MODULE 35

Graphical User Interface & Database
support of Java

CHAPTER 1
SWING

SWING FUNDAMENTALS

ava Swing is a GUI Framework that contains a set of classes
orovide more powerful and flexible GUI components than AWT.

swing provides the look and feel of modern Java GUI.

Swing library is an official Java GUI tool kit released by S
Vlicrosystems.

t is used to create graphical user interface with Java.

swing classes are defined in javax.swing package and its su
backages.

ava Swing provides platform-independent and lightweig
“omponents.

EDPULINE

a Swing is a part of Java Foundation Classes (JFC) that is usea
ate window-based applications.

s built on the top of AWT (Abstract Windowing Toolkit) API -
irely written in java

1e Java Foundation Classes (JFC) are a set of GUI components whi
mplify the development of desktop applications.

he javax.swing package provides classes for java swing API such
utton, JTextField, JTextArea, JRadioButton, JCheckbox, JMe
olorChooser etc.

EDPULINE

'Features of Swing
atform Independent:

t is platform independent, the swing components that are used
ouild the program are not platform specific.

t can be used at any platform and anywhere.
chtweight:

swing components are lightweight which helps in creating the
ighter.

swings component allows it to plug into the operating system us
nterface framework that includes the mappings for screens
Jevice and other user interactions like key press and mou
novements.

EDPULINE

ugging:

t has a powerful component that can be extended to provide tl
support for the user interface that helps in good look and feel
he application.

t refers to the highly modular-based architecture that allows it
olug into other customized implementations and framework f

Iser interfaces.

anageable: It is easy to manage and configure. Its mechanism ar
)mposition pattern allows changing the settings at run time
ell. The uniform changes can be provided to the user interfa
ithout doing any changes to application code.

EDPULINE

VC:

[hey mainly follows the concept of MVC that is Model Vie
_ontroller.

With the help of this, we can do the changes in one compone
vithout impacting or touching other components.

t is known as loosely coupled architecture as well.

Istomizable:

swing controls can be easily customized. It can be changed and tl
s/isual appearance of the swing component application
ndependent of its internal representation.

ch Controls :

swing provides a rich set of advanced controls like Tre
[abbedPane, slider, colorpicker, and table controls.

EDPULINE

Difference between AWT and Swing

Java AWT Java Swing
AWT components are platform-dependent. | Java swing components are platform-
independent.
AWT components are heavyweight. Swing components are lightweight.
| AWT doesn't support pluggable look and feel. | Swing supports pluggable look and feel
AWT provides less components than Swing. Swing provides more powerful compone

such as tables, lists, scrollpanes, colorchoo

tabbedpane etc.

AWT doesn't follows MVC{Model View Controller) where model Swing follows MVC.
represents data, view represents presentation and controller acts as an

interface between model and view.

EDPULINE 7

'Hierarchy of Java Swing classes

ILabel

JList

ITakble

Object

A
Component
A
Container JComponent

Window Panel

A A
Applet

Frame

Dialog

IComboBox

1slider

[Meou

AbstractButton

!

JButton

EDPULINE

The Model-View-Controller Architecture

swing uses the model-view-controller architecture (MVC) as t
‘undamental design behind each of its components

-ssentially, MVC breaks GUI components into three elements. Ea
Of these elements plays a crucial role in how the compone
behaves.

'The Model-View-Controller is a well known software architectul
battern ideal to implement user interfaces on computers
lividing an application intro three interconnected parts

EDPULINE

Viain goal of Model-View-Controller, also known as MVC, is
separate internal representations of an application from the wa
nformation are presented to the user.

nitially, MVC was designed for desktop GUI applications but i
yuickly become an extremely popular pattern for designing wi
pplications too.

MIVC pattern has the three components :
Model that manages data, logic and rules of the application
View that is used to present data to user

Controller that accepts input from the user and converts it
ymmands for the Model or View.

EDPULINE

‘he MVC pattern defines the interactions between these thr
“omponents like you can see in the following figure :

7 MODEL 4\

UPDATES MANIPULATES

EDPULINE

[he Model receives commands and data from the Controller.
tores these data and updates the View.

[he View lets to present data provided by the Model to the user.

[he Controller accepts inputs from the user and converts it
ommands for the Model or the View.

EDPULINE

COMPONENTS & CONTAINERS

A component is an independent visual control, such as a pu
outton or slider.

A\ container holds a group of components. Thus, a container is
pecial type of component that is designed to hold oth
“omponents.

swing components inherit from the javax.Swing.JComponent cla:
vhich is the root of the Swing component hierarchy.

EDPULINE

*COMPONENTS

>wing components are derived from the JComponent class.

'Component provides the functionality that is common to
omponents. For example, JComponent supports the pluggak
ook and feel.

JComponent inherits the AWT classes Container and Componet
Thus, a Swing component is built on and compatible with an AV
“omponent.

All of Swing’s components are represented by classes defin
vithin the package javax.swing.

[he following table shows the class names for Swing components

EDPULINE

Applet
ColorChooser
Dialog
-rame

layeredPane
Menultem
PopupMenu
RootPane
Slider

Table

JTogglebutton
JViewport
JButton
JComboBox
JEditorPane
JInternalFrame
JList
JOptionPane
JProgressBar

EDPULINE

\otice that all component classes begin with the letter J.

-or example, the class for a label is JLabel; the class for a pu
sutton is JButton; and the class for a scroll bar is JScrollBar

*CONTAINERS

swing defines two types of containers. The first are top-le\
ontainers: JFrame, JApplet, JWindow, and JDialog. The
ontainers do not inherit JComponent. They inherit the AV
“lasses Component and Container.

[he second type container are lightweight and the top-le\
“ontainers are heavyweight. This makes the top-level containers
special case in the Swing component library.

EDPULINE

Java, Containers are divided into two types as shown below:

Top-level Container

Container

Examples : JDialog,
JFErame, JApplet
inherited by Component
and Confainer of AWT
Other containers cannot
hold It
Containers are
Heavyweight.

Lightweight Container

Example: JPanel
They inhert
JComponentclass

Used as general —
purpose container
Used to keep and
organize related
components together

EDPULINE

17

llowing is the list of commonly used containers while designed
Ul using SWING.

Sr.No.

Container & Description

Panel &

JPanel 1s the simplest container. It provides space in which any other
component can be placed. including other panels.

Frame &P

A JFrame i1s a top-level window with a tifle and a border.

Window &

A JWindow object is a top-level window with no borders and no menubar.

EDPULINE

ving Example : A window on the screen.

mport javax.swing.JFrame;
mport javax.swing.SwingUtilities;

ublic class Example extends IFrame {

Simple example

public Example() {
setTitle{"Simple example");
setSize(38a8, 2080);
setlocationRelativeTo{null);
setDetaultCloseOperation{ EXIT OM CLOSE);

l

public static void main(String[] args) { -
Example ex = new Example{);
ex.setVisible(true);

T

EDPULINE 19

EVENT HANDLING IN SWINGS

[he functionality of Event Handling is what is the further step if
iction performed.

IH

'ava foundation introduced “Delegation Event Model” i.e describ

1ow to generate and control the events.

[he key elements of the Delegation Event Model are as source al
Isteners.

[he listener should have registered on source for the purpose
1lert notifications.

AIl GUI applications are event-driven

EDPULINE

 Java Swing event object

Nhen something happens in the application, an event object
“reated.

-or example, when we click on the button or select an item fromr
Ist.

[here are several types of events, including ActionEvent, TextEvel
-ocusEvent, and ComponentEvent.

Each of them is created under specific conditions.

An event object holds information about an event that h
yccurred.

EDPULINE

SWING LAYOUT MANAGERS

ayout refers to the arrangement of components within tl
“ontainer.

ayout is placing the components at a particular position within t|
~ontainer. The task of laying out the controls is done automatica
oy the Layout Manager.

The layout manager automatically positions all the componer
vithin the container.

Even if you do not use the layout manager, the components a
till positioned by the default layout manager. It is possible to |
yut the controls by hand, however, it becomes very difficult

EDPULINE

ava provides various layout managers to position the contro
roperties like size, shape, and arrangement varies from one laya
manager to the other.

[here are following classes that represents the layout managers:
java.awt.BorderLayout

java.awt.FlowLayout

java.awt.GridLayout

java.awt.CardLayout

java.awt.GridBaglayout

Javax.swing.BoxLayout

Jjavax.swing.Grouplayout

javax.swing.ScrollPanelLayout

Javax.swing.SpringlLayout etc.

EDPULINE

BorderLayout GridLayout

24

FlowlLayout BoxLayout
7 | B |l @ (=[E] = |

1%
=]

1 r. 3 4 3

Button 1 Bulton 2 Buttorf 3 Bullar 4 Button 5

25

CardLayout GrouplLayout

: GroupLayoutExample

Button One Button Two ‘

Button Three

26

ample of JButton

port javax.swing.¥;

port java.awt.event. ¥;
port java.awt._¥;

blic class testswing extends JFrame

testswing()
{
JButton btl = new JButton("Yes");
JButton bt2 = new JButton("No");
setDefaultCloseOperation(JFrame.EXIT_ON CLOSE)
setLayout(new FlowlLayout());
setSize(480, 480);
add(bt1);
add(bt2);

setVisible(true);

¥
public static void main(String[] args)

{

new testswing();

EDPULINE

ample of JTextField

port javax.swing.¥;

iport java.awt.event.¥;
port java.awhk.¥;
iblic class MyTextField extends JFrame

public MyTextField()

1
JTextField jtf = new JTextField(28);
add(jtf);
setlLayout(new FlowlLayout());
setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
setSize(406, 400);
setVisible(true);

1

public static void main(String[] args)

1
new MyTextField();

EDPULINE

(ample of Jlabel - It is used for placing text in a box

mport javax.swing.¥;
lass SLabelDemol

ublic static void main{(String args[])

JFrame label f= new JFrame{("studytonight ==> Label Demo");
JLabel label 11,label 12;

label 11=new JLabel({"Welcome to studytonight.com™);
label 11.setBounds(56,58, 280,30);

label 12-new JLabel{"How are You?");

label 12.setBounds(56,108, 2606,30);

label f.add(label 11);

label f.add(label 12);

label f.setSize(308,300);

label f.setlayout(null);

label f.setVisible(true);

¥

|# | studytonight ==> Label Demo — O

Welcome to studytonight.com

How are You'?

EDPULINE 29

Java DataBase Connectivity (JDBC)

JDBC stands for Java Database Connectivity, which is a standa
'ava API| for database-independent connectivity between the Ja
orogramming language and a wide range of databases.

The JDBC library includes APIs for each of the tasks mention
below that are commonly associated with database usage.

Mlaking a connection to a database

_reating SQL or MySQL statements

-xecuting SQL or MySQL queries in the database
/iewing & Modifying the resulting records

EDPULINE

JDBC Architecture

JDBC Architecture consists of two layers

DBC API: This provides the application-to-JDBC Manag
“onnection.

DBC Driver APIl: This supports the JDBC Manager-to-Driv
_onnection.

The JDBC API uses a driver manager and database-specific drive
0 provide transparent connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used
yccess each data source.

EDPULINE

-ollowing is the architectural diagram, which shows the location
he driver manager with respect to the JDBC drivers and the Ja
ypplication

L

=ava APBRGRE

e Pyt

JDBCAPI

JDBG Driver |

l JDBC Driver :] { JDBC Dmﬂr]

JDBC Driver |

EDPULINE 4

There are 5 steps to connect any java application with t
Jatabase using JDBC. These steps are as follows:

Register the Driver class
Create connection
Create statement
Execute queries

Close connection

EDPULINE 5

The forName() method is used to register the driver class.

The getConnection() method of DriverManager class is used
>stablish connection with the database

The createStatement() method of Connection interface is used
reate statement. The object of statement is responsible to execu
yueries with the database.

The executeQuery() method of Statement interface is used
oxecute queries to the database. This method returns the object
ResultSet that can be used to get all the records of a table.

By closing connection object statement and ResultSet will |
losed automatically. The close() method of Connection interface
1sed to close the connection.

EDPULINE

Java Database Connectivity with MySQL

[o connect Java application with the MySQL database, we need
ollow 5 following steps.

n this example we are using MySql as the database. So we need
<now following informations for the mysql database:

Driver class: The driver class for the mysgl database
com.mysql.jdbc.Driver.

Connection URL: The connection URL for the mysqgl database
jdbc:mysql://localhost:3306/sonoo where jdbc is the API, mysql
the database, localhost is the server name on which mysql
running, we may also use IP address, 3306 is the port numb
and sonoo is the database name. We may use any database,

such case, we need to replace the sonoo with our databa
name.

EDPULINE

Jsername: The default username for the mysql database is root.

Password: It is the password given by the user at the time of
talling the mysqgl database. In this example, we are going to use
t as the password.

et's first create a table in the mysql database, but before creati
\ble, we need to create database first.

reate database sonoo;
ISe SON0O;
reate table emp(id int(10),name varchar(40),age int(3));

EDPULINE

Example to Connect Java Application with mysql databas

»ort java.sql.™;

55 MysqglCond

Mlic static void main(5tring args[]){

|

s5.forlame("com.mysqgl.jdbc.Driver™);

inection con=DriverManager.getConnection(
wormysgl:/flocalhost: 3306/50no0", "root”, "root");

ore sonoo is database name, root is username and password
tement stmt=con.createStatement(};

ultSet re=stmt.executeQuery{"select * from emp"};
ile(rs.next(}))

tem.out.printin(rs.getInt{1)}+" "+rs.getString(2)+" "+rs.getString(3));

.close();

itch{Exception e}{ System.out.printin{e}; ¥

This example will
fetch all the records
emp table.

EDPULINE 9

eate database SampleDB;

se SampleDB;

REATE TABLE "users (

‘user_id int(11) NOT NULL AUTO INCREMENT,
‘'username varchar(45) NOT NULL,

‘password’ varchar(45) NOT NULL,

fullname” varchar(45) NOT NULL,

‘email varchar(45) NOT NULL,

PRIMARY KEY ("user_id")

EDPULINE 10

ring dbURL = "jdbc:mysql://localhost:3306/sampledb";
ring username = "root";
ring password = "secret”;

A
Connection conn = DriverManager.getConnection(dbURL,
ssword);

if (conn != null) {
System.out.printlin("Connected");

}
atch (SQLException ex)

ex.printStackTrace();

usernan

EDPULINE 11

Once the connection was established, we have a Connection obje
vhich can be used to create statements in order to execute SQL querit

n the above code, we have to close the connection explicitly after fini
vorking with the database:

conn.close();

INSERT Statement Example

t’s write code to insert a new record into the table Users wi
llowing details:

username: bill

password: secretpass

fullname: Bill Gates

email: bill.gates@microsoft.com

EDPULINE

ring sql = "INSERT INTO Users (username, password, fullnamr
nail) VALUES (?, ?, ?, ?)";

reparedStatement statement = conn.prepareStatement(sql);
tatement.setString(1, "bill");
tatement.setString(2, "secretpass”);
tatement.setString(3, "Bill Gates");
tatement.setString(4, "bill.gates@microsoft.com");
nt rowslnserted = statement.executeUpdate();
f (rowslnserted > 0) {
System.out.printin("A new user was inserted successfully!");

EDPULINE 13

'SELECT Statement Example

String sql = “SELECT * FROM Users";

Statement statement = conn.createStatement();
ResultSet result = statement.executeQuery(sgl);

int count = @;

while {result.next{}){
String name = result.getString(2);
String pass = result.getString(3);
String fullname = result.getString(“fullnams");
String email = result.getString{ email™};

String output = "User #id: %5 - %5 - %5 - &=';
System.out.println{String.format{output, ++count, name, pass, fullname, email));

utput

User #1: bill - secretpass - Bill Gates - bill.gates@microsoft.com
EPULINE 14

*UPDATE Statement Example

String =ql = "UPDATE Users SET password=?, fullname=?, email=! WHERE username=:7";

PreparedStatement statement = conn.prepareStatement(sgl);
statement.setString{l, "12345678%9");
statement.setString({2, "William Henry Bill Gatez");
statement.setString{3, "bill.gatesf@microsoft.com™);
statement.=setString{4, "bill"};

int rowsUpdated = statement.executelpdate();
if (rowsUpdated > 8) {

System.out.println{"An existing user was updated successfully!l”);
¥

EDPULINE 15

'DELETE Statement Example

[he following code snippet will delete a record whose username
ield contains “bill”

String sql = "DELETE FROM Users BHHERE username=:2";

PreparedStatement statement = conn.prepareStatemsnt(sql);
statement.setString{l, "bill");

int rowsDeleted = statement.executslpdate();
it (rowsDeleted > 8} {

System.out.println(™A user was deleted successTully!™};
I

EDPULINE 16

