Then Cl is split into Ci and 

Cj. 

Step 6.Select the smaller cluster with the largest diameter. (The diameter of a cluster is the largest 

dissimilarity between any two of its objects.) Then divide this cluster, following Steps 1-5. 

Step 7.Repeat Step 6 until all clusters contain only a single object. 

 
 Example 

Problem 

Given the dataset a, b, c, d, e and the distance matrix in Table 13.4, construct a dendrogram by the 

divisive analysis algorithm. 
 

Solution 

1. We have, initially 

2.We write 

3. Division into clusters 

Cl = {a, b, c, d, e} 

Ci = Cl, Cj = ø. 
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= 

= 

= 

> 

( ) 

= 

{  ( )} 

= 

max{3, 11, 2} 

= { } 

= 
1 

(d(a, b) + d(a, c) + d(a, e)) = 
1 

(9 + 3 + 6 + 11) = 7.25 

a 
3 1 3 

c 
3 1 3 

d 
3 1 3 

e 
3 1 3 

a 
2 2 2 2 

c 
2 2 2 2 

e 
2 2 2 2 

11 

 

(a) Initial iteration 

Let us calculate the average dissimilarities of the objects in Ci with the other objects in 

Ci. 

Average dissimilarity of a 

 
4 4 

Similarly we have : 

Average dissimilarity of b 7.75 

Average dissimilarity of c 5.25 

Average dissimilarity of d 7.00 

Average dissimilarity of e = 7.75 

The highest average distance is 7.75 and there are two corresponding objects. We choose 

one of them, b, arbitrarily. We move b to Cj. 
We now have 

 
 

(b) Remaining iterations 

(i)2-nd iteration. 

Ci = {a, c, d, e}, Cj = ø ∪ {b} = {b}. 

D = 
1 

(d(a, c) + d(a, d) + d(a, e)) − 
1 

(d(a, b)) = 
20 

− 9 = −2.33 

D = 
1 

(d(c, a) + d(c, d) + d(c, e)) − 
1 

(d(c, b)) = 
14 

− 7 = −2.33 

D = 
1 

(d(d, a) + d(d, c) + d(d, e)) − 
1 

(d(c, b)) = 
23 

− 7 = 0.67 

D = 
1 

(d(e, a) + d(e, c) + d(e, d)) − 
1 

(d(e, b)) = 
21 

− 7 = 0 
 

Dd is the largest and Dd 0. So we move, d to Cj. 

We now have 

 
(ii)3-rd iteration 

Ci = {a, c, e}, Cj = {b} ∪ {d} = {b, d}. 

D = 
1 

(d(a, c) + d(a, e)) − 
1 

(d(a, b) + d(a, d)) = 
14 

− 
15 

= −0.5 

D = 
1 

(d(c, a) + d(c, e)) − 
1 

(d(c, b) + d(c, d)) = 
5 

− 
16 

= −13.5 

D = 
1 

(d(e, a) + d(e, c)) − 
1 

(d(e, b) + d(e, d)) = 
13 

− 
18 

= −2.5 
 

All are negative. So we stop and form the clusters Ci and Cj. 

4. To divide, Ci and Cj, we compute their diameters. 

diameter(Ci) 

= 

max{d(a, c), d(a, e), d(c, e)} 

diameter Cj max d b, d 

5 

The cluster with the largest diameter is Ci. So we now split Ci. 

We  repeat the process by taking Cl a, c, e . The remaining computations are left as an 

exercise to the reader. 
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 Density-based clustering 

In density-based clustering, clusters are defined as areas of higher density than the remainder of the 

data set. Objects in these sparse areas - that are required to separate clusters - are usually considered 

to be noise and border points. The most popular density based clustering method is DBSCAN 

(Density-Based Spatial Clustering of Applications with Noise). 
 

Figure 13.17: Clusters of points and noise points not belonging to any of those clusters 

 
 Density 

We introduce some terminology and notations. 

• Let s (epsilon) be some constant distance. Let p be an arbitrary data point. The s-neighbourhood 

of p is the set 

Ns p q  d p, q s 
 

• We choose some number m0 to define points of “high density”: We say that a point p is point 
of high density if Ns p contains at least m0 points. 

• We define a point p as a core point if Ns p has more than m0 points. 

• We define a point p as a border point if Ns p has fewer than m0 points, but is in the s- 
neighbourhood of a core point. 

• A point which is neither a core point nor a border point is called a noise point. 
 

(a) (b) (c) (d) 

Figure 13.18: With m0 4: (a) p a point of high density (b) p a core point (c) p a border point 

(d) r a noise point 

• An object q is directly density-reachable from object p if p is a core object and q is in Ns p . 

• An object q is indirectly density-reachable from an object p if there is a finite set of objects 

p1, . . . , pr such that p1 is directly density-reachable form p, p2 is directly density reachable 

from p1, etc., q is directly density-reachable form pr. 
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( ) 

( ) 

= { } 

marked as visited. Select a new cluster-id and mark all objects in N (p) with this cluster-id.s 

 

  
(a) (b) 

Figure  13.19: With m0 4: (a) q is directly density-reachable from p (b) q is indirectly 

density-reachable from p 

 

 DBSCAN algorithm 

Let X x1, x2, . . . , xn be the set of data points. DBSCAN requires two parameters: s (eps) and 
the minimum number of points required to form a cluster (m0). 

Step 1.Start with an arbitrary starting point p that has not been visited. 

Step 2.Extract the s-neighborhood Ns p of p. 

Step 3.If the number of points in Ns p is not greater than m0 then the point p is labeled as noise 
(later this point can become the part of the cluster). 

Step 4.If the number of points in Ns(p) is greater than m0 then the point p is a core point and is 

Step 5.If a point is found to be a part of the cluster then its s-neighborhood is also the part of the 

cluster and the above procedure from step 2 is repeated for all s-neighborhood points. This 

is repeated until all points in the cluster are determined. 

Step 6.A new unvisited point is retrieved and processed, leading to the discovery of a further 

cluster or noise. 

Step 7.This process continues until all points are marked as visited. 

 
 

 

 Sample questions 

(a) Short answer questions 

1. What is clustering? 

2. Is clustering supervised learning? Why? 

3. Explain some applications of the k-means algorithm. 

4. Explain how clustering technique is used in image segmentation problem. 

5.Explain how clustering technique used in data compression. 

6.What is meant by the mixture of two normal distributions? 

7.Explain hierarchical clustering. 

8. What is a dendrogram? Give an example. 

9. Is hierarchical clustering unsupervised learning? Why? 

10.Describe the two methods for hierarchical clustering. 

p p1 p2 p3 q p q 
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11. In a clustering problem, what does the measure of dissimilarity measure? Give some examples 

of measures of dissimilarity. 

12. Explain the different types of linkages in clustering. 

13. In the context of density-based clustering, define high density point, core point, border point 

and noise point. 

14. What is agglomerative hierarchical clustering? 

 
(b) Long answer questions 

1. Apply  k-means algorithm for given data with k 3. Use C1 2 , C2 16 and C3 38 as initial 

centers. Data: 

2, 4, 6, 3, 31, 12, 15, 16, 38, 35, 14, 21, 3, 25, 30 
 

2. Explain K-means algorithm and group the points (1, 0, 1), (1, 1, 0), (0, 0, 1) and (1, 1, 1) using 

K-means algorithm. 

3. Applying the k-means algorithm, find two clusters in the following data. 

 
x 185 170 168 179 182 188 180 180 183 180 180 177 

y 72 56 60 68 72 77 71 70 84 88 67 76 

4. Use k-means algorithm to find 2 clusters in the following data: 

 
No. 1 2 3 4 5 6 7 

x1 1.0 1.5 3.0 5.0 3.5 4.5 3.5 

x2 1.0 2.0 4.0 7.0 5.0 5.0 4.5 

5. Give a general outline of the expectation-maximization algorithm. 

6.Describe EM algorithm for Gaussian mixtures. 

7. Describe an algorithm for agglomerative hierarchical clustering. 

8. Given the following distance matrix, construct the dendrogram using agglomerative clustering 

with single linkage, complete linkage and average linkage. 

 
 A B C D E 

A 0 1 2 2 3 

B 1 0 2 4 3 

C 2 2 0 1 5 

D 2 4 1 0 3 

E 3 3 5 3 0 

9. Describe an algorithm for divisive hierarchical clustering. 

10. For the data in Question 8, construct a dendrogram using DIANA algorithm. 

11.Describe the DBSCAN algorithm for clustering. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 


