

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Maintenance

What is Software Maintenance?

Software Maintenance is a very broad activity that includes error corrections, enhancements of

capabilities, deletion of obsolete capabilities, and optimization.

Need of Maintenance

 Maintenance to repair software faults

o Changing a system to correct deficiencies in the way meets

its requirements

 Maintenance to adapt software to a different operating environment

o Changing a system so that it operates in a different environment (computer, OS, etc.)

from its initial implementation

 Maintenance to add to or modify the system’s functionality

o Modifying the system to satisfy new requirements

Types of Maintenance

1. corrective maintenance: correcting errors (fixing errors)

2. adaptive maintenance: adapting to changes in the environment (both hardware and

software) (accommodating changes in the environment or user needs)

3. perfective maintenance: adapting to changing user requirements (reengineering the

application to improve performance or make the software product easier to maintain)

4. preventive maintenance: increasing the system’s maintainability (modifying software to

avoid anticipated future problems)

 Higher quality  less (corrective) maintenance

 Anticipating changes  less (adaptive and perfective) maintenance

 Better tuning to user needs  less (perfective) maintenance

 Less code  less maintenance

Distribution of maintenance activities

Major causes of maintenance problems

 Unstructured code

 Insufficient domain knowledge

 Insufficient documentation

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Maintenance Prediction

 Maintenance prediction is concerned with assessing which parts of the system may cause

problems and have high maintenance costs

o Change acceptance depends on the maintainability of the components affected by

the change

o Implementing changes degrades the system and reduces its maintainability

o Maintenance costs depend on the number of changes and costs of change depend on

maintainability

 Predicting the number of changes requires and understanding of the relationships between a

system and its environment

 Tightly coupled systems require changes whenever the environment is changed

 Factors influencing this relationship are

o Number and complexity of system interfaces

o Number of inherently volatile system requirements

o The business processes where the system is used

 Predictions of maintainability can be made by assessing the complexity of system

components

 Complexity depends on

o Complexity of control structures

o Complexity of data structures

o Procedure and module size

 Process measurements may be used to assess maintainability

o Number of requests for corrective maintenance

o Average time required for impact analysis

o Average time taken to implement a change request

o Number of outstanding change requests

 If any or all of these is increasing, this may indicate a decline in maintainability

Problems during Maintenance

 Often the program is written by another person or group of persons.

 Often the program is changed by person who did not understand it clearly.

 Program listings are not structured.

 High staff turnover.

 Information gap.

 Systems are not designed for change

Overview of maintenance process

The process of modifying a software system or component after delivery to correct faults, improve

Performance or other attributes, or adapt to a changed environment.

Maintenance is thus concerned with:

 correcting errors found after the software has been delivered

 adapting the software to changing requirements, changing environments, ...

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Maintenance Process

The evolution process includes the fundamental activities of change analysis, release planning,

system implementation and releasing a system to customers.

The maintenance evolution process includes the fundamental activities of change analysis, release

planning, system implementation and releasing a system to customers. The cost and impact of these

changes are assessed to see how much of the system is affected by the change and how much it

might cost to implement the change. If the proposed changes are accepted, a new release of the

system is planned. During release planning, all proposed changes (fault repair, adaptation and new

functionality) are considered. A decision is then made on which changes to implement in the next

version of the system. The changes are implemented and validated, and a new version of the system

is released. The process then iterates with a new set of changes proposed for the next release.

Change identification and evolution process

Ideally, the change implementation stage of this process should modify the system specification;

design and implementation to reflect the changes to the system new requirements that reflect the

system changes are proposed, analyzed and validated. System components are redesigned and

implemented and the system is retested.

 Maintenance is triggered by change requests from customers or marketing requirements

 Changes are normally batched and implemented in a new release of the system

 Programs sometimes need to be repaired without a complete process iteration but this is

dangerous as it leads to documentation and programs getting out of step

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Change Process

During the evolution process, the requirements are analyzed in detail and, frequently. Implications

of the changes emerge that were not apparent in the earlier change analysis process. This means that

the proposed changes may be modified and further customer discussions may be required before

they are implemented.

Three reasons for urgent change in software

 If a serious system fault occurs

 If changes to system operating environment that affect normal operation

 Emergence of new competitors or the introduction of new rules

Software reengineering

Business process reengineering (BPR) defines business goals, evaluates existing business processes,

and creates revised business processes that better meet current goals. Software reengineering

involves inventory analysis, document restructuring, reverse engineering, program and data

restructuring, and forward engineering.

 Inventory analysis - sorting active software applications by business criticality, longevity,

current maintainability, and other local criteria helps to identify reengineering candidates

 Prepared by . Dr.U.B.NISHA,ASP/CSE

 Document restructuring - need to decide to live with weak documentation, update poor

documents if they are used, or fully rewrite the documentation for critical systems focusing

on the "essential minimum"

 Reverse engineering - process of design recovery - analyzing a program in an effort to

create a representation of the program at some abstraction level higher than source code

 Code restructuring - source code is analyzed and violations of structured programming

practices are noted and repaired, the revised code also needs to be reviewed and tested

 Data restructuring - usually requires full reverse engineering, current data architecture is

dissected and data models are defined, existing data structures are reviewed for quality

 Forward engineering - also called reclamation or renovation, recovers design information

from existing source code and uses this information to reconstitute the existing system to

improve its overall quality and/or performance

Compare Forward and reengineering

Forward engineering starts with a system specification and involves the design and implementation

of a new system. Re-engineering starts with an existing system and the development process for the

replacement is based on understanding and transforming the original system.

Reverse engineering and Reengineering

 Prepared by . Dr.U.B.NISHA,ASP/CSE

1. Source code translation Using a translation tool, the program is converted from an old

programming language to a more modern version of the same language or to a different language.

2. Reverse engineering The program is analyzed and information extracted from it. This helps to

document its organization and functionality. Again, this process is usually completely automated.

3. Program structure improvement The control structure of the program is analyzed and modified

to make it easier to read and understand. This can be partially automated but some manual

intervention is usually required.

4. Program modularization Related parts of the program are grouped together and, where

appropriate, redundancy is removed. In some cases, this stage may involve architectural refactoring

(e.g., a system that uses several different data stores may be refactored to use a single repository).

This is a manual process.

5. Data reengineering The data processed by the program is changed to reflect program changes.

This may mean redefining database schemas and converting existing databases to the new structure.

Risk Management

What is Risk?

 A risk is a potential problem – it might happen and it might not, this is uncertainty.

 We don’t know whether a particular event will occur or no but if it does has a negative

impact on a project.

 A possibility of suffering from loss in software development process is called a software

risk.

 Loss can be anything, increase in production cost, development of poor quality software, not

being able to complete the project on time.

Types of software risks

 Software risk exists because the future is uncertain and there are many known and unknown

things that cannot be incorporated in the project plan.

 A software risk can be of two types

(1) Internal risks that are within the control of the project manager and

(2) External risks that are beyond the control of project manager.

Definitions of Risks

 Risk is the probability of suffering loss.

 Risk provides an opportunity to develop the project better.

 Risk exposure= Size (loss)* probability of (loss)

 There is a difference between a Problem and Risk

 Problem is some event which has already occurred but risk is something that is

unpredictable.

Two characteristics of risk

o Uncertainty – the risk may or may not happen, that is, there are no 100% risks

(those, instead, are called constraints)

o Loss – the risk becomes a reality and unwanted consequences or losses occur

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Risk Categorization

• Project risks

– They threaten the project plan

– If they become real, it is likely that the project schedule will slip and that costs will

increase

• Technical risks

– They threaten the quality and timeliness of the software to be produced

– If they become real, implementation may become difficult or impossible

• Business risks

– They threaten the viability of the software to be built

– If they become real, they jeopardize the project or the product

– Sub-categories of Business risks

• Market risk – building an excellent product or system that no one really

wants

• Strategic risk – building a product that no longer fits into the overall business

strategy for the company

• Sales risk – building a product that the sales force doesn't understand how to

sell

• Management risk – losing the support of senior management due to a change

in focus or a change in people

• Budget risk – losing budgetary or personnel commitment

• Known risks

– Those risks that can be uncovered after careful evaluation of the project plan, the

business and technical environment in which the project is being developed, and

other reliable information sources (e.g., unrealistic delivery date)

• Predictable risks

– Those risks that are extrapolated from past project experience (e.g., past turnover)

• Unpredictable risks

– Those risks that can and do occur, but are extremely difficult to identify in advance

Risk Management

• Risk management is carried out to:

– Identify the risk

– Reduce the impact of risk

– Reduce the probability or likelihood of risk

– Risk monitoring

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Risk Management Paradigm

Reactive vs. Proactive Risk Strategies

• Reactive risk strategies

– "Don't worry, I'll think of something"

– The majority of software teams and managers rely on this approach

– Nothing is done about risks until something goes wrong

• The team then flies into action in an attempt to correct the problem rapidly

(fire fighting)

– Crisis management is the choice of management techniques

• Proactive risk strategies

– Steps for risk management are followed (see next slide)

– Primary objective is to avoid risk and to have a contingency plan in place to handle

unavoidable risks in a controlled and effective manner

Steps for Risk Management

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Risk Identification

• Risk identification is a systematic attempt to specify threats to the project plan

• By identifying known and predictable risks, the project manager takes a first step toward

avoiding them when possible and controlling them when necessary

• Generic risks

– Risks that are a potential threat to every software project

• Product-specific risks

– Risks that can be identified only by those a with a clear understanding of the

technology, the people, and the environment that is specific to the software that is to

be built

– This requires examination of the project plan and the statement of scope

– "What special characteristics of this product may threaten our project plan?"

a) Risk Item Checklist

b) Known and Predictable Risk Categories

There are seven categories of predictable risks

 Prepared by . Dr.U.B.NISHA,ASP/CSE

c) Assessing Project Risk

1) Have top software and customer managers formally committed to support the project?

2) Are end-users enthusiastically committed to the project and the system/product to be built?

3) Are requirements fully understood by the software engineering team and its customers?

4) Have customers been involved in the definition of requirements?

5) Do end-users have realistic expectations?

6) Is the project scope stable?

7) Does the software engineering team have the right mix of skills?

8) Are project requirements stable?

9) Does the project team have experience with the technology to be implemented?

10) Is the number of people on the project team adequate to do the job?

11) Do all customers agree on the importance of the project and on the requirements for the

product to be built?

d) Risk Components and Drivers

• The project manager identifies the risk drivers that affect the following risk components

– Performance risk - the degree of uncertainty that the product will meet its

requirements and be fit for its intended use

– Cost risk - the degree of uncertainty that the project budget will be maintained

– Support risk - the degree of uncertainty that the resultant software will be easy to

correct, adapt, and enhance

– Schedule risk - the degree of uncertainty that the project schedule will be

maintained and that the product will be delivered on time

 Prepared by . Dr.U.B.NISHA,ASP/CSE

• The impact of each risk driver on the risk component is divided into one of four impact

levels

– Negligible, marginal, critical, and catastrophic

• Risk drivers can be assessed as impossible, improbable, probable, and frequent

Risk Projection (Estimation)

• Risk projection (or estimation) attempts to rate each risk in two ways

– The probability that the risk is real

– The consequence of the problems associated with the risk, should it occur

• The project planner, managers, and technical staff perform four risk projection steps (see

next slide)

• The intent of these steps is to consider risks in a manner that leads to prioritization

• By prioritizing risks, the software team can allocate limited resources where they will have

the most impact

a) Risk Projection/Estimation Steps

1) Establish a scale that reflects the perceived likelihood of a risk (e.g., 1-low, 10-high)

2) Delineate the consequences of the risk

3) Estimate the impact of the risk on the project and product

4) Note the overall accuracy of the risk projection so that there will be no misunderstandings

b) Contents of a Risk Table

• A risk table provides a project manager with a simple technique for risk projection

• It consists of five columns

– Risk Summary – short description of the risk

– Risk Category – one of seven risk categories (slide 12)

– Probability – estimation of risk occurrence based on group input

– Impact – (1) catastrophic (2) critical (3) marginal (4) negligible

– RMMM – Pointer to a paragraph in the Risk Mitigation, Monitoring, and

Management Plan

Risk

Summary

Risk

Category

Probability Impact

(1-4)

RMMM

c) Developing a Risk Table

• List all risks in the first column (by way of the help of the risk item checklists)

• Mark the category of each risk

 Prepared by . Dr.U.B.NISHA,ASP/CSE

• Estimate the probability of each risk occurring

• Assess the impact of each risk based on an averaging of the four risk components to

determine an overall impact value (See next slide)

• Sort the rows by probability and impact in descending order

• Draw a horizontal cutoff line in the table that indicates the risks that will be given further

attention

d) Assessing Risk Impact

• Three factors affect the consequences that are likely if a risk does occur

– Its nature – This indicates the problems that are likely if the risk occurs

– Its scope – This combines the severity of the risk (how serious was it) with its

overall distribution (how much was affected)

– Its timing – This considers when and for how long the impact will be felt

• The overall risk exposure formula is RE = P x C

– P = the probability of occurrence for a risk

– C = the cost to the project should the risk actually occur

• Example

– P = 80% probability that 18 of 60 software components will have to be developed

– C = Total cost of developing 18 components is $25,000

– RE = .80 x $25,000 = $20,000

Risk Mitigation, Monitoring, and Management (RMMM)

 Mitigation—how can we avoid the risk?

 Monitoring—what factors can we track that will enable us to determine if the risk is

becoming more or less likely?

 Management—what contingency plans do we have if the risk becomes a reality?

• An effective strategy for dealing with risk must consider three issues

 (Note: these are not mutually exclusive)

– Risk mitigation (i.e., avoidance)

– Risk monitoring

– Risk management and contingency planning

• Risk mitigation (avoidance) is the primary strategy and is achieved through a plan

– Example: Risk of high staff turnover

Strategy for Reducing Staff Turnover

 Meet with current staff to determine causes for turnover (e.g., poor working conditions, low

pay, competitive job market)

 Mitigate those causes that are under our control before the project starts

 Once the project commences, assume turnover will occur and develop techniques to ensure

continuity when people leave

 Organize project teams so that information about each development activity is widely

dispersed

 Define documentation standards and establish mechanisms to ensure that documents are

developed in a timely manner

 Prepared by . Dr.U.B.NISHA,ASP/CSE

 Conduct peer reviews of all work (so that more than one person is "up to speed")

 Assign a backup staff member for every critical technologist

 During risk monitoring, the project manager monitors factors that may provide an indication

of whether a risk is becoming more or less likely

 Risk management and contingency planning assume that mitigation efforts have failed and

that the risk has become a reality

 RMMM steps incur additional project cost

 Large projects may have identified 30 – 40 risks

 Risk is not limited to the software project itself

 Risks can occur after the software has been delivered to the user

Software safety and hazard analysis

– These are software quality assurance activities that focus on the identification and

assessment of potential hazards that may affect software negatively and cause an

entire system to fail

– If hazards can be identified early in the software process, software design features

can be specified that will either eliminate or control potential hazards

The RMMM Plan

• The RMMM plan may be a part of the software development plan or may be a separate

document

• Once RMMM has been documented and the project has begun, the risk mitigation, and

monitoring steps begin

– Risk mitigation is a problem avoidance activity

– Risk monitoring is a project tracking activity

• Risk monitoring has three objectives

– To assess whether predicted risks do, in fact, occur

– To ensure that risk aversion steps defined for the risk are being properly applied

– To collect information that can be used for future risk analysis

• The findings from risk monitoring may allow the project manager to ascertain what risks

caused which problems throughout the project

Risk Monitoring

• Assess each identified risks regularly to decide whether or not it is becoming less or more

probable.

• Also assess whether the effects of the risk have changed.

• Each key risk should be discussed at management progress meetings

Purpose of risk monitoring

• Risk responses have been implemented as planned.

• Risk response actions are as effective as expected or if new responses should be developed.

• Project assumptions are still valid.

• Risk exposure has changed from its prior state, with analysis of trends.

• A risk trigger has occurred.

• Proper policies and procedures are followed.

• New risks have occurred that were not previously identified.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Risk information sheet.

• In most cases, RIS is maintained using a database system.

• So Creation and information entry, priority ordering ,searches and other analysis may be

accomplished easily.

• The format of RIS is describe in diagram

Seven Principles of Risk Management

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Project Management concept: People – Product-Process-Project

Management techniques required to plan, organize, monitor and control software projects

Effective software project management focuses on the four P’s:

• People — the most important element of a successful project

• Product — the software to be built

• Process — the set of framework activities and software engineering tasks to get the job done

• Project — all work required to make the product a reality

The People

 must be organized into effective teams

 motivated to do high-quality work

 coordinated to achieve effective communication and results

The people management maturity model defines: recruiting, selection, performance management,

training, compensation, career development, organization and work design, and team/culture

development.

The Product

Before a project can be planned:

• Product objectives and scope should be established

• Alternative solutions should be considered

• Technical and management constraints should be identified

Estimates of cost, effective assessment of risk, realistic breakdown of project tasks, or manageable

project schedule

The Process

A software process provides the framework for which a comprehensive plan for software

development can be established.

• Task sets – tasks, milestones, work products, and quality assurance points

• Umbrella activities – software quality assurance, software configuration management, and

measurement

The Project

• To manage complexity

• To avoid failure

• To develop a common sense approach for planning, monitoring, and controlling the project.

1. People

People build computer software, and projects succeed because well-trained, motivated people

get things done.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

a) The Stakeholders

 Senior managers who define the business issues that often have significant influence on the

project.

 Project (technical) managers who must plan, motivate, organize, and control the

practitioners who do software work.

 Practitioners who deliver the technical skills that are necessary to engineer a product or

application.

 Customers who specify the requirements for the software to be engineered and other

stakeholders who have a peripheral interest in the outcome.

 End-users who interact with the software once it is released for production use.

b) Team Leaders

• Project management is a people-intensive activity  need ―people skill‖

• MOI model for Leadership:

 Motivation: The ability to encourage (by ―push or pull‖) technical people to

produce to their best ability.

 Organization: The ability to mold existing processes (or invent new ones)

that will enable the initial concept to be translated into a final product

 Ideas for innovation: The ability to encourage people to create and feel

creative even when they must work within bounds established for a particular

software product or application.

c) The Software Team

• N individuals vs. m tasks

• Team organizations

– Democratic decentralized (DD): no permanent leader, rather ―task coordinator‖,

decision made by group consensus.

– Controlled decentralized (CD): has defined leader, decision remains group activity,

works partitioned

– Controlled centralized (CC): Top-level problem solving, internal coordination

Seven project factors when planning the structure of software engineering team:

 Prepared by . Dr.U.B.NISHA,ASP/CSE

• The difficulty of the problem

• The size of the resultant program

• The time

• The degree of problem to be modularized

• The required quality and reliability

• The rigidity of the delivery date

• Degree of sociability (communication)

Organizational Paradigms

 closed paradigm—structures a team along a traditional hierarchy of authority

 random paradigm—structures a team loosely and depends on individual initiative of the

team members

 open paradigm—attempts to structure a team in a manner that achieves some of the controls

associated with the closed paradigm but also much of the innovation that occurs when using

the random paradigm

 synchronous paradigm—relies on the natural compartmentalization of a problem and

organizes team members to work on pieces of the problem with little active communication

among themselves

Avoid Team “Toxicity”

 High frustration caused by personal, business, or technological factors that cause friction

among team members.

 Fragmented or poorly coordinated procedures‖ or a poorly defined or improperly chosen

process model that becomes a roadblock to accomplishment.

 Unclear definition of roles resulting in a lack of accountability and resultant finger-pointing.

 ―Continuous and repeated exposure to failure‖ that leads to a loss of confidence and a

lowering of morale.

d) Agile Teams

 Team members must have trust in one another.

 The distribution of skills must be appropriate to the problem.

 Mavericks may have to be excluded from the team, if team cohesiveness is to be

maintained.

 Team is ―self-organizing‖

o An adaptive team structure

o Uses elements of Constantine’s random, open, and synchronous paradigms

o Significant autonomy

e) Coordination and Communication Issues

Many reasons that software projects get into trouble:

• Scale

• Uncertainty

• Interoperability

Therefore, must establish methods for coordinating the people.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Hence, establish formal and informal communication among team members:

• Formal, impersonal approaches: SE docs and deliverables, tech memo.

• Formal, interpersonal procedures: QA activities, status review meetings and design

• Informal, interpersonal procedures: group meeting

• Electronic communication: email

• Interpersonal networking: interpersonal discussion with outsiders.

2. The Product

a) Scope

 Context. How does the software to be built fit into a larger system, product, or business

context and what constraints are imposed as a result of the context?

 Information objectives. What customer-visible data objects are produced as output from

the software? What data objects are required for input?

 Function and performance. What function does the software perform to transform input

data into output? Are any special performance characteristics to be addressed?

 Software project scope must be unambiguous and understandable at the management and

technical levels.

b) Problem Decomposition

 Sometimes called partitioning or problem elaboration

 Once scope is defined …

o It is decomposed into constituent functions

o It is decomposed into user-visible data objects

or

o It is decomposed into a set of problem classes

o Decomposition process continues until all functions or problem classes have been

defined

3. The Process

Once a process framework has been established,

 Consider project characteristics

 Determine the degree of rigor required

 Define a task set for each software engineering activity

o Task set =

 Software engineering tasks

 Work products

 Quality assurance points

 Milestones

a) Melding the Problem and the Process

 The generic phases that characterize the software process – definition, development, and

support – are applicable to all software.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

b) Process decomposition

 The problem is to select the process that is appropriate for the software to be

engineered by a project team.

• The linear sequential model

• The prototyping model

• The RAD model

• The incremental model

• The spiral model

• The component-based development model

• The concurrent development model

• The formal methods

• The fourth generation techniques model

Must decide which model is most appropriate for

o the customers

o The characteristics of the product

o The project environment

4. The Project

 Must understand what can go wrong (so that problems can be avoided)

 Ten signs that indicate that an information systems project is in jeopardy:

1. Software people don’t understand their customer’s needs

2. The product scope is poorly defined

3. Changes are managed poorly

4. The chosen technology changes

5. Business needs change (or ill-defined)

6. Deadlines are unrealistic

7. Users are resistant

8. Sponsorship is lost (or was never properly obtained)

 Prepared by . Dr.U.B.NISHA,ASP/CSE

9. The project team lacks people with appropriate skills

10. Managers (and practitioners) avoid best practices and lessons learned

Five-part commonsense approach to software project:

1. Start on the right foot: working hard to understand the problem

2. Maintain momentum: provide incentives

3. Track progress: track work products

4. Make smart decisions: decisions should be ―keep it simple‖

5. Conduct a postmortem analysis: lessons learned and evaluation of project

The W
5
HH Principle

Barry Boehm suggests an approach that addresses project objectives, milestones and schedules,

responsibilities, management and technical approaches, and requires resources:

– Why is the system being developed?

– What will be done, by when?

– When will it be done?

– Who is responsible for a function?

– Where they are organizationally located?

– How will the job be done technically and managerially?

– How much of each resource is needed?

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Project scheduling and Tracking

 Software project scheduling is an activity that distributes estimated effort across the

planned project duration by allocating the effort to specific software engineering tasks.

 During early stages of project planning, a macroscopic schedule is developed.

 This type of schedule identifies all major software engineering activities and the product

functions to which they are applied.

 As the project gets under way, each entry on the macroscopic schedule is refined into a

detailed schedule.

Basic Concept

Why software is delivered late?

 An unrealistic deadline established

 Changing customer requirements that are not reflected in schedule changes.

 Underestimate of the amount of effort and/or the number of resources that will be required

to do the job.

 Predictable and/or unpredictable risks that were not considered when the project

commenced.

 Technical difficulties that could not have been foreseen in advance.

 Human difficulties that could not have been foreseen in advance.

 Miscommunication among project staff that results in delays.

 A failure by project management to recognize that the project is falling behind schedule and

a lack of action to correct the problem.

What should we do when management demands that make a deadline that is impossible?

 Perform a detailed estimate using historical data from past projects. Determine the estimated

effort and duration for the project.

 Using an incremental process model that will deliver critical functionality by the imposed

deadline. Document the plan.

 Meet with the customer and (using the detailed estimate), explain why the imposed deadline

is unrealistic.

 Offer the incremental development strategy as an alternative

Basic Principles

 Compartmentalization:

o The project must be compartmentalized into a number of manageable activities and

tasks.

o To accomplish compartmentalization, both the product and the process are

decomposed.

 Interdependency.

o The interdependency of each compartmentalized activity or task must be determined.

o Some tasks must occur in sequence while others can occur in parallel.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

o Some activities cannot commence until the work product produced by another is

available.

 Time allocation.

o Each task to be scheduled must be allocated some number of work units (e.g.,

person-days of effort).

o In addition, each task must be assigned a start date and a completion date that are a

function of the interdependencies

 Effort validation.

o As time allocation occurs, the project manager must ensure that no more than the

allocated number of people has been scheduled at any given time.

 Defined responsibilities.

o Every task that is scheduled should be assigned to a specific team member.

 Defined outcomes.

o Every task that is scheduled should have a defined outcome. For software projects,

the outcome is normally a work product or deliverable.

 Defined milestones.

o A milestone is accomplished when one or more work products has been reviewed for

quality and has been approved.

Relationship between People and Effort- Putnam Norden Rayleigh (PNR) Curve

 Common management myth: If we fall behind schedule, we can always add more

programmers and catch up later in the project

o This practice actually has a disruptive effect and causes the schedule to slip even

further

o The added people must learn the system

o The people who teach them are the same people who were earlier doing the work

o During teaching, no work is being accomplished

o Lines of communication increases for each new person added

Software engineering handles the relationship between people and effort management for product

development phase. These some points are as follows:-

1. When software size is small single person can handle same project by performing steps like

requirement analysis, designing, code generation, and testing etc.

2. If the project is large additional people are required to complete. the project in stipulated in

time it become easy to complete project by distributing work among people and get it done

as early as possible.

3. The communication path of new comer also increase as time increase and day by day the

project become extra complicated. And new customer gets confusion become more after the

days by days.

4. It is possible to reduce a desire project completion date by getting more people to same

point. It also possible to expand the completion date by reducing number of resources. And

you can mention for the date of completion.

5. The Putnam Norden Rayleigh (PNR) curve is an indication of relationship which exists

between effort applied and delivery time for software project.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

6. The curve indicate a minimum time value at to which indicates test cost time for delivery as

use move to left to right. It is observed that curved raised non-linearly.

7. It is possible to make delivery fast; the curve rises very sharply to left of td. The PNR curve

indicates that project delivery time should not be compressed much behind on td.

8. The number of delivery lines of code are also known as source statements L. Relationship of

L with effort & development time by equation can be described as

 L= P * E1/3 T ¾

 Here ‗E‘ represents development effort in person months, P is productivity

After rearranging the last equation can arrive at an expansion for development effort e.

 E = L3/(P3 T4)

E is called as effort expanded over entire life cycle for software development and maintenance

 T is the development period in years. And this equation is lead to

 E = L3 / (P3 T4) ~ 3.8 Person years.

This shows that by extending last date of project with six month e.g. we can reduce the no of people

from eight to four. The outcome benefit can be gained by using less number of people over longer

time to achieve the same objective.

Project Effort Distribution

 The 40-20-40 rule:

o 40% front-end analysis and design

o 20% coding

o 40% back-end testing

 Generally accepted guidelines are:

o 02-03 % planning

o 10-25 % requirements analysis

o 20-25 % design

o 15-20 % coding

o 30-40 % testing and debugging

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Defining Task Set for the Software Project

• A task set is the work breakdown structure for the project

• No single task set is appropriate for all projects and process models

– It varies depending on the project type and the degree of rigor

• The task set should provide enough discipline to achieve high software quality

– But it must not burden the project team with unnecessary work

• To define a Task set

1) Determine Project Type

2) Identify adaptation criteria

3) Assess the degree of rigor required

4) Select appropriate software engineering tasks.

1) Determine the Project Type

 Concept development projects that are initiated to explore some new business

concept or application of some new technology.

 New application development projects that are undertaken as a consequence of a

specific customer request.

 Application enhancement projects that occur when existing software undergoes

major modifications to function, performance, or interfaces that are observable by

the end-user.

 Application maintenance projects that correct, adapt, or extend existing software

in ways that may not be immediately obvious to the end-user.

 Reengineering projects that are undertaken with the intent of rebuilding an existing

(legacy) system in whole or in part.

2) Identify adaptation criteria

Each of the adaptation criteria is assigned a grade that ranges between 1 and 5, where 1 represents a

project in which a small subset of process tasks are required and 5 represents a project in which a

complete set of process tasks should be applied.

 Size of project

 Number of potential users.

 Mission criticality

 Application longevity

 Stability of requirements

 Ease of customer/developer communication

 Maturity of applicable technology

 Performance constraints,

 Project staff

 Reengineering.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

3) Degree of rigor

 Adaptation criteria are used to determine the recommended degree of rigor with

which the software process should be applied on a project.

 The degree of rigor is a function of many project characteristics. As an example,

small, non-business-critical projects can generally be addressed with somewhat less

rigor than large, complex business-critical applications.

 Finally, apply software engineering task.

4) Selecting Software Engineering Tasks

 In order to develop a project schedule, a task set must be distributed on the project time line.

 Major software engineering tasks are applicable to all process model flows.

 As an example, we consider the software engineering tasks for a concept development

project.

a) Major Task Set for concept development project are:

 Concept scoping determines the overall scope of the project.

 Preliminary concept planning establishes the organization‘s ability to undertake the work

implied by the project scope.

 Technology risk assessment evaluates the risk associated with the technology to be

implemented as part of project scope.

 Proof of concept demonstrates the feasibility of a new technology in the software context.

 Concept implementation implements the concept representation in a manner that can be

reviewed by a customer and is used for ―marketing‖ purposes when a concept must be sold

to other customers or management.

 Customer reaction to the concept asks for feedback on a new technology concept and

targets specific customer applications.

 The software team must understand what must be done (scoping);

 Then the team (or manager) must determine whether anyone is available to do it

(planning),

 Consider the risks associated with the work (risk assessment).

 Prove the technology in some way (proof of concept)

 Implement it in a prototypical manner so that the customer can evaluate it (concept

implementation and customer evaluation).

 Finally, if the concept is viable, a production version (translation) must be produced.

b) Refinement of Major Task

 Refinement begins by taking each major task and decomposing it into a set of subtasks (with

related work products and milestones)

 As an example of task decomposition, consider concept scoping for a development Project

 Task refinement can be accomplished using an outline format a process design language

approach is used to illustrate the flow of the concept scoping activity

 Prepared by . Dr.U.B.NISHA,ASP/CSE

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Software configuration management: Basics and standards

Definition:

 The set of activities that have been developed to manage change throughout the software life

cycle.

Purpose:

 Systematically control changes to the configuration and maintain the integrity and

traceability of the configuration throughout the system‘s life cycle.

Baselines
• Definition: Specification or product that

– has been formally reviewed and agreed upon,

– serves as the basis for further development, and

– can be changed only through formal change control procedures.

• Signals a point of departure from one activity to the start of another activity.

• Helps control change without impeding justifiable change.

Project Baseline

• Central repository of reviewed and approved artifacts that represent a given stable point in

overall system development.

• Shared DB for project and kept in consistent state.

• Policies allow the team to achieve consistent state and manage the project.

SCIs

SCIs

modified

Software

engineering

tasks

Form al

technical

reviews
SCIs

approved

SCIs

extracted

SCM

controls

SCIs

stored

Project database

System Specification

Software Requirements
Design Specification

Source Code
Test Plans/Procedures/Data

Operational System

BASELINES:

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Software Configuration Item (SCI)

• Definition: Information that is created as part of the software engineering process.

• Examples:

– Software Project Plan

– Software Requirements Specification

• Models, Prototypes, Requirements

– Design document

• Protocols, Hierarchy Graphs

– Source code

• Modules

– Test suite

– Software tools (e.g., compilers)

A configuration object has a name, attributes,

and is "connected" to other objects by relationships. Referring to Figure 9.2, the

configuration objects, Design Specification, data model, component N, source

code and Test Specification are each defined separately. However, each of the

objects is related to the others as shown by the arrows. A curved arrow indicates a

compositional relation. That is, data model and component N are part of the object

Design Specification. A double-headed straight arrow indicates an interrelationship.

Design specification

data design

architectural design

module design

interface design

Component N

interface description

algorithm description

PDL

Data model

Test specification

test plan

test procedure

test cases

Source code

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Elements of SCM

There are four elements of SCM:

1. Software Configuration Identification

2. Software Configuration Control

3. Software Configuration Auditing

4. Software Configuration Status Accounting

1. Software Configuration Identification

• Provides labels for the baselines and their updates.

• Evolution graph: depicts versions/variants.

• An object may be represented by variant, versions, and components.

2. Software Configuration Control

Three basic ingredients to SCC

1. Documentation for formally precipitating and defining a proposed change to a

software system.

2. An organizational body (Configuration Control Board) for formally evaluating and

approving or disapproving a proposed change to a software system.

3. Procedures for controlling changes to a software system.

Why needed?

1. Not all possible changes are beneficial.

2. Need a mechanism to control access to different items of the configuration (who can

access what).

 Prepared by . Dr.U.B.NISHA,ASP/CSE

3. Software Configuration Auditing

• Provides mechanism for determining the degree to which the current configuration of the

software system mirrors the software system pictured in the baseline and the requirements

documentation.

• Asks the following questions:

• Has the specified change been made?

• Has a formal technical review been conducted to assess technical correctness?

• Has the software process been followed and standards been applied?

• Have the SCM procedures for noting the change, recording it, and reporting it been

followed?

• Have all related SCIs been properly updated?

4. Software Configuration Status Accounting

• Provides a mechanism for maintaining a record of where the system is at any point with

respect to what appears in published baseline documentation.

- When a change proposal is approved it may take some time before the change is

initiated or completed.

• Why needed?

- Ensure that there is progress within the development of the project.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

- Track updates to baselines.

User interface design - Golden Rules

1. Place the user in control

2. Reduce the user’s memory load

3. Make the interface consistent

1. Place the User in Control

 Define interaction modes in a way that does not force a user into unnecessary or

undesired actions.

 Provide for flexible interaction.

 Allow user interaction to be interruptible and undoable.

 Streamline interaction as skill levels advance and allow the interaction to be

customized.

 Hide technical internals from the casual user.

 Design for direct interaction with objects that appear on the screen.

2. Reduce the User’s Memory Load

 Reduce demand on short-term memory.

 Establish meaningful defaults.

 Define shortcuts that are intuitive.

 The visual layout of the interface should be based on a real world metaphor.

 Disclose information in a progressive fashion.

3. Make the Interface Consistent

 Allow the user to put the current task into a meaningful context.

 Maintain consistency across a family of applications.

 If past interactive models have created user expectations, do not make changes unless

there is a compelling reason to do so.

Computer aided software engineering tools (CASE)

Computer-aided software engineering (CASE) tools assist software engineering managers and

practitioners in every activity associated with the software process.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

What is CASE?

 CASE is the use of IT in SW development activities, techniques and methodology

 CASE tools are programs that automate or support one or more phases in a SW

development life cycle

Purpose of CASE tools

 increase the speed of SW development activities

 increase the SW productivity

 improve the quality of the SW developed

CASE building blocks

The environment architecture, composed of the hardware platform and system support (including

networking software, database management, and object management services), lays the ground

work for CASE. The building blocks for CASE are illustrated in the following Figure.

 portability services = as a bridge between CASE tools + integration framework +

environment architecture

 integration framework = collection of specialized programs that enables individual CASE

tools to :

 communicate with one another

 create a project data base

 exhibit the same look and feel to the SW engineer

 integrated tools help project team develop, organize and control work products

 The building blocks depicted in Figure represent a foundation for the integration of CASE

tools. However, most CASE tools in use today have not been constructed using all these

building blocks.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

 In fact, some CASE tools remain "point solutions." That is, a tool is used to assist in a

particular software engineering activity (e.g., analysis modeling) but does not directly

communicate with other tools, is not tied into a project database, is not part of an integrated

CASE environment (ICASE). Although this situation is not ideal, a CASE tool can be used

quite effectively, even if it is a point solution.

 CASE Integration options are shown below:

 Point solution

 Data Exchange , Tool bridges and partnerships

 Single source integration

 Integrated project support environment

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Taxonomy of CASE tools

 CASE tools do not have to be part of an integrated environment to be useful to SW

engineers but the impact on product quality will be greater if they are [pressman]

 CASE tools can be classified by function, role, use in SE process, environment architecture,

etc.

1. Business process engineering tools.

2. Process modeling and management tools.

3. Project planning tools

4. Risk analysis tools

5. Project management tools

6. Requirements tracing tools

7. Metrics and management tools.

8. Documentation tools.

9. System software tools

10. Quality assurance tools.

11. Database management tools

12. Software configuration management tools

13. Analysis and design tools

14. PRO/SIM tools. PRO/SIM (prototyping and simulation) tools

15. Interface design and development tools

16. Prototyping tools

17. Programming tools

18. Web development tools

19. Integration and testing tools

o Data acquisition—tools that acquire data to be used during testing.

o Static measurement—tools that analyze source code without executing testcases.

o Dynamic measurement—tools that analyze source code during execution.

o Simulation—tools that simulate function of hardware or other externals.

o Test management—tools that assist in the planning, development, and control of

testing.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

o Cross-functional tools—tools that cross the bounds of the preceding categories.

20. Static analysis tools

21. Dynamic analysis tools

22. Test management tools

23. Client/server testing tools

24. Reengineering tools

o Reverse engineering to specification tools take source code as input and generate

graphical structured analysis and design models, where-used lists, and other design

information.

o Code restructuring and analysis tools analyze program syntax, generate a control

flow graph, and automatically generate a structured program.

o On-line system reengineering tools are used to modify on-line database systems

(e.g., convert IDMS or DB2 files into entity-relationship format).

Integrated CASE environment

 Integration = combination and closure

 Combines a variety of different tools and a spectrum of information  enables closure of

communication among tools, between people and across the SW process

 Tools are integrated  SE information is available to each tool that needs it

 Usage is integrated  common look and feel is provided for all tools

 Development philosophy is integrated  standards SE approach

An integrated CASE environment should

 Provide a mechanism for sharing software engineering information among all tools

contained in the environment.

 Enable a change to one item of information to be tracked to other related information

items.

 Provide version control and overall configuration management for all software

engineering information.

 Allow direct, non sequential access to any tool contained in the environment.

 Establish automated support for the software process model that has been chosen,

integrating CASE tools and software configuration items (SCIs) into a standard work

breakdown structure.

 Enable the users of each tool to experience a consistent look and feel at the

human/computer interface.

 Support communication among software engineers.

 Collect both management and technical metrics that can be used to improve the process

and the product.

 Prepared by . Dr.U.B.NISHA,ASP/CSE

Challenges of I-CASE

 Consistent representations of SE information

 Standardized interfaces between tools

 Homogeneous mechanism for communication between SW engineer and each tool

 An effective approach that will enable I-CASE to move among various HW platforms and

OS.

Software Testing Techniques

- Testing fundamentals

- White-box testing

- Black-box testing

- Object-oriented testing methods

2Prepared by Dr.Barakkath Nisha U,

ASP/CSE

3Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Software Testing Fundamentals

Software testing is a critical element of software quality assurance and represents the

ultimate review of specification, design, and coding.

Software testing demonstrates that software function appear to be working according

to specifications and performance requirements.

Testing Objectives:

Myers [MYE79] states a number of rules that can serve well as testing objectives:

- Testing is a process of executing a program with the intent of finding an error.

- A good test case is one that has high probability of finding an undiscovered error.

- A successful test is one that uncovers an as-yet undiscovered error.

The major testing objective is to design tests that systematically uncover types of

errors with minimum time and effort.

4Prepared by Dr.Barakkath Nisha U,

ASP/CSE

5

Characteristics of Testable

Software
• Operable

– The better it works (i.e., better quality), the easier it is to test

• Observable

– Incorrect output is easily identified; internal errors are automatically

detected

• Controllable

– The states and variables of the software can be controlled directly by the

tester

• Decomposable

– The software is built from independent modules that can be tested

independently

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

6

Characteristics of Testable

Software (continued)
• Simple

– The program should exhibit functional, structural, and code simplicity

• Stable

– Changes to the software during testing are infrequent and do not invalidate

existing tests

• Understandable

– The architectural design is well understood; documentation is available

and organized

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

7

Test Characteristics

• A good test has a high probability of finding an error

– The tester must understand the software and how it might fail

• A good test is not redundant

– Testing time is limited; one test should not serve the same purpose as

another test

• A good test should be “best of breed”

– Tests that have the highest likelihood of uncovering a whole class of

errors should be used

• A good test should be neither too simple nor too complex

– Each test should be executed separately; combining a series of tests could

cause side effects and mask certain errors

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

8

Two Unit Testing Techniques

• Black-box testing

– Knowing the specified function that a product has been designed to perform, test
to see if that function is fully operational and error free

– Includes tests that are conducted at the software interface

– Not concerned with internal logical structure of the software

• White-box testing

– Knowing the internal workings of a product, test that all internal operations are
performed according to specifications and all internal components have been
exercised

– Involves tests that concentrate on close examination of procedural detail

– Logical paths through the software are tested

– Test cases exercise specific sets of conditions and loops

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Test Case Design

Two general software testing approaches:

Black-Box Testing and White-Box Testing

Black-box testing:

knowing the specific functions of a software,

design tests to demonstrate each function and check its errors.

Major focus:

functions, operations, external interfaces,

external data and information

White-box testing:

knowing the internals of a software,

design tests to exercise all internals of a software to make sure

they operates according to specifications and designs

Major focus: internal structures, logic paths, control flows, data flows

internal data structures, conditions, loops, etc.

9Prepared by Dr.Barakkath Nisha U,

ASP/CSE

White-box Testing

11Prepared by Dr.Barakkath Nisha U,

ASP/CSE

12Prepared by Dr.Barakkath Nisha U,

ASP/CSE

13

White-box Testing

• Uses the control structure part of component-level design to derive the

test cases

• These test cases

– Guarantee that all independent paths within a module have been exercised

at least once

– Exercise all logical decisions on their true and false sides

– Execute all loops at their boundaries and within their operational bounds

– Exercise internal data structures to ensure their validity

“Bugs lurk in corners and congregate at boundaries”

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

14

Basis Path Testing

• White-box testing technique proposed by Tom McCabe

• Enables the test case designer to derive a logical complexity measure

of a procedural design

• Uses this measure as a guide for defining a basis set of execution paths

• Test cases derived to exercise the basis set are guaranteed to execute

every statement in the program at least one time during testing

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

15Prepared by Dr.Barakkath Nisha U,

ASP/CSE

16Prepared by Dr.Barakkath Nisha U,

ASP/CSE

17

Flow Graph Notation

• A circle in a graph represents a node, which stands for a sequence of one
or more procedural statements

• A node containing a simple conditional expression is referred to as a
predicate node

– Each compound condition in a conditional expression containing one or more
Boolean operators (e.g., and, or) is represented by a separate predicate node

– A predicate node has two edges leading out from it (True and False)

• An edge, or a link, is a an arrow representing flow of control in a specific
direction

– An edge must start and terminate at a node

– An edge does not intersect or cross over another edge

• Areas bounded by a set of edges and nodes are called regions

• When counting regions, include the area outside the graph as a region, too

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

18

Flow Graph Example

1

2

0

3

4

5

6

7 8

9

10
11

1

2

3

46

7 8 5

9

1011

R1

R2

R3

R4

FLOW CHART FLOW GRAPH
0

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

19

Independent Program Paths

• Defined as a path through the program from the start node until the end
node that introduces at least one new set of processing statements or a
new condition (i.e., new nodes)

• Must move along at least one edge that has not been traversed before
by a previous path

• Basis set for flow graph on previous slide

– Path 1: 0-1-11

– Path 2: 0-1-2-3-4-5-10-1-11

– Path 3: 0-1-2-3-6-8-9-10-1-11

– Path 4: 0-1-2-3-6-7-9-10-1-11

• The number of paths in the basis set is determined by the cyclomatic
complexity

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

20

Cyclomatic Complexity

• Provides a quantitative measure of the logical complexity of a program

• Defines the number of independent paths in the basis set

• Provides an upper bound for the number of tests that must be conducted to
ensure all statements have been executed at least once

• Can be computed three ways

– The number of regions

– V(G) = E – N + 2, where E is the number of edges and N is the number of
nodes in graph G

– V(G) = P + 1, where P is the number of predicate nodes in the flow graph G

• Results in the following equations for the example flow graph

– Number of regions = 4

– V(G) = 14 edges – 12 nodes + 2 = 4

– V(G) = 3 predicate nodes + 1 = 4

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

21

Deriving the Basis Set and Test Cases

1) Using the design or code as a foundation, draw a corresponding

flow graph

2) Determine the cyclomatic complexity of the resultant flow graph

3) Determine a basis set of linearly independent paths

4) Prepare test cases that will force execution of each path in the basis

set

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Deriving Test Cases

Step 1 : Using the design or code as a foundation, draw a corresponding flow

graph.

Step 2: Determine the cyclomatic complexity of the resultant flow graph.

Step 3: Determine a basis set of linearly independent paths.

For example,

path 1: 1-2-10-11-13

path 2: 1-2-10-12-13

path 3: 1-2-3-10-11-13

path 4: 1-2-3-4-5-8-9-2-…

path 5: 1-2-3-4-5-6-8-9-2-..

Path 6: 1-2-3-4-5-6-7-8-9-2-..

Step 4: Prepare test cases that will force execution of each path in the basis

set.

Path 1: test case:

value (k) = valid input, where k < i defined below.

value (i) = -999, where 2 <= I <= 100

expected results: correct average based on k values and proper totals.

22Prepared by Dr.Barakkath Nisha U,

ASP/CSE

23

A Second Flow Graph Example

1 int functionY(void)

2 {

3 int x = 0;

4 int y = 19;

5 A: x++;

6 if (x > 999)

7 goto D;

8 if (x % 11 == 0)

9 goto B;

10 else goto A;

11 B: if (x % y == 0)

12 goto C;

13 else goto A;

14 C: printf("%d\n", x);

15 goto A;

16 D: printf("End of list\n");

17 return 0;

18 }

3

4

5

6

7

16

17

8

9

11

12

14

15

13

10

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

24

A Sample Function to Diagram and Analyze
1 int functionZ(int y)

2 {

3 int x = 0;

4 while (x <= (y * y))

5 {

6 if ((x % 11 == 0) &&

7 (x % y == 0))

8 {

9 printf(“%d”, x);

10 x++;

11 } // End if

12 else if ((x % 7 == 0) ||

13 (x % y == 1))

14 {

15 printf(“%d”, y);

16 x = x + 2;

17 } // End else

18 printf(“\n”);

19 } // End while

20 printf("End of list\n");

21 return 0;

22 } // End functionZ

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

25

A Sample Function to Diagram and Analyze
1 int functionZ(int y)

2 {

3 int x = 0;

4 while (x <= (y * y))

5 {

6 if ((x % 11 == 0) &&

7 (x % y == 0))

8 {

9 printf(“%d”, x);

10 x++;

11 } // End if

12 else if ((x % 7 == 0) ||

13 (x % y == 1))

14 {

15 printf(“%d”, y);

16 x = x + 2;

17 } // End else

18 printf(“\n”);

19 } // End while

20 printf("End of list\n");

21 return 0;

22 } // End functionZ

3

4

6 7

9

10

12 13

15

16

18

20

21
Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Graph Matrices

26Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Example

27Prepared by Dr.Barakkath Nisha U,

ASP/CSE

28Prepared by Dr.Barakkath Nisha U,

ASP/CSE

29Prepared by Dr.Barakkath Nisha U,

ASP/CSE

10.30

Control structure testing

Control structure testing is more comprehensive than basis

path testing and includes it. This method uses different

categories of tests that are listed below.

 Condition testing

 Data flow testing

 Loop testing

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

31Prepared by Dr.Barakkath Nisha U,

ASP/CSE

32

Loop Testing - General

• A white-box testing technique that focuses exclusively on the validity
of loop constructs

• Four different classes of loops exist

– Simple loops

– Nested loops

– Concatenated loops

– Unstructured loops

• Testing occurs by varying the loop boundary values

– Examples:

for (i = 0; i < MAX_INDEX; i++)

while (currentTemp >= MINIMUM_TEMPERATURE)

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

33Prepared by Dr.Barakkath Nisha U,

ASP/CSE

34Prepared by Dr.Barakkath Nisha U,

ASP/CSE

35

Testing of Simple Loops

1) Skip the loop entirely

2) Only one pass through the loop

3) Two passes through the loop

4) m passes through the loop, where m < n

5) n –1, n, n + 1 passes through the loop

„n‟ is the maximum number of allowable passes through the loop

Testing of Nested Loops
1) Start at the innermost loop; set all other loops to minimum values

2) Conduct simple loop tests for the innermost loop while holding the

outer loops at their minimum iteration parameter values; add other

tests for out-of-range or excluded values

3) Work outward, conducting tests for the next loop, but keeping all

other outer loops at minimum values and other nested loops to

“typical” values

4) Continue until all loops have been testedPrepared by Dr.Barakkath Nisha U,

ASP/CSE

36

Testing of Concatenated Loops

• For independent loops, use the same approach as for simple loops

• Otherwise, use the approach applied for nested loops

Testing of Unstructured Loops

• Redesign the code to reflect the use of structured programming

practices

• Depending on the resultant design, apply testing for simple loops,

nested loops, or concatenated loops

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Black-box Testing

38Prepared by Dr.Barakkath Nisha U,

ASP/CSE

39

Black-box Testing

• Complements white-box testing by uncovering different classes of
errors

• Focuses on the functional requirements and the information domain of
the software

• Used during the later stages of testing after white box testing has been
performed

• The tester identifies a set of input conditions that will fully exercise all
functional requirements for a program

• The test cases satisfy the following:
– Reduce, by a count greater than one, the number of additional test cases

that must be designed to achieve reasonable testing

– Tell us something about the presence or absence of classes of errors,
rather than an error associated only with the specific task at hand

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

40

Black-box Testing Categories

• Incorrect or missing functions

• Interface errors

• Errors in data structures or external data base access

• Behavior or performance errors

• Initialization and termination errors

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

41

Questions answered by

Black-box Testing

• How is functional validity tested?

• How are system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundary values of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system
operation?

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

42

Equivalence Partitioning

• A black-box testing method that divides the input domain of a program
into classes of data from which test cases are derived

• An ideal test case single-handedly uncovers a complete class of errors,
thereby reducing the total number of test cases that must be developed

• Test case design is based on an evaluation of equivalence classes for
an input condition

• An equivalence class represents a set of valid or invalid states for input
conditions

• From each equivalence class, test cases are selected so that the largest
number of attributes of an equivalence class are exercise at once

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

43

Guidelines for Defining

Equivalence Classes
• If an input condition specifies a range, one valid and two invalid equivalence

classes are defined

– Input range: 1 – 10 Eq classes: {1..10}, {x < 1}, {x > 10}

• If an input condition requires a specific value, one valid and two invalid
equivalence classes are defined

– Input value: 250 Eq classes: {250}, {x < 250}, {x > 250}

• If an input condition specifies a member of a set, one valid and one invalid
equivalence class are defined

– Input set: {-2.5, 7.3, 8.4} Eq classes: {-2.5, 7.3, 8.4}, {any other x}

• If an input condition is a Boolean value, one valid and one invalid class are
define

– Input: {true condition} Eq classes: {true condition}, {false condition}

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

44

Boundary Value Analysis

• A greater number of errors occur at the boundaries of the input domain

rather than in the "center"

• Boundary value analysis is a test case design method that complements

equivalence partitioning

– It selects test cases at the edges of a class

– It derives test cases from both the input domain and output domain

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

45Prepared by Dr.Barakkath Nisha U,

ASP/CSE

46Prepared by Dr.Barakkath Nisha U,

ASP/CSE

47

Guidelines for

Boundary Value Analysis
• 1. If an input condition specifies a range bounded by values a and b,

test cases should be designed with values a and b as well as values just
above and just below a and b

• 2. If an input condition specifies a number of values, test case should
be developed that exercise the minimum and maximum numbers.
Values just above and just below the minimum and maximum are also
tested

• Apply guidelines 1 and 2 to output conditions; produce output that
reflects the minimum and the maximum values expected; also test the
values just below and just above

• If internal program data structures have prescribed boundaries (e.g., an
array), design a test case to exercise the data structure at its minimum
and maximum boundaries

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Object-Oriented Testing Methods

49

Introduction
• It is necessary to test an object-oriented system at a variety of different levels

• The goal is to uncover errors that may occur as classes collaborate with one
another and subsystems communicate across architectural layers

– Testing begins "in the small" on methods within a class and on collaboration
between classes

– As class integration occurs, use-based testing and fault-based testing are applied

– Finally, use cases are used to uncover errors during the software validation phase

• Conventional test case design is driven by an input-process-output view of
software

• Object-oriented testing focuses on designing appropriate sequences of
methods to exercise the states of a class

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

50

Testing Implications for

Object-Oriented Software

• Because attributes and methods are encapsulated in a class, testing
methods from outside of a class is generally unproductive

• Testing requires reporting on the state of an object, yet encapsulation
can make this information somewhat difficult to obtain

• Built-in methods should be provided to report the values of class
attributes in order to get a snapshot of the state of an object

• Inheritance requires retesting of each new context of usage for a class

– If a subclass is used in an entirely different context than the super class,
the super class test cases will have little applicability and a new set of tests
must be designed

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

51

Applicability of Conventional

Testing Methods

• White-box testing can be applied to the operations defined in a class

– Basis path testing and loop testing can help ensure that every statement in

an method has been tested

• Black-box testing methods are also appropriate

– Use cases can provide useful input in the design of black-box tests

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

52

Fault-based Testing

• The objective in fault-based testing is to design tests that have a high

likelihood of uncovering plausible faults

• Fault-based testing begins with the analysis model

– The tester looks for plausible faults (i.e., aspects of the implementation of

the system that may result in defects)

– To determine whether these faults exist, test cases are designed to exercise

the design or code

• If the analysis and design models can provide insight into what is

likely to go wrong, then fault-based testing can find a significant

number of errors

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

53

Fault-based Testing

(continued)

• Integration testing looks for plausible faults in method calls or message
connections (i.e., client/server exchange)

• Three types of faults are encountered in this context

– Unexpected result

– Wrong method or message used

– Incorrect invocation

• The behavior of a method must be examined to determine the
occurrence of plausible faults as methods are invoked

• Testing should exercise the attributes of an object to determine
whether proper values occur for distinct types of object behavior

• The focus of integration testing is to determine whether errors exist in
the calling code, not the called code

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

54

Random Order Testing

(at the Class Level)
• Certain methods in a class may constitute a minimum behavioral life

history of an object (e.g., open, seek, read, close); consequently, they

may have implicit order dependencies or expectations designed into them

• Using the methods for a class, a variety of method sequences are

generated randomly and then executed

• The goal is to detect these order dependencies or expectations and make

appropriate adjustments to the design of the methods

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

55

Partition Testing (at the Class Level)

• Similar to equivalence partitioning for conventional software

• Methods are grouped based on one of three partitioning approaches

• State-based partitioning categorizes class methods based on their ability to
change the state of the class

– Tests are designed in a way that exercise methods that change state and those that
do not change state

• Attribute-based partitioning categorizes class methods based on the attributes
that they use

– Methods are partitioned into those that read an attribute, modify an attribute, or do
not reference the attribute at all

• Category-based partitioning categorizes class methods based on the generic
function that each performs

– Example categories are initialization methods, computational methods, and
termination methods

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

56

Multiple Class Testing
• Class collaboration testing can be accomplished by applying random

testing, partition testing, scenario-based testing and behavioral
testing

• The following sequence of steps can be used to generate multiple
class random test cases

1) For each client class, use the list of class methods to generate a series of
random test sequences; use these methods to send messages to server
classes

2) For each message that is generated, determine the collaborator class and
the corresponding method in the server object

3) For each method in the server object (invoked by messages from the
client object), determine the messages that it transmits

4) For each of these messages, determine the next level of methods that are
invoked and incorporate these into the test sequence

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

1

Software Testing Strategies

• A strategy for software testing integrates the design of software test
cases into a well-planned series of steps that result in successful
development of the software

• The strategy provides a road map that describes the steps to be taken,
when, and how much effort, time, and resources will be required

• The strategy incorporates test planning, test case design, test execution,
and test result collection and evaluation

• The strategy provides guidance for the practitioner and a set of
milestones for the manager

• Because of time pressures, progress must be measurable and problems
must surface as early as possible

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

A Strategic Approach to Testing

3

General Characteristics of

Strategic Testing

• To perform effective testing, a software team should conduct effective

formal technical reviews

• Testing begins at the component level and work outward toward the

integration of the entire computer-based system

• Different testing techniques are appropriate at different points in time

• Testing is conducted by the developer of the software and (for large

projects) by an independent test group

• Testing and debugging are different activities, but debugging must be

accommodated in any testing strategy

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

4

Verification and Validation

• Software testing is part of a broader group of activities called verification

and validation that are involved in software quality assurance

• Verification (Are the algorithms coded correctly?)

– The set of activities that ensure that software correctly implements a specific

function or algorithm

• Validation (Does it meet user requirements?)

– The set of activities that ensure that the software that has been built is

traceable to customer requirements

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

5

Organizing for Software Testing

• Testing should aim at "breaking" the software

• Common misconceptions

– The developer of software should do no testing at all

• Reality: Independent test group

– Removes the inherent problems associated with letting the builder test the
software that has been built

– Removes the conflict of interest that may otherwise be present

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

6

A Strategy for Testing

Conventional Software

Code

Design

Requirements

System Engineering

Unit Testing

Integration Testing

Validation Testing

System Testing

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

7

Levels of Testing for Conventional

Software
• Unit testing

– Concentrates on each component/function of the software as implemented in the

source code

– makes heavy use of testing techniques that exercise specific control paths to detect

errors in each software component individually

• Integration testing

– Focuses on the design and construction of the software architecture

– focuses on issues associated with verification and program construction as

components begin interacting with one another

• Validation testing

– Requirements are validated against the constructed software

– provides assurance that the software validation criteria (established during

requirements analysis) meets all functional, behavioral, and performance

requirements

• System testing

– The software and other system elements are tested as a whole

– verifies that all system elements mesh properly and that overall system function and

performance has been achieved

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

8

Testing Strategy applied to

Conventional Software

• Unit testing

– Exercises specific paths in a component's control structure to ensure
complete coverage and maximum error detection

– Components are then assembled and integrated

• Integration testing

– Focuses on inputs and outputs, and how well the components fit together
and work together

• Validation testing

– Provides final assurance that the software meets all functional, behavioral,
and performance requirements

• System testing

– Verifies that all system elements (software, hardware, people, databases)
mesh properly and that overall system function and performance is
achieved

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

9

When is Testing Complete?

• There is no definitive answer to this question

• Every time a user executes the software, the program is being tested

• Sadly, testing usually stops when a project is running out of time,

money, or both

• One approach is to divide the test results into various severity levels

– Then consider testing to be complete when certain levels of errors no

longer occur or have been repaired or eliminated

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

10

Software Test Strategy- Issues

• Specify product requirements in a quantifiable manner long before
testing commences

• State testing objectives explicitly in measurable terms

• Understand the user of the software (through use cases) and develop a
profile for each user category

• Develop a testing plan that emphasizes rapid cycle testing to get quick
feedback to control quality levels and adjust the test strategy

• Build robust software that is designed to test itself and can diagnose
certain kinds of errors

• Use effective formal technical reviews as a filter prior to testing to
reduce the amount of testing required

• Conduct formal technical reviews to assess the test strategy and test
cases themselves

• Develop a continuous improvement approach for the testing process
through the gathering of metrics

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Test Strategies for

Conventional Software

12

Unit Testing

• Focuses testing on the function or software module

• Concentrates on the internal processing logic and data structures

• Is simplified when a module is designed with high cohesion

– Reduces the number of test cases

– Allows errors to be more easily predicted and uncovered

• Concentrates on critical modules and those with high cyclomatic
complexity when testing resources are limited

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

13

Targets for Unit Test Cases

• Module interface
– Ensure that information flows properly into and out of the module

• Local data structures
– Ensure that data stored temporarily maintains its integrity during all steps

in an algorithm execution

• Boundary conditions
– Ensure that the module operates properly at boundary values established

to limit or restrict processing

• Independent paths (basis paths)
– Paths are exercised to ensure that all statements in a module have been

executed at least once

• Error handling paths
– Ensure that the algorithms respond correctly to specific error conditions

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

14

Common Computational Errors

in Execution Paths

• Misunderstood or incorrect arithmetic precedence

• Mixed mode operations (e.g., int, float, char)

• Incorrect initialization of values

• Precision inaccuracy and round-off errors

• Incorrect symbolic representation of an expression (int vs. float)

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

15

Other Errors to Uncover

• Comparison of different data types

• Incorrect logical operators or precedence

• Expectation of equality when precision error makes equality unlikely
(using == with float types)

• Incorrect comparison of variables

• Improper or nonexistent loop termination

• Failure to exit when divergent iteration is encountered

• Improperly modified loop variables

• Boundary value violations

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

16

Problems to uncover in

Error Handling

• Error description is unintelligible or ambiguous

• Error noted does not correspond to error encountered

• Error condition causes operating system intervention prior to error
handling

• Exception condition processing is incorrect

• Error description does not provide enough information to assist in the
location of the cause of the error

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

17

Drivers and Stubs for

Unit Testing

• Driver

– A simple main program that accepts test case data, passes such data to the
component being tested, and prints the returned results

• Stubs

– Serve to replace modules that are subordinate to (called by) the
component to be tested

– It uses the module’s exact interface, may do minimal data manipulation,
provides verification of entry, and returns control to the module
undergoing testing

• Drivers and stubs both represent overhead

– Both must be written but don’t constitute part of the installed software
product

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

18

Integration Testing
• Defined as a systematic technique for constructing the software

architecture

– At the same time integration is occurring, conduct tests to uncover errors

associated with interfaces

• Objective is to take unit tested modules and build a program structure

based on the prescribed design

• Sandwich testing uses top-down tests for upper levels of program

structure coupled with bottom-up tests for subordinate levels

• Testers should strive to indentify critical modules having the following

requirements

• Overall plan for integration of software and the specific tests are

documented in a test specification

• Two Approaches

– Non-incremental Integration Testing

– Incremental Integration Testing

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

19

Non-incremental

Integration Testing

• Commonly called the “Big Bang” approach

• All components are combined in advance

• The entire program is tested as a whole

• Chaos results

• Many seemingly-unrelated errors are encountered

• Correction is difficult because isolation of causes is complicated

• Once a set of errors are corrected, more errors occur, and testing appears to

enter an endless loop

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

20

Incremental Integration Testing

• Three kinds

– Top-down integration

– Bottom-up integration

– Sandwich integration

• The program is constructed and tested in small increments

• Errors are easier to isolate and correct

• Interfaces are more likely to be tested completely

• A systematic test approach is applied

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

21

Top-down Integration

• Modules are integrated by moving downward through the control
hierarchy, beginning with the main module

• Subordinate modules are incorporated in either a depth-first or breadth-
first fashion
– DF: All modules on a major control path are integrated

– BF: All modules directly subordinate at each level are integrated

• Advantages
– This approach verifies major control or decision points early in the test

process

• Disadvantages
– Stubs need to be created to substitute for modules that have not been built

or tested yet; this code is later discarded

– Because stubs are used to replace lower level modules, no significant data
flow can occur until much later in the integration/testing process

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

22

Bottom-up Integration

• Integration and testing starts with the most atomic modules in the
control hierarchy

• Advantages
– This approach verifies low-level data processing early in the testing

process

– Need for stubs is eliminated

• Disadvantages
– Driver modules need to be built to test the lower-level modules; this code

is later discarded or expanded into a full-featured version

– Drivers inherently do not contain the complete algorithms that will
eventually use the services of the lower-level modules; consequently,
testing may be incomplete or more testing may be needed later when the
upper level modules are available

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

23

Sandwich Integration

• Consists of a combination of both top-down and bottom-up integration

• Occurs both at the highest level modules and also at the lowest level
modules

• Proceeds using functional groups of modules, with each group
completed before the next
– High and low-level modules are grouped based on the control and data

processing they provide for a specific program feature

– Integration within the group progresses in alternating steps between the
high and low level modules of the group

– When integration for a certain functional group is complete, integration
and testing moves onto the next group

• Reaps the advantages of both types of integration while minimizing the
need for drivers and stubs

• Requires a disciplined approach so that integration doesn’t tend
towards the “big bang” scenario

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

24

Regression Testing

• Regression testing – used to check for defects propagated to other modules by changes

made to existing program
– Each new addition or change to base lined software may cause problems with functions that previously worked

flawlessly

• Representative sample of existing test cases is used to exercise all software functions.
– Regression testing re-executes a small subset of tests that have already been conducted

• Ensures that changes have not propagated unintended side effects

• Helps to ensure that changes do not introduce unintended behavior or additional errors

• May be done manually or through the use of automated capture/playback tools

• Additional test cases focusing software functions likely to be affected by the change.

• Tests cases that focus on the changed software components.

– Regression test suite contains three different classes of test cases

• A representative sample of tests that will exercise all software functions

• Additional tests that focus on software functions that are likely to be affected by the change

• Tests that focus on the actual software components that have been changed

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

25

Smoke Testing

• Taken from the world of hardware
– Power is applied and a technician checks for sparks, smoke, or other dramatic

signs of fundamental failure

• Designed as a pacing mechanism for time-critical projects
– Allows the software team to assess its project on a frequent basis

• Includes the following activities
– The software is compiled and linked into a build

– A series of breadth tests is designed to expose errors that will keep the build
from properly performing its function

• The goal is to uncover “show stopper” errors that have the highest likelihood of
throwing the software project behind schedule

– The build is integrated with other builds and the entire product is smoke tested
daily

• Daily testing gives managers and practitioners a realistic assessment of the progress
of the integration testing

– After a smoke test is completed, detailed test scripts are executed

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

26

Benefits of Smoke Testing
• Integration risk is minimized

– Daily testing uncovers incompatibilities and show-stoppers early in the
testing process, thereby reducing schedule impact

• The quality of the end-product is improved
– Smoke testing is likely to uncover both functional errors and architectural

and component-level design errors

• Error diagnosis and correction are simplified
– Smoke testing will probably uncover errors in the newest components that

were integrated

• Progress is easier to assess
– As integration testing progresses, more software has been integrated and

more has been demonstrated to work

– Managers get a good indication that progress is being made

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Test Strategies for

Object-Oriented Software

Object-Oriented Unit Testing

• smallest testable unit is the encapsulated class or object

• similar to system testing of conventional software

• do not test operations in isolation from one another

• driven by class operations and state behavior, not

algorithmic detail and data flow across module interface

28Prepared by Dr.Barakkath Nisha U,

ASP/CSE

29

Test Strategies for

Object-Oriented Software
• With object-oriented software, you can no longer test a single operation in

isolation (conventional thinking)

• Traditional top-down or bottom-up integration testing has little meaning

• Class testing for object-oriented software is the equivalent of unit testing
for conventional software
– Focuses on operations encapsulated by the class and the state behavior of the

class

• Drivers can be used
– To test operations at the lowest level and for testing whole groups of classes

– To replace the user interface so that tests of system functionality can be
conducted prior to implementation of the actual interface

• Stubs can be used
– In situations in which collaboration between classes is required but one or

more of the collaborating classes has not yet been fully implemented

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

30

Test Strategies for Object-

Oriented Software (continued)
• Two different object-oriented testing strategies

– Thread-based testing

• Integrates the set of classes required to respond to one input or event for the

system

• Each thread is integrated and tested individually

• Regression testing is applied to ensure that no side effects occur

– Use-based testing

• First tests the independent classes that use very few, if any, server classes

• Then the next layer of classes, called dependent classes, are integrated

• This sequence of testing layer of dependent classes continues until the entire

system is constructed

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Validation Testing

32

Background
• Validation testing follows integration testing

• The distinction between conventional and object-oriented software disappears

• Focuses on user-visible actions and user-recognizable output from the system

• Demonstrates conformity with requirements

• Designed to ensure that
– All functional requirements are satisfied

– All behavioral characteristics are achieved

– All performance requirements are attained

– Documentation is correct

– Usability and other requirements are met (e.g., transportability, compatibility, error
recovery, maintainability)

• After each validation test
– The function or performance characteristic conforms to specification and is

accepted

– A deviation from specification is uncovered and a deficiency list is created

• A configuration review or audit ensures that all elements of the software
configuration have been properly developed, cataloged, and have the necessary
detail for entering the support phase of the software life cycle

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

33

Acceptance Testing

• Making sure the software works correctly for intended user in his or
her normal work environment.

• Alpha testing
– Conducted at the developer’s site by end users

– Software is used in a natural setting with developers watching intently

– Testing is conducted in a controlled environment

• Beta testing
– Conducted at end-user sites

– Developer is generally not present

– It serves as a live application of the software in an environment that
cannot be controlled by the developer

– The end-user records all problems that are encountered and reports these
to the developers at regular intervals

• After beta testing is complete, software engineers make software
modifications and prepare for release of the software product to the
entire customer base

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

Acceptance Testing

• Making sure the software works correctly for intended user

in his or her normal work environment.

• Alpha test – version of the complete software is tested by

customer under the supervision of the developer at the

developer’s site

• Beta test – version of the complete software is tested by

customer at his or her own site without the developer being

present

34Prepared by Dr.Barakkath Nisha U,

ASP/CSE

System Testing

Series of tests whose purpose is to exercise a

computer-based system

The focus of these system tests cases identify

interfacing errors

36

Different Types
• Recovery testing

– Tests for recovery from system faults

– Forces the software to fail in a variety of ways and verifies that recovery is
properly performed

– Tests reinitialization, checkpointing mechanisms, data recovery, and
restart for correctness

• Security testing
– Verifies that protection mechanisms built into a system will, in fact,

protect it from improper access

• Stress testing
– Executes a system in a manner that demands resources in abnormal

quantity, frequency, or volume

• Performance testing
– Tests the run-time performance of software within the context of an

integrated system

– Often coupled with stress testing and usually requires both hardware and
software instrumentation

– Can uncover situations that lead to degradation and possible system failure

Prepared by Dr.Barakkath Nisha U,

ASP/CSE

END

37Prepared by Dr.Barakkath Nisha U,

ASP/CSE

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

After the finalization of SRS, we would like to

estimate size, cost and development time of the

project. Also, in many cases, customer may like to

know the cost and development time even prior to

finalization of the SRS.

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

In order to conduct a successful software project, we

must understand:

� Scope of work to be done

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

� The risk to be incurred

� The resources required

� The task to be accomplished

� The cost to be expended

� The schedule to be followed

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software planning begins before technical work starts, continues as

the software evolves from concept to reality, and culminates only

when the software is retired.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Size estimation

Cost estimation Development time

Resources
requirements

Project
scheduling

Fig. 1: Activities during Software

Project Planning

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

}18.

return 0;17.

}16.

}15.

x[j] = save;14.

x[i] = x[j];13.

Save = x[i];12.

{11.

if (x[i] < x[j])10.

for (j=1; j<=im; j++)9.

im1=i-1;8.

{7.

for (i=2; i<=n; i++)6.

If (n<2) return 1;5.

/*This function sorts array x in ascending order */4.

int i, j, save, im1;3.

{2.
int. sort (int x[], int n)1.

If LOC is simply a count of

the number of lines then

figure shown below contains

18 LOC .

When comments and blank

lines are ignored, the

program in figure 2 shown

below contains 17 LOC.

Lines of Code (LOC)

Size Estimation

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Fig. 2: Function for sorting an array

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

T
o

ta
l

L
O

C

Total LOC ("wc -l") -- development releases

Total LOC ("wc -l") -- stable releases

Total LOC uncommented -- development releases

Total LOC uncommented -- stable releases

Growth of Lines of Code (LOC)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Furthermore, if the main interest is the size of the program

for specific functionality, it may be reasonable to include

executable statements. The only executable statements in

figure shown above are in lines 5-17 leading to a count of

13. The differences in the counts are 18 to 17 to 13. One

can easily see the potential for major discrepancies for

large programs with many comments or programs written

in language that allow a large number of descriptive but

non-executable statement. Conte has defined lines of code

as:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

“A line of code is any line of program text that is not a

comment or blank line, regardless of the number of

statements or fragments of statements on the line. This

specifically includes all lines containing program header,

declaration, and executable and non-executable

statements”.

This is the predominant definition for lines of code used

by researchers. By this definition, figure shown above

has 17 LOC.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Alan Albrecht while working for IBM, recognized the

problem in size measurement in the 1970s, and

developed a technique (which he called Function Point

Analysis), which appeared to be a solution to the size

measurement problem.

Function Count

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The principle of Albrecht’s function point analysis (FPA)

is that a system is decomposed into functional units.

� Inputs : information entering the system

� Outputs : information leaving the system

� Enquiries : requests for instant access to
information

� Internal logical files : information held within the
system

� External interface files : information held by other system
that is used by the system being
analyzed.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The FPA functional units are shown in figure given below:

ILF
EIF

User

User

Other

applications

System

Outputs

Inputs

Inquiries

ILF: Internal logical files

EIF: External interfaces

Fig. 3: FPAs functional units System

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The five functional units are divided in two categories:

(i) Data function types

� Internal Logical Files (ILF): A user identifiable group of

logical related data or control information maintained

within the system.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

� External Interface files (EIF): A user identifiable group of

logically related data or control information referenced by

the system, but maintained within another system. This

means that EIF counted for one system, may be an ILF in

another system.

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(ii) Transactional function types

� External Input (EI): An EI processes data or control information

that comes from outside the system. The EI is an elementary

process, which is the smallest unit of activity that is meaningful

to the end user in the business.

� External Output (EO): An EO is an elementary process that

generate data or control information to be sent outside the

system.

� External Inquiry (EQ): An EQ is an elementary process that is

made up to an input-output combination that results in data

retrieval.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Special features

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

� Function point approach is independent of the language,

tools, or methodologies used for implementation; i.e. they

do not take into consideration programming languages,

data base management systems, processing hardware or

any other data base technology.

� Function points can be estimated from requirement

specification or design specification, thus making it

possible to estimate development efforts in early phases of

development.

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Function points are directly linked to the statement of

requirements; any change of requirements can easily

be followed by a re-estimate.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

� Function points are based on the system user’s

external view of the system, non-technical users of

the software system have a better understanding of

what function points are measuring.

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Counting function points

1075External Interface files (EIF)

15107External logical files (ILF)

643External Inquiries (EQ)

754External Output (EO)

643External Inputs (EI)

HighAverageLow

Weighting factors
Functional Units

Table 1 : Functional units with weighting factors

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 2: UFP calculation table

Count

Complexity

Complexity

Totals

Low x 3
Average x 4

High x 6

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Low x 4
Average x 5

High x 7

Low x 3
Average x 4

High x 6

Low x 7
Average x 10

High x 15

Low x 5
Average x 7

High x 10

Functional
Units

External
Inputs
(EIs)

External
Outputs
(EOs)

External
Inquiries
(EQs)

External
logical
Files (ILFs)

External
Interface
Files (EIFs)

Functional

Unit Totals

Total Unadjusted Function Point Count

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The weighting factors are identified for all

functional units and multiplied with the functional

units accordingly. The procedure for the

calculation of Unadjusted Function Point (UFP) is

given in table shown above.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The procedure for the calculation of UFP in mathematical

form is given below:

Where i indicate the row and j indicates the column of Table 1

Wij : It is the entry of the ith row and jth column of the table 1

Zij : It is the count of the number of functional units of Type i that

have been classified as having the complexity corresponding to

column j.

∑∑
= =

=
5

1

3

1i J

ijijwZUFP

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Organizations that use function point methods develop a criterion for

determining whether a particular entry is Low, Average or High.

Nonetheless, the determination of complexity is somewhat

subjective.

FP = UFP * CAF

Where CAF is complexity adjustment factor and is equal to [0.65 +

0.01 x ΣFi]. The Fi (i=1 to 14) are the degree of influence and are

based on responses to questions noted in table 3.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 3 : Computing function points.
Rate each factor on a scale of 0 to 5.

20 3 541

ModerateNo
Influence

Average EssentialSignificantIncidental

Number of factors considered (Fi)

1. Does the system require reliable backup and recovery ?

2. Is data communication required ?

3. Are there distributed processing functions ?

4. Is performance critical ?

5. Will the system run in an existing heavily utilized operational environment ?

6. Does the system require on line data entry ?

7. Does the on line data entry require the input transaction to be built over multiple screens or operations ?

8. Are the master files updated on line ?

9. Is the inputs, outputs, files, or inquiries complex ?

10. Is the internal processing complex ?

11. Is the code designed to be reusable ?

12. Are conversion and installation included in the design ?

13. Is the system designed for multiple installations in different organizations ?

14. Is the application designed to facilitate change and ease of use by the user ?

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Functions points may compute the following important metrics:

Productivity = FP / persons-months

Quality = Defects / FP

Cost = Rupees / FP

Documentation = Pages of documentation per FP

These metrics are controversial and are not universally acceptable.

There are standards issued by the International Functions Point User

Group (IFPUG, covering the Albrecht method) and the United

Kingdom Function Point User Group (UFPGU, covering the MK11

method). An ISO standard for function point method is also being

developed.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.1

Consider a project with the following functional units:

Number of user inputs = 50

Number of user outputs = 40

Number of user enquiries = 35

Number of user files = 06

Number of external interfaces = 04

Assume all complexity adjustment factors and weighting factors are

average. Compute the function points for the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

∑∑
= =

=
5

1

3

1i J

ijijwZUFP

UFP = 50 x 4 + 40 x 5 + 35 x 4 + 6 x 10 + 4 x 7

= 200 + 200 + 140 + 60 + 28 = 628

CAF = (0.65 + 0.01 ΣFi)

= (0.65 + 0.01 (14 x 3)) = 0.65 + 0.42 = 1.07

FP = UFP x CAF

= 628 x 1.07 = 672

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

We know

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example:4.2

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

An application has the following:

10 low external inputs, 12 high external outputs, 20 low

internal logical files, 15 high external interface files, 12

average external inquiries, and a value of complexity

adjustment factor of 1.10.

What are the unadjusted and adjusted function point counts ?

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

= 10 x 3 + 12 x 7 + 20 x 7 + 15 + 10 + 12 x 4

= 30 + 84 +140 + 150 + 48

= 452

FP = UFP x CAF

= 452 x 1.10 = 497.2.

∑∑
= =

=
5

1

3

1i J

ijij wZUFP

Solution

Unadjusted function point counts may be calculated using

as:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.3

Consider a project with the following parameters.

(i) External Inputs:

(a)10 with low complexity

(b)15 with average complexity

(c)17 with high complexity

(ii) External Outputs:

(a)6 with low complexity

(b)13 with high complexity

(iii) External Inquiries:

(a) 3 with low complexity

(b) 4 with average complexity

(c) 2 high complexity

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(iv) Internal logical files:

(a)2 with average complexity

(b)1 with high complexity

(v) External Interface files:

(a)9 with low complexity

In addition to above, system requires

i. Significant data communication

ii. Performance is very critical

iii. Designed code may be moderately reusable

iv. System is not designed for multiple installation in different
organizations.

Other complexity adjustment factors are treated as average. Compute

the function points for the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution: Unadjusted function points may be counted using table 2

Count Complexity

Totals

Low x 3
Average x 4

High x 6

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Low x 4
Average x 5

High x 7

Low x 3
Average x 4

High x 6

Low x 7
Average x 10

High x 15

Low x 5
Average x 7

High x 10

Functional
Units

External
Inputs
(EIs)

External
Outputs
(EOs)

External
Inquiries
(EQs)

External
logical
Files (ILFs)

External
Interface
Files (EIFs)

Functional

Unit Totals

Total Unadjusted Function Point Count

10

Complexity

15

17

6

0

13

3

4

2

0

2

1

9

0

0

30

60

102

24

0

91

9

16

12

0

20

15

45

0

0

192

115

37

35

45

424

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

=∑
=

14

1i

iF 3+4+3+5+3+3+3+3+3+3+2+3+0+3=41

CAF = (0.65 + 0.01 x ΣFi)

= (0.65 + 0.01 x 41)

= 1.06

FP = UFP x CAF

= 424 x 1.06

= 449.44

Hence FP = 449

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Relative Cost of Software Phases

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cost to Detect and Fix Faults

0

20

40

60

80

100

120

140

160

180

200

Req Des I nt

Cost

R
e
la
ti
v
e
 C
o
s
t
to
 d
e
te
c
t
a
n
d
 c
o
rr
e
c
t
fa
u
lt

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Project scope must be established in advance

Cost Estimation

� Software metrics are used as a basis from which estimates are made

� The project is broken into small pieces which are estimated individually

� Delay estimation until late in project

� Use simple decomposition techniques to generate project cost and
schedule estimates

� Develop empirical models for estimation

� Acquire one or more automated estimation tools

A number of estimation techniques have been developed and are

having following attributes in common :

To achieve reliable cost and schedule estimates, a number of options

arise:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

MODELS

Static, Single

Variable

Models

Static,

Multivariable

Models

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

C = a Lb

E = 1.4 L0.93

DOC = 30.4 L0.90

D = 4.6 L0.26

Static, Single Variable Models

Effort (E in Person-months), documentation (DOC, in number of

pages) and duration (D, in months) are calculated from the number

of lines of code (L, in thousands of lines) used as a predictor.

Methods using this model use an equation to estimate the desired

values such as cost, time, effort, etc. They all depend on the same

variable used as predictor (say, size). An example of the most

common equations is :

(i)

C is the cost, L is the size and a,b are constants

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

E = 5.2 L0.91

D = 4.1 L0.36

Static, Multivariable Models

The productivity index uses 29 variables which are found to be

highly correlated to productivity as follows:

These models are often based on equation (i), they actually depend

on several variables representing various aspects of the software

development environment, for example method used, user

participation, customer oriented changes, memory constraints, etc.

∑
=

=Ι
29

1i

ii XW

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.4

Compare the Walston-Felix model with the SEL model on a

software development expected to involve 8 person-years of effort.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

(a)Calculate the number of lines of source code that can be

produced.

(b)Calculate the duration of the development.

(c)Calculate the productivity in LOC/PY

(d)Calculate the average manning

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The amount of manpower involved = 8 PY = 96 person-months

(a) Number of lines of source code can be obtained by reversing

equation to give:

L = (E/a)1/b

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

L(SEL) = (96/1.4)1/0.93 = 94264 LOC

L(SEL) = (96/5.2)1/0.91 = 24632 LOC.

Then

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(b) Duration in months can be calculated by means of equation

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

D(W-F) = 4.1 L0.36

= 4.1(24.632)0.36 = 13 months

D(SEL) = 4.6 (L)0.26

= 4.6 (94.264)0.26 = 15 months

(c) Productivity is the lines of code produced per person/month (year)

YearsPersonLOCSELP −== /11783
8

94264
)(

YearsPersonLOCFWP −==− /3079
8

24632
)(

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(d) Average manning is the average number of persons required per

month in the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Persons
M

MP
SELM 46

15

96
.)(=

−
=

Persons
M

MP
FWM 47

13

96
.)(=

−
=−

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Constructive Cost model

(COCOMO)

Basic Intermediate Detailed

Model proposed by

B. W. Boehm’s

through his book

Software Engineering Economics in 1981

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

The Constructive Cost Model (COCOMO)

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

COCOMO applied to

Semidetached

mode Embedded

mode

Organic

mode

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Deadline of
the project

Innovation Development
Environment

Nature of ProjectProject sizeMode

Small size project, experienced
developers in the familiar
environment. For example, pay
roll, inventory projects etc.

Medium size project, Medium
size team, Average previous
experience on similar project.
For example: Utility systems
like compilers, database
systems, editors etc.

Organic

Semi
detached

Embedded

Table 4: The comparison of three COCOMO modes

Typically

2-50 KLOC

Typically

50-300 KLOC

Typically over

300 KLOC

Little Not tight Familiar & In
house

Medium Medium Medium

Significant Tight Complex
Hardware/
customer
Interfaces
required

Large project, Real time
systems, Complex interfaces,
Very little previous experience.
For example: ATMs, Air Traffic
Control etc.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Basic COCOMO model takes the form

Basic Model

bb

b KLOCaE)(=

bd

b EcD)(=

where E is effort applied in Person-Months, and D is the

development time in months. The coefficients ab, bb, cb and db are

given in table 4 (a).

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0.322.51.203.6Embedded

0.352.51.123.0Semidetached

0.382.51.052.4Organic

dbcbbbab
Software

Project

Table 4(a): Basic COCOMO coefficients

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

When effort and development time are known, the average staff size

to complete the project may be calculated as:

Persons
D

E
SS =)(

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Average staff size

When project size is known, the productivity level may be

calculated as:

PMKLOC
E

KLOC
P /)(=Productivity

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.5

Suppose that a project was estimated to be 400 KLOC.

Calculate the effort and development time for each of the three

modes i.e., organic, semidetached and embedded.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The basic COCOMO equation take the form:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

bb

b KLOCaE)(=

bd

b KLOCcD)(=

Estimated size of the project = 400 KLOC

(i) Organic mode

E = 2.4(400)1.05 = 1295.31 PM

D = 2.5(1295.31)0.38 = 38.07 PM

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

(ii) Semidetached mode

E = 3.0(400)1.12 = 2462.79 PM

D = 2.5(2462.79)0.35 = 38.45 PM

(iii) Embedded mode

E = 3.6(400)1.20 = 4772.81 PM

D = 2.5(4772.8)0.32 = 38 PM

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.6

A project size of 200 KLOC is to be developed. Software

development team has average experience on similar type of

projects. The project schedule is not very tight. Calculate the effort,

development time, average staff size and productivity of the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The semi-detached mode is the most appropriate mode; keeping in

view the size, schedule and experience of the development team.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Average staff size

E = 3.0(200)1.12 = 1133.12 PM

D = 2.5(1133.12)0.35 = 29.3 PM

Hence

Persons
D

E
SS =)(

Persons6738
329

121133
.

.

.
==

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Productivity PMKLOC
E

KLOC
/1765.0

12.1133

200
===

PMLOCP /176=

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cost drivers

Intermediate Model

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

(i) Product Attributes

� Required s/w reliability

� Size of application database

� Complexity of the product

(ii) Hardware Attributes

� Run time performance constraints

� Memory constraints

� Virtual machine volatility

� Turnaround time

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

(iii) Personal Attributes

� Analyst capability

� Programmer capability

� Application experience

� Virtual m/c experience

� Programming language experience

(iv) Project Attributes

� Modern programming practices

� Use of software tools

� Required development Schedule

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

TURN

VIRT

STOR

TIME

Computer Attributes

CPLX

DATA

RELY

Product Attributes

Extra

high

Very

high

HighNominalLowVery low

Cost Drivers RATINGS

Multipliers of different cost drivers

1.651.301.151.000.850.70

--1.161.081.000.94--

--1.401.151.000.880.75

--1.151.071.000.87--

--1.301.151.000.87--

1.561.211.061.00----

1.661.301.111.00----

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

SCED

TOOL

MODP

Project Attributes

LEXP

VEXP

PCAP

AEXP

ACAP

Personnel Attributes

Extra

high

Very

high

HighNominalLowVery low

Cost Drivers RATINGS

--

--0.951.001.071.14

--0.901.001.101.21

0.700.861.001.171.42

0.820.911.001.131.29 --

0.710.861.001.191.46

1.101.041.001.081.23

0.830.911.001.101.24

0.820.911.001.101.24

Table 5: Multiplier values for effort calculations

--

--

--

--

--

--

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Intermediate COCOMO equations

0.322.51.202.8Embedded

0.352.51.123.0Semidetached

0.382.51.053.2Organic

dicibiaiProject

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Table 6: Coefficients for intermediate COCOMO

EAFKLOCaE ib

i *)(=
id

i EcD)(=

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Detailed COCOMO

Phase-Sensitive

effort multipliers

Three level product

hierarchy

Modules subsystem

System level

Cost

drivers design

& test

Manpower allocation for

each phase

Detailed COCOMO Model

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Development Phase

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Plan / Requirements

EFFORT : 6% to 8%

DEVELOPMENT TIME : 10% to 40%

% depend on mode & size

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Design

Effort : 16% to 18%

Time : 19% to 38%

Programming

Effort : 48% to 68%

Time : 24% to 64%

Integration & Test

Effort : 16% to 34%

Time : 18% to 34%

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Size equivalent

Principle of the effort estimate

DD

EE

pp

pp

τ

µ

=

=

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

As the software might be partly developed from software already
existing (that is, re-usable code), a full development is not always
required. In such cases, the parts of design document (DD%), code
(C%) and integration (I%) to be modified are estimated. Then, an
adjustment factor, A, is calculated by means of the following
equation.

A = 0.4 DD + 0.3 C + 0.3 I

The size equivalent is obtained by

S (equivalent) = (S x A) / 100

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Lifecycle Phase Values of

0.340.240.240.180.08
Embedded

extra large

S≈320

0.310.260.250.180.08
Embedded

large S≈128

0.280.310.240.170.07
Semidetached

large S≈128

0.250.330.250.170.07
Semidetached

medium S≈32

0.220.380.240.160.06
Organic

medium S≈32

0.160.420.260.160.06
Organic Small

S≈2

Integration
& Test

Module
Code & Test

Detailed
Design

System
Design

Plan &
Requirements

Mode & Code
Size

pµ

Table 7 : Effort and schedule fractions occurring in each phase of the lifecycle

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Lifecycle Phase Values of

0.300.160.160.380.40
Embedded

extra large

S≈320

0.280.180.180.360.36
Embedded

large S≈128

0.290.250.190.270.22
Semidetached

large S≈128

0.260.270.210.260.20
Semidetached

medium S≈32

0.260.340.210.190.12
Organic

medium S≈32

0.180.390.240.190.10
Organic Small

S≈2

Integration
& Test

Module Code
& Test

Detailed
Design

System
Design

Plan &
Requirements

Mode & Code
Size

pτ

Table 7 : Effort and schedule fractions occurring in each phase of the lifecycle

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

1. Requirement and product design

(a)Plans and requirements

(b)System design

Distribution of software life cycle:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

2. Detailed Design

(a)Detailed design

3. Code & Unit test

(a)Module code & test

4. Integrate and Test

(a) Integrate & Test

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.7

A new project with estimated 400 KLOC embedded system has to be

developed. Project manager has a choice of hiring from two pools of

developers: Very highly capable with very little experience in the

programming language being used

Or

Developers of low quality but a lot of experience with the programming

language. What is the impact of hiring all developers from one or the

other pool ?

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

This is the case of embedded mode and model is intermediate

COCOMO.

Case I: Developers are very highly capable with very little experience

in the programming being used.

= 2.8 (400)1.20 = 3712 PM

EAF = 0.82 x 1.14 = 0.9348

E = 3712 x .9348 = 3470 PM

D = 2.5 (3470)0.32 = 33.9 M

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Hence id

i KLOCaE)(=

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Case II: Developers are of low quality but lot of experience with the

programming language being used.

EAF = 1.29 x 0.95 = 1.22

E = 3712 x 1.22 = 4528 PM

D = 2.5 (4528)0.32 = 36.9 M

Case II requires more effort and time. Hence, low quality developers
with lot of programming language experience could not match with

the performance of very highly capable developers with very litter

experience.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Consider a project to develop a full screen editor. The major components
identified are:

I. Screen edit

II. Command Language Interpreter

III. File Input & Output

IV.Cursor Movement

V. Screen Movement

The size of these are estimated to be 4k, 2k, 1k, 2k and 3k delivered source
code lines. Use COCOMO to determine

1. Overall cost and schedule estimates (assume values for different
cost drivers, with at least three of them being different from 1.0)

2. Cost & Schedule estimates for different phases.

Example: 4.8

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Size of five modules are:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Screen edit = 4 KLOC

Command language interpreter = 2 KLOC

File input and output = 1 KLOC

Cursor movement = 2 KLOC

Screen movement = 3 KLOC

Total = 12 KLOC

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Required software reliability is high, i.e.,1.15

ii. Product complexity is high, i.e.,1.15

iii. Analyst capability is high, i.e.,0.86

iv. Programming language experience is low,i.e.,1.07

v. All other drivers are nominal

EAF = 1.15x1.15x0.86x1.07 = 1.2169

Let us assume that significant cost drivers are

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a) The initial effort estimate for the project is obtained from the

following equation

E = ai (KLOC)bi x EAF

= 3.2(12)1.05 x 1.2169 = 52.91 PM

Development time D = Ci(E)di

= 2.5(52.91)0.38 = 11.29 M

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

(b) Using the following equations and referring Table 7, phase wise

cost and schedule estimates can be calculated.

DD

EE

pp

pp

τ

µ

=

=

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Since size is only 12 KLOC, it is an organic small model. Phase wise

effort distribution is given below:

System Design = 0.16 x 52.91 = 8.465 PM

Detailed Design = 0.26 x 52.91 = 13.756 PM

Module Code & Test = 0.42 x 52.91 = 22.222 PM

Integration & Test = 0.16 x 52.91 = 8.465 Pm

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Now Phase wise development time duration is

System Design = 0.19 x 11.29 = 2.145 M

Detailed Design = 0.24 x 11.29 = 2.709 M

Module Code & Test = 0.39 x 11.29 = 4.403 M

Integration & Test = 0.18 x 11.29 = 2.032 M

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

COCOMO-II

The following categories of applications / projects are identified by

COCOMO-II and are shown in fig. 4 shown below:

End user

programming
Infrastructure

Application

generators &

composition aids

Application

composition

System

integration

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Fig. 4 : Categories of applications / projects

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 8: Stages of COCOMO-II

ApplicationsApplication for the

types of projects

Model NameStage

No

Stage I

Stage II

Stage III

Application composition

estimation model

Early design estimation

model

Post architecture

estimation model

Application composition

Application generators,

infrastructure & system

integration

Application generators,

infrastructure & system

integration

In addition to application

composition type of projects, this

model is also used for prototyping

(if any) stage of application

generators, infrastructure & system

integration.

Used in early design stage of a

project, when less is known about

the project.

Used after the completion of the

detailed architecture of the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Application Composition Estimation Model

Fig.5: Steps for the estimation of effort in person months

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Assess object counts: Estimate the number of screens, reports and

3 GL components that will comprise this application.

ii. Classification of complexity levels: We have to classify each

object instance into simple, medium and difficult complexity levels
depending on values of its characteristics.

Table 9 (a): For screens

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 9 (b): For reports

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iii. Assign complexity weight to each object : The weights are used

for three object types i.e., screen, report and 3GL components using
the Table 10.

Table 10: Complexity weights for each level

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iv. Determine object points: Add all the weighted object instances to

get one number and this known as object-point count.

v. Compute new object points: We have to estimate the percentage

of reuse to be achieved in a project. Depending on the percentage
reuse, the new object points (NOP) are computed.

(object points) * (100-%reuse)

NOP = ---

100

NOP are the object points that will need to be developed and differ from
the object point count because there may be reuse.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vi. Calculation of productivity rate: The productivity rate can be

calculated as:

Productivity rate (PROD) = NOP/Person month

Table 11: Productivity values

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vii.Compute the effort in Persons-Months: When PROD is known,

we may estimate effort in Person-Months as:

NOP
Effort in PM = ------------

PROD

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Consider a database application project with the following characteristics:

I. The application has 4 screens with 4 views each and 7 data tables

for 3 servers and 4 clients.

II. The application may generate two report of 6 sections each from 07

data tables for two server and 3 clients. There is 10% reuse of

object points.

Example: 4.9

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

The developer’s experience and capability in the similar environment is

low. The maturity of organization in terms of capability is also low.

Calculate the object point count, New object points and effort to develop

such a project.

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

This project comes under the category of application composition

estimation model.

24 * (100 -10)

NOP = -------------------- = 21.6

100

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Number of screens = 4 with 4 views each

Number of reports = 2 with 6 sections each

From Table 9 we know that each screen will be of medium

complexity and each report will be difficult complexity.

Using Table 10 of complexity weights, we may calculate object point

count.
= 4 x 2 + 2 x 8 = 24

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 11 gives the low value of productivity (PROD) i.e. 7.

NOP

Efforts in PM = -----------

PROD

21.6

Efforts = ----------- = 3.086 PM

7

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Early Design Model

The COCOMO-II models use the base equation of the form

PMnominal = A * (size)B

where

PMnominal = Effort of the project in person months

A = Constant representing the nominal productivity, provisionally set to 2.5

B = Scale factor

Size = Software size

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…

RemarksExplanation Scale factor

Precedentness

Development flexibility

Architecture/ Risk

resolution

Reflects the previous

experience on similar

projects. This is applicable to

individuals & organization

both in terms of expertise &

experience

Reflect the degree of flexibility

in the development process.

Reflect the degree of risk

analysis carried out.

Very low means no previous

experiences, Extra high means that

organization is completely familiar with

this application domain.

Very low means a well defined process

is used. Extra high means that the client

gives only general goals.

Very low means very little analysis and

Extra high means complete and through

risk analysis.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Table 12: Scaling factors required for the calculation of the value of B

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 12: Scaling factors required for the calculation of the value of B

RemarksExplanation Scale factor

Team cohesion

Process maturity

Reflects the team

management skills.

Reflects the process maturity

of the organization. Thus it is

dependent on SEI-CMM level

of the organization.

Very low means no previous

experiences, Extra high means that

organization is completely familiar with

this application domain.

Very low means organization has no

level at all and extra high means

organization is related as highest level

of SEI-CMM.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0.001.563.124.686.247.80Process maturity

0.001.102.193.294.385.48Team cohesion

0.001.412.834.245.657.07Architecture/ Risk
resolution

0.001.012.033.044.055.07Development
flexibility

0.001.242.483.724.966.20Precedent ness

Extra
high

Very
high

HighNominalLowVery
low

Scaling factors

Table 13: Data for the Computation of B

The value of B can be calculated as:

B=0.91 + 0.01 * (Sum of rating on scaling factors for the project)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Early design cost drivers

There are seven early design cost drivers and are given below:

i. Product Reliability and Complexity (RCPX)

ii. Required Reuse (RUSE)

iii. Platform Difficulty (PDIF)

iv. Personnel Capability (PERS)

v. Personnel Experience (PREX)

vi. Facilities (FCIL)

vii. Schedule (SCED)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Post architecture cost drivers

There are 17 cost drivers in the Post Architecture model. These are rated

on a scale of 1 to 6 as given below :

i. Reliability Required (RELY)

ii. Database Size (DATA)

iii. Product Complexity (CPLX)

iv. Required Reusability (RUSE)

The list of seventeen cost drivers is given below :

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

v. Documentation (DOCU)

vi. Execution Time Constraint (TIME)

vii. Main Storage Constraint (STOR)

viii.Platform Volatility (PVOL)

ix. Analyst Capability (ACAP)

x. Programmers Capability (PCAP)

xi. Personnel Continuity (PCON)

xii. Analyst Experience (AEXP)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

xiii. Programmer Experience (PEXP)

xiv. Language & Tool Experience (LTEX)

xv. Use of Software Tools (TOOL)

xvi. Site Locations & Communication Technology between Sites (SITE)

xvii. Schedule (SCED)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Mapping of early design cost drivers and post architecture cost

drivers

The 17 Post Architecture Cost Drivers are mapped to 7 Early Design Cost

Drivers and are given in Table 14

SCEDSCED

TOOL, SITEFCIL

AEXP, PEXP, LTEXPREX

ACAP, PCAP, PCONPERS

TIME, STOR, PVOLPDIF

RUSERUSE

RELY, DATA, CPLX, DOCURCPX

Counter part Combined Post

Architecture Cost drivers

Early Design Cost Drivers

Table 14: Mapping table

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Product Reliability and Complexity (RCPX): The cost driver combines

four Post Architecture cost drivers which are RELY, DATA, CPLX and

DOCU.

Product of cost drivers for early design model

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

ii. Required Reuse (RUSE) : This early design model cost driver is same as

its Post architecture Counterpart. The RUSE rating levels are (as per

Table 16):

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iii. Platform Difficulty (PDIF) : This cost driver combines TIME, STOR

and PVOL of Post Architecture Cost Drivers.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iv. Personnel Capability (PERS) : This cost driver combines three Post

Architecture Cost Drivers. These drivers are ACAP, PCAP and PCON.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

v. Personnel Experience (PREX) : This early design driver combines three

Post Architecture Cost Drivers, which are AEXP, PEXP and LTEX.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vi. Facilities (FCIL): This depends on two Post Architecture Cost Drivers,

which are TOOL and SITE.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

100Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vii.Schedule (SCED) : This early design cost driver is the same as Post

Architecture Counterpart and rating level are given below using table

16.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

101Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The seven early design cost drivers have been converted into numeric

values with a Nominal value 1.0. These values are used for the calculation

of a factor called “Effort multiplier” which is the product of all seven early

design cost drivers. The numeric values are given in Table 15.

Table 15: Early design parameters

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

102Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The early design model adjusts the nominal effort using 7 effort multipliers

(EMs). Each effort multiplier (also called drivers) has 7 possible weights as

given in Table 15. These factors are used for the calculation of adjusted

effort as given below:

PMadjusted effort may very even up to 400% from PMnominal

Hence PMadjusted is the fine tuned value of effort in the early design phase









×= ∏

=

7

7

nominal

i

iadjusted EMPMPM

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

103Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

A software project of application generator category with estimated 50

KLOC has to be developed. The scale factor (B) has low
precedentness, high development flexibility and low team cohesion.

Other factors are nominal. The early design cost drivers like platform

difficult (PDIF) and Personnel Capability (PERS) are high and others

are nominal. Calculate the effort in person months for the

development of the project.

Example: 4.10

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

104Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Here B = 0.91 + 0.01 * (Sum of rating on scaling factors for the project)

= 0.91 + 0.01 * (4.96 + 2.03 + 4.24 + 4.38 + 4.68)

= 0.91 + 0.01(20.29)=1.1129

PMnominal = A*(size)B

= 2.5 * (50)1.1129 = 194.41 Person months

The 7 cost drivers are

PDIF = high (1.29)

PERS = high (0.83)

RCPX = nominal (1.0)

RUSE = nominal (1.0)

PREX = nominal (1.0)

FCIL = nominal (1.0)

SCEO = nominal (1.0)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

105Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

= 194.41 * [1.29 x 0.83)

= 194.41 x 1.07

= 208.155 Person months

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

106Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Post Architecture Model

The post architecture model is the most detailed estimation model and is

intended to be used when a software life cycle architecture has been

completed. This model is used in the development and maintenance of

software products in the application generators, system integration or

infrastructure sectors.









×= ∏

=

17

7

nominal

i

iadjusted EMPMPM

EM : Effort multiplier which is the product of 17 cost drivers.

The 17 cost drivers of the Post Architecture model are described in the

table 16.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

107Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…Table 16: Post Architecture Cost Driver rating level summary

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

108Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…

Table 16: Post Architecture Cost Driver rating level summary

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

109Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…
Table 16: Post Architecture Cost Driver rating level summary

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

110Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 16: Post Architecture Cost Driver rating level summary

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

111Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Product complexity is based on control operations, computational

operations, device dependent operations, data management operations and

user interface management operations. Module complexity rating are given

in table 17.

The numeric values of these 17 cost drivers are given in table 18 for the

calculation of the product of efforts i.e., effort multiplier (EM). Hence PM

adjusted is calculated which will be a better and fine tuned value of effort

in person months.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

112Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

User of simple
graphics user
interface (GUI)
builders.

Single file sub
setting with no data
structure changes,
no edits, no
intermediate files,
Moderately
complex COTS-DB
queries, updates.

No cognizance
needed of
particular
processor or I/O
device
characteristics.
I/O done at
GET/PUT level.

Evaluation of
moderate-level
expressions: e.g.,
D=SQRT(B**2-
4*A*C)

Straight forward
nesting of
structured
programming
operators. Mostly
simple predicates

Low

Simple input
forms, report
generators.

Simple arrays in
main memory.
Simple COTSDB
queries, updates.

Simple read,
write statements
with simple
formats.

Evaluation of
simple
expressions: e.g.,
A=B+C*(D-E)

Straight-line code
with a few non-
nested structured
programming
operators: Dos.
Simple module
composition via
procedure calls or
simple scripts.

Very
Low

User Interface
Management
Operations

Data management
Operations

Device-
dependent
Operations

Computational
Operations

Control
Operations

Table 17: Module complexity ratings Cont…

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

113Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Widget set
development
and
extension.
Simple voice
I/O
multimedia.

Simple triggers
activated by data
stream contents.
Complex data
restructuring.

Operations at
physical I/O
level (physical
storage
address
translations;
seeks, read
etc.)
Optimized I/O
overlap.

Basic numerical
analysis:
multivariate
interpolation,
ordinary
differential
equations. Basic
truncation, round
off concerns.

Highly nested
structured
programming operators
with many compound
predicates. Queue and
stack control.
Homogeneous,
distributed processing.
Single processor soft
real time control.

High

Simple use of
widget set.

Multi-file input
and single file
output. Simple
structural
changes, simple
edits. Complex
COTS-DB
queries,
updates.

I/O processing
includes
device
selection,
status
checking and
error
processing.

Use of standard
maths and
statistical
routines. Basic
matrix/ vector
operations.

Mostly simple nesting.
Some inter module
control Decision tables.
Simple callbacks or
message passing,
including middleware
supported distributed
processing.

Nominal

User Interface
Management
Operations

Data
management
Operations

Device-
dependent
Operations

Computational
Operations

Control Operations

Table 17: Module complexity ratings Cont…

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

114Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Complex
multimedia,
virtual reality.

Highly coupled,
dynamic
relational and
object
structures.
Natural
language data
management.

Device timing
dependent coding,
micro
programmed
operations.
Performance
critical embedded
systems.

Difficult and
unstructured
numerical analysis:
highly accurate
analysis of noisy,
stochastic data.
Complex
parallelization.

Multiple resource
scheduling with
dynamically
changing priorities.
Microcode-level
control. Distributed
hard real time
control.

Extra
High

Moderately
complex
2D/3D,
dynamic
graphics,
multimedia.

Distributed
database
coordination.
Complex
triggers. Search
optimization.

Routines for
interrupt
diagnosis,
servicing,
masking.
Communication
line handling.
Performance
intensive
embedded
systems.

Difficult but
structured
numerical analysis:
near singular
matrix equations,
partial differential
equations. Simple
parallelization.

Reentrant and
recursive coding.
Fixed-priority
interrupt handling.
Task
synchronization,
complex callbacks,
heterogeneous
distributed
processing. Single
processor hard real
time control.

Very
High

User
Interface
Management
Operations

Data
management
Operations

Device-dependent
Operations

Computational
Operations

Control Operations

Table 17: Module complexity ratings

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

115Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 18: 17 Cost Drivers

0.740.871.001.161.37PCAP

0.670.831.001.221.50ACAP

1.301.151.000.87PVOL

1.571.211.061.00STOR

1.671.311.111.00TIME

1.131.061.000.950.89DOCU

1.491.291.141.000.91RUSE

1.661.301.151.000.880.75CPLX

1.191.091.000.93DATA

1.391.151.000.880.75RELY

Extra HighVery
High

HighNominalLowVery Low

RatingCost
Driver

Cont…

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

116Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 18: 17 Cost Drivers

1.001.001.001.101.29SCED

0.780.840.921.001.101.25SITE

0.720.861.001.121.24TOOL

0.840.911.001.101.22LTEX

0.810.881.001.121.25PEXP

0.810.891.001.101.22AEXP

0.840.921.001.101.24PCON

Extra HighVery
High

HighNominalLowVery Low

RatingCost
Driver

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

117Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Schedule estimation

Development time can be calculated using PMadjusted as a key factor and the

desired equation is:

100

%
)([))]091.0(2.028.0(

nominal

SCED
PMTDEV

B

adjusted ∗×= −+φ

where Φ = constant, provisionally set to 3.67

TDEVnominal = calendar time in months with a scheduled constraint

B = Scaling factor

PMadjusted = Estimated effort in Person months (after adjustment)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

118Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Size measurement

Size can be measured in any unit and the model can be calibrated

accordingly. However, COCOMO II details are:

i. Application composition model uses the size in object points.

ii. The other two models use size in KLOC

Early design model uses unadjusted function points. These function points

are converted into KLOC using Table 19. Post architecture model may

compute KLOC after defining LOC counting rules. If function points are

used, then use unadjusted function points and convert it into KLOC using

Table 19.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

119Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

29C++

128C

128Basic-Interpreted

91Basic-Compiled

64ANSI/Quick/Turbo Basic

213Assembly (Macro)

320Assembly

32APL

49AI Shell

71Ada

SLOC/UFPLanguage

Table 19: Converting function points to lines of code

Cont…

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

120Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6Spreadsheet

80Report Generator

64Prolog

91Pascal

80Modula 2

64Lisp

105Jovial

64Forth

105Fortan 77

91ANSI Cobol 85

SLOC/UFPLanguage

Table 19: Converting function points to lines of code

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

121Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Consider the software project given in example 4.10. Size and scale factor

(B) are the same. The identified 17 Cost drivers are high reliability (RELY),

very high database size (DATA), high execution time constraint (TIME),

very high analyst capability (ACAP), high programmers capability (PCAP).

The other cost drivers are nominal. Calculate the effort in Person-Months for

the development of the project.

Example: 4.11

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

122Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Here B = 1.1129

PMnominal = 194.41 Person-months

= 194.41 x (1.15 x 1.19 x 1.11 x 0.67 x 0.87)

= 194.41 x 0.885

= 172.05 Person-months









×= ∏

=

17

7

nominal

i

iadjusted EMPMPM

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

123Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Putnam Resource Allocation Model

Norden of IBM

Rayleigh curve

Model for a range of hardware development projects.

Fig.6: The Rayleigh manpower loading curve

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Persons

Time

Overall Curve

Design and Coding

124Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Putnam observed that this curve was a close

approximation at project level and software subsystem

level.

No. of projects = 150

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

125Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Norden / Rayleigh Curve

= manpower utilization rate per unit time

a = parameter that affects the shape of the curve

K = area under curve in the interval [0, ∞]

t = elapsed time

dt

dy

2

2)(at
kate

dt

dy
tm

−== --------- (1)

The curve is modeled by differential equation

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

126Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

On Integration on interval [o, t]

Where y(t): cumulative manpower used upto time t.

y(0) = 0

y(∞) = k

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

y(t) = K [1-e-at2] -------------(2)

The cumulative manpower is null at the start of the project, and

grows monotonically towards the total effort K (area under the

curve).

127Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0]21[2 22

2

2

=−= − atkae
dt

yd at

a
td

2

12 =

“td”: time where maximum effort rate occurs

Replace “td” for t in equation (2)

2

5.02

2

1

3935.0)(

)1(1)(
2

2

d

t

t

t
a

ktyE

eKektyE d

d

=

==

−=












−== −

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

128Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Replace “a” with in the Norden/Rayleigh model. By

making this substitution in equation we have

22

1

dt

2

2

2

22

2
dt

t

d

te
t

K
tm

−

=)(

2

2

2

2
dt

t

d

te
t

K −

=

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

129Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

m (t)

Person

Time (years)

a=2

a=0.5
a=0.222

a=0.125

Fig.7: Influence of parameter ‘a’ on the manpower

distribution

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

130Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

At time t=td, peak manning m (td) is obtained and denoted by mo.

et

k
m

d

o =

k = Total project cost/effort in person-years.

td = Delivery time in years

m0 = No. of persons employed at the peak

e = 2.71828

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

131Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.12

A software development project is planned to cost 95 MY in a period

of 1 year and 9 months. Calculate the peak manning and average rate

of software team build up.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

132Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

persons3394.32
648.175.1

95
==

×

Average rate of software team build up

monthpersonoryearpersons
t

m

d

/56.1/8.18
75.1

330

===

Software development cost k=95 MY

Peak development time td = 1.75 years

Peak manning mo=
et

k

d

Solution

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

133Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.13

Consider a large-scale project for which the manpower requirement is

K=600 PY and the development time is 3 years 6 months.

(a)Calculate the peak manning and peak time.

(b)What is the manpower cost after 1 year and 2 months?

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

134Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a)We know td=3 years and 6 months = 3.5 years

NOW

=∴ 0m

Solution

600/(3.5x1.648) 104 persons≅

et

K
m

d

=0

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

135Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(b) We know

[]2

1)(at
eKty

−−=

t = 1 year and 2 months

= 1.17 years

041.0
)5.3(2

1

2

1
22

=
×

==
dt

a

[]2)17.1(041.01600)17.1(−−= ey

= 32.6 PY

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

136Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Slope of manpower distribution curve at start time t=0 has

some useful properties.

)21(2)(' 2

2

2
2

atkae
dt

yd
tm

at −== −

Then, for t=0

222

2
2)0('

dd t

K

t

K
Kam ===

Difficulty Metric

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

137Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The ratio is called difficulty and denoted by D,

which is measured in person/year :

2

dt

K

D= persons/year2

dt

k

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

138Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Project is difficult to develop

if

Manpower demand

is high

When time schedule

is short

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

139Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Peak manning is defined as:

Thus difficult projects tend to have a higher peak

manning for a given development time, which is in line

with Norden’s observations relative to the parameter “a”.

et

k
m

d

=0

dd t

em

t

k
D 0

2
==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

140Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

D is dependent upon “K”. The derivative of D relative to

“K” and “td” are

2

3

2
yearpersons

t

k
tD

d

d /)('
−

=

2

2

1
)(' −= year

t
kD

d

Manpower buildup

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

141Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

D1(K) will always be very much smaller than the absolute value of

D1(td). This difference in sensitivity is shown by considering two

projects

Project A : Cost = 20 PY & td = 1 year

Project B : Cost = 120 PY & td = 2.5 years

Project A : D` (td) = -40 & D`(K) = 1

Project B : D` (td) = -15.36 & D`(K) = 0.16

The derivative values are

This shows that a given software development is time sensitive.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

142Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Putnam observed that

Difficulty derivative relative to time

Behavior of s/w development

If project scale is increased, the development time also

increase to such an extent that remains constant

around a value which could be 8,15,27.

3

dt

k

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

143Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

It is represented by D0 and can be expressed as:

2

30 / yearperson
t

k
D

d

=

D0 =8, new s/w with many interfaces & interactions

with other systems.

D0 =15, New standalone system.

D0 =27, The software is rebuild form existing software.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

144Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.14

Consider the example 4.13 and calculate the difficulty and

manpower build up.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

145Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

We know

Solution

2

dt

K
D =Difficulty

yearperson /49
)5.3(

600
2

==

Manpower build up can be calculated by following equation

30

dt

K
D =

2

3
/14

)5.3(

600
yearperson==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

146Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Productivity = No. of LOC developed per person-month

P ∞ Dβ

Avg. productivity

P =

codeproducetoused
manpowercumulative

producedLOC

Productivity Versus Difficulty

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

147Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

P = S/E

)3935.0(
3

2

2
k

t

k
S

d

−









= φ

343139350
//. dtKS φ=

).(
/

/

/

KD

EDS

DP

3935032

32

32

−

−

−

=

=

=

φ

φ

φ

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

148Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

c

Technology Factor

Programming

environment

Hardware

constraints
Complexity

Experience

φ39.0

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

149Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

C 610 – 57314

K : P-Y

T : Years

3/43/1
d

t

CKS =

3/43/1

.
−−

= d
t

KSC

CStK d /3/43/1 =
3

4

1








=

C

S

t
K

d

The trade off of time versus cost

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

150Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

C = 5000

S = 5,00,000 LOC

3

4
)100(

1

dt
K =

123463.0

66643.5

39064.0

16005.0

K (P-Y)td (years)

Table 20: (Manpower versus development time)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

151Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Development Subcycle

All that has been discussed so far is related to project life cycle as

represented by project curve

Manpower

distribution

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Fig.8: Project life cycle

Maintenance

Project

Test &

Validation
Design code

developmentRequirements

& Specification

Time

152Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Project curve is the addition of two curves

Development

Curve

Test &

Validation

Curve

Project life cycle

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

153Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

An examination of md(t) function shows a non-zero value of md

at time td.

This is because the manpower involved in design & coding is

still completing this activity after td in form of rework due to

the validation of the product.

Nevertheless, for the model, a level of completion has to be

assumed for development.

It is assumed that 95% of the development will be completed

by the time td.

md (t) = 2kdbt e-bt2

yd (t) = Kd [1-e-bt2]

∴

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

154Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

95.01
)(2

=−=
−bt

e
K

ty

d

d

22

1

odt
b =

Tod: time at which development curve exhibits a peak

manning.

6

d
od

t
t =

We may say that∴

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

155Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Relationship between Kd & K must be established.

At the time of origin, both cycles have the same slope.

o

d

od

d

do dt

dm

t

K

t

K

dt

dm








===








22

Kd=K/6

22

od

d

d t

K

t

K
D ==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

156Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

This does not apply to the manpower build up D0.

Conte investigated that

Larger projects reasonable

Medium & small projects overestimate

33
6 od

d

d

o
t

K

t

K
D ==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

157Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.15

A software development requires 90 PY during the total development

sub-cycle. The development time is planned for a duration of 3 years

and 5 months

(a)Calculate the manpower cost expended until development time

(b) Determine the development peak time

(c) Calculate the difficulty and manpower build up.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

158Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a) Duration td = 3.41 years

Solution

95.0
)(

=
d

dd

K

ty

9095.0)(×=dd tY

= 85.5 PY

We know from equation 95.01
)(

=−=
− dbt

e
K

ty

d

d

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

159Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(b) We know from equation

6

d
od

t
t =

years
t

t d
od 39.1449.2/41.3

6
===

months17≅

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

160Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(c) Total Manpower development

PYKK d 5406906 =×==

46)41.3/(540/ 22 === dtKD

95.0/)(ddd tyK =

= 85.5 / 0.95 = 90

persons/years

6.13)41.3/(540 3

3
===

d

o
t

K
D persons/years2

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

161Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example:4.16

A software development for avionics has consumed 32 PY

up to development cycle and produced a size of 48000

LOC. The development of project was completed in 25

months. Calculate the development time, total manpower

requirement, development peak time, difficulty,

manpower build up and technology factor.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

162Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution:

PY
tY

k dd
d 7.33

95.0

32

95.0

)(
===

monthsyears
t

t d
od 10850

6
=== .

)(

K = 6Kd = 6 x 33.7 = 202 PY

yearspesons
t

k
D

d

/7.46
)08.2(

202
22

===

Development time td = 25 months = 2.08 years

Total manpower development

Development peak time

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

163Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2

330 522
082

202
yearPersons

t

k
D

d

/.
).(

===

3/43/1 −−= dtSKC

= 3077

Technology factor

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

164Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example 4.17

What amount of software can be delivered in 1 year 10 months in an

organization whose technology factor is 2400 if a total of 25 PY is

permitted for development effort.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

165Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution:

3/43/1

dtCKS =

= 2400 x 5.313 x 2.18 = 27920 LOC

We know

td = 1.8 years

Kd = 25 PY

K = 25 x 6 = 150 PY

C = 2400

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

166Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example 4.18

The software development organization developing real time

software has been assessed at technology factor of 2200. The

maximum value of manpower build up for this type of

software is Do=7.5. The estimated size to be developed is

S=55000 LOC.

(a) Determine the total development time, the total

development manpower cost, the difficulty and the

development peak manning.

(b) The development time determined in (a) is considered too

long. It is recommended that it be reduced by two months.

What would happen?

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

167Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

3/43/1

dtCKS =

4

3

dkt
c

s
=









7

3

dotD
C

S
=









7/1
3

0

1




















=

C

S

D
td

We have

which is also equivalent to

then

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

168Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

25=
C

S
Since

td = 3 years

PYKd 75.33
06

202
==

D = D0td = 22.5 persons / year

years
t

t d
od 2.1

6

3

6
===

Total development manpower cost

PYtDK d 202275.73

0 =×==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

169Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Md(t) = 2kd bte-bt2

Yd(t) = kd (1-e-bt2)

Here t = tod

2/1−== eDtm odod

= 22.5 x 1.2 x .606 = 16 persons

Peak manning

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

170Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

III. If development time is reduced by 2 months

Developing

s/w at higher

manpower

build-up

Producing

less software

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

171Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3

7

1








=

C

S

t
D

d

o

Now td = 3 years – 2 months = 2.8 years

yearspersonsDo /.)./()(6118225 73 ==

PYtDk d 2543

0 ==

(i) Increase Manpower Build-up

PYKd 4.42
6

254
==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

172Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

D = D0td = 32.5 persons / year

The peak time is tod = 1.14 years

Peak manning mod = Dtod e-0.5

= 32.5 x 1.14 x 0.6

= 22 persons

Note the huge increase in peak manning & manpower

cost.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

173Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

696.10119)8.2(5.7 77

0

3

=×==







dtD

C

S

62989.21

3

=








C

S

Then for C=2200

S=47586 LOC

(ii) Produce Less Software

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

174Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Productivity versus difficultProductivity versus difficultProductivity versus difficultProductivity versus difficult

Example 4.19

A stand alone project for which the size is estimated at 12500

LOC is to be developed in an environment such that the

technology factor is 1200. Choosing a manpower build up

Do=15, Calculate the minimum development time, total

development man power cost, the difficulty, the peak manning,

the development peak time, and the development productivity.

175Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

3/43/1

dtCKS =

Size (S) = 12500 LOC

Technology factor (C) = 1200

Manpower buildup (Do) = 15

Now

3/43/1

dtK
C

S
=

4

3

dKt
C

S
=









Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

176Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3

d

o
t

K
DknowweAlso =

7

3

dotD
C

S
=









7/1
3

15

)416.10(








=dt

Substituting the values, we get

33

dodo tDtDK ==

Hence

7

3

15
1200

12500
dt=









yearstd 85.1=

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

177Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(i) Hence Minimum development time (td)=1.85 years

(ii) Total development manpower cost
6

K
Kd =

315 dtK =

PY
K

Kd 83.15
6

97.94

6
===

=15(1.85)3=94.97 PY

Hence

(iii) Difficulty yearPersons
t

K
D

d

/.
).(

.
7527

851

9794
22

===

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

178Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(iv) Peak Manning
et

K
m

d

=0

Persons15.31
648.185.1

97.94
=

×
=

(v) Development Peak time

6

d
od

t
t =

years755.0
449.2

85.1
==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

179Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(vi) Development Productivity

)(

)(.

dKeffort

ScodeoflinesofNo
=

PYLOC /6.789
83.15

12500
==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

180Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� We Software developers are extremely optimists.

� We assume, everything will go exactly as planned.

� Other view

not possible to predict what is going to happen ?

Software surprises

Never good news

Software Risk Management

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

181Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk management is required to reduce this surprise

factor

Dealing with concern before it becomes a crisis.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Quantify probability of failure & consequences of failure.

182Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

What is risk ?

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Tomorrow’s problems are today’s risks.

“Risk is a problem that may cause some loss or

threaten the success of the project, but which has

not happened yet”.

183Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk management is the process of identifying addressing

and eliminating these problems before they can damage

the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Current problems &

Potential Problems

184Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Capers Jones has identified the top five risk factors that

threaten projects in different applications.

1. Dependencies on outside agencies or factors.

Typical Software Risk

• Availability of trained, experienced persons

• Inter group dependencies

• Customer-Furnished items or information

• Internal & external subcontractor relationships

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

185Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2. Requirement issues

Uncertain requirements

Wrong product

or

Right product badly

Either situation results in unpleasant surprises and

unhappy customers.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

186Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

• Lack of clear product vision

• Unprioritized requirements

• Lack of agreement on product requirements

• New market with uncertain needs

• Rapidly changing requirements

• Inadequate Impact analysis of requirements changes

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

187Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3. Management Issues

Project managers usually write the risk management

plans, and most people do not wish to air their

weaknesses in public.

• Inadequate planning

• Inadequate visibility into actual project status

• Unclear project ownership and decision making

• Staff personality conflicts

• Unrealistic expectation

• Poor communication

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

188Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4. Lack of knowledge

• Inadequate training

• Poor understanding of methods, tools, and

techniques

• Inadequate application domain experience

• New Technologies

• Ineffective, poorly documented or neglected

processes

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

189Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5. Other risk categories

• Unavailability of adequate testing facilities

• Turnover of essential personnel

• Unachievable performance requirements

• Technical approaches that may not work

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

190Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk

Management

Risk

Assessment

Risk Control

Risk Identification

Risk Analysis

Risk Prioritization

Risk Management

Planning

Risk Monitoring

Risk Resolution

Risk Management Activities

Fig. 9: Risk Management

Activities

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

191Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Identification of risks

Risk Assessment

Risk analysis involves examining how project outcomes

might change with modification of risk input variables.

Risk prioritization focus for severe risks.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Risk exposure: It is the product of the probability of incurring

a loss due to the risk and the potential magnitude of that loss.

192Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Another way of handling risk is the risk avoidance. Do not do

the risky things! We may avoid risks by not undertaking

certain projects, or by relying on proven rather than cutting

edge technologies.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

193Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk Management Planning produces a plan for dealing with

each significant risks.

Risk Control

� Record decision in the plan.

Risk resolution is the execution of the plans of dealing with

each risk.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

194Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.1 After the finalization of SRS, we may like to estimate

(a) Size (b) Cost

(c) Development time (d) All of the above.

4.2 Which one is not a size measure for software

(a) LOC (b) Function Count

(c) Cyclomatic Complexity (d) Halstead’s program length

4.3 Function count method was developed by

(a) B.Beizer (b) B.Boehm

(c) M.halstead (d) Alan Albrecht

4.4 Function point analysis (FPA) method decomposes the system into functional
units. The total number of functional units are

(a) 2 (b) 5

(c) 4 (d) 1

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

195Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.6 Function point can be calculated by

(a) UFP * CAF (b) UFP * FAC

(c) UFP * Cost (d) UFP * Productivity

Multiple Choice Questions

4.7 Putnam resource allocation model is based on

(a) Function points

(b) Norden/ Rayleigh curve

(c) Putnam theory of software management

(d) Boehm’s observation on manpower utilisation rate

4.5 IFPUG stand for

(a) Initial function point uniform group

(b) International function point uniform group

(c) International function point user group

(d) Initial function point user group

4.8 Manpower buildup for Putnam resource allocation model is

22
yearpersonstKa d //)(23

yearpersonstKb d //)(

yearpersonstKc d //)(2
yearpersonstKd d //)(3

196Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.9 COCOMO was developed initially by

(a) B.W.Bohem (b) Gregg Rothermal

(c) B.Beizer (d) Rajiv Gupta

Multiple Choice Questions

4.10 A COCOMO model is

(a) Common Cost estimation model

(b) Constructive cost Estimation model

(c) Complete cost estimation model

(d) Comprehensive Cost estimation model

4.11 Estimation of software development effort for organic software is COCOMO is

(a) E=2.4(KLOC)1.05PM (b) E=3.4(KLOC)1.06PM

(c) E=2.0(KLOC)1.05PM (d) E-2.4(KLOC)1.07PM

4.12 Estimation of size for a project is dependent on

(a) Cost (b) Schedule

(c) Time (d) None of the above

4.13 In function point analysis, number of Complexity adjustment factor are

(a) 10 (b) 20

(c) 14 (d) 12

197Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.14 COCOMO-II estimation model is based on

(a) Complex approach (b) Algorithm approach

(c) Bottom up approach (d) Top down approach

4.15 Cost estimation for a project may include

(a) Software Cost (b) Hardware Cost

(c) Personnel Costs (d) All of the above

4.16 In COCOMO model, if project size is typically 2-50 KLOC, then which mode
is to be selected?

(a) Organic (b) Semidetached

(c) Embedded (d) None of the above

Multiple Choice Questions

4.17 COCOMO-II was developed at

(a) University of Maryland (b) University of Southern California

(c) IBM (d) AT & T Bell labs

4.18 Which one is not a Category of COCOMO-II

(a) End User Programming (b) Infrastructure Sector

(c) Requirement Sector (d) System Integration

198Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

4.19 Which one is not an infrastructure software?

(a) Operating system (b) Database management system

(c) Compilers (d) Result management system

4.20 How many stages are in COCOMO-II?

(a) 2 (b) 3

(c) 4 (d) 5

4.21 Which one is not a stage of COCOMO-II?

(a) Application Composition estimation model

(b) Early design estimation model

(c) Post architecture estimation model

(d) Comprehensive cost estimation model

4.22 In Putnam resource allocation model, Rayleigh curve is modeled by the equation

2

2)()(at
eattma

−=
2

2)()(at
eKttmb

−=
2

2)()(at
eKattmc

−=
2

2)()(at
eKbttmd

−=

199Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.23 In Putnam resource allocation model, technology factor ‘C’ is defined as

4.24 Risk management activities are divided in

(a) 3 Categories (b) 2 Categories

(c) 5 Categories (d) 10 Categories

Multiple Choice Questions

4.25 Which one is not a risk management activity?

(a) Risk assessment (b) Risk control

(c) Risk generation (d) None of the above

3/43/1)(−−= dtSKCa 3/43/1)(dtSKCb =
3/43/1)(−= dtSKCc 3/43/1)(dtSKCd −=

200Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.1 What are various activities during software project planning?

4.2 Describe any two software size estimation techniques.

4.3 A proposal is made to count the size of ‘C’ programs by number of
semicolons, except those occurring with literal strings. Discuss the
strengths and weaknesses to this size measure when compared with the
lines of code count.

4.4 Design a LOC counter for counting LOC automatically. Is it language
dependent? What are the limitations of such a counter?

4.5 Compute the function point value for a project with the following
information domain characteristics.

Number of user inputs = 30

Number of user outputs = 42

Number of user enquiries = 08

Number of files = 07

Number of external interfaces = 6

Assume that all complexity adjustment values are moderate.

201Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.6 Explain the concept of function points. Why FPs are becoming
acceptable in industry?

4.7 What are the size metrics? How is function point metric advantageous
over LOC metric? Explain.

4.8 Is it possible to estimate software size before coding? Justify your answer
with suitable example.

4.9 Describe the Albrecht’s function count method with a suitable example.

4.10 Compute the function point FP for a payroll program that reads a file of
employee and a file of information for the current month and prints
cheque for all the employees. The program is capable of handling an
interactive command to print an individually requested cheque
immediately.

202Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.11 Assume that the previous payroll program is expected to read a file
containing information about all the cheques that have been printed. The
file is supposed to be printed and also used by the program next time it is
run, to produce a report that compares payroll expenses of the current
month with those of the previous month. Compute functions points for
this program. Justify the difference between the function points of this
program and previous one by considering how the complexity of the
program is affected by adding the requirement of interfacing with
another application (in this case, itself).

4.12 Explain the Walson & Felix model and compare with the SEL model.

4.13 The size of a software product to be developed has been estimated to be
22000 LOC. Predict the manpower cost (effort) by Walston-Felix Model
and SEL model.

4.14 A database system is to be developed. The effort has been estimated to
be 100 Persons-Months. Calculate the number of lines of code and
productivity in LOC/Person-Month.

203Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.15 Discuss various types of COCOMO mode. Explain the phase wise
distribution of effort.

4.16 Explain all the levels of COCOMO model. Assume that the size of an
organic software product has been estimated to be 32,000 lines of code.
Determine the effort required to developed the software product and the
nominal development time.

4.17 Using the basic COCOMO model, under all three operating modes,
determine the performance relation for the ratio of delivered source code
lines per person-month of effort. Determine the reasonableness of this
relation for several types of software projects.

4.18 The effort distribution for a 240 KLOC organic mode software
development project is: product design 12%, detailed design 24%, code
and unit test 36%, integrate and test 28%. How would the following
changes, from low to high, affect the phase distribution of effort and the
total effort: analyst capability, use of modern programming languages,
required reliability, requirements volatility?

204Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.19 Specify, design, and develop a program that implements COCOMO.
Using reference as a guide, extend the program so that it can be used as a
planning tool.

4.20 Suppose a system for office automation is to be designed. It is clear
from requirements that there will be five modules of size 0.5 KLOC, 1.5
KLOC, 2.0 KLOC, 1.0 KLOC and 2.0 KLOC respectively. Complexity,
and reliability requirements are high. Programmer’s capability and
experience is low. All other factors are of nominal rating. Use COCOMO
model to determine overall cost and schedule estimates. Also calculate
the cost and schedule estimates for different phases.

4.21 Suppose that a project was estimated to be 600 KLOC. Calculate the
effort and development time for each of the three modes i.e., organic,
semidetached and embedded.

4.22 Explain the COCOMO-II in detail. What types of categories of projects
are identified?

205Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.24 Describe various stages of COCOMO-II. Which stage is more popular
and why?

4.25 A software project of application generator category with estimated size
of 100 KLOC has to be developed. The scale factor (B) has high
percedentness, high development flexibility. Other factors are nominal.
The cost drivers are high reliability, medium database size, high
Personnel capability, high analyst capability. The other cost drivers are
nominal. Calculate the effort in Person-Months for the development of
the project.

4.27 Describe the trade-off between time versus cost in Putnam resource
allocation model.

4.26 Explain the Putnam resource allocation model. What are the limitations
of this model?

4.23 Discuss the Infrastructure Sector of COCOMO-II.

4.28 Discuss the Putnam resources allocation model. Derive the time and
effort equations.

206Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.30 Obtain software productivity data for two or three software development
programs. Use several cost estimating models discussed in this chapter.
How to the results compare with actual project results?

4.31 It seems odd that cost and size estimates are developed during software
project planning-before detailed software requirements analysis or design
has been conducted. Why do we think this is done? Are there
circumstances when it should not be done?

4.29 Assuming the Putnam model, with S=100,000 , C=5000, Do=15,
Compute development time td and manpower development Kd.

4.32 Discuss typical software risks. How staff turnover problem affects
software projects?

4.33 What are risk management activities? Is it possible to prioritize the risk?

207Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.35 What is risk? Is it economical to do risk management? What is the effect
of this activity on the overall cost of the project?

4.36 There are significant risks even in student projects. Analyze a student
project and list all the risk.

4.34 What is risk exposure? What techniques can be used to control each
risk?

Module 3

Software Design

prepared by, U.B.Nisha AP/CSE

Overview of Design

 What is it? A meaningful engineering representation of

something that is to be built.

 Who does it? Software engineers --computer

architecture

 Why is it important? A house would never be built

without a blueprint. Why should software? Without

design the system may fail with small changes, is difficult

to test and cannot be assessed for quality

 What is the work product? A design specification

prepared by, U.B.Nisha AP/CSE

Design

Good software design should exhibit:

 Firmness: A program should not have any bugs that inhibit its

function.

 Commodity: A program should be suitable for the purposes

for which it was intended.

 Delight: The experience of using the program should be

satisfying one.

prepared by, U.B.Nisha AP/CSE

4

Purpose of Design

 Design is where customer requirements, business needs, and
technical considerations all come together in the formulation of a
product or system

 The design model provides detail about the software data structures,
architecture, interfaces, and components

 The design model can be assessed for quality and be improved before
code is generated and tests are conducted

 Does the design contain errors, inconsistencies, or omissions?

 Are there better design alternatives?

 Can the design be implemented within the constraints, schedule, and cost
that have been established?

prepared by, U.B.Nisha AP/CSE

5

Purpose of Design

 A designer must practice diversification and convergence

 The designer selects from design components, component solutions, and
knowledge available through catalogs, textbooks, and experience

 The designer then chooses the elements from this collection that meet the
requirements defined by requirements engineering and analysis modeling

 Convergence occurs as alternatives are considered and rejected until one
particular configuration of components is chosen

 Software design is an iterative process through which requirements are
translated into a blueprint for constructing the software

 Design begins at a high level of abstraction that can be directly traced back
to the data, functional, and behavioral requirements

 As design iteration occurs, subsequent refinement leads to design
representations at much lower levels of abstraction

The design process involves:

 Diversification (acquisition of alternatives)

Followed By

 Convergence (elimination of all but one

particular configuration)

prepared by, U.B.Nisha AP/CSE

6

Design Principles

 The design process should not suffer from ‗tunnel vision.‘

 The design should be traceable to the analysis model.

 The design should not reinvent the wheel.

 The design should ―minimize the intellectual distance‖ [DAV95] between the
software and the problem as it exists in the real world.

 The design should exhibit uniformity and integration.

 The design should be structured to accommodate change.

 The design should be structured to degrade gently, even when aberrant data,
events, or operating conditions are encountered.

 Design is not coding, coding is not design.

 The design should be assessed for quality as it is being created, not after the
fact.

 The design should be reviewed to minimize conceptual (semantic) errors.

From Davis [DAV95]

7

From Analysis Model to
Design Model

 Each element of the analysis model provides information that is
necessary to create the four design models

 The data/class design transforms analysis classes into design
classes along with the data structures required to implement the
software

 The architectural design defines the relationship between major
structural elements of the software; architectural styles and design
patterns help achieve the requirements defined for the system

 The interface design describes how the software communicates
with systems that interoperate with it and with humans that use it

 The component-level design transforms structural elements of the
software architecture into a procedural description of software
components

(More on next slide)
prepared by, U.B.Nisha AP/CSE

Analysis Model -> Design Model

Analysis Model

use-cases - text

use-case diagrams
activity diagrams

swim lane diagrams

data flow diagrams

control-flow diagrams
processing narratives

f l ow- or i e nt e d

e l e me nt s

be ha v i or a l
e l e me nt s

c l a ss- ba se d

e l e me nt s

sc e na r i o- ba se d

e l e me nt s

class diagrams
analysis packages

CRC models
collaboration diagrams

state diagrams

sequence diagrams
D a t a / Cla ss D e sign

A rc h it e c t u ra l D e sign

In t e rf a c e D e sign

Com pone nt -

Le v e l D e sign

Design Model

prepared by, U.B.Nisha AP/CSE

9

From Analysis Model to
Design Model (continued)

Data/Class Design

(Class-based model, Behavioral model)

Architectural Design

(Class-based model, Flow-oriented model)

Interface Design

(Scenario-based model, Flow-oriented model

Behavioral model)

Component-level Design

(Class-based model, Flow-oriented model

Behavioral model)

prepared by, U.B.Nisha AP/CSE

10

Task Set for Software Design

1) Examine the information domain model and design
appropriate data structures for data objects and their attributes

2) Using the analysis model, select an architectural style (and
design patterns) that are appropriate for the software

3) Partition the analysis model into design subsystems and
allocate these subsystems within the architecture

a) Design the subsystem interfaces

b) Allocate analysis classes or functions to each subsystem

4) Create a set of design classes or components

a) Translate each analysis class description into a design class

b) Check each design class against design criteria; consider
inheritance issues

c) Define methods associated with each design class

d) Evaluate and select design patterns for a design class or
subsystem

prepared by, U.B.Nisha AP/CSE

11

Task Set for Software Design
(continued)

5) Design any interface required with external systems or devices

6) Design the user interface

7) Conduct component-level design

a) Specify all algorithms at a relatively low level of abstraction

b) Refine the interface of each component

c) Define component-level data structures

d) Review each component and correct all errors uncovered

8) Develop a deployment model

Show a physical layout of the system, revealing which components
will be located where in the physical computing environment

prepared by, U.B.Nisha AP/CSE

12

Design Quality: Quality's Role

 The importance of design is quality

 Design is the place where quality is fostered

 Provides representations of software that can be assessed for
quality

 Accurately translates a customer's requirements into a finished
software product or system

 Serves as the foundation for all software engineering activities that
follow

 Without design, we risk building an unstable system that

 Will fail when small changes are made

 May be difficult to test

 Cannot be assessed for quality later in the software process when
time is short and most of the budget has been spent

 The quality of the design is assessed through a series of formal
technical reviews or design walkthroughs

prepared by, U.B.Nisha AP/CSE

13

Goals of a Good Design

 The design must implement all of the explicit requirements
contained in the analysis model

 It must also accommodate all of the implicit requirements desired

by the customer

 The design must be a readable and understandable guide for

those who generate code, and for those who test and support

the software

 The design should provide a complete picture of the software,

addressing the data, functional, and behavioral domains from an

implementation perspective

prepared by, U.B.Nisha AP/CSE

14

Design Quality Guidelines

1) A design should exhibit an architecture that

a) Has been created using recognizable architectural styles or
patterns

b) Is composed of components that exhibit good design
characteristics

c) Can be implemented in an evolutionary fashion, thereby
facilitating implementation and testing

2) A design should be modular; that is, the software should be
logically partitioned into elements or subsystems

3) A design should contain distinct representations of data,
architecture, interfaces, and components

4) A design should lead to data structures that are appropriate for
the classes to be implemented and are drawn from
recognizable data patterns

(more on next slide)
prepared by, U.B.Nisha AP/CSE

15

Quality Guidelines (continued)

5) A design should lead to components that exhibit independent
functional characteristics

6) A design should lead to interfaces that reduce the complexity

of connections between components and with the external

environment

7) A design should be derived using a repeatable method that is

driven by information obtained during software requirements

analysis

8) A design should be represented using a notation that

effectively communicates its meaning

prepared by, U.B.Nisha AP/CSE

Design Concepts

 Abstraction—data, procedure, control

 Architecture—the overall structure of the software

 Patterns—‖conveys the essence‖ of a proven design solution

 Separation of concerns—any complex problem can be more easily
handled if it is subdivided into pieces

 Modularity—compartmentalization of data and function

 Hiding—controlled interfaces

 Functional independence—single-minded function and low coupling

 Refinement—elaboration of detail for all abstractions

 Aspects—a mechanism for understanding how global requirements affect
design

 Refactoring—a reorganization technique that simplifies the design

 Design Classes—provide design detail that will enable analysis classes to
be implemented

prepared by, U.B.Nisha AP/CSE

17

Design Concepts
 Abstraction

 Procedural abstraction – a sequence of instructions that have a specific
and limited function

 Data abstraction – a named collection of data that describes a data
object

 Architecture

 The overall structure of the software and the ways in which the structure
provides conceptual integrity for a system

 Consists of components, connectors, and the relationship between them

 Patterns

 A design structure that solves a particular design problem within a
specific context

 It provides a description that enables a designer to determine whether
the pattern is applicable, whether the pattern can be reused, and
whether the pattern can serve as a guide for developing similar patterns

(more on next slide)
prepared by, U.B.Nisha AP/CSE

18

Design Concepts (continued)

 Modularity

 Separately named and addressable components (i.e., modules) that are
integrated to satisfy requirements (divide and conquer principle)

 Makes software intellectually manageable so as to grasp the control
paths, span of reference, number of variables, and overall complexity

 Information hiding

 The designing of modules so that the algorithms and local data contained
within them are inaccessible to other modules

 This enforces access constraints to both procedural (i.e., implementation)
detail and local data structures

 Functional independence

 Modules that have a "single-minded" function and an aversion to
excessive interaction with other modules

 High cohesion – a module performs only a single task

 Low coupling – a module has the lowest amount of connection needed
with other modules

prepared by, U.B.Nisha AP/CSE

19

Design Concepts (continued)
 Stepwise refinement

 Development of a program by successively refining levels of
procedure detail

 Complements abstraction, which enables a designer to specify
procedure and data and yet suppress low-level details

 Refactoring

 A reorganization technique that simplifies the design (or internal
code structure) of a component without changing its function or
external behavior

 Removes redundancy, unused design elements, inefficient or
unnecessary algorithms, poorly constructed or inappropriate data
structures, or any other design failures

 Design classes

 Refines the analysis classes by providing design detail that will
enable the classes to be implemented

 Creates a new set of design classes that implement a software
infrastructure to support the business solution

prepared by, U.B.Nisha AP/CSE

Abstraction

 Wasserman: ―Abstraction permits one to

concentrate on a problem at some level of

abstraction without regard to low level detail.

 At the highest level of abstraction a solution is

stated in broad terms using the language of the

problem environment.

 At lower level, a procedural orientation is

taken.

 At the lowest level of abstraction the solution is

stated in a manner that can be directly

implemented.

Abstraction(1)

Types of abstraction :

1. Procedural Abstraction :

A named sequence of instructions that has

a specific & limited function

Eg: Word OPEN for a door

2. Data Abstraction :

A named collection of data that describes a data

object. Data abstraction for door would be a set of

attributes that describes the door

(e.g. door type, swing direction, weight, dimension)

prepared by, U.B.Nisha AP/CSE

Architecture (1)

 Is the structure/organization of program components

(modules), the manner in which these components

interact, and the structure of data that is used by the

components.

 Components can be generalized to represent major

system elements and their interactions.

 Goal – derive architectural rendering of system, that

serves as a framework from which more detailed design

activities are conducted.

Architecture (2)

Architectural design models:

 structural models;

 framework models;

 dynamic models;

 process models;

 functional models.

Patterns

 Describes a design structure that solves a
particular design problem within a specific context.

 Should provide description that enables designer to
determine:

o whether pattern is applicable to
current work;

o whether the pattern can be reused;

o whether the pattern can serve as a
guide for developing similar, but
functionally or structurally different
pattern.

Separation of Concerns

 Any complex problem can be more easily handled if it is

subdivided into pieces that can each be solved and/or

optimized independently

 A concern is a feature or behavior that is specified as

part of the requirements model for the software

 By separating concerns into smaller, and therefore more

manageable pieces, a problem takes less effort and

time to solve.

prepared by, U.B.Nisha AP/CSE

Modularity

prepared by, U.B.Nisha AP/CSE

 In this concept, software is divided into

separately named and addressable

components called modules

 Follows ―divide and conquer‖ concept, a

complex problem is broken down into several

manageable pieces

 Let p1 and p2 be two problems.

 Let E1 and E2 be the effort required to solve

them –

If C(p1)>C(p2)

Hence E(p1)>E(p2)

Modularity

Now—

 Complexity of a problem that combines p1 and p2 is

greater than complexity when each problem is consider

C(p1+p2) > C(p1)+C(p2),

Hence

E(p1+p2) > E(p1)+E(p2) It is easier to solve a complex

problem when you break it into manageable pieces

prepared by, U.B.Nisha AP/CSE

Modularity

prepared by, U.B.Nisha AP/CSE

5 criteria to evaluate a design method with respect to its modularity-----

 Modular understandability: module should be understandable as a

standalone unit (no need to refer to other modules)

 Modular continuity: If small changes to the system requirements

result in changes to individual modules, rather than system wide

changes, the impact of side effects will be minimized

 Modular protection: If an error occurs within a module then those

errors are localized and not spread to other modules

 Modular Composability: Design method should enable reuse of

existing components.

 Modular Decomposability: Complexity of the overall problem can be

reduced if the design method provides a systematic mechanism to

decompose a problem into sub problems

Information hiding

 Builds up on modularity concept.

 Modules should be specified and designed so

that information (algorithms and data) contained

within a module is inaccessible to other modules

that have no need for such information;

 Hiding defines and enforces access constraints

to procedural details and local data structures

used within a module.

 Hiding prevents error propagation outside of a

module.

Why Information Hiding?

 reduces the likelihood of ―side effects‖

 limits the global impact of local design decisions

 emphasizes communication through controlled

interfaces

 discourages the use of global data

 leads to encapsulation—an attribute of high quality

design

 results in higher quality software

prepared by, U.B.Nisha AP/CSE

Functional Independence
 Functional independence is achieved by developing modules with

"single-minded" function and an "aversion" to excessive interaction
with other modules.

 Cohesion is an indication of the relative functional strength of a
module.
 A cohesive module performs a single task, requiring little interaction

with other components in other parts of a program. Stated simply, a
cohesive module should (ideally) do just one thing.

 Coupling is an indication of the relative interdependence among
modules.
 Coupling depends on the interface complexity between modules, the

point at which entry or reference is made to a module, and what data
pass across the interface.

prepared by, U.B.Nisha AP/CSE

Functional independence
 Each module should address a specific sub

function of requirements and have a simple
interface.

 Functional independent modules are easier to
develop, maintain, and test;

 Error propagation is reduced and reusable
modules are possible;

 Assessed using two qualitative criteria:

o cohesion;

o coupling.

Types of Cohesion

 Worst to Best

6. Coincidental Cohesion
 Performs multiple unrelated actions

 Can happen if an organization enforces rigid rules on
module size - modules are hacked apart and glued
together

 Worse than no modularity at all

5. Logical Cohesion
 Module tasks related logically

 Example: an object that performs all input and output

 Interface can be difficult to understand (e.g. printf)
and code for several actions may be intertwined

4. Temporal Cohesion
 Tasks executed within the same span of time

 Example: initialization of data structures

Low

Moderate

Def: the degree of

interaction within a module

More Types of Cohesion

3. Procedural

 Actions are related and must be executed in a certain

order

2. Communication

 Actions are performed in series and on the same data

 Example: CalculateTrajectoryAndPrint

 Damages Reusability

1. Functional or informational cohesion

 Performs exactly one action OR

 Performs a number of actions, with separate entry

points, all performed on the same data structure

 Equivalent to a well-designed abstract data type or

object

Moderate

High

“Single-

minded”

Coupling
 Def: the degree of interaction between modules

 A measure of relative interdependence; strive for low
coupling since this reduces the ―ripple effect‖

 Types of Coupling (Worst to Best):

5. Content Coupling

 One module directly references the internals of another

 Example: module p branches to a local label of module q

 Almost any change in one requires a change in the other

4. Common Coupling

 Both modules have access to the same global data area

 Example: module p and q have read and write access to
the same database element

 Suffers from all the disadvantages of global variables

High

Coupling

Moderate

Coupling

Types of Coupling

3. Control Coupling

 Element of control is transferred between modules

 Example: Module q not only passes information but also
informs module p as to what action to take

 These kinds of modules often have logical cohesion

2. Stamp Coupling

 Whole data structures (records, arrays, object) transferred

 BUT the called module only operates on part of the data
structure

 Security Risk: allows uncontrolled data access

1. Data Coupling

 Every argument is either a simple type or a data structure

 AND all elements are used by the called module

 Maintenance is easier because regression faults less likely

Moderate

Coupling

High

Couplin

g

Refinement

 A top-down design strategy by which
program is designed by successively
refining levels of procedural detail;

 Abstraction and refinement are
complementary features:

o one specifies procedure and data
without details;

o other allows to elaborate by
providing low-level details.

Refinement

 Process of elaboration.

 Start with the statement of function defined at the

abstract level, decompose the statement of function

in a stepwise fashion until programming language

statements are reached.

prepared by, U.B.Nisha AP/CSE

Refactoring

It is the process of changing a software system in such way

that it does not alter the external behavior of the code yet

improves its internal structure.

OO Design Concepts

 Design classes

 Entity classes

 Boundary classes

 Controller classes

 Inheritance—all responsibilities of a superclass is immediately

inherited by all subclasses

 Messages—stimulate some behavior to occur in the receiving object

 Polymorphism—a characteristic that greatly reduces the effort

required to extend the design

prepared by, U.B.Nisha AP/CSE

