
1

1

 MODULE 4

Message Passing Mechanisms-Message Routing schemes, Flow control Strategies,
Multicast Routing Algorithms.

Pipelining and Superscalar techniques – Linear Pipeline processors and Nonlinear
pipeline processors

4.1.MESSAGE PASSING MECHANISMS
Message passing in multicomputer network demands special hardware and software support

4.1.1Message-Routing Schemes

Qn:Draw the message format used in message routing schemes?

Message Formats

• Information units in message routing is specified in fig below.

• Message is the logical unit for inter node communication.

• A Packet is the basic unit containing the destination address for routing purpose.

• Since different number of packets may arrive at the destination asynchronously, a sequence no is

needed in each packet to allow reassembly of message transmitted.

• A packet can be further divided into a number of fixed-length flits(flow control digits). Routing

information and sequence number occupy the header flits. The remaining flits are the data

elements of a packet.

• The packet length is determined by the routing scheme and network implementation. Typical packet

length ranges from 64 to 512 bits.

• Factors affecting packet and flit size include channel bandwidth, router design, network traffic

intensity etc.

2

2

Qn:Describe two message routing Mechanisms?

Qn: Illustrate and explain two message passing format (store fwd & wormhole)

Two message routing mechanisms are

1. Store and Forward Routing (Packets are the smallest unit of information transmission)

2. Wormhole routing.(Packets are again subdivided into flits)

Store and Forward Routing

• Packets are the smallest unit of information transmission

• Each node has a packet buffer to store packets before forwarding to next node.

• A packet is transmitted from a source to destination node through a sequence of intermediate nodes.

• When a packet reaches an intermediate node, it is first stored in the buffer and then it is forwarded to

the next node if the desired output channel and a packet buffer in the receiving node are both

available.

• Latency in store and forward is directly proportional to distance (no of hops between source and

destination)

• This scheme was implemented in the first generation of multicomputers.

Wormhole Routing

Qn:Describe wormhole routing?

• Packets are further divided into flits

3

3

• Flit buffers are used in hardware routers attached to nodes.

• The transmission from the source node to the destination node is done through a sequence of routers.

• All flits in same packet are transmitted in pipeline fashion. Header flit knows the destination and all

other flits(data flits) follow it.

• Latency in wormhole routing is independent of distance between source and destination.

Qn: Illustrate asynchronous pipelining in wormhole routing
Asynchronous Pipelining in Wormhole Routing (read lines under figs- low signals means ready to

receive flit, high signal indicates ready to send flit)

• The pipelining of successive flits in a packets is done asynchronously using a handshaking

protocol. Along the path , a 1-bit ready/request(R/A) line is used between adjacent routers.

• When the receiving router (D) is ready to receive a flit (flit buffer is available) it pulls the R/A line

low(fig.a). When the sending router (S) is ready(fig.b) it raises the line high and transmits flit i

through the channel.

• While the flit is being received by D (fig.c) the R/A line is kept high. After flit i is removed from D’s

buffer (ie transmitted to the next node (fig d) , the cycle repeats itself for the transmission of the next

flit i+1 until the entire packet is transmitted.

• Asynchronous pipeline can be very efficient. But the pipeline can be stalled if flit buffers or

successive channels along the path are not available during certain cycles

Qn:compare latencies of store-and –forward and wormhole routed networks?

Latency Analysis – A time comparison between store-and-forward and wormhole routed

networks.

• L- packet length in bits, W channel bandwidth in bits/s, D is the distance (no of nodes traversed

minus 1) and F is the flit length in bits

4

4

.

4.1.2 Deadlock and Virtual Channels
Qn:Illustrate and explain the problem deadlock and suggest solution?

Qn: Illustrate and explain virtual channel?

• The communication channels between nodes in wormhole-routed multicomputer network are shared

by many source and destination pairs. The sharing of a physical channel leads to concept of virtual

channels

• Virtual Channel is a logical link between two nodes. It is formed by a flit buffer in the source

node, a physical channel between them, and a flit buffer in the receiver node.

• Fig below shows the concept of four virtual channels sharing a single physical channel. Four flit

5

5

buffers used at the source node and receiver node respectively. One source buffer is paired with one

receiver buffer to form a virtual channel when the physical channel is allocated for the pair.

• Ie Physical channel is time shared by virtual channel. The source buffer hold flits awaiting use of

channel. The receiver buffer hold flits just transmitted over the channel. The channel(wires or fibers)

provides a communication medium between them.

Deadlocks

 Deadlocks can occur when there is circular wait at buffers or at channels. Fig below shows

deadlock situation in store-and-forward and worm-hole routing.

• A buffer deadlock is shown in Fig a for a store and forward network. A circular wait

situation results from four packet occupying four buffers in four nodes. Unless one packet

is discarded or misrouted, the deadlock cannot be broken.

• A channel deadlock results from four messages being simultaneously transmitted along four

channels in a mesh-connected network using wormhole routing. Four flits from four

messages occupy the four channels simultaneously. If none of the channels in the cycle is

freed, the deadlock situation will continue

6

6

• circular waits also illustrated using Channel dependence graph in the figure below:. The channels

involved are represented by nodes, and directed arrows are used to show the dependence relations

among them.

Qn:describe deadlock avoidance mechanisms?
• Deadlocks can be avoided by adding unidirectional or bidirectional Virtual Channels. Fig below

shows it.

• By adding two virtual channels, V3 andV4 in the above fig. C, one can break the deadlock cycle.A

modified channel dependence graph is obtained by using the virtual channels V3 and V4, after the

use of channel C2 instead of reusing C3 andC4. The cycle in the fig b can be converted to a spiral,

thus avoiding a deadlock. Virtual channels can be implemented with either unidirectional channels or

bidirectional channels.

• The use of virtual channels may reduce the effective channel bandwidth available to each request.

7

7

4.1.3 Flow Control Strategies
Qn: Explain the 4 packet collision resolution policies/ flow control strategies

• Flow control strategies are used to control smooth network traffic flow without causing congestion

or deadlock situation.

• When two or more packets collide at a node competing for buffer or channel resources we need

policies to resolve the conflict.

1.Packet Collision Resolution

• When two packets reach the same node, they may request the same receiver buffer or the same

outgoing channel. Two arbitration decision must be made.(1) which packet will be allocated the

channel? And (2) What will be done with the packet being denied the channel?

• 4 policies are illustrated below , for resolving the conflict between two packets competing for the

use of the same outgoing channel at an intermediate node.

a) Buffering in Virtual circuit routing

• Packet 1 is allocated the channel, packet 2 is temporarily stored in packet buffer and will be

transmitted when channel becomes available.(ie combines store and forward and wormhole routing

schemes)

Adv: Not wasting the resources already allocated.

Disadv: Requires the use of a large buffer to hold the entire packet.

 Packet buffer may cause significant storage delay.

b) Blocking flow control

• Wormhole routing uses a blocking policy in case of packet collision .Second packet is blocked but

not abandoned

8

8

c) Discard and retransmit

• Discard policy drops the second packet. The discard policy may results severe wastage of resources,

and it demands packet retransmission and acknowledgement .This scheme is rarely used now.BBN

Butterfly network used this policy.

d) Detour after being blocked

• Blocked packet is routed to a detour channel. It is economical to implement but may result in the

idling of resources allocated to the blocked packet. This scheme offers more flexibility in packet

routing. But this scheme may waste more channel resources than necessary to reach at the

destination. Furthermore a re-routed packet may enter a cycle of livelock, which wastes network

resources.

Qn:Explain any 2 dimension order routing mechanisms(deterministic and adaptive, also
comparison between deterministic and adaptive) ?

Qn:Illustrate and explain any 2 deterministic routing algorithms/mechanisms (E cube
routing on Hypercube and X-Y routing on 2D Mesh)?

Dimension-Order Routing

• Packet routing can be done deterministically or adaptively. Both are deadlock free routing

schemes.

 In deterministic routing communication path is completely determined by the source

and destination address and is independent of network condition.

 Adaptive routing depend on network conditions and alternate paths are possible.

• In both type of routing , deadlock – free algorithms are desired.

9

9

• Two such deterministic algorithms are

 X-Y routing and

 E-cube routing which are based on the concept called dimension order routing.

• Dimension order routing requires the selection of successive channels to follow a specific order

based on the dimensions of a multidimensional network.
o In the case of a two dimensional mesh network , the scheme is called X-Y routing because

a routing path along the X-dimension is decided first before choosing a path along the Y

dimension.
o For hypercube (n cube) networks, the scheme is called E-cube routing (proposed by

Sullivan and Bashkow in 1977).

10

10

2 Deterministic algorithms are explained below

Qn:Explain with example E-cube Routing on Hypercube

1. E-cube Routing on Hypercube

Just for reference

That is in this 3 dimensional binary cube network, (ie n=3, ie 8 modes), figure a

shows all the connections resulted by 3 routing functions defined by fig,b,c,and d.

11

11

Here in the above example, n=4. ie total number of nodes= 24 =16 . as shown in the figure above.

Additional Problem:

QN:Show E-cube routing on a Three dimensional hypercube?

Qn:Explain the routing mechanisms defined by a binary 3 cube using necessary

diagrams.(Kerala Univ)

Qn: Show the routing of a message from node (110) to node (101), by E-cube routing on

a Three dimensional hypercube (ie no. of nodes=23=8)

12

12

13

13

Qn:Explain X-Y routing on 2-D mesh?
2. X-Y Routing on 2 D Mesh

• From any source node s=(x1y1) to any destination node d=(x2y2) ,route from s along the X-axis first

until it reaches the column Y2 where d is located. Then route to d along the Y-axis.

• There would be four possible X-Y routing patterns corresponding to east-north, east-south, west-

north and west-south.

• The below given example illustrate four possible patterns on a two dimensional mesh. That is,

 an east-North route , From node (2,1) to node (7,6)

 an east-south route , From node (0,7) to node (4,2)

 an -west-south route , From node (5,4) to node (2,0)

 an -west-north route , From node (6,3) to node (1,5)

• If the X—dimension is always routed first and then the Y-dimension, a deadlock or circular wait

situation will not exist

Qn: Illustrate adaptive routing mechanism?

Adaptive Routing

• The main purpose of using adaptive routing is to achieve efficiency and avoid deadlock.

• Concept of virtual channels is adopted in adaptive networks making routing more economical and

feasible to implement and it avoids deadlocks too

• That is we can have virtual channels in all connections along the same dimension of a mesh-

connected network as shown in figure below:

14

14

Multicast Routing Algorithms
Qn:exp multicast routing algorithm?

Qn:Describe multicast and broadcast on a hypercube?

Qn: Describe multicast and broadcast on a mesh network?

4 types of communication patterns may appear in multicomputer networks.

1. Unicast (one source one destination)(This one only discussed in previous sessions)

2. Multicast (one to many)

3. Broadcast (one to all)

4. Conference (many to many)

5.

Routing Efficiency parameters are

o channel bandwidth :The channel bandwidth at any time instant indicates the effective data

transmission rate achieved to deliver the messages.

o communication latency. The latency is indicated by the packet transmission delay involved.

15

15

A routed network should achieve both maximum bandwidth and minimum latency for the communication

patterns involved. Depending on the switching technology used, latency is the more important issue in a

store-and-forward network, while in general the bandwidth affects efficiency more in a wormhole-routed

network.

Multicast and Broadcast on a mesh-connected computer

Multicast routing is implemented on a 3 x 4 mesh is shown below The source node is identified as S, which

transmits a packet to five destinations labeled Di for i = 1, 2, ..., 5.

Fig a; This five destination multicast can be implemented by five unicasts, as shown in Fig. a. The X-Y

 routing traffic requires the use of 1 + 3 + 4 + 3 + 2 = 13 channels, and the latency is 4 for the

 longest path leading to D3.

• Traffic indicates number of channels between nodes.

Fig b: is Better choice of multicast for Store and forward network. 9(minimum distance from source to

 destination)

Fig c: is Better choice of multicast for wormhole routed network (minimum traffic /channels from

 source to destination)

In Fig b and c, A multicast can be implemented by replicating the packet at an intermediate node, and

multiple copies of the packet reach their destinations with significantly reduced channel traffic.

16

16

Fig d: A four-level spanning tree is used from node S to broadcast a packet to all the mesh nodes .Nodes

 reached at level i of the tree have latency i. This broadcast tree should result in minimum latency as

 well as in minimum traffic.

Multicast and Broadcast on a hypercube computer

A greedy multicast tree for sending a packet from node 0101 to seven destination nodes. is shown above.

The greedy multicast algorithm is based on sending the packet through the dimension(S) which can reach

the most number of remaining destinations.

Starting from the source node S = 0101, there are

two destinations via dimension 2 and

five destinations via dimension 4.

Therefore, the first-level channels used are 0101 —> 0111 and 0101 —> 1 101.

From node 1101, there are

 three destinations reachable in dimension 2 and

four destinations via dimension 1.

Thus the second-level channels used include 1101 —> 1111, 1101 —> 1100, and 0111 —> 0110.

Similarly, the remaining destinations can be reached with third-level channels

1111 —>1110,1111—> 1011 ,1100 —> 1000, and 0110 —> 0010.

Finally fourth-level channel 1110 —>1010

17

17

Qn: Write note on virtual networks?

Virtual Networks
In fig below a mesh with dual channel along both dimensions are shown, these virtual channels can be used

to generate four possible virtual networks as shown below.

Qn:Write note on network portioning?

Network partitioning
Concept of virtual networks leads to partitioning of a given physical network into logical subnetworks for

multicast communications.

• Nodes in fifth column and third row are along the boundary between subnets.

18

 MODULE 4- PART 2

Message Passing Mechanisms-Message Routing schemes, Flow control Strategies, Multicast Routing

Algorithms.

Pipelining and Superscalar techniques – Linear Pipeline processors and Nonlinear pipeline

processors

PIPELINING AND SUPERSCALAR TECHNIQUES

Qn: Compare and contrast linear and non-linear pipelines.?

Qn:Differentiate between synchronous and asynchronous processor pipeline models. Define the

parmeters a)speedup b)efficiency and c)throughput in the context of a processor pipeline?

Qn: define the following with respect to pipelining: a)Speedup b)Efficiency c)throughput?

4.2 LINEAR PIPELINE PROCESSORS

• Is a cascade of processing stages connected linearly to perform a fixed function over a stream of data

flowing from one end to another.

• In modern computers linear pipelines are applies for instruction execution , arithmetic computation

and memory-access operations.

• Constructed with k processing stages, external inputs (operands) are fed into the pipeline at first stage

S1

• Processed results are passed from S1 to Si+1 for i=1,2,3…k-1.

• Final result emerges from last stage Sk

Depending on control flow linear pipeline divide into 2

➢ Asynchronous

➢ Synchronous

Asynchronous Synchronous

1. Data flowing btw adjacent stages

controlled by Handshaking protocol

L

2. Figure -below

3. Working – when Si is ready to transmit,

it sends a ready signal to Si+1 . after Si+1

receives incoming data it returns

acknowledgement signal to Si

4. Different amount of delay experienced

in different stages

1. Clocked latches used to interface btw

stages. Latches made with master-slave

flip-flop

2. Figure –next below

3. Working - Upon arrival of clock pulse

latches transfer data to next stage

simultaneously. [clocked latches are

used to interface between stages]

4. Have approximately equal delay

19

5. Asynchronous pipelines are useful in

designing communication channels in

message passing multicomputer

6. Has variable throughput rate

5. Delays determine clock period and thus

speed of pipeline

4.2.1 RESERVATION TABLES (static pipeline)

• Reservation tables specifies the utilization pattern of successive stages in synchronous pipeline – which

stage in used in which clock cycle.

• For linear pipeline , the utilization follows diagonal stream line pattern(above fig).

• This table is Space-Time diagram depicting precedence relationship in using pipeline stages.

• For a K-stage linear pipeline, k clock cycles are needed for data to flow through the pipeline.

• Successive tasks or operations are initiated one per cycle to enter the pipeline. Once the pipeline is

filled up, one result emerges from the pipeline for each additional cycle.

• This throughput is sustained only if the successive tasks are independent of eachother.

20

4.2.2.CLOCKING & TIMING CONTROL of LINEAR PIPELINE

• To determine the clock cycle(τi) of a pipeline-

-Let τi be the time delay of circuitry in stage Si

 - d be the time delay of latch

- Let τm denote maximum stage delay

Then Clock Cycle (τ) equals

- Usually . Thus maximum stage delay (τm) dominates clock period of latch..

• To determine Pipeline frequency – it is defined as inverse of clock period :

- If one result is expected to come out of pipeline per cycle, f represents maximum throughput.

- But actual throughput of pipeline is usually lower than f. This is because more than one clock cycle has

elapsed between successive task initiation.

• Clock Skewing – Ideally the clock pulses are expected to arrive at all stages (latches) at the same time. But

due to a problem known as clock skewing, same clock pulse may arrive at different stages with a time offset

of s. It occurs due to some features of medium like resistance, capacitance etc.

4.2.3.SPEEDUP ,EFFICIENCY AND THROUGHPUT

• To determine Speed up of Linear Pipeline v/s non-pipelined processor

- Ideally a linear pipeline of k stages can process n tasks in k+(n-1) clock cycles.

- Where, k cycles are needed to complete execution of very first task.

- Remaining (n-1) tasks require (n-1) cycles.

- Thus total time required

- Time taken to execute n tasks on non-pipeline processor T1 = nkτ

- Speed Up Factor (Sk) of k stage pipeline over equivalent non-pipelined processor

21

(T1 is non-pipelined processor and Tk is pipelined processor with k stages).

The maximum speedup is Sk->k as n->∞ .This maximum speedup is very difficult to achieve

because the data dependence between successive tasks (instructions), program branches, interrupts

and other factors.

• Optimal Number of Stages

- Most pipelining is staged at functional level 2≤k≤15

- Few pipelines exceed 10 stages

- The number of pipeline stages cannot increase indefinitely due to practical constraints on

costs,control complexity. circuit implementation, and packaging limitations.

- In macro-pipelining the optimal choice of number of pipeline stage should be able to maximize

performance/cost ratio(PCR) for the target processing load.

- Let t be the total time required for a nonpipelined sequential program of a given function.

- To execute the same program on a k-stage pipeline with an equal flow-through delay t one needs a

clock period of p = t/k +d , where d is the latch delay.

- Thus the pipeline has maximum throughput of f=1/p =1/(t/k +d)

- Total pipeline cost =c+kh, where c-costs for all logic stages and h- cost of latches.

Figure above plots the PCR as a function of k. The peak of the PCR curve(k0) corresponds to an optimal choice for

the number of desired pipeline stages:

22

Problem – Find the optimal number of pipeline stages k0 using the performance/cost ratio

(PCR) ?

Answer :

• To determine Efficiency (Ek)

- efficiency Ek of a linear K-stage pipeline is

• To determine Pipeline Throughput (Hk)

- Its defined as the no: of tasks(operations) performed per unit time

Problem:1

Consider the execution of a program of 15,000 instructions by a linear pipeline processor with a

clock rate of 25 Mhz. Assume that the instruction pipeline has five stages and that one instruction

is issued per clock cycle. The penalties due to branch instructions and out-ofsequence

executions are ignored.

23

a. Calculate the speedup factor using this pipeline to execute the program as compared with

the use of an equivalent nonpipelined processor with an equal amout of flow-through delay.

b. What are the efficiency and throughput of this pipelined processor ?

PROBLEM -2

24

25

 4.3 NON LINEAR PIPELINE DESIGN

STATIC / LINEAR Pipeline DYNAMIC or NON-LINEAR Pipeline

1. Linear pipelines are static pipelines

because they perform fixed function

2. Allows only streamline connection

3.

4. Reservation Table for Linear Pipeline.

1. Dynamic pipeline can be re-

configured to perform variable

functions at different times

2. Allow feed-forward and feedback

connections in addition to stream line

connection

3.

The 3 stage pipeline has

Streamline connection from S1 to S2,

Feedforward from S1 to S3

Feedback from S3 to S2 and S3 to S1

4. Reservation Tables for Non-Linear

Pipeline

26

5. Only streamline connection – thus only

one function evaluation

6. Specified by a single reservation table

7. Output always obtained from last stage

8. All initiations to static pipeline use same

reservation table.

9. Function portioning is easy-since only

streamline connection

5.

5. Multiple reservation table can be

generated for evaluation of different

functions

6. Allows different initiations to follow a

mix of reservation table.

7. Output not necessarily from last stage.

8. Following different dataflow patterns

we can use same pipeline to evaluate

different functions

9. Function portioning is difficult

because pipeline stage interconnected

with loops in addition to streamline

connection

4.3.1 RESERVATION AND LATENCY ANALYSIS

RESERVATION TABLES (Dynamic Pipeline)

• Can have multiple reservation table corresponding to diff function evaluation.

• No of columns in a reservation table is called evaluation time of a function.

Figure:4.3.1

• Abv fig func X require 8 clock cycles, Y requires 6 clock cycles

27

• Checkmarks in each row correspond to time instant (cycle) that a particular stage will be used.

• Multiple checkmarks in a row indicate repeated usage of same stage in diff cycles

• Multiple checkmarks in a column indicate multiple stages are used in parallel during a particular clock

cycle.

LATENCY ANALYSIS

Definitions

latency – The no: of time units(clock cycles) between two initiations of a pipeline. A latency of K means

that 2 initiations are separated by k clock cycles.

Collision – Attempt by 2 or more initiations to use same pipeline stage at the same time. A collision

implies resource conflicts between 2 initiations in the pipeline and must be avoided

Forbidden Latencies – latencies that cause collision. Ex: in fig above on evaluating function X, latencies 2

and 5 are forbidden.

The ith initiation is denoted as Xi in Fig. above. With latency 2, initiations X1 and X2 collide in stage 2 at time 4. At

time 7, these initiations collide in stage 3. Similarly, other collisions are shown at times 5. 6, 8. ..., etc.

How to detect Forbidden Latencies?

Detected by checking the distance between any 2 checkmarks in the same row of the reservation table.

28

Ex: distance btw 1st and 2nd checkmark in row s1 is 5 (ie 6-1) – implies 5 is a forbidden latency

Other forbidden latencies are – 2 (in row S2 and S3),

- latency 4 (row S3(btw 3 and 7)) and

- Latency 7 (row S1(btw 1 and 8))

- Thus forbidden latencies are -2,4,5,and 7

- all others are permissible latencies – 1,3,6

Latency Sequence – a sequence of permissible non-forbidden latencies between successive task

initiations. Ex - (1,3,6) or (3,6)

Latency Cycle – a latency sequence which repeats the same subsequence(cycle) indefinitely. Ex: latency

cycle (1,8) – 1,8,1,8,1,8 – it implies successive initiations of new tasks separated by 1 cycle and 8 cycles

alternately.

29

Average Latency – Obtained by dividing the sum of all latencies along the cycle. Latency cycle(1,8) thus

has an average latency (1+8)/2 = 4.5

Constant Cycle – a latency cycle which contains only one latency value. ex: cycle(3) and (6).

4.3.2 COLLISION FREE SCHEDULING

The main objective of scheduling events in a pipeline is to obtain shortest average latency between initiations

without collision.

Collision Vectors – by examining the reservation table we can distinguish the set of permissible latencies

from the set of forbidden latencies. Collision vectors represent permissible and forbidden latency.

For a reservation table with n columns ,maximum forbidden latency (m) <= n-1

Permissible latency p should be as small as possible 1 ≤ p ≤ m-1. P=1 is the ideal case.

Definition : COLLISION VECTOR

- The combined set of permissible and forbidden latencies can be easily displayed by a Collision

Vector, which is a m-bit binary vector (C)

C = (CmCm-1……C2C1)

- Ci =1 , if latency i causes a collision

- Ci =0, if latency i is permissible

For the above Reservation table Collision Vector Cx = (1 0 1 1 0 1 0)

Latencies – 1,3,6 are permissible (shown with 0’s in collision vector, starts from right)

Latencies 2,4,5,7 are not permissible (shown with 1’s in collision vector)(here 7 is the maximum

forbidden latency ,so 7 bits in collision vector)

STATE DIAGRAMS

We can construct a state diagram specifying the permissible state transition among successive initiations.

The Collision vector CX(above) corresponds to initial state of pipeline at time 1 and thus it is called initial

collision vector.

The next state of pipeline at time t+p is obtained with assistance of an m bit right shift register (shown

below)

30

 Working

1. The initial collision vector C is initially loaded into the register

2. The register is then shifted to the right. Each 1-bit shift corresponds to an increase in latency by 1.

3. When 0 bit emerges from right end after ‘p’ shifts, it means p is permissible latency.

4. If 1 bit is being shifted out, it means a collision and thus – forbidden latency.

5. Logical 0 enters from left end of shift register in each shift

6. The next state after ‘p’ shifts is obtained by Bitwise OR-ing the initial collision vector with shifted

register contents.

PROBLEM ASKED from Collision Free Scheduling (can also be drawn/ written if Collision Free

Scheduling with ex is asked)

Q) Consider the reservation table for the pipelined processor and answer the questions that follow.

1. List the set of forbidden latencies and write the collision vector

2. Draw the state transition diagram

3. List all simple and greedy cycles

4. Find minimum average latency MAL

5. Find throughput of pipeline

- Forbidden latencies – 2,4,5,7 (calculated by checking distance btw checkmarks)

- Permissible latencies -1,3, 6 (all other latencies other than forbidden)

- Collision vector Cx = 1011010 (0-permissible, 1- forbidden, starting from right end)

Constructing State Transition Diagram for a pipeline unit

31

• Initial collision vector Cx = 1011010

• On right shifting 1 bit and inserting 0 bit from left we get 0101101

7. Ie:- a 0 bit pop’s out from right - thus no collision – it’s a permissible state – and has a state in the state

transition diagram. [When 0 bit emerges from right end after ‘p’ shifts, it means p is permissible

latency.]

• To find the state transition of permissible latency , we OR the shifted content with initial vector

 1011010

OR 0101101

 1111111

• Ie: for latency 1, the transition state is 1111111, thus an arrow from 1011010 to 1111111 for latency =

1

• Now on 2nd right shift of initial collision vector we get 0010110, popping out a ‘1’ bit – thus cause

collision – forbidden latency – no state transition – thus no need to OR with initial vector.

• 3rd right shift of 0010110 pop’s out a 0 – and we get 0001011, since 0 pops out it’s a permissible

latency and has a transition state.

• To find the transition state we OR 0001011 with initial collision vector 1011010

 1011010

OR 0001011

 1011011

• Ie:- for latency 3, the transition state is 1011001, thus an arrow from 1011010 to 1011011 for latency

= 3

• 4th shift and 5th shift pops out 1 thus - not permissible latency – has no state transition.

32

• 6th shift leads to 0000001 popping out 0 bit.

• Transition state for latency 6 is

 1011010

OR 0000001

 1011011

• Thus a line from initial collision vector to 1011011 for latency = 6

• 7th shift – pops out 1 – not permissible.

• For 8 or more shifts all transitions are redirected back to initial state since ORing initial collision

vector with 0000000 returns initial vector itself.

• Similarly from state 1011011, we reach same state itself after 3 shifts or 6 shifts since 0 pops out on

3rd and 6th shift.

• When the number of shifts is m+1 or greater, all transitions are redirected back to the initial state,

regardless of which state the transition starts from.

• Simple Cycles – is a latency cycle in which each state appears only once. In the above state

diagram (3), (6), (8), (3,8) and (6,8) are simple cycles. The cycle (1,8,6,8) is not a simple cycle

because it repeats state 1011010 twice.

• Greedy Cycles – is one whose edges are all made with minimum latencies from their respective

starting state. Such cycles must be simple and their average latencies must be lower than other simple

cycles.. cycle (1,8) and (3) are greedy cycle has an average latency (1+8)/2 =4.5 which is lower than

other simple cycles. The greedy cycle (3) has a constant latency and is the minimum average

latency (MAL).

• Thus MAL = 3

• Pipeline throughput = 1/MAL = 1/3

Quick reference

33

34

35

36

37

i. Pipeline Schedule Optimization

An optimization technique based on the MAL is given below. The idea is to insert noncompute delay

stages into the original pipeline. This will modify the reservation table, resulting in a new collision vector

and an improved state diagram. The purpose is to yield an optimal latency cycle, which is absolutely the

shortest.

Greedy cycles are those

in which the average

latency<=no.of 1’s in the

initial collision vector+1

In our example 4+1

38

Bounds on the MAL:In 1972, Shar determined the following bounds on the minimal average

latency(MAL) achievable by any control strategy on a statically reconfigured pipeline executing a given

reservation table:

l. The MAL is lower-Bounded by the maximum number of checkmarks in any row of the

 reservationtable.

2. The MAL is lower than or equal to the average latency of any greedy cycle in the state diagram.

3 The average latency of any greedy cycle is upper-bounded by the number of 1‘s in the initial

collision vector plus l. This is also an upper bound on the MAL.

• These results suggest that the optimal latency cycle must he selected from one of the lowest greedy

cycles. However, a greedy cycle is not sufficient to guarantee the optimality of the MAL.

• The lower bound guarantees the optimality. (ie,optimal latency cycle should be equal to maximum

number of checkmarks in any row of the reservation table.)

• For example, the MAL = 3 for both function X and function Y and has met the lower bound of 3 from

their respective reservation tables.

• From the above figure b, the upper bound on the MAL for function X is equal to 4+1=5, a rather loose

bound. On the other hand above fig C shows a rather tight upper bound of 2+1=3 on the MAL. therefore

all greedy cycles for function Y leads to optimal latency value of 3 , which cannot be lowered further

.

To optimize the MAL, one needs to find the lower bound by modifying the reservation table. The

approach is to reduce the maximum number of checkmarks in any row. The modified reservation table must

preserve the original function being evaluated. Patel and Davidson (1976) have suggested the insertion of non

compute delay stages to increase pipeline performance with shorter MAL.

Delay Insertion

The purpose of delay insertion is to modify the reservation table, yielding a new collision vector. This leads

to a modified state diagram, which may produce greedy cycles meeting lower bound on the MAL.

 The below reservation table corresponds to a collision vector C=(1011),corresponding to forbidden latencies

1,2 and 4. The corresponding state diagram fig C contains only one self-reflecting state with a greedy cycle of

latency 3 equal to the MAL. Based on the given reservation table, the maximum number of checkmarks in

any row is 2. Therefore, the MAL = 3 so obtained in Fig. C is not optimal.

Inserting noncompute delay to reduce MAL

 To insert a non compute stage D1 after stage S3 will delay both X1 and X2 operations one cycle beyond time

4. To insert another non compute stage D2 after the second usage of S1 will delay the operation X2 by another

cycle.

39

These delay operations as grouped in the fig6.7b result in a new pipeline configuration in the following figure

6.8a.Both delay elements D1 and D2 are inserted as extra stages as shown in fig 6.8b with an enlarged

reservation table having 3+2 = 5 rows and 5+2=7 columns.

In total, the operation X1 has been delayed one cycle from time 4 to time 5 and the operation X2 has been

delayed two cycles from time 5 to time 7.All remaining operations (marked as X in Fig 6.8b) are unchanged.

This new table leads to a new collision vector (100010) and a modified state diagram in fig 6.8c.

40

This diagram displays a greedy cycle (1,3) resulting in a reduced MAL=(1+3)/2 =2.The delay insertion

thus improves the pipeline performance, yielding a lower bound for the MAL.

Pipeline Throughput

This is the initiation rate or the average number of task initiations per clock cycle. If N tasks are initiated

within n pipeline cycles, then the initiation rate or pipeline throughput is measured as N/n. This rate is

determined primarily by the inverse of the MAL adapted. Therefore , the scheduling strategy does affect the

pipeline performance.

In general, the shorter the adapted MAL ,the higher the throughput that can be expected. The highest

achievable throughput is one task initiated per cycle, when the MAL equals 1 since 1≤MAL≤ the shortest

latency of any greedy cycle. Unless the MAL is reduced to 1 , the pipeline throughput becomes a fraction.

Pipeline Efficiency

It is the percentage of time that each pipeline stage is used over a sufficiently long series of task

initiations is the stage utilization. The accumulated rate of all stage utilizations determines the pipeline

efficiency.

Consider the latency cycle (3) in fig 6.5 b.Within each latency cycle of three clock cycles, there are two

pipeline stages S1 and S3, which are completely and continuously utilized after time 6.The pipeline stage S2

is used for two cycles and is idle for one cycle.

Therefore entire pipeline can be considered 8/9=88.8% efficient for latency cycle(3).On the other hand ,the

pipeline is only 14/27 = 51.8% efficient for a latency cycle (1,8) and 8/16 =50% efficient for latency cycle(6)

as illustrated in fig 6.5 a and 6.5c respectively.

The pipeline throughput and pipeline efficiency are related to each other. Higher throughput results from a

shorter latency cycle. Higher efficiency implies less idle time for pipeline stages .

At least one stage of the pipeline should be fully (100%) utilized at the steady state in any acceptable initiation

cycle. Otherwise pipeline capability has not been fully explored. In such cases , the initiation cycle may not

be optimal and another initiation cycle should be examined for improvement .

Additional questions and answers

1.

41

2.

42

NOTE: If N tasks are initiated within n pipeline cycles, then the initiation rate or pipeline throughput is

measured as N/n. This rate is determined primarily by the inverse of the MAL adapted.

3.

43

Reservation table-prob 6.6

44

4.

45

5;

