BJT\{ Bipolar Junction Transistor)

2 types npn fransistor \& prp bronsistor

npn

pnp

3 torminds \Rightarrow emitter $C E$, B are $C B$, collector $C C$) Emittos $=$ heavily doped, moderate swifoce area Base $=$ Lightly doped, small swlace arca Collector $=$ Moderatcy doped, large scupbece area configuration $\Rightarrow D$ common basc
2) Common emittes
(3) Common collector

In a bransistor brese are two types of chanacteristics. thyy arc
D i/p characteristics $=$ relotionship b/w i/p currest 2. ilp voltige at const. Ilp valtoge
2) $0 / p$ characteristio $=$ ralationship b/w o/p curront 2 olp voltoge at cons. i/p cursent

Common Base Confguralion
Horc base is common to olp \& i/p

i/p chara
First adyust $V \subset B$ (olp valtga) to o fixed vdenc, ther adpest $R_{1} \&$ take ammetos \& vollmctos readiegs. Plat a graph euts $V \in B$ (ilp valtegc) \& IE (ilp curront)
Thc voltage at zeetich, curocit uest starts Ploceing is called Knce voltige, it is 0.5 V for silicon \& 0.1 V for germarium

i/p rosistanco $R_{i}=\frac{\Delta V_{e B}}{\Delta I_{E}}$.
olp charo

Kccping IE [ilp araroort) at constant voluc, encorcose $V_{C B} \&$ corraciponding $I c$ is mewuracd. Plabo graph euts $V C B$ dong x-axis \& IC álong y axis.

The curvic may be divided into 3 main regeons.
a) Saturalion regeon

It is on lept of verlical line. In this regeon a small change in $V \subset B$ cause large varidon in IC
b) Active region

It is on reght of verical line.
(c) Cut off region

It is the sheded parilion. In this regeon bolt Junctors are neverse biased.
$\%$ resistancc $R_{0}=\frac{\Delta V_{C B}}{\Delta I_{C}}$
curront anpilicaton Pactor $(\alpha)=\frac{\Delta I c}{\Delta I e}$.

Common Enitted ConPgurdion
Herc cmitter is common to $0 / P$ \& i/p

i/p chara:
Vee is Kept const, Then increase VBE \& IB is rated. plot groph zellh $V_{B E}$ dong X-axis \& IB dong Y axes.

i/p rosistance $R_{i}=\frac{\Delta V_{B E}}{\Delta I_{B}}$ at const VCe

0/p chara

nolyust I_{B} to const. Vduc. Then increase Vee \& corroroponding IC is soted.

The chara has 3 main regions, actvc, saluralion Q cut-off wetion $I_{B}=0$, therc is I_{C} callad leatige curorent. olp resistancc, $R_{0}=\frac{\Delta V_{c e}}{\Delta I_{c}}$
current anplificalion foctor, $\beta=\frac{\Delta I_{C}}{\Delta I_{B}}$
$\frac{\text { Common Collector Lonfguration }}{\text { collector is common to olp e ilp. }}$
collector is common to 0lp \& ilp.

ILAHIA COLLEGE OF ENGINEERING AND TECHNOLOGY

lt is the groph b/w $V_{B C} \& I B$ at const. Vce. ilp resistancc, $R_{i}=\frac{\Delta V_{B C}}{\Delta I B}$ at const. Vce.
olp chasa

I_{B} is adfuested to const. Vduc. Vary Vce \& corresponding increase in I_{2} is noted.
olp resistance, $R_{0}=\frac{\Delta V_{c \varepsilon}}{\Delta I_{E}}$ at const. I_{B}
current anslificdon Pactor, $\gamma=\frac{\Delta I_{E}}{\Delta I_{B}}$

Transistor Load Linus
lt is 0 line on which the operating point moves eution the ac signal is applied to the transistor DC load line: -

it is drawn witboal any ac its segno.

$$
\begin{aligned}
& V_{c c}=I C R C+V_{c R} \\
& V_{c e}=V_{c c}-I C R C \text { CI) }
\end{aligned}
$$

Put $V_{c e}=0$ in eau CI)

$$
\begin{aligned}
& V_{C C}=I_{C C} R_{C} \\
& \therefore I_{C C}=V_{C C} / R_{C}
\end{aligned}
$$

Put $I C=0$ in ear C1)

$$
V_{C E}=V_{C C}
$$

by joining these points, a straight line is drown, the resulting line on graph is callical load line.

Operating Point on Q-point
Q-point is called quiescent point on operalng point. lt specifics the collector current Ic \& Vcr that exist zuher no ip signal is opplicel.
lt is duo called operating paint because the variation in $V_{c e} 2 I_{c}$ takes place about this point reetren the signal is applied. The best position for this point is the midunay b/w the cut off \& saturabon point ruhcx V ce $=1 / 2 V_{c c}$.
Selection of Operding Point

For the proper amplification of ils signal, the selection of operating point is important.

At the point Q_{1}, it is nares to cuet-of region, the op currocit \& volloge would be allowed to vary but it will clipped of the negative peat of the ils signed.

At the point Q_{2}, it is nears to solusalon region the op signal would be clipped at positive peak of isp synd.

Thc point ' Q ' located at the centre of flood inc sean to be the best operalag point.

We have to fix operating point at a particular point. This process is called biasing.

During amplification, opending point is shilling because, the reasons are give below.

Meed for bias stabilizalion

1) The transiston parameters are temp deperdent i/p kmp , olp lmp , curorengain, vollige gein are inc four trassistor paranctors. above parancters arc charged. So proper anplificalon docs not batics place.
2) Transistor paranctos ' β ' 2 elle change fom onit to unit.

The paramcters will change from one trassistor to athes. It is decided by masulpctures. Becaluse of this charge in paranctirs, the shilling of Q-point occurs.
3) Thermal Runaway.

$$
I_{C}=\beta I_{B}+I_{C 20}
$$

Icro \Rightarrow leange current.

Consides a C.E conlaguration. it is a pheromeson un c ce confegwat on. Drering enplifcaton Ic incorcoxs, heat incorecses, bemp.incricascs covolent bonds are broken 2 move electrons are produced, Iceo increasc 8 ggain Ic incrase, it will ropeat. This is a cumulative proccss. It continucs untill toansistor burn awiy. This is called ibsormal rien away
$R_{1} \& R_{2} \Rightarrow$ used for biosing 2 srabilizalion crus
$R_{e} \Rightarrow$ Emittes byposs
$C_{c} \Rightarrow$ Coupling Copacitors.
Potential divider biesing is used in clat becoure it provides good stabilizalon of the operiating point.
Cin \Rightarrow i/p copacitor of about $10 \mu \mathrm{f}$ is resed to couple the signal to the bose of tixs. It allows only ac signal to Plow. In the absence of Cin, the signal source resistonce seill come across $R_{2} 2$ this chorges the bias.
$C_{E} \Rightarrow$ Emittes bypess copocitor (100ND is resed to Provide a low reluctance path. In the absesce of this copoctior, amplibed ac signds flowing through RE, ealll cause valtge drop acrass it which inlurn will Peedback the elp side \& reduce the olp voltoge.
$C c \Rightarrow$ Coupling copactior or bloclaing copoutor $(10 \mu \rho)$. it blockes de.component of olp signal in the abscscc of Cc , the resistor RC wull come in paralld to R_{1} of second stoge, thereby chargeng the biosing condution of next stoge.

Amplifying Aclion
When a signal is opplical b/w the bose $\&$ the eritter torminals of a properly brased brassistor, a small base curroent starts Plowing. Becouse of bassistor action, a much larger ac. currect (Bumes bose curorent) flows through the Re. Since the volue of collector resistesce is hegh, lorger voltege appears across Rc.
Phase Reversal
There is 180° phase diff b/w e/p 2 olp

o/p $V_{C E}=V_{C C}-i C R_{C}$
Whith incorease in signal voltge in ine posilive half aycle, the. bie currment increcses cousing increcse in the collector current, So the drop ocross RC ec, ecRc increaces. So the olp valtage decreases. So the signol Voltage encreases en posibve direction, the olp voltgge encreases in negative direction.

Load line Analysis
The relationship b / w the collector-emitter o/p valtage \& the collector cursent I_{c} is lincas.

Apply KVL to $0 / p$ side of amplifics.

$$
\begin{gathered}
V_{C C}=I_{C} R_{C}+V_{C E}+I_{C} R_{E}-C \\
V_{C C}=V_{C E}+I_{C} C R_{C}+R_{E} \\
\because I_{E} \approx I_{C} \\
I_{C}\left(R_{C}+R_{E}\right)=V_{C C}-V_{C E} \\
I_{C}=\frac{V_{C C}-V_{C E}}{R_{C}+R_{E}}
\end{gathered}
$$

During cuet off, $I_{C}=I_{E}=0$, Subsitice it in canci)

$$
V_{c c}=V_{c E}
$$

Droving soteration $V \subset E \approx 0$, sub. it in equ CD

$$
\begin{aligned}
V_{c c} & =I_{C} R_{C}+I_{E} R_{E} \\
& =I_{C}\left(R_{C}+R_{E}\right) \\
I_{c} & =\frac{V_{c c}}{R_{C}+R_{E}}
\end{aligned}
$$

DC Equivalent Circuit

It can be drawn by reducing all the ac sources to zero 2 opening all lac copacitors because the copocitors do nat dhow the flow of the Dc current \& act as open.
$A C$ Equivalent Cinczil
If $A C$ is applied, $d c$ supplies need not be considered. $A C$ equivalent circuit can be drawn by reducing all the de sources to zero $\&$ short circuiting all copacitors.

The cat explains the behaviour uther viewed in the ac conditions. The collector resistance R_{c} comes in parallel wits P_{L}.

$\stackrel{1}{\mathbf{z}}$ GND

10. a) A transistor used in CE connection has the following set of h parameters when the d.c. operating point is $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{h}_{\mathrm{ie}}=1700 \Omega ; \mathrm{h}_{\mathrm{re}}=1.3 \times 10-4 ; \mathrm{h}_{\mathrm{fe}}=38$;
$h_{o e}=6 \times 10^{-6} \mathrm{~V}$. If the a.c. load r_{L} seen by the transistor is $2 \mathrm{~K} \Omega$, find (i) the input impedance (ii) current gain (iii) voltage gain

$$
\text { 10@. } \operatorname{Zin}=\text { hie -hrehfe } \frac{\text { hoe }+\frac{1}{ज i L_{L}}}{\text { h. }}
$$

ILAHIA COLLEGE OF ENGINERING AND TECHNGLOGY
1)
11) Current gain $A i=\frac{\text { hfe }}{1+\text { hoe ML }}=\frac{38}{1+6 \times 10^{-6} \times 2000}$

$$
\begin{equation*}
=37.6 \tag{2}
\end{equation*}
$$

III)

$$
\begin{align*}
& \text { Voltage gair Av }=\frac{- \text { hfe }}{\operatorname{zin}\left[\text { hoe }+\frac{1}{r L}\right]} \\
& =\frac{-38}{1690\left(6 \times 10^{-6}+\frac{1}{2000}\right)}=-44.4 \tag{1}
\end{align*}
$$

b) Widin of depletion tayer Controlled gate-to source Voltage.

Effective choss section dicueared with increasing \checkmark reverre bias. ID is a function of VGS.

* FET voltage controlled device, do not need biasing curnont. By applying neverse bias 2.5 voltang to gate torminal, channel is pinched, so that eurrent is switched off completely Drair oreustance rd.
Pransconductanee gm
Amplificatros factor, μ.
Winte dows expreesions also.

ILAHIA COLLEGE OF ENGINERING AND TECHNGLOGY

FET Biosing
Unlitie the BJT the thermal ronaway docsn't occur ruith FET's.

Polential Divider biasing of FET

Tho ressistprs Ro, 2 Rend pooviaes a poterial divider acrass the drain Shpely the Tho vallage across Ren provides the neccosory bos.

$$
\text { Gote Vottge } V_{C_{2}}=V_{D_{0}} \times \frac{R_{C_{22}}}{R_{C_{1}}+R_{C_{22}}}
$$

$2 V_{G S}=V_{E_{S}}-V_{S}$, ewhere $V_{S}=I_{S} R_{S}=$ IOR

$$
V_{B_{S}}=V_{G_{G}}-I_{D} R_{S} .
$$

The cat is so designed unot IDRs is lagges shar V_{C} so the $V_{\text {brs }}$ is segative. This provides a negative gate valloge.

ILAHIA COLLEGE OF ENGINERING AND TECHNGLOGY

$$
\begin{aligned}
& V_{2}=V_{G S}+I_{D} R_{S} \\
& I_{D}=\frac{V_{2}-V_{G S}}{R_{S}}
\end{aligned}
$$

then $V_{D S}=V_{D D}-I_{D}\left(R O_{O}+R_{S}\right)$
The value of $I_{D} \& V_{D S}$ determines the operating remelt In voltage divider biasing reuther $I_{0}=0$, Veers $\neq 0$ for $I_{0}=0$

$$
\begin{aligned}
& V_{S}=I_{0} R_{S}=0 \times R_{S}=0 \\
& V_{G S}=V_{G_{S}}-I_{D} R_{S}=V_{C_{2}}-0=V_{G}
\end{aligned}
$$

\therefore One point on the line is at $I_{D}=02 V_{G s}=V_{e}$ for $V_{\text {GS S }}=0$

$$
I_{D}=\frac{V_{C_{3}}-V_{e_{T} S}}{R_{s}}=\frac{V_{e_{T}}}{R_{S}}
$$

The second point on the line is at $I_{D}=\frac{V_{G}}{R_{S}} \&$ $V_{G S}=0$. The point at which the load line intersects the transistor characteristic curve is Q point.

ET as a smutch
$V_{\text {in }}=\operatorname{ip}$ Voltage
Weer no gate voltage is applied to FET; $V_{G S}=0$, FET becomes saturated 2 it behoves lever a small resistance.
then $O / p=V_{\text {out }}=V_{\text {in }} \times \operatorname{Ros}$

$$
R_{0 s}(0 n)+R_{0}
$$

\therefore the value of Q_{D} is very large, the ole Vout $=0$
When a negative voltage $V_{\text {ers }}$ COPP is applied, the FET operates in the cut off region, it act as Very hegh resistance - hence the $01 p$ nearly equal to ip

$$
\text { Wort }=\frac{R_{0 s}}{R_{0}+R_{0 s} \text { CoMP }} V_{\text {in }}
$$

RDS cOPD $>R_{D}$, so Vout $\approx V_{\text {in }}$

Short Squad

$$
\Rightarrow \begin{aligned}
& V_{G s}=0 \text { (hegh) } \Rightarrow V_{\text {out }}=V_{\text {in }} \\
& V_{\text {Gss }} \Rightarrow V_{\text {out }}=0
\end{aligned}
$$

Scrics Szuich

FET as voltege conirolled Resestance.

Wher JFET operates in the ohmic region whith Voss b/w $0 \&$ VGS COPP , JFET act letic a Voltage conbrolled resistance. It can be operated in the region prion to pinch off (VD).
In this regeon droin to sounce resistance can be controlled by $V_{G S}$.

$$
r_{d s}=\frac{V_{D s}}{I_{D}}
$$

rals depends on the value of $V_{G S}$.
$V_{G S}=0$, ras is minimum
$V_{b S}=$ more ncgaluc, rols increases
Lethon $V_{\text {Gs }}$ becomes regatve, I_{D} or the droin curorent reducas.

$$
r_{d s}=\frac{100(\text { const })}{0.8 \mathrm{~mA}}=125 \Omega \quad \text { euther } V \text { Vos }=0
$$

$r_{0 l}=\frac{100 \mathrm{mV}}{0.4 \mathrm{~mA}}=250 \Omega \quad$ wuhan $V_{G s}=-2 \mathrm{~V}$.
So JFET act as the $V \subset R$ in ohmic region

A JFET amplifier with stabilized biasing cit is shown. $V_{P}=-2 \mathrm{~V}$, IDS $=5 \mathrm{mR}, R_{2}=910 \Omega, R_{G}=2.29 \mathrm{k} \Omega, R_{G_{1}}=12 \mathrm{~m} \Omega$ $R_{G_{2}}=857 \mathrm{~m} \Omega \& V_{D D}=24 \mathrm{~V}$. Find the value of drain current ID

$$
\begin{aligned}
& V_{D D}=24 \mathrm{~V} \quad R_{G_{1}}=910 \Omega \\
& R_{R}=2.29 \mathrm{R},
\end{aligned}
$$

Load line pts

$$
\begin{aligned}
V_{B S} & =V_{G} \\
& =\underline{10 \mathrm{~V}} \\
I_{D} & =\frac{V_{G S}}{R}=\frac{10}{2.29 \times 10^{3}}: V_{V_{n S C D}}^{\sim}=4.3 \mathrm{mn}
\end{aligned}
$$

Q.) The gm of FET. valtage amplifien crit is 2500 microsiemers e load resistance is $12 \mathrm{Kr} \Omega$. Determine valtage gain of anpliler chet.
Bssume $r_{d} \& R_{D}>R_{\alpha}$.

$$
\left.\begin{array}{rl}
g_{m} & =2500 \times 10^{-6} \mathrm{~s} \\
R_{\alpha} & =12 \times 10^{3} \\
R_{V} & =\frac{V_{0 u t}}{V_{\text {in }}}
\end{array}=\frac{I_{d}\left(r_{\text {d }}\left\|R_{0}\right\| R_{L}\right)}{V_{\text {in }}} \frac{-g_{m}\left(\left\|R_{0}\right\| R_{L}\right)}{V_{n}}\right)
$$

$\operatorname{rd} \& R_{D}>R_{L}$

$$
\begin{aligned}
R_{v}=-g m R_{L} & =-2500 \times 10^{-6} \times 12 \times 10^{3} \\
& =-30
\end{aligned}
$$

FET small signal modd (Low Prequcscy)

Common Sowece JFET amplifios

AC equvaler CHU
$\mathrm{C}, \mathrm{C} 2 \Rightarrow$ coupling copoutor
$\sigma 3 \Rightarrow$ byposs copocitor
Vin $\Rightarrow i / \rho$ Voltege
$\mathrm{V}_{\text {oud }} \Rightarrow$ olp Valtege $=V_{D}$
ILAHIA COLIEGE OF ENGINEERING AND TECHNOLOGY

$$
V_{D}=V_{D D}-I_{D} R_{D}
$$

\Rightarrow Drwing tre hall cyuc of $11 \mathrm{p}, \mathrm{Vg}$ in increases \therefore ID dso increaxs. Hence Vo decreases
\Rightarrow Daring -Ve hall cyalc of ilp, Vgs decrecses \therefore ID dso decrecoses. Hence VD increcses.

In common. Sousce JFET amplifios, there exist a phase shipt of 180° the elp \& olp

$\left\{\begin{array}{l}\text { for drawing ac equivaled } \\ \text { cat }\end{array}\right.$ 1) gnd de DC source
2) Sc unc copoctasco
3) $R_{e_{r}, ~ r d, ~}^{\text {r }}, R_{0}, R_{L}$ arc grourded $\}$.

Voltege Gain:

$$
\begin{aligned}
& V_{\text {out }}=I_{d}\left(r_{d}\left\|R_{D}\right\| R_{t}\right) \\
& I_{d}=-g_{m} \mathrm{Vg}
\end{aligned}
$$

$$
\begin{aligned}
& I_{d}=-g_{m} V_{g} \\
& V_{\text {out }}=-g_{m} v_{g s}\left(r_{d}\left\|R_{D}\right\| R_{H}\right)
\end{aligned}
$$

$$
R_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-g_{m} \text { y/gs }\left(\text { rad }\left\|R_{0}\right\| R_{L}\right)}{V_{\text {in }}}
$$

$$
R_{v}=-\underline{ }\left(r_{d}\left\|R_{0}\right\| R_{L}\right)
$$

Usually ral $>R_{D} \& R_{L}$

$$
\therefore R_{V=-g m}\left(R_{D} \| R_{L}\right)
$$

Common Droen JFET Amplifios

$C_{1}, C_{2} \Rightarrow$ Coupling Copocitor
$R_{1} R_{2} \Rightarrow$ biosing resistors (potcitial divido)
No brposs copoutors asc used.
$V_{s} \Rightarrow$ olp voltege

$$
V_{s}=V_{G}+V_{g s}
$$

\Rightarrow During +ve hal p cyac op ilp, v_{s} is hagh
\Rightarrow Drerig va half crcle of ilp. Vs is low

* Becouse the $0 / 1 \mathrm{~V}$ vittoge at FET sounce terminal follows varidions in sjinal voltage applicd to gate, the common droen chet is also caltied Sowsce follower

Explandion
The source valtege. $V_{s}=V_{G_{s}}+V_{g s}$ untar a signal is appliced to FET Gotc brough c_{1}, Vgs increascs on decreoses as the ilp signal gocs +ve e-vc respectuvaly. Vor is constant.
\Rightarrow wher $\operatorname{Vin} \uparrow V_{g s} \uparrow \& V_{s} \uparrow$
\Rightarrow zutien Vin \downarrow Vgs $\downarrow \& V_{s} \downarrow$

V_{s} is the outpret voltoge.
the olp volinge V s fallous the ilp, \therefore it is colled source follower.

$$
\begin{aligned}
& B V=\text { Valtege gain }=\frac{V_{\text {out }}}{V_{\text {in }}}= \\
& V_{\text {out }}=I_{d}\left(r_{d}\left\|R_{s}\right\| R_{L}\right)=\operatorname{gm} V_{g s}\left(r_{d}\left\|R_{s}\right\| R_{L}\right) \\
& V_{\text {in }}=V_{g s}+V_{\text {out }}=V_{g s}+g m V_{g s}\left(\operatorname{ra}_{\text {d }}\left\|R_{s}\right\| R_{L}\right) \\
& \left.=V_{g s}\left(1+g m c \text { rad }\left\|R_{s}\right\| R_{\alpha}\right)\right] \\
& \Sigma_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{g_{m} \not \ell_{s}\left(r_{d}\left\|R_{s}\right\| R_{L}\right)}{V_{g s}\left(1+g_{m}\left(r_{d}\left\|R_{s}\right\| R_{L}\right)\right.}=\frac{g_{m}\left(r_{d}\left\|R_{s}\right\| R_{1}\right.}{1+g_{m}\left(r_{a}\left\|R_{s}\right\| R_{L}\right)}
\end{aligned}
$$

usually $r_{d} \gg R_{s} \| R_{L}$

$$
A_{v}=\frac{g_{m}\left(R_{s} \| R_{L}\right)}{1+g_{m}\left(R_{s} \| R_{L}\right)}
$$

Aurally Change miss $F E$ (1)
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
Module: 3
$R=C$ Coupled Amplifies
A two stage R-C coupled amplifier using N.P.N transistors in $\subset E$ configuration is shown.

* 2 bansistoss arc identical 2 use a common power supply Vc.
* R1, R2\& RE foam biasing e stabilization.
across of list stage is coupled to the bose
* Tho signal developed R_{c} of list stage is coupled to the bose of second stage through de Coupling copoutos)
* CE Ccmitter bypass capocutor offers low reactance path.

Either $a c$ signal is applied to the bose first amputier, it appears in the amplified form across collector load R_{c}. The amplified signal devi. $\mathrm{n}^{\mathrm{O}} \mathrm{pr}^{\mathrm{D}}{d \nu^{C}}^{C}$ across R_{c} is baxsmitted to the bose of of amplifier trough c_{0}. This is further amplified next stage Q so on. Thus the cascade stages amplify the signal $\&$ overall gain is increased. The phase of op is same os that of ils.

Frequency Response Curve
\Rightarrow In mid Pracuray range $(50 \mathrm{~Hz}-20 \mathrm{KHz}$, the $P_{1} \rightarrow$ lower cut opP Pres $f_{2} \Rightarrow$ upper cut of P Pres Bandriallts $=\rho_{2} \cdot \rho_{1}$ $=$ region in which gain is max. or best opera portion of amp. Voltage gain of amplifies is constant. Wilitb, the increase in frequency in this range the reactance of Cc reduces thoxcby increasing the gain but ot the sane time lower copaculive reactance conses higher loading resulting in lower voltage gain Thus the two effects cancel cacts other \& uniform gain is obtained.

Tho imporiant foctorr thot comcs in high fraceucocy is the intencilitrade capocitances. There capocitances. are due to Pormation of depletion layens at the junction The intonctectrade copacitasce is shown,

Re hegh Prequescy tho reoctance of $\subset b c,<c c \&<$ be sull be very low.
\Rightarrow Reactarce of $c_{b c}=0$ (s. C)
O/p wull be feed bock to ilp (negatve feed beck) so gain is reduced. This epfect is called miller efpect
\Rightarrow Reactance of $\angle b c=0$ cs. C
lt offors o low impedance path to itp sugnal.
2 goin is reduced
\Rightarrow Reactasce of $\mathrm{Cec}=0$ C.S. ©
it couse shonting effect at $0 / \mathrm{p}$ \& g ain reduces.
eonsideo a 4 stoge R.C coupled ompilion
Let $A_{1}=$ goin of $工^{\text {st }}$ siage

$$
\begin{aligned}
& B_{2}=\cdot \cdot \pi^{n d} \\
& R_{3}=\cdot \cdot \pi^{r d} \\
& B_{4}=\cdot \quad \pi^{<b} \\
& B=\text { OVerdl goin }
\end{aligned}
$$

Bt lateal condition

$$
A=A_{1} R_{2} R_{3} R_{4}
$$

but Prockically $A<A_{1} A_{2} A_{3} A_{4}$
because of looding effect
Rdvarboges: Excallert Preq. Response
but Proctically $A<A_{1} A_{2} A_{3} A_{4}$
because of looding effect.
Advarboges: Excallert Preq. Response
cheopes
Compact

Disadverigacs: Poor impedasce matcling
Rpplicalion: It is zeviddy used as voltage anplifics, becouse of poor impedance matching this bype of coupling is nat erplayed in find steges.

Rt low Frequencies C below so H2 higher copocituve reactance of Cc allows very small part of signal bo pass Prom one stage to next 2 duo because of higher reactance of C_{E}, the emitter resistor R_{E} is nat effectively shunted. Thus voltage gain Polls off at low frequencies
\Rightarrow Rt high Preruencics Cexceeding 20 KHz - the gain op. the amplifier decreases wis the increase en Frequency. Several factors ane responsible for this reducte on in Gain. At high frequencies the reactance of C_{C} becomes very smart f d behaves as \rightarrow hort -circuit. This increase the loading of next stage \& reduces the Voltage gain. At high Praetucnaies, capacitive reactance of bose emits junction es 10 J \& so the bose current is increased \& curzon gown factor β is reduced. At high Frequencies, the inferclectrode copacitanca $C_{b c}$ connects the ole chit to ip cry. Thus negolve fit bones place 2 gain es reduced

$$
X_{c}=\frac{1}{2 \pi f c}
$$

ILAHIA COLLEGE OF ENGINERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL. AND ELECTRONICS ENGINEERING

craton: The weak signal is applied to the bose of to trassestar. Due to transistor action, an amplified output is obtained across the collector load Rani of the Perot transistor. The amplified signal developed across $R_{C 1}$ as supplied to the base of next brassistor. This is fuertsen amplified by next stage $250.0 n$.

Frequency Response.
It has no coupling 2 brposs adpaction to caws a drop of low frequency. The Prequeady response curve is flat unto upper cut-off Procuring. f_{2}. Above this gain decreases due to inter-electerode pepacitance of device

ILAHIA COLLEGE OF ENGINERING AND TECHNOLOGY

Merats: Cheap,
cas ampily vory low poequicicy signol
Denerils : Can't amplily high Prequescy sighes et hos poor toma stabilits.

yis ais

ILAHIA COLLEGE OF ENGINERING AND TECHNOLOGY
10)
operation: When the input $Q C$ signal is applical base of Prost bansistar through step.up bransfor. it gets amplified \& appears acrass the primary coupling bansformes. The voltage devcloped across th primery is boarsperied so the ilp of next stage. The second slage ferther amplifes in an exacly simelas wor 250 on.

Che descriplion
\Rightarrow it is noked that step-up transformer is connected in input section, to increcse the voltege level at input, so bset ilp cransistor car handic it. If the i/p valtege is sufficient to turn on BJT, no need to use i/p step up bassformes.
\Rightarrow The amplificd olp of Perst stoge oppeass ocrass bbe 10 uidg of step down wasplormes Crutich is used for coupling . This voltge is sicp.down to oppropriate Vollege \& is giver as itp of $2^{n d}$ stage. The step down brasspormers are used for coceping becouse (1) To edjrest or reduce the o/p of $z^{\text {st }}$ stige to a propen value so what next sige can be casily handied
2) For impedasce matching.

Impedasce matching mears, wher we coscadic differest steges bsc o/p ump of a stoge showlat match ruits ilp.imp of next stege..
We car acheve this empedance matching by step.down braspormers by aduresing its turn's ratio. Moximum power is bassfered if Cout1 $=$ Zin2 $\{$ maximum powor hassfor bearcio $\}$
Frequoncy Pesponse.
The Prequescy response of tri-coupled amplifier is very poos.

The olp Voltige $=I_{c} \times X_{L}$
\Rightarrow at low Proce, $X_{1}=2 n \rho_{1}=$ low, so 0/p is low e goin is reduced.
\Rightarrow Nut high Prez, the winding inter copecitance's epfect come, 2 so goin is reduced.

But at resonance condelion ltc goen well be maximinom goin 1

Redvarkogis : (1) Low de resistance at collector
2) best empedasce motching.
(3) coupling is effective

Disadvarteges:1) poom Pacquacy eposponsc.
2) Buukry 2 costly.

Bppucation's: It is pat resed Por amplifying "low Pres. signd. 'th is used Por redio Prequchis (20 KHz 2) amplificalion.
14. sextio

1. Power Rmplifien sigas

Power amplifier is mont to amplify a weak signal unbid supficiert power ss available so operate an output device such as a lovospicatier; a solenoid or a relay.
Power amplifies, to provide the desired power amplification, has generally 3 sieges

1. Voltage Amplification binge
\Rightarrow For riffing the level af leek ils signal at is pemptificd in 1200 on mare stages, R-C coping \& usually epplayed.
2) Drives
\Rightarrow the stage that precedes the op stage is called the driver stage. The driver stage renders power amplification.
3) Output stage
\Rightarrow The alp stage essentially consists of a power amplifier \& is meant for bransperoing maximum power to alp device.

ILAHIA COLLEGE OF ENGINERING AND TECHNOLOGY

Class A powen amplifies
P closs A power amplifien is defined as a poc, amplifer in which olp curront flows for the fall-yyu $\left(360^{\circ}\right)$ of the elp signal. In athen 2vorids; the transistor remains forward biased throughout the ilp cyale.

\Rightarrow 0/p current flows for entere 360° of ilp arck
\Rightarrow bronsiston remoins forword buesed broough out ip aycic
\Rightarrow The Q-pt is lacated at mioblle of loed line
\Rightarrow O/P contaens less distorlion.

Two bypes of closs A powed amplifies

1) Serics fed closs A power amplifies
2) Trassformes coupled class A powcr amplifies

K Bories Ped class iz power amplifion

- The lood resistance R_{c} is connected in Scrics suits the bransistor olp. The ilp segnal esced is in the range of valts $\&$, the trassistion used is power transistor's.

input power from the supply.

$$
P_{2 n}(d C D=V a c \cdot I \subset Q .
$$

this power is used in the following components
D) power dissipated across collector

$$
P_{R C}=I_{C Q}{ }^{2} R_{C}
$$

(2) Power to transistor

$$
\begin{aligned}
P_{G T} & =P_{\text {in }}\left(d C-P_{R C}\right. \\
& =V a C I C Q-I_{C Q} R_{c}
\end{aligned}
$$

The power given to transistor is used for developing the old.

$$
P_{\text {out }} \text { CaD }=V_{C E} \cdot T_{C}
$$

$V_{C E} \Rightarrow$ rms value of collector voltage
$I_{c} \Rightarrow$ rms value of collector current

$$
\begin{aligned}
& =\frac{1}{2 \sqrt{2}} I_{C}(P-D) \times \frac{1}{2 \sqrt{2}} V C E(P \cdot P) \\
& =\frac{I_{C}(P-P) \cdot V_{C E}}{8}
\end{aligned}
$$

$\eta=\frac{\text { Ac power delivered to the load }}{d c i / p \text { power Pin cdc }}$ dc ip power Pin col

$$
\text { then } C_{2} \text { collector) }=\frac{V_{c c}^{2} / 8 R_{c}}{V_{c Q}^{2} / 4 R_{c}}=4 / 8=50 \%
$$

ILAHIA COLLEGE OF ENGINEERING AND TECHNOLOGY

$$
\begin{aligned}
& c c p-p)=\frac{V_{c c}}{R_{c}} \\
& S_{C E}(P-P)=V_{C C} \\
& R_{c} \text { olp }=\frac{V_{c c}}{\frac{R_{c}}{8} \cdot V_{c c}}=\frac{V_{c c^{2}}}{8 R_{c}} \\
& 2=\frac{\mathrm{Vac}^{2} / 8 R_{c}}{\mathrm{Vcc}^{2} / 2 R_{c}}=2 / 8=0.25 \text { as } 25 \% \\
& \text { Collector epficing } 2=\frac{\text { Pout (Cac) }}{\text { Pbr coc) }} \\
& P_{\text {tircac }}=V \operatorname{CcI} I_{C Q}-I_{c i g}^{2} R_{C} \\
& =V_{c c} \cdot \frac{V_{c c}}{2 R_{c}}-\frac{V_{c c^{2}}}{4 R_{c}^{2}} R_{c} \\
& =\frac{V_{c c}^{2}}{2 R_{c}}-\frac{V_{c}{ }^{2}}{4 R_{c}} \Rightarrow \frac{2 V_{c c}}{4 R_{c}}-\frac{V_{c}^{2}}{4 R_{c}} \Rightarrow \frac{V_{c c}^{2}}{4 R_{c}}
\end{aligned}
$$

2) Transboomer coupied Class A powes Ampliben

In serics fed class A powes amp, the collator rexstor causes large wastage of Power. In ardes to avoid this wosloge of power we are eving the transfoomes coupled powes amplifics

The de cuinding riseatance determines the DC load tno, this is giufe smoll. DC load line is a soraight line rusing Prom Vec:

Ic changes Prom 8 to 2 Ic电
VCE aharges from 0 to $2 \mathrm{VCC}$. .
In ideal bansformes, brere is no voudge drop in primery so
$V_{C C}=V C E q$.
So $P_{B}=P_{\text {in }}<d c=V<c$ I <2
Overall epprciency $=$ collector apleciency

$$
=\frac{V_{c c}}{\sqrt{2}} \times \frac{I_{c Q}}{\sqrt{2}}=\frac{V_{c a} I_{c Q}}{2}
$$

$$
\eta=\frac{P_{\text {out }}(0)}{P_{\text {in }}(\text { dc }} \text { ILAHIA COLLEGE OF ENGINERING AND TECHN }
$$

LLAHIA COLLEGE OF ENGINERING AND TECHNOLOGY

Class. B power Amplifier
The transistor is so biased that the zero sign collector cerrorent is zero. The Q. pt is set at the cut off region it remains forward biased for only one hall syce of the ip signal. it's conduction angle is 180°.

During tho half syce of alp signal, the curet is Forward biased \& inc collector current Plows. On the otberhand - during -ve half cycle of elf ac signed, the cher is reverse biased \& no current Plows.

$I_{d C} \Rightarrow$ aug current tater from supply during on condewor

$$
\begin{aligned}
I_{d C} & =\frac{1}{2 \pi} \int_{0}^{\pi} I_{c}(\text { max }) \sin \theta d \theta \\
& =\frac{I_{c \text { max }}}{2 \pi}[-\cos \theta]_{0}^{\pi}=\frac{I_{c}(\max)}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {in }}(d c)=\frac{\left.V_{c c} I_{c c m a x}\right)}{\pi} \\
& \text { Pout } \left.^{\pi}(a c)=1 / 2 \text { (Vrms } \times I_{\text {rms }}\right)
\end{aligned}
$$

dp Plows only one hall ga

$$
\begin{aligned}
& V_{\text {rms }}=\frac{V_{m}}{\sqrt{2}} ; I_{\text {rms }}=\frac{\left.I_{c} \text { (max }\right)}{\sqrt{2}} \\
& \text { Pout }(o c)=\frac{1}{2}\left[\frac{V_{c c}}{\sqrt{2}} \cdot \frac{I_{c c \text { max }}}{\sqrt{2}}\right]=\frac{V_{c c} \cdot I_{c}(\text { max })}{4} \\
& \eta=\frac{P_{\text {out }}(a c)}{P_{\text {in }}(d a)}=\frac{V_{c c} \cdot \frac{I_{c m a x}}{4}}{V_{c c} \cdot \frac{I_{c(m a x)}}{\pi}}=\pi / 4=\underline{\underline{\pi}} \quad
\end{aligned}
$$

Class $A B$ power amplifies
In class $Z B$ power amplifiers the biasing chit is so odfusted that the Q. Pt lies neares to cut-opf region. During a small portion of tee half cycle 2 for complete the half cycle, the taus remains forward biased \& the $01 p$ flows. During a small portion of tee half cycle the $k \times r$ is reverse biased 2 no current current Plows ibrough cues.

ILAHIA COLLEGE OF ENGINEERING AND TECHNOLOGY

Class © power amplifies
It is biased to operate for less than 180° of ip signal

Hammenta Distortion
It is due to the non linearity of $t \times r$. It increases as eve go from class A to class C Lither non incas distortion is present, the o/p woucform contains components of focruancics with are harmonics of ils signal Prequery.

Cross Over distortion
In seticon $t x r$, at lost 0.6 V is required for conduction. In push pull amplifiers, the forward bias is produced by the ilp \& both of the tar will be in OPP condition, when the imp is less than $\pm 0.5 \mathrm{~V}$. This introduces the crossover distortion in be old.

ILAHLA COLLEGE OF ENGINEERING AND TECHNOLOGY

Feed Back Amplifiers

The voltage gain, isp impedance, $0 / p$ impedance, $B \cdot W$ atc are some of the important characteristic of an amplifier. These parameters can be controlled by using the fib technique

Process of combining a fraction of $0 / p$ back to the ip is called the feedback; muter the ff voltage is applied in phase with the ils signal, it es called positive an regenerative fib. When use Pb signal is applied in phase opposite to the ip signal is called negative as degenerative fit.

$A \Rightarrow$ gan of open loop C $\beta \Rightarrow$ feedback ratio $V_{f} \Rightarrow$ feedback Voltage $V_{s} \Rightarrow i / p$ signal $A \beta \Rightarrow$ Peed bock factor

For positive $f \cdot 6 ; V_{i n}=V_{s}+V_{p}$
negative $R_{b} ; V_{i n}=V_{s}-V_{f}$
Gain of openloop amplifies $A=\frac{V_{\text {Vul }}}{V_{\text {in }}}$
the fib factor $\beta=\frac{V_{f}}{V_{\text {out }}}$
then $V_{f}=\beta V_{\text {out }}$
for negative feedback; $V_{i n}=V_{s}-V_{f}$

$$
V_{\text {in }}=V_{s}-\beta V_{\text {out }}
$$

then

$$
\begin{aligned}
V_{\text {out }} & =A V_{\text {in }} \\
& =A\left[V_{s}-\beta V_{\text {out }}\right] \\
V_{\text {out }} & =A V_{s}-A B V_{\text {out }} \\
V_{\text {out }} & {[1+A B]=A V_{s} }
\end{aligned}
$$

then the overall valtege gain $=\frac{\text { Vout }}{V_{s}}$
from the above equation $\frac{V_{\text {out }}}{V_{s}}=\frac{A}{1+A \beta}$
overall voltage gain $\left(\right.$-ve fib) $=\frac{A}{1+A B}$ overall voltage gain $(+$ vel $f \cdot b)=\frac{A}{1-A B}$

Types of Feedback Connection
a) Voltage series feedback

(b) Voltage shunt feed bock.

Polvantiges of Negobve Peadbock
There are numerous advantages of negative Pecabock.
(1) Gown scabelty

If eve are using negative P_{6}, the gain of amplifies is

$$
\begin{aligned}
A_{f} & =\frac{A}{1+A \beta} \\
\text { if } A \beta & >1 ; A f=1 / \beta
\end{aligned}
$$

the overall gain of amplifier is independent of the internal gain 2 depends only on β.
β in turn depends on the passive elements such as resistors.
2) Reduced Noise

The noise voltage in the amplifier is reduced by the factor $C 1+A B$ weber the negative $f . b$ is used
3) Increased B.2J

Thc gain-B.W product is const.

$$
A \times B \cdot W=\text { Constant. }
$$

LAMIA COLLEGE OF ENGINEERING AND TECHNOLOGY
if the -ve P_{6} is wesd, the goin is reduced So B.W is improved.
4) Incneares the elp impedance

The ilp imp. of amplifien is encreased by $(1+A B)$
5) Reduced the o/p impedance

Tho dp impedasce of amplifier zeils negalve P_{6} is roduced by a foctor $(1+A \beta)$

$B \cdot W$
\uparrow
\uparrow
\uparrow

Rect of Negative Feedback On input impedance:
High ip impedance is always desirable in an amplifier as it will not tod preceding stage

$$
\begin{aligned}
I_{\text {in }}=\frac{V_{\text {in }}}{Z_{\text {in }}} & =\frac{V_{s}-V_{f}}{Z_{\text {in }}} \\
& =\frac{V_{s}-\beta V_{\text {out }}}{Z_{\text {in }}}=\frac{V_{s}-\beta A V_{\text {in }}}{Z_{\text {in }}} \\
I_{\text {in }} Z_{\text {in }} & =V_{s}-\beta A V_{\text {in }} \\
\Rightarrow V_{s} & =I_{\text {in }} Z_{\text {in }}+A \beta V_{\text {in }} \\
& =I_{\text {in }} Z_{\text {in }}+A \beta I_{\text {in }} Z_{\text {in }} \\
& =\operatorname{Zin}_{\text {in }}\left[I_{\text {in }}\right]\{1+A \beta\} \\
I_{\text {in }} & =Z_{\text {in }} C_{1}+A \beta
\end{aligned}
$$

$Z_{\text {inf }}=\operatorname{Zin}\left(1+A \bar{\beta} \Rightarrow \begin{array}{l}\text { Thus imp impedance is } \\ \text { encrecesed by }(1+A B)\end{array}\right.$

EPfect of negotve feedbock on oulput impeas
Tha olp empedence should be low.

$$
\begin{aligned}
V_{\text {out }} & =I_{\text {out }} \text { Zout }+A V_{\text {in }} \\
& =I_{\text {out }} \text { Zout }-A V_{f} \\
& =I_{\text {out }} \text { zout }-A\left(B V_{\text {out }}\right. \\
V_{\text {out }}+A B V_{\text {out }} & =I_{\text {out }} \text { Zout } \\
V_{\text {out }}(C 1+A B) & =I_{\text {out }} \text { zout } \\
\frac{V_{\text {out }}}{I_{\text {out }}} & =z_{\text {out } f}=\frac{z_{\text {out }}}{C 1+A B} \Rightarrow \begin{array}{l}
\text { olp impedence is reduco } \\
\text { by o foctor C }+A B
\end{array}
\end{aligned}
$$

Eppect of negative feed6ock on Bandwidll
The lower cut. Ofl frequescy is reduced \& euper-cut opf frosucry is in crecerad. Thus band-wholts is increered. The gain is reduced but it reman stable.
B. w wist feed bock $=(1+A B) B \cdot w$ zultowl feedrock
amplifor has an lp empadance of the 8 olplermp $10 \mathrm{k} \Omega$ \& a veltage gain do 10,000 if a negalve ceabock of $B=0.02$ is sppleed to ite-aterminc the elp $\&$ olp empedances of amplitan.
oper loop gain.

$$
\begin{aligned}
& A=10.000 \\
& \beta=0.02 \\
& z_{\text {in }}=1 k \\
& z_{\text {out }}=10 \mathrm{~K} \\
& \operatorname{zin} f=(1+A B) \operatorname{zin} \\
& =[1+10.000 \times 0.02) 1 \times 10^{3} \\
& =201 \mathrm{k} \Omega \\
& \text { Zout f }=\frac{Z_{\text {out }}}{1+A B}=\frac{10 \mathrm{~K}}{1+0.02 \times 10.000} \\
& =49.75 \Omega
\end{aligned}
$$

2. In amplition wuth segolve Peed bock has a valtoge gain of 100 it is found that ruithocet peedback an ilp signd of 50 mv is required to proderce a given Olp, whereas with feedback, the ilp signal must be 0.6 V for sarse olp. Calculatc $A \& \beta$.

$$
\left.\begin{array}{ll}
A_{p}=100 \\
V_{\text {in }}=50 \mathrm{mv} & V_{\text {out }}=? \\
V_{\text {inf }}=0.6 \mathrm{~V} & V_{\text {out } p}=? \\
V_{\text {out }}=\text { Voutp } &
\end{array}\right\}
$$

$$
\begin{aligned}
& A=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{V_{\text {out }}}{0.05} \\
& A f=\frac{V_{\text {out }} f}{V_{\text {in }} f}=\frac{V_{\text {out }}}{0.6} \\
& 100=\frac{V_{\text {out }} f}{0.6} \\
& V_{\text {out }} P=100 \times 0.6=60 \mathrm{~V} \\
& V_{\text {out }} P=V_{\text {out }}=60 \\
& A=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{60}{0.05}=1200 \\
& A P=\frac{A}{1+A B} \\
& 100=\frac{1200}{1+1200 \times \beta} \\
& B=9.16 \times 10^{-3}
\end{aligned}
$$

${ }^{\text {bsa ch fillers Theorem }}$

During hugh focquences, the internal capacitance of amplifier is important. The capacitance C be (base \& collector) btw imp $20 / p$ is shown

goon Av

Millers theasen states bot the capacitance C appears as the capacitance from ils to gid.

$$
\operatorname{Gin} \text { (miller) }=[(R v+1)
$$

It also states that the ' C ' appears as the capacitance from o/p to gid.

$$
\text { Covet cmilles }=C\left(\frac{A_{y}+1}{A_{v}}\right)
$$

Goin. Bandrudth Product
the product of voltage goen \& bandin.th is always corestanl.

$$
\frac{B \cdot w=f c u-P c l}{P_{c u} \Rightarrow \text { zuppor cutolp Proquincy }}
$$

$f \mathrm{Cl} \Rightarrow$ lower cutolp Prowercy
the frequincy at which the amplifier goin is 1 is called unity goin Praquascy f_{T}.

$$
F_{T}=A_{V} \cdot B \cdot U
$$

$A V \Rightarrow$ midrange valtage gain.

Oscillators
Oscillator is a device used to generate oscillations ruthout providing any ilp signals.

1) Re asallators
a) RC. phase shipt oscillatan
b) Wan Bridge Oscillatan
(2) $L<$ oscillotass
a) Hartly Oscillatas
b) Callpits Oscillater
2) Crustal Oscillatoss
3) RC-oscillators
a) RC-phase shilt Oscillator

Berkhausen Criterion \Rightarrow Betic principle of all asallators.
(1) $|R \beta| \geq 1$
A - gain of ampifios
$\beta=$ Pecalook focton
2) Phase shilt is 0° in 360°

IIAHIA COLLEGE OF ENGINEERING AND TECHNOI

The circuit is set into oscillations by any random or variation caused in the bose current, that may be either due to noise inherent in the bronsistar. This varidion in bose current is amplified in collector chat. The op of the amplifies is supplied to an R-C feedback n / w.
The RC-n/w produces a phase shit of 180° b/w o/p 2 isp Voltages. Since CE amplifier produces a phase reversal of ip signed, total phase shift becomes 0° on 360°. The op of this n / w is thus in same phase as that of $1 / p$.

The equivalent che is shown

Applying kurchoffs voltage low

$$
\left.\begin{aligned}
& \left\{R+R_{c}+\frac{1}{j \omega c}\right\} I_{i}-R I_{2}+h p_{c} I_{b} R_{c}=0 \\
& -R I_{1}+\left\{2 R+\frac{1}{j \omega c}\right\} I_{2}-R I_{6}=0
\end{aligned} \right\rvert\, \text { ch) }
$$

$\left|\begin{array}{ccc}R+R_{c}-j x_{c} & -R & h_{f} R_{c} \\ -R & 2 R-j x_{c} & -R \\ 0 & -R & 2 R_{-j} x_{c}\end{array}\right|=0$

$$
R+R_{c}-j x_{c}\left\{\left(2 R-j x_{c}\right)^{2}-R^{2}\right\}+R\{-R(2 R-j \times c)\}+h f_{c} R_{c} R^{2}=0
$$

Equating imegenery components

$$
6 R^{2} x_{c}+4 R R_{c} x_{c}-x_{c}^{3}=0
$$

as $X_{c}=\sqrt{6 R^{2}+4 R R_{c}}$

$$
\begin{aligned}
& 2 \pi f C=\frac{1}{\sqrt{6 R^{2}+4 R R C}} \\
& f=\frac{1}{2 \pi C \sqrt{6 R^{2}+4 R R_{c}}} \\
& f=\frac{1}{2 \pi R C \sqrt{6+\frac{4 R c}{R}}}
\end{aligned}
$$

if $R=R_{C}$, Hen

$$
f=\frac{1}{2 \pi R C \sqrt{10}}
$$

b) Wien Bridge Oscillator

The cit diegran of Wien bridge oscillator is shown. It is essentially a two stage amplifies wilts R.C bridge (Wien bridge) chat. If Wien bridge is nat emplayed O/P of Q_{2} is feedback directly, to Q_{1}, this direct coupling will result in poor Precevency stability. Thus by employing Wien bridge Pb n/w frequency stability is increased.
R_{1} is in scrics ruts $a_{1}, R_{3}, R_{4} \& R_{2}$ parallel ruth C_{2} forms 4 arms.

The bridge is bolasced only weber

$$
R_{3}\left[\frac{R_{2}}{1+j w c_{2} R_{2}}\right]=R_{4}\left(R_{1}-\frac{j}{\omega c_{1}}\right)
$$

$$
\begin{gathered}
R_{2} R_{3}=R_{4}\left(1+j \omega C_{2} R_{2}\right)\left(R_{1}-j / w c_{1}\right) \\
R_{2} R_{3}-R_{4} R_{1}-\frac{C_{2}}{C_{1}} R_{2} R_{4}+\frac{j R_{4}}{w C_{1}}-j w C_{2} R_{2} R_{1} R_{4}=0
\end{gathered}
$$

Seperaling real \& imaginary berms

$$
\begin{gathered}
R_{2} R_{3}-R_{4} R_{1}-\frac{C_{2}}{C_{1}} R_{2} R_{4}=0 \\
\text { or } \frac{C_{2}}{C_{1}}=\frac{R_{3}}{R_{4}}-\frac{R_{1}}{R_{2}} \\
2 \frac{R_{4}}{\omega C_{1}}-\omega C_{2} R_{2} R_{1} R_{4}=0 \\
\text { or } \omega^{2}=\frac{1}{C_{1} C_{2} R_{1} R_{2}}
\end{gathered}
$$

IL.AHIA COLLEGE OF ENGINEERING AND TECHNOI
on

$$
\begin{aligned}
& w=\frac{1}{\sqrt{C_{1} C_{2} R_{1} R_{2}}} \\
& f=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}
\end{aligned}
$$

if $C_{1}=C_{2}=c$ \& $R_{1}=R_{2}=R$, then

$$
f=\frac{1}{2 \pi \subset R} \quad \& R_{3}=2 R_{4}
$$

Thus in bridge clat O/P zwll be in phose zults i/p, only when brodge is bolanced. So this bridge cit can be used as Peedbock n/w for an oscillator, provialed wht the phase shilt through amplifier is zero.
The olp of second stege is supplicel boak to P.b niw 2 Voltoge across parallel combination $R_{2} C_{2}$ is fed to i/p of Prast stoge. Q1 act as ascillator 2 amplifics, Q act as inverter to couse a phase shilt of 180°.

L-C oscillators
LC oscillators arc used for high frequency generation. Hartley 2 colpitts oscillators are two practically used $L C$ oscillators.

The basic component of two \&.C asullator is a tank circuit.

Tho tank circuit consists of an inductive coil having inductance ' L ' connected in parallel with a copoution having capacitance c'. The frequcray of oscillation depends on the value of $\angle \& C$.
If the switch is in position ' 0 ', un e currant flows thorough cepocitor. The copocitor begins to charge. it stores enogyy in the form of electrostatic. Thus there is electrostatic energy around the copoutor. kelter tine copocitor is felly charged, it begins to discharge, Le, switch rel be en position ' b '.
Then current begins to Plow Cos use copocitor discharges wrought inductor. The inductor now stores energy in the form of magnetic field.

ILAHIA COLLEGE OF ENGINEERING AND TECHNOLOGY

Thas in tont cht the alecleostabic enorgy converted into magnetic Pield energy \& Vice This rull carate oxillobons.

Calpitt's Oscillotor

oscillator cut has an amplifier, $\&$ a bark cerczut he tank cut has two copocitors $c_{1}-c_{2}$ in parduld with an inductor L. The op of tank chit is fed bock to ip through coupling capacitor. Transistor itself. produces a phase stilt of $180^{\circ} 2$ another phase shift of 180° is provided by copacitive Peed back. Thus a total phase shift of 360° is obtained.

Wether V cc is given, $c_{1} \& c_{2}$ are charged. These $c_{1} \& c_{2}$ discharge trough 1 , setting up oscillations of
Prequoxy $f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C_{1}}+\frac{1}{L C_{2}}}$. The oscillations across C_{2} are applied to amplifies section.

$$
\beta=\frac{c_{1}}{c_{2}}
$$

Minimum gan to sustain oscillation, $A_{\text {min }}=\frac{1}{\beta}$.

Hartlcy Oscillatar
Hartly Oscillstor clat is similar to calpilts except that phase stilt n / w consists of two inductiong $L_{1} \& L_{2} \&$ copocitor C, insteed of two copocitors $\&$ one enductor. The operation of clat is similar to Colpitt's Oscillator.
frequacay of Oscilldion

$$
f=\frac{1}{2 \pi \sqrt{\left[c\left(L_{1}+L_{2}+2 m\right)\right]}}
$$

Q8) Derivalion of Oscillator Prequancy of
colpitts \& Herlicy Oscillctor
(10 martes)
The hybrid cewvdent model is drawn zwits following assumplions.

* hre is small, \therefore hre Vout is nglugible.
*hoe is small, $\therefore \frac{1}{\text { hoe is omitted }}$

The lood impedance b/w o/p terminds

$$
\begin{aligned}
z_{L} & =z_{1} \|\left[z_{3}+\left(z_{2} \| \text { hic }\right)\right] \\
& =z_{1} \|\left[z_{3}+\frac{z_{2} h i c}{z_{2}+h i c}\right] \\
& =z_{1} \|\left[z_{3}\left(\frac{\left(z_{2}+h i c\right)+z_{2} h i c}{z_{2}+h i c}\right]\right. \\
& =z_{1} \|\left[\frac{h i c}{\left(\frac{\left.z_{2}+z_{3}\right)}{z_{2}+h i c}\right.}+z_{2} z_{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{z_{1}} & =\frac{1}{z_{1}}+\frac{z_{2}+\text { hic }}{h_{i}\left(z_{2}+z_{3}\right)+z_{2} z_{3}} \\
& =\frac{\text { hic } \frac{\left(z_{1}+z_{2}+z_{3}\right)+z_{1} z_{2}+z_{2} z_{3}}{z_{1}\left[\text { hie }\left(z_{2}+z_{3}\right)+z_{2} z_{3}\right]}}{}
\end{aligned}
$$

or

$$
\begin{array}{r}
\text { or } z_{1}=\frac{z_{1}\left[h_{1}\left(z_{2}+z_{3}\right)+z_{2} z_{3}\right]}{\text { hic }\left(z_{1}+z_{2}+z_{3}\right)+z_{1} z_{2}+z_{2} z_{3}} \quad \text { ca } \\
I=\text { o/p }
\end{array}
$$

$I=o / p$ cursed

$$
V_{\text {out }}=I\left[z_{3}+\frac{z_{2} \text { hic }}{z_{2}+\text { hic }}\right]
$$

$$
=I\left[\frac{h i c}{\left(z_{2}+z_{3}\right)+z_{2} z_{3}} \frac{z_{2}+h i c}{}\right]
$$

$$
V_{f}=\left[\frac{z_{2} h_{i c}}{z_{2}+h_{i c}}\right] I
$$

$$
\beta=\frac{V_{F}}{V_{\text {out }}}=\frac{z_{2} \text { hic }}{h_{1}\left(z_{2}+z_{3}\right)+z_{2} z_{3}}
$$

for oscillators $A \beta=1$
A Par CE ampules $=\frac{-h / e}{h i c} z_{L}$

$$
\begin{align*}
& A \beta=1 \\
& \Rightarrow \quad \frac{-h_{1}}{h_{i}} z_{1} \times \frac{z_{2} h i c}{h_{i c}\left(z_{2}+z_{3}\right)+z_{2} z_{3}}=1
\end{align*}
$$

Substitute the voluc of $Z L$ is (a) in (1) 7 \& after rearragery we hove

$$
\text { he }\left(z_{1}+z_{2}+z_{3}\right)+z_{1} z_{2}\left(1+h e_{c}\right)+z_{2} z_{3}=0
$$

the above is tbe goneral equation for $L C$ osullatior

* For colpits.

$$
\begin{aligned}
& \text { colpetts. } \\
& z_{1}=\frac{1}{J^{2} c_{1}}, z_{2}=\frac{1}{J_{2 N 2}}, z_{3}=J^{2 J L} \\
& \text { (2) in Eqe (2) }
\end{aligned}
$$

subsutatic $z_{1}, z_{2} \& z_{3}$ in eree (2)

$$
\begin{aligned}
h_{i c}\left[\frac{1}{J \omega c_{1}}+\frac{1}{\sqrt{w} c_{2}}+\sqrt{w}\right] & +\frac{1}{v^{w} c_{1}} \times \frac{1}{v^{2} c_{2}}\left(1+h f_{c}\right) \\
& +\frac{1=}{J^{\omega} c_{2}} \times v^{w} L=0
\end{aligned}
$$

NPtur saperdity red \& emgaenary parts $\left\{\frac{1}{d}=j\right\}$

$$
-j h_{i c}\left[\frac{1}{\omega c_{1}}+\frac{1}{w c_{2}}-w L\right]-\frac{1+h p_{e}}{\omega^{2} c_{1} c_{2}}+\frac{L}{c_{2}}=0
$$

Equatry emaginagy part to zero

$$
\begin{aligned}
& \text { hic }\left[\frac{1}{\omega c_{1}}+\frac{1}{\omega c_{2}}-w L\right]=0 \\
& \frac{1}{\omega c_{1}}+\frac{1}{2 c_{2}}=w L \\
& \frac{c_{1}+c_{2}}{\omega c_{1} c_{2}}=w L \text { an } w^{2}=\frac{c_{1}+c_{2}}{L c_{1} c_{2}} \\
& \omega=\sqrt{\frac{c_{1}+c_{2}}{L c_{1} c_{2}}}=\sqrt{\frac{1}{L c_{1}}+\frac{1}{L c_{2}}}
\end{aligned}
$$

$$
\text { or } P=\frac{1}{2 \pi} \sqrt{\frac{1}{L C_{1}}+\frac{1}{L C_{2}}}
$$

* For Hartky

$$
z_{1}=J 2\left((1+m) z_{2}=\sqrt{2}\left((2+m), z_{3}=\frac{1}{\sqrt{w c}}\right.\right.
$$

substivic $z_{1}, z_{2} \quad 2 z_{3}$ in equc2) \& equaling emogenay parts to zero

$$
\begin{aligned}
& z_{1}=j \omega\left(L_{1}+m\right) \\
& z_{2}=v_{2}\left(L_{2}+m\right) \\
& z_{3}=\frac{1}{j^{2 \omega}}
\end{aligned}
$$

whic $\left[L_{1}+L_{2}+2 m-\frac{1}{2 \nu^{2} c}\right]=0$

$$
L_{1}+L_{2}+2 m=\frac{1}{v^{2} c}
$$

$$
c w^{2}=\frac{1}{L_{1}+L_{2}+2 m}, \quad w=\frac{1}{\sqrt{C\left(L_{1}+L_{2}+2 m\right)}}
$$

$\omega=2 \pi f$

$$
\therefore f=\frac{w}{2 \pi}=\frac{1}{2 \pi \sqrt{c\left(L_{1}+L_{2}+2 m\right)}}
$$

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
9)

3 Crystal Oscillators
(smart)
A quartz crystal exhibits a very important property known as prezo-electric effect. When a mechanical pressure is applied across the faces of the crystal, a voltage' Proportional to mechanical pressure appears across the Crustal \& vice Versa

a) Crusts
b) Electrical Equivient chit of Crustal.

The crustal actually behaves as a scrics RLC che in parallel with Cm . The crystal has two resonant Presuencies.
\Rightarrow Series resonance Frequency fo at which, $2 \pi f_{1}=\frac{1}{2 \pi f C}$ $\&$ in this case crustal impedance is 102 W.

$$
f_{s}=\frac{1}{2 \pi \sqrt{1 C}}
$$

\Rightarrow Parallel resonance Prequeng f_{ρ}, at which crystal impedance es high

$$
f_{p}=\frac{1}{2 \pi} \sqrt{\frac{1+C / c m}{L C}}
$$

ILAHIA COLLEGE OF ENGINEERING AND TECHNOLOGY

To stabilize the Procqucscy of oscillator, a crustal must be operated at cither its scares or parallel resonant Prequency

Since parallel resonant impedance of crystal is maximum, it is connected in parallel. $C_{1} \& \mathrm{C}_{2}$ form Q capacitor voltage divider which returns a portion of op voltage to the transistor emitter. Capacitor C3 Provides an ac short chat across R_{2} to ensure that the transistor base remains at a freed voltage level. Ts the $0 / p$ Voltage incercoses positively. the emitter valtege also increases 2 since the base voltege is freed, the base-emilter voltage is reduced. The reduction in $V_{B E}$ couscs collector current Ic to diminish, 2 this in turn causes the collector voltege V_{c} to increase positively. Thus the clot is applying its own isp 2 a state of ascillation exist.

Operational Amplifier

The op-amp is a multiterminal device which internally is quite complex. The OP-amp's performance can bel completely described by ts terminal characteristics I those of external components that axe connected to it.
the clit diagram of op emp is shown. It has two isp terminals \& one $0 / p$ terminal
$-V_{c} \Rightarrow$ Inverting terminal
$+V_{e} \Rightarrow$ Non. inverting terminal

Inverting ip
Consider the op-amp shown in fg . This Op -amp is said to be ideal if it has following characteristics

1) Open loop voltage gain, $\mathrm{I}_{\mathrm{OL}}=\alpha$
2) Input impedance, $R_{i}=\alpha$
3) $0 / p$ impedance, $R_{0}=0$
4) Bandrides $=\alpha$
(3) Zero Offset ie, $V_{0}=0$ enter $V_{1}=V_{2}=0$

The op amp amplifies the of PP. il $V_{d}=V_{1}-V_{2}$. ila ilia college of enginemaing and technology

Characteristics of OP-amp.

1) Common Mode Configuration

In the case of idea op-omp, when the two il's are equal, there is no op voltage. In practical case, the op voltage depends not only expon the diff signal $V d$, but it dido depends upon the avg of ip signal called the common-mode signed, $V_{c}=\frac{V_{1}+V_{2}}{2}$

For the differential amplifier, though the clit is symmetric, but because of the mismatch, the gain at the op w.r.t the positive terminal is sightly different in magnitude to that of negative terminal. So ever zuher the same voltage is applied to balt $i / p^{\prime} s$, the $0 / p$ is not zero. The alp can be expressed as $\left.V_{0}=R_{1} V_{1}+R_{2} V_{2}-1\right)$ since, $V_{c}=\frac{V_{1}+V_{2}}{2} \& \quad V_{d}=V_{1}-V_{2}$

$$
\begin{aligned}
& V_{1}=V_{c}+\frac{V_{d}}{2} \\
& V_{2}=V_{c}-\frac{V_{d}}{2}
\end{aligned}
$$

substituting $V_{1} \& V_{2}$ in (1)

$$
V_{0}=R_{d} V_{d}+R_{c} V_{c}
$$

where $n_{d}=V_{2}\left(n_{1}-n_{2}\right)$

$$
A_{c}=R_{1}+R_{2}
$$

$R_{d l} \Rightarrow V_{0} u_{\text {gee gain }}$ for off signal
$\mathrm{N}_{c} \Rightarrow$ Vollgge gain for common mode stand.
The common mode voltage gain, $n_{c m}=\frac{V_{0}}{V_{1}+V_{n}}$

Common Mode Rejection Ratio (CMRR) is defined as rato of differential voltage gain to common mode Valtoge gain.

$$
C m R R=\frac{A_{d}}{A_{c n}}
$$

The value of Rom is very small compared to Rd. $\therefore C M R R$ is very large.
Higher the value of $C M R R$, better is the matching $b / 20$ 2 ip's torminds 2 smaller is the op common-mode voltage. Thus et has a better ability to reject common mode Voltages such as nose

If an undesirable signed appears common to both ip's such as both noise, then the external to rutich it get rejected depends upon the CMRR
2) Large Signed Volloge Goon

Since the op amp, amplifies difference voltage b/w t200 ils terminals, the voltage gain of the amplifies is defied as

$$
\begin{aligned}
\text { Voltage gain } & =\frac{0 / p \text { Voltage }}{\text { differential edp }} \\
P_{z} & =V_{0} / V_{\text {Vi }}
\end{aligned}
$$

Since the old signal amplitude is much larges than isp, the voltage gain is commonly called large signal Voltage gain.
3) Slew Rate (SR)

It is defined as the maximum rate of change of old voltage pes unit of lime

$$
S \cdot R=\frac{d V_{0}}{d t} v / \mu s c c=2 \pi f_{m} V_{m}
$$

\Rightarrow the S.R indicates how rapidly the op of an op-amp can charges in response to charge in ils frequency.
$\Rightarrow S R$ is one of the imp. Factor in selecting the opeanp for ac application, particularly at relalvely high frequexy

$$
S R \text { of } K 741=0.5 \mathrm{~V} / \mathrm{M} \mathrm{sec}
$$

Conbyzurdor

losed loop Confoguralon
(Peedback es giva)

Oper loop configzerdion
In the oper loop configuration of op-amp, there is no connection exists b/w olp \& ilp terminals, u the olp signd is nat Peedbock in ary foom as part of elp signal.

1) Differertial Rmplifios

ILAHIA COLLEGE OF ENGINEERING AND TECHNOLOGY

Hex $V_{1} \& V_{2}$ arc applied to +be \& -vc ils terninds., Since the op-amp amplifies the diff b/w two ils signals. the configuration is called differential amplifies olp Vallege, $V_{0}=A\left(V_{1}-V_{2}\right)=A V_{i d}$

Open loop gain, $A=\frac{V_{0}}{V_{1}-V_{2}}=\frac{V_{0}}{V_{i d}}$.
2) Inverting Amplifier

Only one ip is applied Le, to the inverting ip terminal. The non-inverting isp terminal is grounded.

Since $V_{1}=0$ \& $\quad V_{2}=V_{\text {in }}$

$$
\begin{gathered}
V_{0}=A\left(V_{1}-V_{2}\right)=A\left(-V_{2}\right) \\
V_{0}=-A V_{\text {in }}
\end{gathered}
$$

The negative sign indicates that op voltage is out of phase writ ip by 180°. Thus in the inverting amplifies the $1 / 0$ signal is amplified by gain $A, 2$ is do inverted at $0 / p$ se, $\quad z=\frac{-V_{0}}{V_{\text {in }}}$
3) Non-Inverting Bmplifion

Here the isp is applied to the non inverting ip p terminal \& the inverting terminal is grounded.

$$
\begin{gathered}
V_{1}=V_{\text {in }} \& V_{2}=0 \\
V_{0}=A\left(V_{1}-V_{2}\right)=A V_{i n} \\
A=V_{0} / V_{\text {in }} .
\end{gathered}
$$

this means that the old voltage is larger then the isp voltage by gain $A 2$ is in phase wilts the $4 / \mathrm{p}$ signal.

Disadvantages of Open loop Configuration
(1) Gain of amplifier may vary with temp 2 saturation voltages
(2) B.W is very small 2 its alost zero. B. W xfors to the range of prequescies over wethich the gain quill remain constas
(3) Opar loop gain of op-amp is very high. So the o/p is eithen tve on $-v e$ soluration an suutches $b / 2+t v e$ or -ve . Soluration voltages. So oper toop conflguration is not axd for linean applicalion.
4) Clipping of the olp may occur if the ofp exceeds the soluration level of op-anp. Only small stgnals of the onder of $\mu \mathrm{V}$ on lass, hoving very how fresuascy may be amplified zulthout distartion
5) Oper-loop configuration is ussually used for non-incas applications.

Closed loop Op-amp Conpligerations
\Rightarrow there is P_{6} from olp to L / p.

1) The Inverting Rmplifics

The olp valtage V_{0} is P_{b} to the inverting i/p torminal through $R P-R_{1} n / w$, where RP is the feedback resestor. ilp signal V_{i} is applied to inverting ilp terminal tbrough R1 \& non invering ilp terminal of op-amp is erouncted. For simplicit, essume edeal opemp

Ts $V_{\text {id }}=0$, rode ' a ' at ground potential \&

$$
I_{1}=\frac{V_{i}}{R_{1}}
$$

Since op-amp draws no current, all current Plowing though R_{1}, flows through Rf

$$
V_{0}=-I_{1} R_{f}=-\frac{V_{i} R_{f}}{R_{1}}
$$

Hence gain of inverting amplifies (closed loop) is

$$
A_{C L}=\frac{V_{0}}{V_{i}}=\frac{-R_{f}}{R_{1}}
$$

The negative sign indicates a phase shift of $180^{\circ} \mathrm{b} / \mathrm{w}$ $V_{i} \& V_{0}$.
2) Non Inverting Amplifies

Volloge scrics ρ_{b} amplifier is also known as non-inverting fib amplifier because it weed fib \& the ip signal is applied to non-inverting ils terminal of op amp.

As the $V_{\text {id }}=0$,

$$
\begin{gathered}
V_{1}=V_{\text {in }} \\
V_{1}=\frac{V_{0} R_{1}}{R_{1}+R \rho}
\end{gathered}
$$

Closed loop voltage gain, $A_{C L}=\frac{V_{0}}{V_{\text {in }}}=\frac{R_{1}+R_{f}}{R_{1}}=1+\frac{R_{f}}{R_{1}}$

(3) Differential Rmplifios
this ampliftor amplifics the diff b/w two signals

since the differertial filtegeg ot i/p
' a ' \& ' b ' are at some potentige, ic V_{3}
The nodel equation of ' a ' is

$$
\text { (1) } \left.\Rightarrow\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) V_{3}-\frac{V_{2}}{R_{1}}=\frac{V_{0}}{R_{2}}-c_{3}\right)
$$

$$
\begin{aligned}
& \text { (a) } \left.\Rightarrow\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) V_{3}-\frac{V_{1}}{R_{1}}=0 \quad c_{4}\right) \\
& \text { (3) } \left.-c_{4}\right)-\frac{1}{R_{1}}\left(V_{1}-V_{2}\right)=\frac{V_{0}}{R_{2}}
\end{aligned}
$$

$$
V_{0}=\frac{R_{Q}}{R_{1}}\left(V_{1}-V_{2}\right)^{2}
$$

such a chet is very rescful in detecting very s mall depperencos in signds.

Summing Amplifies
Op amp may be used to design a crit whose $0 / 10$ is the sum of several elf signals. Such a cit is called summing amplifies ar a summer. The most uncfue application of op-amp is analog computes. This cut can be used to add $a d c$ signal ar an ac signal. This che well produce an op voltage which is proportional to or equal to algebrace sum of all ils voltage $\&$ each multiplied by a constant gain factor.
Q) Inverting Summing Amplifies

the inverting configuration consists of 3 k voltages $V_{1}, V_{2} \& V_{3} .3$ ils resistors $R_{1}, R_{2}, R_{3} \& R R$. Assuming that the op-amp is ideal one $C_{l e,} P_{0 L}=\alpha$ \& $R_{1}=\alpha$ \& $I_{B}=0$. Since the ils bias current is assumed to be zero there is no vouge drop across RC \& hence the non-inverting ils terminal is at ground potential.

The Volbege at rode ' a ' is zero as the non-invating ip terminal is grounded. The nodal equation by RCL at node ' Q ' is

$$
\begin{aligned}
& \frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+\frac{V_{0}}{R \rho}=0 \\
& V_{0}=-\left(\frac{R_{f}}{R_{1}} V_{1}+\frac{R_{f}}{R_{2}} V_{2}+\frac{R_{f}}{R_{3}} V_{3}-\right.\text { cl }
\end{aligned}
$$

11.4HIA COLLEGE OF ENGINEERING AND TECHNOLOGY
\Rightarrow Somming Rompuicos
Euber $R_{1}=R_{2}=R_{3}=R$, equ (1) becomes

$$
V_{0}=\frac{-R f}{R}\left(v_{1}+V_{2}+V_{3}\right)
$$

\Rightarrow Scaling an Waghted Emplifien
zuber $R_{1} \neq R_{2} \neq R_{3}$

$$
V_{0}=-\left(\frac{R_{f}}{R_{1}} V_{1}+\frac{R_{f}}{R_{2}} V_{2}+\frac{R_{f}}{R_{3}} V_{3}\right)
$$

\Rightarrow Average cht
Let ' n ' be no of inputs
when $R_{1}=R_{2}=R_{3}=R$

$$
\frac{R_{f}}{R}=\frac{1}{n}
$$

Fon g : Por 3 ilp's

$$
V_{0}=\frac{-1}{3}\left(V_{1}+V_{2}+V_{3}\right)
$$

b) Non-Invering Somminy Rmplifion

A summen that gives a non inverted sum is the non invering summing ampliter.

The nodal equation at node ' 0 ' is

$$
\begin{aligned}
& \frac{V_{1}-V_{a}}{R_{1}}+\frac{V_{2}-V_{a}}{R_{2}}+\frac{V_{3}-V_{a}}{R_{3}}=0 \\
& V_{a}=\frac{\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}
\end{aligned}
$$

The op-amp \& two resistors $R P \& R$ constitute Q non-inverting amplifier with

$$
V_{0}=\left(1+\frac{R f}{R} V_{a}\right.
$$

\therefore op Voltage is

$$
V_{0}=\left(1+\frac{R_{f}}{R}\right) \frac{\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}
$$

which is a non-inverted weighted sum of elf's Let $R_{1}=R_{2}=R_{3}=R=R \rho / 2$

$$
\text { II. than than } V_{0}=V_{1}+V_{2}+V_{3}
$$

Instrumentation Pmplifics

Insbrumentation amplifiers are used in monitaring 2 contoralling of physical quontiocs, in the industrial process for the measvaement \& contral of temperalure, humidity \& light intensity. A bransduces car convert one poom of corgy into anather is used to serse \& delver the required infoomation in the form of dectrical quartity.

The mejor fusction d an instrumertation amplifier is precuse amplificalion of low level olP. signal of transducer.

Commonty resed instaumertation amplifies are
$\rightarrow A D \quad 521, A D 524$
Fcotures

1) high goin accurocy
2) hegh CMRR
3) hegh goin stability
4) Low olp impedarce.

$A_{1} \& A_{2}$ are Voltage follower or butter chis acting as ip stage for each of lp's $V_{1} \& V_{2}$.

Let $V_{1}=V_{2} \Rightarrow$ the voltage across R is zero. Since no currents flows ts rough

$$
R \& R^{\prime}, V_{1}=V_{1}^{\prime} \& V_{2}=V_{2}^{\prime}
$$

If $V_{1} \neq V_{2} \Rightarrow$ then current plows throng R

$$
I=\frac{V_{1}-V_{2}}{R}
$$

The voltage at node a

$$
V_{a}=\frac{V_{2}^{\prime} R_{2}}{R_{1}+R_{2}}
$$

By superposition theorem $V_{0}=\frac{-R_{2}}{R_{1}} V_{1}^{\prime}+\left[1+\frac{R_{a}}{R_{1}}\right] \frac{R_{2} V_{2}^{\prime}}{R_{1}+R_{2}}$
Let $R_{1} \Longrightarrow R_{2}$

$$
\begin{aligned}
& \text { (2 vc) } \Rightarrow V_{0}=+\frac{R_{2}}{R_{1}} \\
& V_{1}^{\prime}=V_{1}+I R^{\prime} \\
& V_{2}^{\prime}=V_{2}-I R^{\prime}
\end{aligned}
$$

Substitute V_{1}^{\prime} \& V_{2}^{\prime} in Equc2

$$
\begin{aligned}
V_{0} & \left.=\frac{R_{2}}{R_{1}}\left[V_{2}-V_{1}-2 I R^{\prime}\right] \rightarrow C_{3}\right) \\
I & =\frac{V_{1}-V_{2}}{R} \text { in equ C3 } \\
V_{0} & =\frac{R_{2}}{R_{1}}\left[V_{2}-V_{1}-2 R^{\prime}\left(\frac{V_{1}-V_{2}}{R}\right)\right] \\
& =\frac{R_{2}}{R_{1}}\left[V_{2}-V_{1}-\frac{2 R}{R} V_{1}+\frac{2 R^{\prime}}{R} V_{2}\right] \\
V_{0} & =\frac{R_{2}}{R_{1}}\left[1+\frac{2 R^{\prime}}{R}\right]\left(V_{2}-V_{1}\right]
\end{aligned}
$$

Inkegrator
A clat in wetuch the olp valtege weve form is the initagral of ilp voltoge evaveform is the integrator or. integrator amplifies

The nodal equition of node ' N ' is

$$
\begin{aligned}
& \frac{V_{i}-V_{2}}{R_{1}}=C f \frac{d}{d t}\left(V_{2}-V_{0}\right) \\
& \frac{V_{i}}{R_{1}}=-C f \frac{d V_{0}}{d t} \\
& \frac{V_{i}}{R_{1}}=-C p \frac{d V_{0}}{d t} \\
& \frac{d V_{0}}{d t}=\frac{-V_{i}}{R_{1} C p} \\
& L_{1}, V_{0}=\frac{-1}{R_{1} C p} \int V_{1} d t+C
\end{aligned}
$$

Thus the dip is $-1 / R_{i} c \rho$ limes the entogral of i/p R1CP = lime const.
*. If the ip is a sinewove, ole will be cosine

* If the LIp is a square wave, alp is a briongulas wave.

Practical Integrator
The gain of an entagratar at low frequicicy car be limited to avoid the saturation Problem if the focdrock capacitor is shunted by a resistance $R P$ as shown. The parallel combination of RP \& CP behoves like a
Prodical copocitor sohich obssipotes power zenlike an idea capacitor For this reason, this cire es also called ILAHIA COLLEGE OF ENGINEERING AND TECHNOLOGY
a lassy integrator. This Rf limits the low Prequesy, Provides de stabilization RP

Here R_{p} is connected parallel to ' $C P$ ' see, wether V_{i} Pelts to zero, only de offset voltage is present at o/p.
DC valloge cannot pass enough of \therefore Crt becomes open loop. So its stability decreases, in order to overcome this, PP is provided to have an alternate path. Thus there is an error voltage of o/p to reduce this error volt.

Differentiator

The chit in which the olp evaveform is the derivative of the alp waveform is the differentiator or differential anplefios.

Consider the node ' N ' ic = if

$$
\begin{aligned}
& i c=\frac{c_{1} d c_{i}-v_{2}}{d t} \\
& i f=\frac{V_{0}-V_{2}}{R P}
\end{aligned}
$$

$$
i f=V
$$

Since ' V_{2} ' is the vertiad ground

$$
\begin{array}{r}
\frac{C_{1} d V_{i}}{d t}=\frac{-V_{0}}{R \rho} \\
V_{0}=-R P C_{1} \frac{d V_{i}}{d t}
\end{array}
$$

Thus the olp voltage is $-\mathrm{RR}_{1}$ limes dervative of ilp voltoge. The olp is 180° outol phase with i/p.
\Rightarrow Nt hegh Paequency a dilferertiator may become, unstable 2 bocak into ascillations.
\Rightarrow Also the ilp impedasce $(1 / w C)$ decreasco wuith the incorease in Presuency ibereby moking the cht sensilive to high procquoncy noise.

Practical Differertiator Elt
1
this clut well climinate the problerin of stobility 8 high frecruancy noise. of

\Rightarrow Hone as gain incereates is eutll laad to unstabaly So a copacitor ' $C P$ ' is connected.
\rightarrow Inorden to avoid noise disturbance R_{1} is connected

$$
f_{b}=\frac{1}{2 \pi R_{1} C_{1}}
$$

the charge in goin is coused by R1, \& $\& R P C P$.
\rightarrow Thus tho goin at high Porquescy is reduced. Signifcontl, there by ovoiding the high Procervency noise 2 stability problom.

* If ure up sine wave, o/p wall be casine

*if the elp squax wave, olp wall be spitices

pher $V_{i}<V_{r c f}$, tha V_{0} is at $-V_{\text {sat }} \perp V_{i}$
wher $V_{i}>V_{r a l}$ ther V_{0} is at $+V_{\text {sol }}$
Thus olp charges fom one saluration level to anotber olcponding upon the appencrice b/w $V_{1} \& \mathrm{Vrcl}$. The dodes D_{1} \& D_{2} anc connected to protect opamp hrom excauvve elp Volleges

2) Inverling Comparator

Hore Vinct is applad 20 (T) ip $\& V_{i}$ is appeind to $(-)$ elp

Zero Crossing Detector
$\{$ sine to square wove converter ${ }^{2}$?
(v.)

The Vrap is set to zeno \& ilp sinc waven is appled to (\rightarrow) ifp torminal The olp wave foom swutches b/w +ve 2 -ve saluration lavets, ewhor V_{t} passes through zuro in the negalive \& possibive direction rospectively in some appucabion V_{t} my be a slow varying segnal eonscming moae time to crass ov Thus seutcinng of Vo b/w solurnabon valloges tation langos time Conversely duc to nolse of the ilp borminat of op amp. Vo may unccassarily sautchco b/w TVst E-V.t Bath of these problems can overcome zuts in ese of regenonative on pasibue feed back in the cut of Schmill Triggen.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Schmilt Trigges on Pegenerative Comparator
The basic compardor is used in open loop made. Since the opovoop gote of op amp is vory large, Patse. triggering at olp car occur ever due to small mill valts. wher tip charges slowly as compared to o/p, novse is coupled from o/p of compastor back to l / p. The compardor clit designed auith posilive $P \cdot 6$ to avord anwarted truggering is collcal schmilt tragges on Regenordiva comparator.

The thp vollinge is appued $20(-)$ ulp terminal 2 Pb to (f) ip berminal The lip voltage V_{i} triggers the olp V_{0} cverytime, it exceeds certain volloge levils. These vollages ane calld uppen \& lown throshald valtoges $\left\{V_{\nu r}, V_{L T}\right\}$ the difl blw $V_{u T}$ \& $V_{L T}$ is called hystouses Voltege

$$
V_{H}=V_{\nu_{T}}-V_{\alpha T}
$$

Suppose $V_{0}=+V_{\text {sot }}$, then voltage of $(+)$ up terming

$$
V_{r l}+\frac{R_{2}}{R_{1}+R_{2}}\left(V_{s o t}-V_{n c p}\right)=V_{u T}
$$

The olp voltage V_{0} remains at $+V_{\text {sot }}$ as long as $V_{i}<V_{L_{i}}$
 \& remains ot the same level as long as $V_{i}>V_{u_{T}}$ when $V_{0}=-V_{\text {sot }}$, the voltage of (T) ip terminal is giver by

$$
V_{r c f}-\frac{R_{2}}{R_{1}+R_{2}}\left(V_{\text {sat }}+V_{r c l}\right)=V_{L T}
$$

when V_{i} slightly $V_{\alpha T}$, V_{0} switches foo $-V_{\text {sot to }}+V_{\text {sot }}$ Hysteresis ceilidh $V_{H}=V_{u T}-V_{L T}=\frac{2 R_{2} V_{\text {sot }}}{R_{1}+R_{2}}$

Square. Wave Generator or
Astable mulluibrator $2 l$ sing op.

The Fg shous asiable mullivibrator zutb olp of op-anp Peedbock to $\subset T$ Ilp terminal The ocsistors $R_{1} \& R_{2}$ foom a volloge divides n / w \& a froction $\beta=\frac{R_{2}}{R+R_{2}}$ of o/p is feabock to $1 / \mathrm{P}$.

Let olp Δs dt $+V_{\text {sol }}$
\Rightarrow then C charges srough R towards +Vot Tho volloge ot + t/p terminal is ot $+\beta v$ sat. charging of ' c ' conlinules untit V_{c} is just grocated than valtoge of (T) L/p terminal. zuthen thes hoppers of pe ' b ' the olp saubhed down lo -Vsot.

OIP as now of $-V$ sol
\Rightarrow Thow the Eapocitor ' e Stards dis chargil Lowards -Vsot. $n t \mathrm{pl} \cdot \mathrm{c}$ Vo just exceeds $-\beta V$ sot, then ol ρ seuitches bo to +Vol

The vollgge ocross copocitor

$$
\begin{aligned}
& \text { Voltge ocross copocutor } \left.-V \rho_{\text {in }}\right) e^{-t / R C} \\
& \begin{aligned}
V_{c}(t) & =V_{\text {in }}+\left(V_{\text {ini }}-t / R C\right. \\
& =V_{\text {sot }}+\left(-\beta V_{\text {sot }}-V_{\text {sot }}\right) e^{-t / R}
\end{aligned}
\end{aligned}
$$

Re $t=T_{1}$,

$$
\begin{aligned}
& \text { Rt } t=T_{1}, \\
& \quad \beta V_{\text {sot }}=V_{\text {sot }}\left(1-(1+\beta) e^{-\pi_{1} / R C}\right. \\
& (1-\beta)=(1+\beta) e^{\frac{-T_{1}}{R C}} \\
& \Rightarrow T_{1}=R C \ln \frac{1+\beta}{1-\beta}=R C \ln \frac{R_{1}+2 R_{2}}{R_{1}} \\
& \text { Total Lime perod, } T=2 T_{1}=2 R C \ln \frac{R_{1}+2 R_{2}}{R_{1}}
\end{aligned}
$$

$$
f=Y_{T}=\frac{1}{2 R C \ln \frac{R_{1}+2 R_{2}}{R_{1}}}
$$

RAMP GENERATOR

If the step input of the intrigrating amplifier is replaced by a coctinoous time square Wuve, the chunge in the input signal smplitade charges and discharges the lieedbuck capacitoc. This resals in a triangular wave output with a frequency that is dependent on the valoe of (R, C) which is referred to as the time consunt of the circuit Such a circuit is commocly called a Ramp Generator.

During the positive half-cycle of the square wave input, a consunt current I flows throogh the input resistor RA. Since the current flowing into the op-amp intemal circuiary is zerro, effectively all of the current flows through the foedback capacitor C. This current charges the capacitor. Since the capacitor comected to the virtual ground, the voluge across the capocitor is the output volage of the op-am?

During the negative half-cycle of the square wave input, the current I is reversed. The capacitor is now linearly charged and produces a positive-going ramp output.

(a) Buvic Cinail

(b) Oatpol Haxalown

Explain:

