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Course No. Course Name L-T-P Credits Year of Introduction 

CS361 SOFT COMPUTING 3-0-0-3 2015 

Course Objectives 
 

To introduce the concepts in Soft Computing such as Artificial Neural Networks, Fuzzy logic 

based systems, genetic algorithm-based systems and their hybrids. 

Syllabus 
 

Introduction to Soft Computing, Artificial Neural Networks, Fuzzy Logic and Fuzzy systems,  

Genetic Algorithms, hybrid systems. 

Expected Outcome 
 

Student is able to 
 

1. Learn about soft computing techniques and their applications. 
 

2. Analyze various neural network architectures. 
 

3. Define the fuzzy systems. 
 

4. Understand the genetic algorithm concepts and their applications. 
 

5. Identify and select a suitable Soft Computing technology to solve the problem; construct a 
 

Solution and implement a Soft Computing solution. 

 
 

Text Books 
 

1. S.N.Sivanandam and S.N.Deepa, Principles of soft computing-Wiley India. 
 

2. Timothy J. Ross, Fuzzy Logic with engineering applications-Wiley India. 
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1.  N. K. Sinha and M. M. Gupta, Soft Computing & Intelligent Systems: Theory & 

Applications-Academic Press /Elsevier. 2009. 

2. Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall International, 

Inc. 

3. R. Eberhart and Y. Shi, Computational Intelligence: Concepts to Implementation, Morgan 

Kaufman/Elsevier, 2007. 

4. Ross T.J. , Fuzzy Logic with Engineering Applications- McGraw Hill. 

5. Driankov D., Hellendoorn H. and Reinfrank M., An Introduction to Fuzzy Control- Narosa 

Pub. 

6. Bart Kosko, Neural Network and Fuzzy Systems- Prentice Hall, Inc., Englewood Cliffs 

7. Goldberg D.E., Genetic Algorithms in Search, Optimization, and Machine Learning 

AddisonWesley. 
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Course Plan 

 

Module 

 

Contents 

 

Hours 
Sem.Exam

Marks% 

 
 
 
 

I 

Introduction to Soft Computing 

Artificial neural networks - biological neurons, Basic models 

of artificial neural networks – Connections, Learning, 

Activation Functions, McCulloch and Pitts Neuron, Hebb 

network. 

 
 
 
 

08 

 
 
 
 

15% 

 
 

II 

Perceptron networks – Learning rule – Training and testing 

algorithm, Adaptive Linear Neuron, Back propagation 

Network – Architecture, Training algorithm. 

 
 

08 

 
 

15% 

FIRST INTERNAL EXAM 

 

III 
Fuzzy logic - fuzzy sets - properties - operations on fuzzy 

sets, fuzzy relations - operations on fuzzy relations. 

 

07 

 

15% 

 
 
 

IV 

Fuzzy membership functions, fuzzification, Methods of 

membership value assignments – intuition – inference – 

rank ordering, Lambda –cuts for fuzzy sets, Defuzzification 

methods. 

 
 
 

07 

 
 
 

15% 

SECOND INTERNAL EXAM 

 
 
 
 

V 

Truth values and Tables in Fuzzy Logic, Fuzzy propositions, 

Formation of fuzzy rules - Decomposition of rules – 

Aggregation of rules, Fuzzy Inference Systems - Mamdani 

and Sugeno types, Neuro-fuzzy hybrid systems – 

characteristics – classification. 

 
 
 
 

08 

 
 
 
 

20% 

 
 
 

VI 

Introduction to genetic algorithm, operators in genetic 

algorithm - coding - selection - cross over – mutation, 

Stopping condition for genetic algorithm flow, Genetic neuro 

hybrid systems, Genetic-Fuzzy rule based system. 

 
 
 

08 

 
 
 

20% 

END SEMESTER EXAMINATION 
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Question Paper Pattern 

1. There will be five parts in the question paper – A, B, C, D, E 

2. Part A 

a. Total marks : 12 

b. Four questions each having 3 marks, uniformly covering modules I and II; All four 

questions have to be answered. 

3. Part B 

a. Total marks : 18 

b. Three questions each having 9 marks, uniformly covering modules I and II; Two 

questions have to be answered. Each question can have a maximum of three subparts 

4. Part C 

a. Total marks : 12 

b. Four questions each having 3 marks, uniformly covering modules III and 

IV; All four questions have to be answered. 

5. Part D 

a. Total marks : 18 

b. Three questions each having 9 marks, uniformly covering modules III and IV; Two 

questions have to be answered. Each question can have a maximum of three subparts 

6. Part E 

a. Total Marks: 40 

b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four 

questions have to be answered. 

c. A question can have a maximum of three sub-parts. 

7. There should be at least 60% analytical/numerical/design questions. 
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Module – 1 

 

• Introduction to Soft Computing  

• Artificial neural networks 

• Biological neurons 

• Basic models of artificial neural networks  

o Connections 

o Learning 

o Activation Functions 

• McCulloch and Pitts Neuron 

• Hebb network. 
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1.1 Introduction to Soft Computing 

Two major problem solving techniques are: 

• Hard computing 

It deals with precise model where accurate solutions are achieved. 

 

Figure 1.1: Hard Computing 

• Soft computing 

It deals with approximate model to give solution for complex problems. The term “soft 

computing" was introduced by Professor Lorfi Zadeh with the objective of exploiting the 

tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness, 

low solution cost and better rapport with reality. The ultimate goal is to be able to emulate 

the human mind as closely as possible. It is a combination of Genetic Algorithm, Neural 

Network and Fuzzy Logic. 

 

Figure 1.2: Soft Computing 
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1.2 Biological Neurons 

 

Figure 1.3: Schematic diagram of a biological neuron 

The biological neuron consists of main three parts: 

 Soma or cell body-where cell nucleus is located 

 Dendrites-where the nerve is connected to the cell body 

 Axon-which carries the impulses of the neuron 

 

Dendrites are tree like networks made of nerve fiber connected to the cell body. An Axon is a 

single, long connection extending from the cell body and carrying signals from the neuron. The 

end of axon splits into fine strands. It is found that each strand terminated into small bulb like 

organs called as synapse. It is through synapse that the neuron introduces its signals to other 

nearby neurons. The receiving ends of these synapses on the nearby neurons can be found both 

on the dendrites and on the cell body. There are approximately 104 synapses per neuron in the 

human body. Electric impulse is passed between synapse and dendrites. It is a chemical process 

which results in increase/decrease in the electric potential inside the body of the receiving cell. 

If the electric potential reaches a thresh hold value, receiving cell fires & pulse / action 

potential of fixed strength and duration is send through the axon to synaptic junction of the 

cell. After that, cell has to wait for a period called refractory period. 
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Figure 1.4: Mathematical model of artificial neuron 

Biological neuron Artificial neuron 

Cell            Neuron 

Dendrites            Weights or interconnections 

Soma            Net input 

Axon           Output 

 

Table 1.1: Terminology relationships between biological and artificial neurons 

 

In this model net input is calculated as 

𝑦𝑖𝑛 = 𝑥1𝑤1 + 𝑥2𝑤2 +⋯+ 𝑥𝑛𝑤𝑛 =∑𝑥𝑖𝑤𝑖

𝑛

𝑖=1

 

Where, i representes ith processing element. The activation function applied over it to calculate 

the output. The weight represents the strength of synapses connecting the input and output. 

  

1.3 Artificial neural networks 

An artificial neural network (ANN) is an efficient information processing system which 

resembles the characteristics of biological neural network. ANNs contain large number of 

highly interconnected processing elements called nodes or neurons or units. Each neuron is 

connected with other by connection link and each connection link is associated with weights 

which contain information about the input signal. This information is used by neuron net to 

solve a particular problem. ANNs have ability to learn, recall and generalize training pattern or 
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data similar to that of human brain. The ANN processing elements called neurons or artificial 

neurons. 

 

Figure 1.5: Architecture of a simple artificial neuron net 

 

Each neuron has an internal state of its own, called activation or activity level of neuron which 

is the function of the inputs the neuron receives. The activation signal of a neuron is 

transmitted to other neurons. A neuron can send only one signal at a time which can be 

transmitted to several neurons.  

 

Consider the figure 1.5, here X1 and X2 are input neurons, Y is the output neuron W1 and W2 

are the weights net input is calculated as  

𝑦𝑖𝑛 = 𝑥1𝑤1 + 𝑥2𝑤2 

where x1 and x2 are the activation of the input neurons X1 and X2, i.e., is the output of the input 

signals. The output y of the output neuron Y can be obtained by applying activations over the 

net input. 

𝑦 = 𝑓(𝑦𝑖𝑛) 

                              Output  =    Function (net input calculated) 

The function to be applied over the net input is called activation function. The net input 

calculation is similar to the calculation of output of a pure linear straight line equation y=mx  

 

Figure 1.6: Neural net of pure linear equation 
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Figure 1.7: Graph for y = mx 

The weight involve in the ANN is equivalent to the slope of the straight line.  

 

1.4 Comparison between Biological neuron and Artificial neuron 

Term Brain Computer 

Speed Execution time is few milliseconds Execution time is few nano seconds 

Processing  
Perform massive parallel operations 

simultaneously  

Perform several parallel operations 

simultaneously. It is faster the 

biological neuron  

Size and 

complexity  

Number of Neuron is 1011 and 

number of interconnections is 1015. 

So complexity of brain is higher than 

computer  

It depends on the chosen 

application and network designer.  

Storage 

capacity  

• Information is stored in 

interconnections or in synapse 

strength. 

• New information is stored without 

destroying old one. 

• Sometimes fails to recollect 

information  

• Stored in continuous memory 

location. 

• Overloading may destroy older 

locations. 

• Can be easily retrieved  
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Tolerance  

 

• Fault tolerant 

• Store and retrieve information 

even interconnections fails 

• Accept redundancies  

• No fault tolerance 

• Information corrupted if the 

network connections 

disconnected. 

• No redundancies  

Control 

mechanism  

Depends on active chemicals and 

neuron connections are strong or 

weak  

CPU 

Control mechanism is very simple  

 

Table 1.2: Comparison between Biological neuron and Artificial neuron 

 

Characteristics of ANN: 

 It is a neurally implemented mathematical model 

 Large number of processing elements called neurons exists here. 

 Interconnections with weighted linkage hold informative knowledge. 

 Input signals arrive at processing elements through connections and connecting weights. 

 Processing elements can learn, recall and generalize from the given data. 

 Computational power is determined by the collective behavior of neurons. 

o ANN is a connection models, parallel distributed processing models, self-organizing 

systems, neuro-computing systems and neuro - morphic system. 

 

1.5 Evolution of neural networks 

Year Neural network Designer Description 

1943 McCulloch and 

Pitts neuron  

McCulloch and 

Pitts  

Arrangement of neurons is combination 

of logic gate. Unique feature is thresh 

hold  

1949 Hebb network  Hebb  If two neurons are active, then their 

connection strengths should be increased.  

1958, 

1959, 

1962, 

1988, 

Perceptron  
 Frank Rosenblatt, 

Block, Minsky 

and Papert 
 

Here the weights on the connection path 

can be adjusted. 
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1960 Adaline Widrow and Hoff Here the weights are adjusted to reduce 

the difference between the net input to 

the output unit and the desired output. 

1972 Kohonen self-

organizing feature 

map  

Kohonen  Inputs are clustered to obtain a fired 

output neuron.  

1982, 

1984, 

1985, 

1986, 

1987 

Hopfield network  John Hopfield and 

Tank  

Based on fixed weights.  

Can act as associative memory nets 

1986 
Back propagation 

network  

Rumelhart, 

Hinton and 

Williams  

• Multilayered 

• Error propagated backward from 

output to the hidden units  

1988 
 

Counter 

propagation 

network  
 

Grossberg  
 

Similar to kohonen network.  

 1987-

1990 
 

Adaptive 

resonance 

Theory(ART)  
 

Carpenter and 

Grossberg  
 

Designed for binary and analog inputs.  

1988 
 Radial basis 

function network  
 

Broomhead and 

Lowe  
 

Resemble back propagation network, but 

activation function used is Gaussian 

function.  

1988 
 

Neo cognitron  
 

Fukushima  
 

For character recognition.  
 

 

Table 1.3: Evolution of neural networks 

 

1.6 Basic models of artificial neural networks 

Models are based on three entities 

• The model’s synaptic interconnections. 

• The training or learning rules adopted for updating and adjusting the connection 

weights. 

• Their  activation functions 
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1.6.1 Connections 

The arrangement of neurons to form layers and the connection pattern formed within and 

between layers is called the network architecture. There exist five basic types of connection 

architecture.  

They are: 

1. Single layer feed forward network  

2. Multilayer feed-forward network 

3. Single node with its own feedback 

4. Single-layer recurrent network 

5. Multilayer recurrent network 

 

Feed forward network: If no neuron in the output layer is an input to a node in the same 

layer / proceeding layer. 

Feedback network: If outputs are directed back as input to the processing elements in the 

same layer/proceeding layer. 

Lateral feedback: If the output is directed back to the input of the same layer. 

Recurrent networks: Are networks with feedback networks with closed loop. 

1. Single layer feed forward network 

Layer is formed by taking processing elements and combining it with other processing 

elements. Input and output are linked with each other Inputs are connected to the 

processing nodes with various weights, resulting in series of outputs one per node. 
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Figure 1.8: Single-layer feed-forward network 

When a layer of processing nodes is formed the inputs can be connected to these nodes 

with various weights, resulting in a serious of outputs, one per node. This is called single 

layer feedforward network. 

2. Multilayer feed-forward network 

This network is formed by the interconnection of several layers. Input layer receives 

input and buffers input signal. Output layer generated output. Layer between input and 

output is called hidden layer. Hidden layer is internal to the network. There are Zero to 

several hidden layers in a network. More the hidden layer more is the complexity of 

network, but efficient output is produced. 

 

Figure 1.9: Multilayer feed-forward network 
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3. Single node with its own feedback 

It is a simple recurrent neural network having a single neuron with feedback to itself. 

 

Figure 1.10: Single node with own feedback 

4. Single layer recurrent network 

A single layer network with feedback from output can be directed to processing element 

itself or to other processing element/both. 

 

Figure 1.11: Single-layer recurrent network 

5. Multilayer recurrent network 

Processing element output can be directed back to the nodes in the preceding layer, 

forming a multilayer recurrent network. 
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Figure 1.12: Multilayer recurrent network 

 Maxnet –competitive interconnections having fixed weights. 

 

Figure 1.13: Competitive nets 

 

 On-center-off-surround/lateral inhibition structure – each processing neuron 

receives two different classes of inputs- “excitatory” input from nearby processing 

elements & “inhibitory” elements from more distantly located processing elements. This 

type of interconnection is shown below  

 

Figure 1.14: Lateral inhibition structure 
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1.6.2 Learning 

Learning or Training is the process by means of which a neural network adapts itself to a 

stimulus by making proper parameter adjustments, resulting in the production of desired 

response. 

Two broad kinds of learning in ANNs is: 

i) Parameter learning – updates connecting weights in a neural net. 

ii) Structure learning – focus on change in the network. 

Apart from these, learning in ANN is classified into three categories as 

i) Supervised learning 

ii) Unsupervised learning 

iii) Reinforcement learning 

i)    Supervised learning 

The Learning here is performed with the help of a teacher. Example: Consider the 

learning process of a small child. Child doesn’t know how to read/write. Their each and 

every action is supervised by a teacher. Actually a child works on the basis of the output 

that he/she has to produce. In ANN, each input vector requires a corresponding target 

vector, which represents the desired output. The input vector along with target vector is 

called training pair. Input vector results in output vector. The actual output vector is 

compared with desired output vector. If there is a difference means an error signal is 

generated by the network. It is used for adjustment of weights until actual output 

matches desired output. 

 

Figure 1.15: Supervised learning 
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ii)  Unsupervised learning 

Learning is performed without the help of a teacher. Example: tadpole – learn to swim 

by itself. In ANN, during training process, network receives input patterns and organize 

it to form clusters. 

 

Figure 1.16: Unsupervised learning 

From the above Fig.1.16 it is observed that no feedback is applied from environment to 

inform what output should be or whether they are correct. The network itself discover 

patterns, regularities, features/ categories from the input data and relations for the input 

data over the output. Exact clusters are formed by discovering similarities & 

dissimilarities so called as self – organizing. 

iii)  Reinforcement learning 

It is similar to supervised learning. Learning based on critic information is called 

reinforcement learning & the feedback sent is called reinforcement signal. The network 

receives some feedback from the environment. Feedback is only evaluative. 

 

Figure 1.17: Reinforcement learning 

The external reinforcement signals are processed in the critic signal generator, and the 

obtained critic signals are sent to the ANN for adjustment of weights properly to get 

critic feedback in future.  
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1.6.3 Activation Functions 

To make work more efficient and for exact output, some force or activation is given. Like 

that, activation function is applied over the net input to calculate the output of an ANN. 

Information processing of processing element has two major parts: input and output. An 

integration function (f) is associated with input of processing element. 

Several activation functions are there.  

1. Identity function: It is a linear function which is defined as  

𝑓(𝑥) =  𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 

    The output is same as the input.  

2. Binary step function: This function can be defined as 

𝑓(𝑥) = {
1 𝑖𝑓  𝑥 ≥ 𝜃

0 𝑖𝑓  𝑥 < 𝜃
 

Where, θ represents thresh hold value. It is used in single layer nets to convert the net 

input to an output that is binary (0 or 1). 

 3. Bipolar step function: This function can be defined as 

𝑓(𝑥) = {
1 𝑖𝑓  𝑥 ≥ 𝜃

−1 𝑖𝑓  𝑥 < 𝜃
 

Where, θ represents threshold value. It is used in single layer nets to convert the net input 

to   an output that is bipolar (+1 or -1). 

4. Sigmoid function: It is used in Back propagation nets. 

    Two types: 

a) Binary sigmoid function: It is also termed as logistic sigmoid function or  unipolar  

sigmoid function. It is defined as 

𝑓(𝑥) =  
1

1 + 𝑒−𝜆𝑥
 

        where, λ represents steepness parameter. The derivative of this function is  
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    𝑓′(𝑥) =  𝜆𝑓(𝑥)[1 − 𝑓(𝑥)]  

        The range of sigmoid function is 0 to 1. 

b) Bipolar sigmoid function: This function is defined as 

𝑓(𝑥) =  
2

1 + 𝑒−𝜆𝑥
− 1 =

1 − 𝑒−𝜆𝑥

1 + 𝑒−𝜆𝑥
 

Where λ represents steepness parameter and the sigmoid range is between -1 and +1. 

The derivative of this function can be 

𝑓 ′(𝑥) =  
𝜆

2
[1 + 𝑓(𝑥)][1 − 𝑓(𝑥)] 

    It is closely related to hyperbolic tangent function, which is written as 

     

ℎ(𝑥) = =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

ℎ(𝑥) = =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
 

 

     The derivative of the hyperbolic tangent function is  

 

ℎ′(𝑥) = [1 + ℎ(𝑥)][1 − ℎ(𝑥)] 

5. Ramp function: The ramp function is defined as 

𝑓(𝑥) = {

1 𝑖𝑓𝑥 > 1

𝑥 𝑖𝑓 0 ≤ 𝑥 ≤ 1
0 𝑖𝑓 𝑥 < 0

 

    The graphical representation of all these function is given in the upcoming figure 1.18 
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Figure 1.18: Depiction of activation functions: (A) identity function; (B) binary step function; (C) bipolar step 

function; (D) binary sigmoidal function; (E) bipolar sigmoidal function; (F) ramp function. 

 

1.7 McCulloch and Pitts Neuron 

It is discovered in 1943 and usually called as M-P neuron. M-P neurons are connected by 

directed weighted paths. Activation of M-P neurons is binary (i.e) at any time step the neuron 

may fire or may not fire. Weights associated with communication links may be excitatory 

(wgts are positive)/inhibitory (wgts are negative). Threshold plays major role here. There is a 

fixed threshold for each neuron and if the net input to the neuron is greater than the threshold 

then the neuron fires. They are widely used in logic functions. A simple M-P neuron is shown 

in the figure. It is excitatory with weight w (w>0) / inhibitory with weight –p (p<0). In the Fig., 
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inputs from x1 to xn possess excitatory weighted connection and Xn+1  to xn+m  has inhibitory 

weighted interconnections. 

 

Figure 1.19: McCulloch-Pins neuron model 

Since the firing of neuron is based on threshold, activation function is defined as  

𝑓(𝑥) = {
1  𝑖𝑓 𝑦𝑖𝑛 ≥ 𝜃
0 𝑖𝑓 𝑦𝑖𝑛 < 𝜃

 

For inhibition to be absolute, the threshold with the activation function should satisfy the 

following condition: 

θ > nw –p 

Output will fire if it receives “k” or more excitatory inputs but no inhibitory inputs where 

kw ≥ θ>(k-1) w 

The M-P neuron has no particular training algorithm. An analysis is performed to determine 

the weights and the threshold. It is used as a building block where any function or phenomenon 

is modeled based on a logic function. 

 

1.8 Hebb network 

Donald Hebb stated in 1949 that “In brain, the learning is performed by the change in the 

synaptic gap”. When an axon of cell A is near enough to excite cell B, and repeatedly or 

permanently takes place in firing it, some growth process or metabolic change takes place in 
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one or both the cells such that A’s efficiency, as one of the cells firing B, is increased. 

According to Hebb rule, the weight vector is found to increase proportionately to the product of 

the input and the learning signal. In Hebb learning, two interconnected neurons are ‘on’ 

simultaneously. The weight update in Hebb rule is given by 

wi(new) = wi (old)+ xi y 

Hebbs network is suited more for bipolar data. If binary data is used, the weight updation 

formula cannot distinguish two conditions namely: 

1.  A training pair in which an input unit is “on” and the target value is “off”.  

2.  A training pair in which both the input unit and the target value is “off”. 

Training algorithm 

The training algorithm is used for the calculation and adjustment of weights. The flowchart for 

the training algorithm of Hebb network is given below 

Step 0: First initialize the weights. Basically in this network they may be set to zero, i.e., w; = 

0, for i= 1 to n where "n" may be the total number of input neurons.  

Step 1: Steps 2-4 have to be performed for each input training vector and target output pair,  

s: t. 

Step 2: Input units activations are set. Generally, the activation function of input layer is 

identity function:  xi = si for i=1 to n 

Step 3: Output units activations are set: y = t. 

Step 4: Weight adjustments and bias adjustments are performed: 

 

wi(new) = wi(old)+xiy 

b(new)=b(old)+y 

       In step 4, the weight updation formula can be written in vector form as 

w(new) = w(old)+y 

                 Hence, Change in weight is expressed as  

Δw = xy 
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As a result,  

w(new)=w(old)+Δw 

Hebb rule is used for pattern association, pattern categorization, pattern classification and over 

a range of other areas. 

 

Flowchart of Training algorithm 

. 

Figure 1.20: Flowchart of Hebb training algorithm 
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Module – 2 

 

• Perceptron networks 

o Learning rule 

o Training and testing algorithm 

• Adaptive Linear Neuron 

• Back propagation Network 

o Architecture 

o Training algorithm 
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2.1 Perceptron networks 

2.1.1 Theory 

Perceptron networks come under single-layer feed-forward networks and are also called 

simple perceptrons. Various types of perceptrons were designed by Rosenblatt (1962) and 

Minsky-Papert (1969, 1988). 

The key points to be noted in a perceptron network are: 

1. The perceptron network consists of three units, namely, sensory unit (input unit), 

associator unit (hidden unit), and response unit (output unit). 

2. The sensory units are connected to associator units with fixed weights having values 1, 0 

or -l, which are assigned at random.  

3. The binary activation function is used in sensory unit and associator unit. 

4. The response unit has an activation of l, 0 or -1. The binary step with fixed threshold ɵ is 

used as activation for associator. The output signals that are sent from the associator unit 

to the response unit are only binary.  

5. The output of the perceptron network is given by 

𝑦 = 𝑓(𝑦𝑖𝑛) 

      where 𝑓(𝑦𝑖𝑛) is activation function and is defined as 

𝑓(𝑦𝑖𝑛) = {

1              𝑖𝑓𝑦𝑖𝑛 > 𝜃
 0  𝑖𝑓 − 𝜃 ≤ 𝑦𝑖𝑛 ≤ 𝜃
−1          𝑖𝑓 𝑦𝑖𝑛 < −𝜃

 

6. The perceptron learning rule is used in the weight updation between the associator unit 

and the response unit. For each training input, the net will calculate the response and it 

will determine whether or not an error has occurred. 

7. The error calculation is based on the comparison of the values of targets with those of 

the ca1culated outputs. 

8. The weights on the connections from the units that send the nonzero signal will get 

adjusted suitably. 

9. The weights will be adjusted on the basis of the learning rule an error has occurred for a 

particular training patterns .i.e.., 
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𝑤𝑖(𝑛𝑒𝑤) =  𝑤𝑖(𝑜𝑙𝑑) +  𝛼 𝑡𝑥𝑖 

𝑏(𝑛𝑒𝑤) =  𝑏(𝑜𝑙𝑑) +  𝛼 𝑡 

If no error occurs, there is no weight updation and hence the training process may be 

stopped. In the above equations, the target value "t" is +1 or-l and α is the learning rate. In 

general, these learning rules begin with an initial guess at the weight values and then 

successive adjustments are made on the basis of the evaluation of an objective function. 

Eventually, the learning rules reach a near optimal or optimal solution in a finite number of 

steps. 

 

Figure 2.1: Original perceptron network 

A Perceptron network with its three units is shown in above figure. The sensory unit can be 

a two-dimensional matrix of 400 photodetectors upon which a lighted picture with 

geometric black and white pattern impinges. These detectors provide a binary (0) electrical 

signal if the input signal is found to exceed a certain value of threshold. Also, these detectors 

are connected randomly with the associator unit. The associator unit is found to consist of a 

set of subcircuits called feature predicates. The feature predicates are hardwired to detect the 

specific feature of a pattern and are equivalent to the feature detectors. For a particular 

feature, each predicate is examined with a few or all of the responses of the sensory unit. It 

can be found that the results from the predicate units are also binary (0 or 1). The last unit, 

i.e. response unit, contains the pattern recognizers or perceptrons. The weights present in the 

input layers are all fixed, while the weights on the response unit are trainable. 
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2.1.2 Perceptron Learning Rule 

Learning signal is the difference between desired and actual response of a neuron. The 

perceptron learning rule is explained as follows: 

Consider a finite "n" number of input training vectors, with their associated target (desired) 

values x(n) and t(n), where “n” ranges from 1 to N. The target is either +1 or -1. The output 

''y" is obtained on the basis of the net input calculated and activation function being applied 

over the net input. 

𝑦 = 𝑓(𝑦𝑖𝑛) = {

1              𝑖𝑓𝑦𝑖𝑛 > 𝜃
 0  𝑖𝑓 − 𝜃 ≤ 𝑦𝑖𝑛 ≤ 𝜃
−1          𝑖𝑓 𝑦𝑖𝑛 < −𝜃

 

The weight updation in case of perceptron learning is as shown. 

If y ≠ t, then 

  𝑤(𝑛𝑒𝑤) =  𝑤(𝑜𝑙𝑑) +  𝛼 𝑡𝑥 (𝛼 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) 

else,  

𝑤(𝑛𝑒𝑤) =  𝑤(𝑜𝑙𝑑) 

The weights can be initialized at any values in this method. The perceptron rule convergence 

theorem states that “ If there is a weight vector W such that 𝑓(𝑥(𝑛)𝑊) =  𝑡(𝑛), for all n 

then for any starting vector w1, the perceptron learning rule will convergence to a weight 

vector that gives the correct response for all training patterns, and this learning takes place 

within a finite number of steps provided that the solution exists”. 

 

2.1.3 Architecture 

 

Figure 2.2: Single classification perceptron network 
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Here only the weights between the associator unit and the output unit can be adjusted, and 

the weights between the sensory and associator units are fixed. 

 

2.1.4 Flowchart for Training Process 

 

Figure 2.3: Flowchart for perceptron network with single output 
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2.1.5 Perceptron Training Algorithm for Single Output Classes 

Step 0: Initialize the weights and the bias (for easy calculation they can be set to zero). Also 

initialize the learning rate α (0< α ≤ 1).  For simplicity α is set to 1. 

Step 1: Perform Steps 2-6 until the final stopping condition is false. 

Step 2: Perform Steps 3-5 for each training pair indicated by s:t. 

Step 3: The input layer containing input units is applied with identity activation functions: 

𝑥𝑖 = 𝑠𝑖  

Step 4: Calculate the output of the network. To do so, first obtain the net input: 

𝑦𝑖𝑛 = 𝑏 +∑𝑥𝑖𝑤𝑖

𝑛

𝑖=1

 

Where "n" is the number of input neurons in the input layer. Then apply activations over the 

net input calculated to obtain the output: 

𝑦 = 𝑓(𝑦𝑖𝑛) = {

1              𝑖𝑓𝑦𝑖𝑛 > 𝜃
 0  𝑖𝑓 − 𝜃 ≤ 𝑦𝑖𝑛 ≤ 𝜃
−1          𝑖𝑓 𝑦𝑖𝑛 < −𝜃

 

Step 5: Weight and bias adjustment: Compare the value of the actual (calculated) output and 

desired (target) output. 

If y ≠ t, then 

𝑤𝑖(𝑛𝑒𝑤) =  𝑤𝑖(𝑜𝑙𝑑) +  𝛼 𝑡𝑥𝑖 

𝑏(𝑛𝑒𝑤) =  𝑏(𝑜𝑙𝑑) +  𝛼 𝑡 

else,  

𝑤𝑖(𝑛𝑒𝑤) =  𝑤𝑖(𝑜𝑙𝑑) 

𝑏(𝑛𝑒𝑤) =  𝑏(𝑜𝑙𝑑) 

Step 6: Train the network until there is no weight change. This is the stopping condition for 

the network. If this condition is not met, then start again from Step 2. 
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2.1.6 Perceptron Network Testing Algorithm 

Step 0: The initial weights to be used here are taken from the training algorithms (the final 

weights obtained during training). 

Step 1: For each input vector X to be classified, perform Steps 2-3. 

Step 2: Set activations of the input unit. 

Step 3: Obtain the response of output unit. 

𝑦𝑖𝑛 =∑𝑥𝑖𝑤𝑖

𝑛

𝑖=1

 

𝑦 = 𝑓(𝑦𝑖𝑛) = {

1              𝑖𝑓𝑦𝑖𝑛 > 𝜃

 0  𝑖𝑓 − 𝜃 ≤ 𝑦𝑖𝑛 ≤ 𝜃
−1          𝑖𝑓 𝑦𝑖𝑛 < −𝜃

 

Thus, the testing algorithm tests the performance of network. In the case of perceptron 

network, it can be used for linear separability. Here the separating line may be based on the 

value of threshold that is, the threshold used in the activation function must be a non 

negative value.  

The condition for separating the response from the region of positive to region of zero is 

𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 > 𝜃 

The condition for separating the response from the region of zero to region of negative is 

𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 < −𝜃 

The conditions above are stated for a single layer perceptron network with two input 

neurons and one output neuron and one bias.  

 

2.2  Adaptive Linear Neuron 

 

2.2.1 Theory 

The units with linear activation function are called linear units. A network with a single 

linear unit is called an Adaline (adaptive linear neuron). That is, in an Adaline, the input-

output relationship is linear. Adaline uses bipolar activation for its input signals and its 

target output. The weights between the input and the output are adjustable. The bias in 
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Adaline acts like an adjustable weight, whose connection is from a unit with activations 

being always 1. Adaline is a net which has only one output unit. The Adaline network may 

be trained using delta rule. The delta rule may also be called as least mean square (LMS) 

rule or Widrow-Hoff rule. This learning rule is found to minimize the mean squared error 

between the activation and the target value. 

 

2.2.2 Delta Rule for Single Output Unit 

The perceptron learning rule originates from the Hebbian assumption while the delta rule is 

derived from the gradient descendent method (it can be generalized to more than one layer). 

Also, the perceptron learning rule stops after a finite number of leaning steps, but the 

gradient-descent approach continues forever, converging only asymptotically to the solution. 

The delta rule updates the weights between the connections so as to minimize the difference 

between the net input to the output unit and the target value. The major aim is to minimize 

the error over all training patterns. This is done by reducing the error for each pattern, one at 

a time. 

The delta rule for adjusting the weight of i th pattern (i = 1 to n) is 

𝛥𝑤𝑖 =  𝛼(𝑡 − 𝑦𝑖𝑛)𝑥𝑖 

Where Δwi is the weight change; α the learning rate; x the vector of activation of input unit; 

yin the net input to output unit, i.e., 𝑦𝑖𝑛 = ∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1  ; t the target output. The delta rule in 

case of several output units for adjusting the weight from ith input unit to the jth output unit 

(for each pattern) is 

𝛥𝑤𝑖𝑗 =  𝛼(𝑡𝑗 − 𝑦𝑖𝑛𝑗)𝑥𝑖 

 

2.2.3 Architecture 

Adaline is a single unit neuron, which receives input from several units and also from one 

unit called bias. The basic Adaline model consists of trainable weights. Inputs are either of 

the two values (+ 1 or -1) and the weights have signs (positive or negative). Initially, 

random weights are assigned. The net input calculated is applied to a quantizer transfer 

function (possibly activation function) that restores the output to + 1 or -1. The Adaline 
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model compares the actual output with the target output and on the basis of the training 

algorithm, the weights are adjusted. 

 

Figure 2.4: Adaline model 

 

2.2.4 Flowchart for Training Process 
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Figure 2.5: Flowchart for Adaline training process 

 

2.2.5 Training Algorithm 

Step 0: Weights and bias are set to some random values but not zero. Set the learning rate 

parameter α. 

Step 1: Perform Steps 2-6 when stopping condition is false. 

Step 2: Perform Steps 3-5 for each bipolar training pair s:t. 
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Step 3: Set activations for input units i = 1 to n. 

𝑥𝑖 = 𝑠𝑖  

Step 4: Calculate the net input to the output unit. 

𝑦𝑖𝑛 = 𝑏 +∑𝑥𝑖𝑤𝑖

𝑛

𝑖=1

 

Step 5: Update the weights and bias for i= 1 to n 

𝑤𝑖(𝑛𝑒𝑤) =  𝑤𝑖(𝑜𝑙𝑑) +  𝛼(𝑡 − 𝑦𝑖𝑛)𝑥𝑖 

𝑏(𝑛𝑒𝑤) =  𝑏(𝑜𝑙𝑑) + 𝛼(𝑡 − 𝑦𝑖𝑛) 

Step 6: If the highest weight change that occurred during training is smaller than a specified 

tolerance then stop the training process, else continue. This is the rest for stopping condition 

of a network. 

 

2.2.6 Testing Algorithm 

Step 0: Initialize the weights. (The weights are obtained from the training algorithm.)  

Step 1: Perform Steps 2-4 for each bipolar input vector x. 

Step 2: Set the activations of the input units to x. 

Step 3: Calculate the net input to the output unit: 

𝑦𝑖𝑛 = 𝑏 +∑𝑥𝑖𝑤𝑖 

Step 4: Apply the activation function over the net input calculated: 

𝑦 =  {
1    𝑖𝑓 𝑦𝑖𝑛  ≥ 0

−1 𝑖𝑓 𝑦𝑖𝑛 < 0
 

 

2.3  Back propagation Network 

2.3.1 Theory 

The back propagation learning algorithm is one of the most important developments in 

neural networks (Bryson and Ho, 1969; Werbos, 1974; Lecun, 1985; Parker, 1985; 
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Rumelhart, 1986). This learning algorithm is applied to multilayer feed-forward networks 

consisting of processing elements with continuous differentiable activation functions. The 

networks associated with back-propagation learning algorithm are also called back-

propagation networks. (BPNs). For a given set of training input-output pair, this algorithm 

provides a procedure for changing the weights in a BPN to classify the given input patterns 

correctly. The basic concept for this weight update algorithm is simply the gradient descent 

method. This is a methods were error is propagated back to the hidden unit. Back 

propagation network is a training algorithm. 

The training of the BPN is done in three stages - the feed-forward of the input training 

pattern, the calculation and back-propagation of the error, and updation of weights. The 

testing of the BPN involves the computation of feed-forward phase only. There can be more 

than one hidden layer (more beneficial) but one hidden layer is sufficient. Even though the 

training is very slow, once the network is trained it can produce its outputs very rapidly. 

 

2.3.2 Architecture 

 

Figure 2.6: Architecture of a back propagation network 

A back-propagation neural network is a multilayer, feed-forward neural network consisting 

of an input layer, a hidden layer and an output layer. The neurons present in the hidden and 

output layers have biases, which are the connections from the units whose activation is 

always 1. The bias terms also acts as weights. During the back propagation phase of 

learning, signals are sent in the reverse direction. The inputs sent to the BPN and the output 
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obtained from the net could be either binary (0, 1) or bipolar (-1, +1). The activation 

function could be any function which increases monotonically and is also differentiable. 

 

2.3.3 Flowchart 

The terminologies used in the flowchart and in the training algorithm are as follows: 

x = input training vector (x1,….,xi,….xn) 

t = target output vector (t1,….,tk,….tm)  

α= learning rate parameter 

xi = input unit i. (Since the input layer uses identity activation function, the input and output 

signals here are same.) 

v0i = bias on jth hidden unit 

w0k = bias on kth output unit 

zj=hidden unit j. The net input to zj is 

𝑧𝑖𝑛𝑗 = 𝑣0𝑗 +∑𝑥𝑖𝑣𝑖𝑗

𝑛

𝑖=1

 

and the output is 

𝑧𝑗 = 𝑓(𝑧𝑖𝑛𝑗) 

yk = output unit k. The net input to yk is 

𝑦𝑖𝑛𝑘 = 𝑤0𝑘 +∑𝑧𝑗𝑤𝑗𝑘

𝑝

𝑗=1

 

and the output is 

𝑦𝑘 = 𝑓(𝑦𝑖𝑛𝑘) 

δk = error correction weight adjustment for wjk that is due to an error in unit yk, which is 

back-propagated to the hidden units that feed into unit yk 

δj = error correction weight adjustment for vij that is due to the back-propagation of error to 

the hidden unit is zj. 
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The commonly used activation functions are binary, sigmoidal and bipolar sigmoidal 

activation functions. These functions are used in the BPN because of the following 

characteristics: (i) Continuity (ii) Differentiability iii) Non decreasing monotonic.  
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Figure 2.7: Flowchart for back - propagation network training 

 

2.3.4 Training Algorithm 

Step 0: Initialize weights and learning rate (take some small random values). 
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Step 1: Perform Steps 2-9 when stopping condition is false. 

Step 2: Perform Steps 3-8 for each training pair. 

Feedforward Phase 1 

Step 3: Each input unit receives input signal xi and sends it to the hidden unit (i = l to n). 

Step 4: Each hidden unit zj (j = 1 to p) sums its weighted input signals to calculate net input: 

𝑧𝑖𝑛𝑗 = 𝑣0𝑗 +∑𝑥𝑖𝑣𝑖𝑗

𝑛

𝑖=1

 

Calculate output of the hidden unit by applying its activation functions over 𝑧𝑖𝑛𝑗 

(binary or bipolar sigmoidal activation function): 

𝑧𝑗 = 𝑓(𝑧𝑖𝑛𝑗) 

and send the output signal from the hidden unit to the input of output layer units. 

Step 5: For each output unit 𝑦𝑘 (k = 1 to m), calculate the net input: 

𝑦𝑖𝑛𝑘 = 𝑤0𝑘 +∑𝑧𝑗𝑤𝑗𝑘

𝑝

𝑗=1

 

and apply the activation function to compute output signal  

𝑦𝑘 = 𝑓(𝑦𝑖𝑛𝑘) 

Back-propagation of error (Phase II) 

Step 6: Each output unit 𝑦𝑘(k=1 to m) receives a target pattern corresponding to the input 

training pattern and computes the error correction term: 

𝛿𝑘 = (𝑡𝑘 − 𝑦𝑘)𝑓
′(𝑦𝑖𝑛𝑘) 

The derivative 𝑓 ′(𝑦𝑖𝑛𝑘) can be calculated as in activation function section. On the basis of 

the calculated error correction term, update the change in weights and bias: 

∆𝑤𝑗𝑘 = 𝛼𝛿𝑘𝑧𝑗;   ∆𝑤0𝑘 = 𝛼𝛿𝑘 

Also, send 𝛿𝑘 to the hidden layer backwards. 
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Step 7: Each hidden unit (𝑧𝑗 = 1 to p) sums its delta inputs from the output units: 

𝛿𝑖𝑛𝑗 =∑𝛿𝑘𝑤𝑗𝑘

𝑚

𝑘=1

 

The term 𝛿𝑖𝑛𝑗 gets multiplied with the derivative of 𝑓(𝑧𝑖𝑛𝑗) to calculate the error term: 

𝛿𝑗 = 𝛿𝑖𝑛𝑗𝑓
′(𝑧𝑖𝑛𝑗) 

The derivative 𝑓 ′(𝑧𝑖𝑛𝑗)  can be calculated as activation function section depending on 

whether binary or bipolar sigmoidal function is used. On the basis of the calculated  𝛿𝑗 , 

update the change in weights and bias: 

∆𝑣𝑖𝑗 = 𝛼𝛿𝑗𝑥𝑖;   ∆𝑣0𝑗 = 𝛼𝛿𝑗 

Weight and bias updation (Phase IIl): 

Step 8: Each output unit (yk, k = 1 to m) updates the bias and weights: 

𝑤𝑗𝑘(𝑛𝑒𝑤) =  𝑤𝑗𝑘(𝑜𝑙𝑑) +  𝛥𝑤𝑗𝑘 

𝑤0𝑘(𝑛𝑒𝑤) =  𝑤0𝑘(𝑜𝑙𝑑) +  𝛥𝑤0𝑘 

 Each hidden unit (zj; j = 1 to p) updates its bias and weights: 

𝑣𝑖𝑗(𝑛𝑒𝑤) =  𝑣𝑖𝑗(𝑜𝑙𝑑) +  𝛥𝑣𝑖𝑗 

𝑣0𝑗(𝑛𝑒𝑤) =  𝑣0𝑗(𝑜𝑙𝑑) +  𝛥𝑣0𝑗 

Step 9: Check for the stopping condition. The stopping condition may be certain number of 

epochs reached or when the actual output equals the target output. 

 

2.4 Madaline 
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2.5 Radial Basis Function Network 
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2.6 Time Delay Neural Network 

 

 

 

 

2.7 Functional Link Networks 
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2.8 Tree Neural Networks 

 

 

 

2.9 Wavelet Neural Networks 
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2.10 Advantages of Neural Networks 

 

1. Mimicks human control logic.  

2. Uses imprecise language.  

3. Inherently robust. 

4. Fails safely.  

5. Modified and tweaked easily. 

 

2.11 Disadvantages of Neural Networks 

 

1. Operator's experience required. 

2. System complexity. 

 

2.12 Applications of Neural Networks 

 

1. Automobile and other vehicle subsystems, such as automatic transmissions, ABS and cruise 

control (e.g. Tokyo monorail). 

2. Air conditioners.  

3. Auto focus on cameras.  

4. Digital image processing, such as edge detection.  

5. Rice cookers.  

6. Dishwashers.  

7. Elevators.  
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2.13 Fuzzy logic 

 

 

 

Figure 3.1: A fuzzy logic system accepting imprecise data and providing a decision 

In 1965 Lotfi Zadeh, published his famous paper “Fuzzy sets”. This new logic for representing 

and manipulating fuzzy terms was called fuzzy logic, and Zadeh became the Master/Father of 

fuzzy logic. 

Fuzzy logic is the logic underlying approximate, rather than exact, modes of reasoning. It 

operates on the concept of membership. The membership was extended to possess various 

"degrees of membership" on the real continuous interval [0, l].  

In fuzzy systems, values are indicated by a number (called a truth value) ranging from 0 to l, 

where 0.0 represents absolute falseness and 1.0 represents absolute truth. 

 

 

Figure 3.2:    (a) Boolean Logic                                  (b) Multi-valued Logic 

 

2.14 Classical sets(Crisp sets) 

A classical set is a collection of objects with certain characteristics. For example, the user may 

define a classical set of negative integers, a set of persons with height less than 6 feet, and a set 

of students with passing grades. Each individual entity in a set is called a member or an element 

of the set. 

There are several ways for defining a set. A set may be defined using one of the following: 

1. The list of all the members of a set may be given.  

Example A= {2,4,6,8,10} (Roaster form) 

2. The properties of the set elements may be specified.  

Example A = {x|x is prime number < 20} (Set builder form) 

3. The formula for the definition of a set may be mentioned. Example 

 

 

Fuzzy Logic System 

Imprecise and vague data Decisions 
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A = {xi =
xi + 1

5
, i = 1 to 10, where  xi = 1} 

4. The set may be defined on the basis of the results of a logical operation. 

Example A = {x|x is an element belonging to P AND Q} 

5. There exists a membership function, which may also be used to define a set. The 

membership is denoted by the letter 𝜒 and the membership function for a set A is given by 

(for all values of x). 

𝜒𝐴(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴
0, 𝑖𝑓 𝑥 ∉ 𝐴

 

The set with no elements is defined as an empty set or null set. It is denoted by symbol Ø. 

The set which consist of all possible subset of a given set A is called power set 

𝑃(𝐴) =  {𝑥|𝑥 ⊆ 𝐴} 

 

2.14.1 Properties 

 

1. Commutativity 

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴;   𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

2. Associativity 

𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶;   𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶 

3. Distributivity 

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)
 

4. Idempotency 

𝐴 ∪ 𝐴 = 𝐴;    𝐴 ∩ 𝐴 = 𝐴 

5. Transitivity 

𝐼𝑓 𝐴 ⊆ 𝐵 ⊆ 𝐶, 𝑡ℎ𝑒𝑛 𝐴 ⊆ 𝐶 

6. Identity 

𝐴 ∪ ∅ = 𝐴,   𝐴 ∩ ∅ = ∅

𝐴 ∪ 𝑋 = 𝑋,      𝐴 ∩ 𝑋 = 𝐴
 

7. Involution (double negation) 

𝐴̿ = 𝐴 

8. Law of excluded middle 

𝐴 ∪ 𝐴̅ = 𝑋 
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9. Law of contradiction 

𝐴 ∩ 𝐴̅ = ∅ 

10. DeMorgans law 

|𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅| = 𝐴̅ ∪ 𝐵̅;   |𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅| = 𝐴̅ ∩ 𝐵̅; 

 

2.14.2 Operations on Classical sets 

 

1. Union 

The union between two sets gives all those elements in the universe that belong to either 

set A or set B or both sets A and B. The union operation can be termed as a logical OR 

operation. The union of two sets A and B is given as 

𝐴 ∪ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝑏} 

The union of sets A and B is illustrated by the Venn diagram shown below 

 

Figure 3.3: Union of two sets 

2. Intersection 

The intersection between two sets represents all those elements in the universe that 

simultaneously belong to both the sets. The intersection operation can be termed as a 

logical AND operation. The intersection of sets A and B is given by 

𝐴 ∩ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝑏} 

The intersection of sets A and B is illustrated by the Venn diagram shown below 

 

Figure 3.4: Intersection of two sets 
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3. Complement  

The complement of set A is defined as the collection of all elements in universe X that 

do not reside in set A, i.e., the entities that do not belong to A. It is denoted by A and is 

defined as 

𝐴̅ = {𝑥|𝑥 ∉ 𝐴, 𝑥 ∈ 𝑋} 

where X is the universal set and A is a given set formed from universe X. The 

complement operation of set A is show below 

 

Figure 3.5: Complement of set A 

4. Difference (Subtraction)  

The difference of set A with respect to ser B is the collection of all elements in the 

universe that belong to A but do not belong to B, i.e., the difference set consists of all 

elements that belong to A bur do not belong to B. It is denoted by A l B or A- B and is 

given by 

𝐴|𝐵 𝑜𝑟 (𝐴 − 𝐵) = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵} =  𝐴 − (𝐴 ∩ 𝐵) 

       The vice versa of it also can be performed 

𝐵|𝐴 𝑜𝑟 (𝐵 − 𝐴) =  𝐵 − (𝐵 ∩ 𝐴) = {𝑥|𝑥 ∈ 𝐵 𝑎𝑛𝑑 𝑥 ∉ 𝐴}  

       The above operations are shown below 

 

   (A)                            (B) 

Figure 3.6:   (A) Difference A|B or (A-B);  (B) Difference B|A or (B-A) 
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2.14.3 Function Mapping of Classical Sets 

Mapping is a rule of correspondence between set-theoretic forms and function theoretic 

forms. A classical set is represented by its characteristic function 𝜒𝐴(𝑥) where x is the 

element in the universe. 

Now consider X and Y as two different universes of discourse. If an element x contained in 

X corresponds to an element y in Y. it is called mapping from X to Y, i.e., f: X→Y. On the 

basis of this mapping, the characteristics function is defined as 

𝜒𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

 

where 𝜒𝐴 is the membership in set A for element x in the universe. The membership concept 

represents mapping from an element x in universe X to one of the two elements in universe 

Y (either to element 0 or 1).  

Let A and B be two sets in universe X. The function-theoretic forms of operations performed 

between these two sets are given as follows:  

1. Union 

𝜒𝐴∪𝐵(𝑥) = 𝜒𝐴(𝑥) ∨ 𝜒𝐵(𝑥) = 𝑚𝑎𝑥[𝜒𝐴(𝑥), 𝜒𝐵(𝑥)]  

where ∨ indicates max operator.  

2. Intersection 

𝜒𝐴∩𝐵(𝑥) = 𝜒𝐴(𝑥) ∧ 𝜒𝐵(𝑥) = 𝑚𝑖𝑛[𝜒𝐴(𝑥), 𝜒𝐵(𝑥)]  

where ∧ indicates min operator.  

3. Complement 

𝜒𝐴̅(𝑥) = 1 − 𝜒𝐴(𝑥)  

2.15 Fuzzy sets 

A fuzzy set 𝐴
~

 in the universe of discourse U can be defined as 

𝐴
~
=  {(𝑥,µ

𝐴
~

(𝑥)) | 𝑥 ∈ 𝑋} 
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where µ
𝐴
~

(𝑥) is the degree of membership of x in 𝐴
~

 and it indicates the degree that x belongs to 

 𝐴
~
 . In the fuzzy theory, fuzzy set A of universe X is defined by function µ

𝐴
~

(𝑥) called the 

membership function of set A. 

µ
𝐴
~

(𝑥): X → [0, 1],   where       µ
𝐴
~

(𝑥)  = 1          if x is totally in A; 

                                                                       µ
𝐴
~

(𝑥)   = 0         if x is not in A; 

                                                                       0 < µ
𝐴
~

(𝑥) < 1     if x is partly in A. 

This set allows a continuum of possible choices.  For any element x of universe X, membership 

function A(x) equals the degree to which x is an element of set A.  This degree, a value 

between 0 and 1, represents the degree of membership, also called membership value, of 

element x in set A.  

 

Figure 3.7: Boundary region of a fuzzy set 

From figure 3.7 it can be noted that "a" is clearly a member of fuzzy set P, "c" is clearly not a 

member of fuzzy set P and the membership of "b" is found to be vague. Hence "a" can take 

membership value 1, "c" can take membership value 0 and "b" can take membership value 

between 0 and 1 [0 to 1], say 0.4, 0.7, etc. This is said to be a partial membership of fuzzy set P. 

There are other ways of representation of fuzzy sets; all representations allow partial 

membership to be expressed. When the universe of discourse U is discrete and finite, fuzzy 

set 𝐴
~

 is given as follows: 

𝐴
~
= {

µ𝐴
~
(𝑥1)

𝑥1
+
µ𝐴
~
(𝑥2)

𝑥2
+
µ𝐴
~
(𝑥3)

𝑥3
+⋯} =  {∑

µ𝐴
~
(𝑥𝑖)

𝑥𝑖

𝑛

𝑖=1

} 
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2.15.1 Properties 

Fuzzy sets follow the same properties as crisp sets except for the law of excluded middle 

and law of contradiction. 

That is, for fuzzy set 𝐴
~

 

𝐴
~
∪ 𝐴

~
̅ = 𝑈;                    𝐴

~
∩ 𝐴
~
̅ = ∅  

 

1. Commutativity 

𝐴
~
∪ 𝐵

~
= 𝐵

~
∪ 𝐴

~
;   𝐴
~
∩ 𝐵

~
= 𝐵

~
∩ 𝐴
~

 

2. Associativity 

𝐴
~
∪ (𝐵

~
∪ 𝐶
~
) = (𝐴

~
∪ 𝐵

~
) ∪ 𝐶

~
  

𝐴
~
∩ (𝐵

~
∩ 𝐶
~
) = (𝐴

~
∩ 𝐵

~
) ∩ 𝐶

~

 

3. Distributivity 

𝐴
~
∪ (𝐵

~
∩ 𝐶
~
) = (𝐴

~
∪ 𝐵

~
) ∩ (𝐴

~
∪ 𝐶
~
)

𝐴
~
∩ (𝐵

~
∪ 𝐶
~
) = (𝐴

~
∩ 𝐵

~
) ∪ (𝐴

~
∩ 𝐶
~
)

 

4. Idempotency 

𝐴
~
∪ 𝐴

~
= 𝐴

~
;   𝐴

~
∩ 𝐴
~
= 𝐴

~
 

 

5. Transitivity 

𝐼𝑓 𝐴
~
⊆ 𝐵

~
⊆ 𝐶

~
, 𝑡ℎ𝑒𝑛 𝐴

~
⊆ 𝐶

~
 

6. Identity 

𝐴
~
∪ ∅ = 𝐴

~
  𝑎𝑛𝑑 𝐴

~
∪ 𝑈 = 𝑈

𝐴
~
∩ ∅ = ∅ 𝑎𝑛𝑑  𝐴

~
∩ 𝑈 = 𝐴

~

 

7. Involution (double negation) 

𝐴
~
̿ = 𝐴

~
 

8. DeMorgans law 

|𝐴
~
∩ 𝐵

~
̅̅ ̅̅ ̅̅ ̅| = 𝐴

~
̅ ∪ 𝐵

~
̅;   |𝐴

~
∪ 𝐵

~
̅̅ ̅̅ ̅̅ ̅| = 𝐴

~
̅ ∩ 𝐵

~
̅;  
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2.15.2 Operations on fuzzy sets 

 

1. Union 

The union of fuzzy sets 𝐴
~
 and 𝐵

~
, denoted by 𝐴

~
∪ 𝐵

~
is defined as 

𝜇𝐴
~
∪𝐵
~
(𝑥) = 𝑚𝑎𝑥 [µ𝐴

~
(𝑥), µ𝐵

~
(𝑥)] = µ𝐴

~
(𝑥) ∨ µ𝐵

~
(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈 

where ∨ indicates max operator. The Venn diagram for union operation of fuzzy sets 

𝐴
~

and 𝐵
~
 is shown below figure. 

 

Figure 3.8: Union of fuzzy sets 𝐴
~
 and  𝐵

~
 

2. Intersection 

The union of fuzzy sets 𝐴
~
 and 𝐵

~
, denoted by 𝐴

~
∩ 𝐵

~
, is defined as 

𝜇𝐴
~
∩𝐵
~
(𝑥) = 𝑚𝑖𝑛 [µ𝐴

~
(𝑥), µ𝐵

~
(𝑥)] = µ𝐴

~
(𝑥) ∧ µ𝐵

~
(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈 

where ∧ indicates min operator. The Venn diagram for intersection operation of fuzzy 

sets 𝐴
~
 and 𝐵

~
 is shown below figure. 

 

Figure 3.9: Intersection of fuzzy sets 𝐴
~

and  𝐵
~
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3. Complement 

When µ𝐴
~
(𝑥)  ∈ [0,1], the complement of 𝐴

~
, denoted as 𝐴̅ is defined by, 

𝜇𝐴
~
̅(𝑥) = 1 − µ𝐴

~
(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈 

  The Venn diagram for complement operation of fuzzy set 𝐴
~
 is shown below figure. 

 

Figure 3.10: Complement of fuzzy set 𝐴
~

 

4. More Operations on Fuzzy Sets 

a. Algebraic sum 

The algebraic sum (𝐴
~
+ 𝐵

~
 ) of fuzzy sets, fuzzy sets 𝐴

~
𝑎𝑛𝑑 𝐵

~
 is defined as 

𝜇𝐴
~
+𝐵
~
(𝑥) = µ𝐴

~
(𝑥) + µ𝐵

~
(𝑥) − µ𝐴

~
(𝑥). µ𝐵

~
(𝑥) 

b. Algebraic product 

The algebraic product (𝐴
~
. 𝐵
~
 ) of fuzzy sets, fuzzy sets 𝐴

~
 𝑎𝑛𝑑 𝐵

~
 is defined as 

𝜇𝐴
~
.𝐵
~
(𝑥) =  µ𝐴

~
(𝑥). µ𝐵

~
(𝑥) 

c. Bounded sum 

The bounded sum (𝐴
~
⊕𝐵

~
 ) of fuzzy sets, fuzzy sets 𝐴

~
 𝑎𝑛𝑑 𝐵

~
 is defined as 

𝜇𝐴
~
⊕𝐵
~
(𝑥) = min {1, µ𝐴

~
(𝑥) + µ𝐵

~
(𝑥)} 

d. Bounded difference 

The bounded difference (𝐴
~
⊙𝐵

~
 ) of fuzzy sets, fuzzy sets 𝐴

~
 𝑎𝑛𝑑 𝐵

~
 is defined as 

𝜇𝐴
~
⊙𝐵
~
(𝑥) = max {0, µ𝐴

~
(𝑥) − µ𝐵

~
(𝑥)} 
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2.16 Classical relations 

A classical binary relation represents the presence or absence of a connection or interaction 

between the elements of two sets. 

• Cartesian Product of Relation 

An ordered r-tuple is an ordered sequence of r-elements expressed in the form (a1, a2, a3, ... , 

ar). An unordered tuple is a collection of r-elements without any restrictions in order. For r = 

2, the r-tuple is called an ordered pair. For crisp sets A1, A2, ... , Ar, the set of all r-tuples (a1, 

a2, a3, ... , ar), where a1∈ A1, a2 ∈ A2 ... , ar ∈ Ar is called me Cartesian product of A1,A2 .. ,Ar 

and is denoted by A1 x A2 x ... x Ar.  

Consider two universes X and Y; their Cartesian product X x Y is given by 

𝑋 × 𝑌 = {(𝑥, 𝑦)| 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} 

Here the Cartesian product forms an ordered pair of every 𝑥 ∈ 𝑋 with every 𝑦 ∈ 𝑌. Every 

element in X is completely related to every element in Y. The characteristic function, 

denoted by χ, gives the strength of the relationship between ordered pair of elements in each 

universe. If it takes unity as its value, then complete relationship is found; if the value is 

zero, then there is no relationship, i.e., 

𝜒𝑋×𝑌(𝑥, 𝑦) = {
1, (𝑥, 𝑦) ∈ 𝑋 × 𝑌

0, (𝑥, 𝑦) ∉ 𝑋 × 𝑌
 

When the universes or sets are finite, then the relation is represented by a matrix called 

relation matrix. An r-dimensional relation matrix represents an r-ary relation. Thus, binary         

relations are represented by two-dimensional matrices. 

Consider the elements defined in the universes X and Y as follows: 

X={2,4,6}     Y= {p,q,r} 

The Cartesian product of these two sets leads to  

X × Y= {(p, 2), (p, 4), (p, 6), (q, 2), (q, 4), (q, 6), (r, 2), (r, 4), (r, 6)} 

From this set one may select a subset such that  

R= {(p, 2), (q, 4), (r, 4), (r, 6)} 
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Subset R can be represented using a coordinate diagram as shown in below figure 

  

Figure 3.11: Coordinate diagram of a relation 

The relation could equivalently be represented using a matrix as follows 

R P Q R 

2 1 0 0 

4 0 1 1 

6 0 0 1 

 

The relation between sets X and Y may also be expressed by mapping representations as 

shown in below figure. 

 

Figure 3.12: Mapping representation of a relation 

A binary relation in which each element from set X is not mapped to more than one element 

in second set Y is called a function and is expressed as 

𝑅: 𝑋 → 𝑌 

The characteristic function is used to assign values of relationship in the mapping of the 

Cartesian space X × Y to the binary values (0, 1) and is given by 
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𝜒𝑅(𝑥, 𝑦) = {
1, (𝑥, 𝑦) ∈ 𝑅

0, (𝑥, 𝑦) ∉ 𝑅
 

The figure 3.12 (A) and (B) show the illustration of  𝑅: 𝑋 → 𝑌 

 

             (A)                                                                     (B) 

Figure 3.13: Illustration of  𝑹:𝑿 → 𝒀 

The constrained Cartesian product for sets when r = 2 (i.e., A×A=A2) is called identity 

relation, and the unconstrained Cartesian product for sets when r = 2 is called universal 

relation. 

Consider set A= {2,4,6}. 

Then universal relation (UA) and identity relation (IA) are given as follows: 

UA = {(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(2,6),(4,6),(6,6)} 

IA = {(2,2),(4,4),(6,6)} 

• Cardinality of Classical Relation 

Consider n elements of the universe X being related to m elements of universe Y. When the 

cardinality of X= 𝑛𝑋 and the cardinality of Y =𝑛𝑌  , then the cardinality of relation R between 

the two universe is  

𝑛𝑋×𝑌 = 𝑛𝑋 × 𝑛𝑌 

The cardinality of the power set P(X × Y) describing the relation is given by 

𝑛𝑃(𝑋×𝑌) = 2
(𝑛𝑋𝑛𝑌) 
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2.16.1 Operations on classical relations 

Let R and S be two separate relations on the Cartesian universe X ×Y. The null relation and 

the complete relation are defined by the relation matrices ØR and ER. An example of a 3 X 3 

form of the ØR and ER matrices is given below: 

∅𝑅 = [
0 0 0
0 0 0
0 0 0

]     and     𝐸𝑅 = [
1 1 1
1 1 1
1 1 1

] 

1. Union 

R ∪ S → χR∪S(x, y): χR∪S(x, y) = max[χR(x, y), χS(x, y)]  

2. Intersection 

R ∩ S → χR∩S(x, y): χR∩S(x, y) = min[χR(x, y), χS(x, y)] 

3. Complement 

R̅ → χR ̅(x, y) ∶  χR ̅(x, y) = 1 − χR ̅(x, y) 

4. Containment 

R ⊂ S → χR(x, y): χR(x, y) ≤ χS(x, y) 

5. Identity 

∅ → ∅R      and   X → ER       

 

• Composition of Classical Relations 

Let R be a relation that maps elements from universe X to universe an e a relation that maps 

elements from universe Y to universe Z 

𝑅 ⊆ 𝑋 × 𝑌      𝑎𝑛𝑑     𝑆 ⊆ 𝑌 × 𝑍 

The composition operations are of two types:  

1. Max-min composition  

The max-min composition is defined by the function theoretic expression as 

𝑇 = 𝑅 ∘ 𝑆

𝜒𝑇(𝑥, 𝑧) =  ⋁ [χR(x, y)  ∧  χS(y, z)]𝑦∈𝑌  
 

 

2. Max-product composition 

The max-product composition is defined by the function theoretic expression as 
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𝑇 = 𝑅 ∘ 𝑆

𝜒𝑇(𝑥, 𝑧) =  ⋁ [χR(x, y) .  χS(y, z)]𝑦∈𝑌  
 

 

2.17 Fuzzy relations 

A fuzzy relation is a fuzzy set defined on the Cartesian product of classical sets {XI, X2, ... Xn} 

where tuples (x1, x2, xn) may have varying degrees of membership µR (x1,x2, .. , xn) within the 

relation. 

𝑅(𝑋1, 𝑋2, … , 𝑋𝑛)  =         ∫  µ𝑅(𝑥1, 𝑥2, … , 𝑥𝑛)|(𝑥1, 𝑥2, … , 𝑥𝑛),     𝑥𝑖 ∈ 𝑋𝑖
𝑋1,𝑋2 ,…,𝑋𝑛                                                                                                            

 

A fuzzy relation between two sets X and Y is called binary fuzzy relation and is denoted by 

R(X,Y). A binary relation R(X,Y) is referred to as bipartite graph when X≠Y. The binary 

relation on a single set X is called directed graph or digraph. This relation occurs when X=Y 

and is denoted as R(X,X) or R(X2). 

Let 

𝑋
~
= {𝑥1, 𝑥2, … , 𝑥𝑛}           𝑎𝑛𝑑            𝑌

~
= {𝑦1, 𝑦2, … , 𝑦𝑛} 

Fuzzy relation  𝑅
~
(𝑋
~
, 𝑌
~
) can be expressed by an n × m matrix as follows: 

𝑅
~
(𝑋
~
, 𝑌
~
) =  

[
 
 
 
 
µ𝑅(𝑥1, 𝑦1) µ𝑅(𝑥1, 𝑦2) .    . µ𝑅(𝑥1, 𝑦𝑚)

µ𝑅(𝑥2, 𝑦1) µ𝑅(𝑥2, 𝑦2) .    . µ𝑅(𝑥2, 𝑦𝑚)
. . .
. . .

µ𝑅(𝑥𝑛, 𝑦1) µ𝑅(𝑥𝑛, 𝑦2)       µ𝑅(𝑥𝑛, 𝑦𝑚)]
 
 
 
 

 

 

2.17.1 Operations on fuzzy relations 

 

1. Union 

µ𝑅
~
∪𝑆
~
(x, y) = max [µ𝑅

~
(x, y), µ𝑆

~
(x, y)] 

 

2. Intersection 

µ𝑅
~
∩𝑆
~
(x, y) = min [µ𝑅

~
(x, y), µ𝑆

~
(x, y)] 
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3. Complement 

µ𝑅
~
̅(x, y) = 1 − µ𝑅

~
(x, y) 

4. Containment 

𝑅
~
⊂ 𝑆

~
→ µ𝑅

~
(x, y) ≤ µ𝑆

~
(x, y) 

5. Inverse 

The inverse of a fuzzy relation R on X × Y is denoted by R-1. It is a relation on Y × X 

defined by 𝑅−1(𝑦, 𝑥) = 𝑅(𝑥, 𝑦) for all pairs(𝑦, 𝑥) ∈ 𝑌 × 𝑋. 

6. Projection 

For a fuzzy relation R(X,Y), let [𝑅 ↓ 𝑌] denote the projection of R onto Y. Then [𝑅 ↓ 𝑌] 

is a fuzzy relation in Y whose membership function is defined by 

𝜇[𝑅↓𝑌](𝑥, 𝑦) =
𝑚𝑎𝑥
𝑥

𝜇𝑅
~
(𝑥, 𝑦)

              
 

 

• Fuzzy Composition  

Let 𝐴
~
  be a fuzzy set on universe X and 𝐵

~
 be a fuzzy set on universe Y. The Cartesian 

product over 𝐴
~
  and 𝐵

~
  results in fuzzy relation  𝑅

~
  and is contained within the entire 

(complete) Cartesian space, i.e., 

𝐴
~
× 𝐵

~
   =  𝑅

~
       

where  

𝑅
~
⊂ 𝑋 × 𝑌 

The membership function of fuzzy relation is given by 

 µ𝑅
~
 (x, y) = µ𝐴

~
×𝐵
~
(x, y) = min [µ𝐴

~
(x), µ𝐵

~
(y)] 

There are two types of fuzzy composition techniques:  

1. Fuzzy max-min composition  

There also exists fuzzy min-max composition method, but the most commonly used 

technique is fuzzy max-min composition. Let 𝑅
~
  be fuzzy relation on Cartesian 

space 𝑋 × 𝑌, and 𝑆
~
  be fuzzy relation on Cartesian space𝑌 × 𝑍. 
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The max-min composition of R(X,Y) and S(Y,Z), denoted by 𝑅(𝑋, 𝑌) ° 𝑆(𝑌, 𝑍) is 

defined by  T(X,Z) as 

µ𝑇
~
(x, z) =  µ𝑅

~
°𝑆
~
(x, z) = max

y∈Y
{min [µ𝑅

~
(x, y), µ𝑆

~
(y, z)]}

=  ⋁ [µ𝑅
~
(x, y)   ∧   µ𝑆

~
(y, z)]𝑦∈𝑌   ∀𝑥 ∈ 𝑋, 𝑧 ∈ 𝑍  

 

 

The min-max composition of R(X,Y) and S(Y,Z), denoted by 𝑅(𝑋, 𝑌)°𝑆(𝑌, 𝑍)is defined 

by  T(X,Z) as 

µ𝑇
~
(x, z) =  µ𝑅

~
°𝑆
~
(x, z) = min

y∈Y
{max [µ𝑅

~
(x, y), µ𝑆

~
(y, z)]}

=  ⋀ [µ𝑅
~
(x, y)   ∨   µ𝑆

~
(y, z)]  ∀𝑥 ∈ 𝑋, 𝑧 ∈ 𝑍𝑦∈𝑌   

 

 

From the above definition it can be noted that 

𝑅(𝑋, 𝑌)°𝑆(𝑌, 𝑍)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝑅(𝑋, 𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ °𝑆(𝑌, 𝑍)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

2. Fuzzy max-product composition 

The max-product composition of R(X,Y) and S(Y,Z), denoted by 𝑅(𝑋, 𝑌)°𝑆(𝑌, 𝑍) is 

defined by  T(X,Z) as 

µ𝑇
~
(x, z) =  µ𝑅

~
 . 𝑆
~
(x, z) = min

y∈Y
[µR
~

(x, y). µ𝑆
~
(y, z)]

=  ⋁ [µ𝑅
~
(x, y). µ𝑆

~
(y, z)]𝑦∈𝑌   

 

 

The properties of fuzzy composition can be given as follows: 

𝑅
~
  °  𝑆

~
≠ 𝑆

~
  °  𝑅

~
 

(𝑅
~
  °  𝑆

~
)
−1
=   𝑆

~

−1  ° 𝑅
~

−1 

(𝑅
~
  °  𝑆

~
) ° 𝑀

~
= 𝑅

~
° (𝑆

~
 ° 𝑀

~
) 

 

2.18 Advantages of Fuzzy logic 

 

6. Mimicks human control logic.  

7. Uses imprecise language.  

8. Inherently robust. 
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9. Fails safely.  

10. Modified and tweaked easily. 

 

2.19 Disadvantages of Fuzzy logic 

 

3. Operator's experience required. 

4. System complexity. 

 

2.20 Applications of Fuzzy logic 

 

8. Automobile and other vehicle subsystems, such as automatic transmissions, ABS and cruise 

control (e.g. Tokyo monorail). 

9. Air conditioners.  

10. Auto focus on cameras.  

11. Digital image processing, such as edge detection.  

12. Rice cookers.  

13. Dishwashers.  

14. Elevators.  

15. Washing machines and other home appliances.  

16. Video game artificial intelligence.  

17. Language filters on message boards and chat rooms for filtering out offensive text.  

18. Pattern recognition in Remote Sensing.  

19. Fuzzy logic has also been incorporated into some microcontrollers and microprocessors. 

20. Bus Time Tables.        

21. Predicting genetic traits. (Genetic traits are a fuzzy situation for more than one reason). 

22. Temperature control (heating/cooling).  

23. Medical diagnoses.  

24. Predicting travel time.  

25. Antilock Braking System.  
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4.1 Fuzzy membership functions 

Membership function defines the fuzziness in a fuzzy set irrespective of the elements in the set, 

which are discrete or continuous. A fuzzy set  𝐴
~

  in the universe of discourse X can be defined 

as a set of ordered pairs: 

𝐴
~
= {(𝑥, µ𝐴

~
(𝑥)) | 𝑥 ∈ 𝑋} 

where µ𝐴
~
(.) is called membership function of  𝐴

~
 . The membership function µ𝐴

~
(.) maps X to the 

membership space M, ie., µ𝐴
~
∶ 𝑋 → 𝑀. The membership value ranges in the interval [0, 1] ie., 

the range of the membership function is a subset of the non-negative real numbers whose 

supremum is finite.  

The three main basic features involved in characterizing membership function are the following. 

1. Core 

The core of a membership function for some fuzzy set 𝐴
~

  is defined as that region of 

universe that is characterized by complete membership in the set 𝐴
~
 . The core has elements x 

of the universe such that 

µ𝐴
~
(𝑥) = 1 

The core of a fuzzy set may be an empty set. 

2. Support 

The support of a membership function for a fuzzy set 𝐴
~

  is defined as that region of 

universe   that is characterized by a non zero membership in the set 𝐴
~
 . 

µ𝐴
~
(𝑥) > 0 

A fuzzy set whose support is a single element in X with µ𝐴
~
(𝑥) = 1 is referred to as a fuzzy 

singleton. 
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3. Boundary 

The support of a membership functions as the region of universe containing elements that 

have a non zero but not complete membership. The boundary comprises those elements of x 

of the universe such that 

0 < 𝜇𝐴(𝑥) < 1 

The boundary elements are those which possess partial membership in the fuzzy set  𝐴
~
 . 

 

Figure 4.1: Features of membership functions 

A fuzzy set whose membership function has at least one element x in the universe whose 

membership value is unity is called normal fuzzy set. The element for which the membership is 

equal to 1 is called prototypical element. A fuzzy set where no membership function has its 

value equal to 1 is called subnormal fuzzy set. 

 

Figure 4.2: (A) Normal fuzzy set and (B) subnormal fuzzy set 

A convex fuzzy set has a membership function whose membership values are strictly 

monotonically increasing or strictly monotonically decreasing or strictly monotonically 
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increasing than strictly monotonically decreasing with increasing elements in the universe. A 

fuzzy set possessing characteristics opposite to that of convex fuzzy set is called non convex 

fuzzy set. 

 

Figure 4.3: (A) Convex normal fuzzy set and (B) Nonconvex normal fuzzy set 

The convex normal fuzzy set can be defined in the following way. For elements x1, x2 and x3 in 

a fuzzy set  𝐴
~

 , if the following relation between x1, x2 and x3 holds. i.e., 

µ𝐴
~
(𝑥2) ≥ min[ µ𝐴

~
(𝑥1),µ𝐴

~
(𝑥3)] 

The element in the universe for which a particular fuzzy set  𝐴
~

  has its value equal to 0.5 is 

called crossover point of a membership function. The membership value of a crossover point of 

a fuzzy set is equal to 0.5, ie., µ𝐴
~
(𝑥) = 0.5. There can be more than one crossover point in a 

fuzzy set. The maximum value of the membership function in a fuzzy set 𝐴
~
 is called as the 

height of the fuzzy set. For a normal fuzzy set, the height is equal to 1, because the maximum 

value of the membership function allowed is 1. Thus, if the height of a fuzzy set is less than 1, 

then the fuzzy set is called subnormal fuzzy set. 

 

Figure 4.4: Crossover point of a fuzzy set 
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4.2 Fuzzification 

It is the process of transforming crisp set to a fuzzy set or a fuzzy set to a fuzzifier set. For a 

fuzzy set 𝐴
~
=  {(𝑥, µ𝐴

~
(𝑥)) | 𝑥 ∈ 𝑋} , a common fuzzification algorithm is performed by 

keeping 𝜇𝑖  constant and 𝑥𝑖  being transformed to a fuzzy set 𝑄(𝑥𝑖) depicting the expression 

about 𝑥𝑖 . The fuzzy set 𝑄(𝑥𝑖)is referred to as the kernel of fuzzification. The fuzzified set  𝐴
~

 

can be expressed as  

𝐴
~
= 𝜇1𝑄(𝑥1) + 𝜇2𝑄(𝑥2) +⋯+ 𝜇𝑛𝑄(𝑥𝑛) 

where the symbol ~ means fuzzified. This process of fuzzification is called support fuzzification 

(s-fuzzification). There is another method of fuzzification called grade fuzzification (g-

fuzzification) where xi is kept constant and µi is expressed as a fuzzy set. Thus, using these 

methods, fuzzification is carried out. 

 

4.3 Methods of membership value assignments 

 

4.3.1 Intuition 

Intuition method is based upon the common intelligence of human.lt is the capacity of the 

human to develop membership functions on the basis of their own intelligence and 

understanding capacity. There should be an in-depth knowledge of the application to which 

membership value assignment as to be made. 

Figure 4.5 shows various shapes of weights of people measured in kilogram in the universe. 

Each curve is a membership function corresponding to various fuzzy (linguistic) variables, 

such as very lighter, light, normal, heavy and very heavy. The curves are based on context 

functions and the human developing them. For example, if the weights are referred to range 

of thin persons we get one set of curves, and if they are referred to range of normal weighing 

persons we get another set and so on. 
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Figure 4.5: Membership function for the fuzzy variable “weight” 

 

4.3.2 Inference 

The inference method uses knowledge to perform deductive reasoning. Deduction achieves 

conclusion by means inference. There are various methods for performing deductive 

reasoning. Here the knowledge of geometrical shapes and geometry is used for defining 

membership values. The membership functions may be defined by various shapes: 

triangular, trapezoidal, bell-shaped, Gaussian and so on. The inference method here is 

discussed via triangular shape. 

Consider a triangle, where X,Y and Z are angles such that X ≥ Y ≥ Z ≥ 0, and let U be the 

universe of triangles i.e., 

𝑈 = {(𝑋, 𝑌, 𝑍)| 𝑋 ≥ 𝑌 ≥ 𝑍 ≥ 0;𝑋 + 𝑌 + 𝑍 = 180} 

There are various types of triangles available.  

  𝐼
~
 = isosceles triangle (approximate) 

𝐸
~

= equilateral triangle (approximate) 

𝑅
~

 = right-angle triangle (approximate) 

𝐼𝑅
~

 = isosceles and right-angle triangle (approximate) 

𝑇
~

= other triangles  
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The membership values of approximate isosceles triangle is obtained using the following 

definition, where  𝑋 ≥ 𝑌 ≥ 𝑍 ≥ 0;𝑋 + 𝑌 + 𝑍 = 180○: 

µ𝐼
~
(𝑋, 𝑌, 𝑍) = 1 −

1

60○
𝑚𝑖𝑛(𝑋 − 𝑌, 𝑌 − 𝑍) 

The membership value of approximate right-angle triangle is given by 

µ𝑅
~
(𝑋, 𝑌, 𝑍) = 1 −

1

90○
|𝑋 − 90○| 

Membership value of appropriate isosceles right angled triangle is obtained by taking the 

logical intersection of the approximate isosceles and approximate right-angle triangle 

membership function i.e., 

𝐼𝑅
~
= 𝐼

~
∩ 𝑅

~
 

 and it is given by 

µ𝐼𝑅
~
(𝑋, 𝑌, 𝑍) = 𝑚𝑖𝑛 [µ𝐼

~
(𝑋, 𝑌, 𝑍), µ𝑅

~
(𝑋, 𝑌, 𝑍)] 

µ𝐼𝑅
~
(𝑋, 𝑌, 𝑍) = 𝑚𝑖𝑛 [µ𝐼

~
(𝑋, 𝑌, 𝑍), µ𝑅

~
(𝑋, 𝑌, 𝑍)]

= 1 −𝑚𝑎𝑥 [
1

60○
𝑚𝑖𝑛(𝑋 − 𝑌, 𝑌 − 𝑍),

1

90○
|𝑋 − 90○|]

 

The membership function for a fuzzy equilateral triangle is given by 

µ𝐸
~
(𝑋, 𝑌, 𝑍) = 1 −

1

180○
|𝑋 − 𝑍| 

The membership function of other triangles, denoted by 𝑇
~
, is the complement of the logical 

union of  𝐼
~
, 𝑅
~
 𝑎𝑛𝑑 𝐸

~
, i.e. 

𝑇
~
= 𝐼

~
∪ 𝑅
~
∪ 𝐸
~

 

 By using De Morgans law, we get 

𝑇
~
= 𝐼

~
̅ ∩ 𝑅

~
̅ ∩ 𝐸

~
̅ 

The membership value can be obtained using the equation 
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µ𝑇
~
(𝑋, 𝑌, 𝑍) = 𝑚𝑖𝑛 {1 − µ𝐼

~
(𝑋, 𝑌, 𝑍), 1 − µ𝐸

~
(𝑋, 𝑌, 𝑍), 1 − µ𝑅

~
(𝑋, 𝑌, 𝑍)}

=
1

180○
𝑚𝑖𝑛{3(𝑋 − 𝑌), 3(𝑌 − 𝑍), 2|𝑋 − 90○|, 𝑋 − 𝑍}

 

 

4.3.3 Rank ordering 

The formation of government is based on the polling concept; to identify a best student, 

ranking may be performed; to buy a car, one can ask for several opinions and so on. 

 

4.4  Lambda –cuts for fuzzy sets 

Consider a fuzzy set  𝐴
~

 . The set 𝐴𝜆(0 <  𝜆 < 1), called the lambda (𝜆) -cut (or alpha [𝛼] -cut) 

set, is a crisp set of the fuzzy set and is defined as follows: 

𝐴𝜆 = {(𝑥, 𝜇𝐴
~
(𝑥) ≥ 𝜆)}  𝜆 ∈ [0,1] 

The set 𝐴𝜆 is called weak lambda-cut set if it consists of all the elements of a fuzzy set whose 

membership function have values greater than or equal to the specified value. The set 𝐴𝜆  is 

called strong lambda cut if it consist of all elements of a fuzzy set whose membership functions    

have values strictly greater than a specified value. A strong 𝜆 – cut set is given by 

𝐴𝜆 = {(𝑥, 𝜇𝐴
~
(𝑥) > 𝜆)}  𝜆 ∈ [0,1] 

The properties of 𝜆 cut are as follows 

1. (𝐴
~
∪ 𝐵

~
)
λ
=  𝐴λ ∪ 𝐵λ  

2.  (𝐴
~
∩ 𝐵

~
)
λ
=  𝐴λ ∩ 𝐵λ 

3. (𝐴
~
)
λ
≠ (𝐴λ̅̅ ̅) 𝑒𝑥𝑐𝑒𝑝𝑡 𝑤ℎ𝑒𝑛  λ = 0.5  

4. For any 𝜆≤β, where 0≤β≤1, it is true that 𝐴β ⊆ 𝐴λ, 𝑤ℎ𝑒𝑟𝑒 𝐴0 = 𝑋   
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Figure 4.6: Two different 𝜆-cut sets for a continuous-valued fuzzy set 

4.5 Defuzzification methods 

Defuzzification is the process of conversion of a fuzzy quantity into a precise quantity. The 

output of a fuzzy set process may be union of two or more fuzzy membership functions defined 

on the universe of discourse of the output variable. 

  

Figure 4.7: (A) First part of fuzzy output, (B) second part of fuzzy output (C) union of parts (A) and (B) 
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Defuzzification methods include the following:  

1. Max membership principle 

2. Centroid method 

3. Weighted average method 

4. Mean-max membership 

5. Center of sums 

6. Center of largest area 

7. First of maxima, last of maxima 

 

4.5.1 Max-Membership Principle 

This method is also known as height method and is limited to peak output functions. This 

method is given by the algebraic expression 

𝜇𝑐
~
(𝑥∗) ≥ 𝜇𝑐

~
(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋 

The method is illustrated in below figure 

 

Figure 4.8: Max-membership defuzzification method 

4.5.2 Centroid method 

This method is also known as center of mass, center of area or center of gravity method. It is 

the most commonly used defuzzification method. The defuzzified output x* is defined as, 

𝑥∗ =
∫𝜇𝑐

~
(𝑥). 𝑥𝑑𝑥

∫ 𝜇𝑐
~
(𝑥)𝑑𝑥
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where the symbol ∫ denotes an algebraic integration. This method is illustrated in below 

figure 

 

Figure 4.9: Centroid defuzzification method 

4.5.3 Weighted average method 

This method is valid for symmetrical output membership functions only. Each membership 

is weighted by its maximum membership value. The output is given by, 

𝑥∗ =
∑𝜇𝑐

~
(𝑥̅𝑖). 𝑥̅𝑖

∑𝜇𝑐
~
(𝑥̅𝑖)

 

where ∑ denotes algebraic sum and 𝑥̅𝑖 is the maximum of the i th membership function. The 

method is illustrated in figure 4.10, where two fuzzzy sets are considered. From the figure 

the defuzzified output is given by 

𝑥∗ =
0.5𝑎 + 0.8𝑏

0.5 + 0.8
 

 

 

Figure 4.10: Weighted average defuzzification method (two symmetrical functions) 
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4.5.4 Mean-max membership 

This method is also known as the middle of the maxima. This is closely related to method, 

except that the locations of the maximum membership can be nonunique. The output here is 

given by  

𝑥∗ =
∑ 𝑥̅𝑖
𝑛
𝑖=1

𝑛
 

The method is illustrated in figure 4.11, where two fuzzzy sets are considered. From the 

figure the defuzzified output is given by 

𝑥∗ =
𝑎 + 𝑏

2
 

 

Figure 4.11: Mean-max defuzzification method 

4.5.5 Center of sums 

This method employs sum of the individual fuzzy subsets instead of their union. The 

calculations here are very fast, bur the main drawback is that intersecting areas are added 

twice. The defuzzified value x* is given by 

𝑥∗ =
∫
𝑥
∑ 𝜇𝑐

~
(𝑥)𝑑𝑥𝑛

𝑖=1

∫
𝑥
𝑥 ∑ 𝜇𝑐

~
(𝑥)𝑑𝑥𝑛

𝑖=1

 

Figure 4.12 illustrates the center of sums method. In center of sums method, the weights are 

the areas of the respective membership functions, whereas in the weighted average method 

the weights are individual membership values. 
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Figure 4.12: (A) First and (B) second membership functions, (C) defuzzification 

 

4.5.6 Center of largest area 

This method is adopted when the output consist of atleast two convex fuzzy subsets which 

are not overlapping. The output is biased towards a side of one membership function. When 

the output of fuzzy set has atleast two convex regions, then the center of gravity of the 

convex fuzzy sub region having the largest area is to obtain the defuzzified value x*. 

𝑥∗ =
∫𝜇𝑐𝑖

~
(𝑥). 𝑥𝑑𝑥

∫𝜇𝑐𝑖
~
(𝑥)𝑑𝑥

 

where 𝑐𝑖
~

 is the convex subregion that has the largest area making up 𝑐𝑖
~

. Figure 4.13 

illustrates the center of largest area. 
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Figure 4.13: Center of largest area method 

 

4.5.7 First of maxima, last of maxima 

This method uses the overall output or union of all individual output fuzzy set 𝑐𝑖
~

 for 

determining the smallest value of the domain with maximized membership in 𝑐𝑗
~

· The steps 

used for obtaining x* are: 

1. Initially, the maximum height in the union is found: 

ℎ𝑔𝑡 (𝑐𝑖
~
) = sup

𝑥∈𝑋
𝜇𝑐
~𝑖
(𝑥) 

where sup is the supremum that is the least upper bound. 

 

2. Then the first of maxima is found: 

𝑥∗ = inf
𝑥∈𝑋

[𝑥 ∈ 𝑋|𝜇𝑐
~𝑖
(𝑥) = ℎ𝑔𝑡 (𝑐𝑖

~
)] 

where inf is the infimum that is the greatest lower bound. 

 

3. After this the last maxima is found: 

𝑥∗ = 𝑠𝑢𝑝
𝑥∈𝑋

[𝑥 ∈ 𝑋|𝜇𝑐
~
𝑖
(𝑥) = ℎ𝑔𝑡 (𝑐𝑖

~
)] 
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Figure 4.14: First of maxima (last of maxima) method 
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5.1 Truth values and Tables in Fuzzy Logic 

Fuzzy logic uses linguistic variables. The values of a linguistic variable are words or 

sentences in a natural or artificial language. For example, height is a linguistic variable if it 

takes values such as tall, medium, short and so on. Consider the statement “John is tall” 

implies that the linguistic variable John takes the linguistic value tall. The linguistic variable 

provides approximate characterization of a complex problem. The name of the variable, the 

universe of discourse and a fuzzy subset of universe of discourse characterize a fuzzy 

variable. The range of possible values of a linguistic variable represents the universe of 

discourse of that variable.  For example, the universe of discourse of the linguistic variable 

speed might have the range between 0 and 220 km/h and may include such fuzzy subsets as 

very slow, slow, medium, fast, and very fast. 

A linguistic variable is a variable of a higher order than a fuzzy variable and its values are 

taken to be fuzzy variables. A linguistic variable is characterized by 

1. name of the variable (x); 

2. term set of the variable t (x); 

3. syntactic rule for generating the values of x; 

4. semantic rule for associating each value of x with its meaning. 

A linguistic variable carries with it the concept of fuzzy set qualifiers, called hedges. Hedges   

are terms that modify the shape of fuzzy sets. In the fuzzy set "very tall", the word "very" is a 

linguistic hedge. A few popular linguistic hedges include: very, highly, slightly, moderately, 

plus, minus, fairly, rather. 
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Table 5.1: Table showing the mathematical and graphical representation of Hedges 

If it is not take the complement of membership value. For example not very short then take 

the complement of very short. 

Truth tables define logic functions of two propositions. Let X and Y be two propositions, 

either of which can be true or false. The basic logic operations performed over the 

propositions are the following: 

1. Conjunction (∧): X AND Y.  

2. Disjunction (∨): XOR Y. 

3. Implication or conditional (=>): IF X THEN Y. 

4. Bidirectional or equivalence (<=> ): X IF AND ONLY IF Y. 

On the basis of these operations on propositions, inference rules can be formulated. Few 

inference rules are as follows: 

[𝑋 ∧ (𝑋 =>𝑌)] => 𝑌

[𝑌̅ ∧ (𝑋 =>𝑌)] => 𝑋̅
[(𝑋 =>𝑌) ∧ (𝑌 =>𝑍)] => (𝑋 =>𝑍)

 

The above rules produce certain propositions that are always true irrespective of the truth 

values of propositions X and Y. Such propositions are called tautologies. 

The truth values of propositions in fuzzy logic are allowed to range over the unit interval [0, 

1]. The truth value of the proposition '' Z is A," or simply the truth value of A, denoted by 
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tv(A) is defined by a point in [0, 1] (called the numerical truth value} or a fuzzy set in [0, 1] 

(called the linguistic truth value). 

𝑡𝑣(𝑋 𝐴𝑁𝐷 𝑌) = 𝑡𝑣(𝑋) ∧ 𝑡𝑣(𝑌) = 𝑚𝑖𝑛{𝑡𝑣(𝑋), 𝑡𝑣(𝑌)}                   (𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛)

𝑡𝑣(𝑋 𝑂𝑅 𝑌) = 𝑡𝑣(𝑋) ∨ 𝑡𝑣(𝑌) = 𝑚𝑎𝑥{𝑡𝑣(𝑋), 𝑡𝑣(𝑌)}                                 (𝑈𝑛𝑖𝑜𝑛)

𝑡𝑣(𝑁𝑂𝑇 𝑋) = 1 − 𝑡𝑣(𝑋)                                                                      (𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡)

𝑡𝑣(𝑋 => 𝑌) = 𝑡𝑣(𝑋) => 𝑡𝑣(𝑌) = 𝑚𝑎𝑥{1 − 𝑡𝑣(𝑋),𝑚𝑖𝑛[𝑡𝑣(𝑋), 𝑡𝑣(𝑌)]}            

 

 

5.2 Fuzzy propositions 

 

1. Fuzzy predicates 

In fuzzy logic the predicates can be fuzzy, for example, tall, short, quick. Hence, we have 

proposition like "Peter is tall." It is obvious that most of the predicates in natural language 

are fuzzy rather than crisp.  

 

2. Fuzzy-predicate modifiers 

In fuzzy logic, there exists a wide range of predicate modifiers that act as hedges, for 

example, very, fairly, moderately, rather, slightly. These predicate modifiers are necessary 

for generating the values of a linguistic variable. An example can be the proposition 

"Climate is moderately cool," where "moderately" is the fuzzy predicate modifier. 

 

3. Fuzzy quantifiers: The fuzzy quantifiers such as most, several, many, frequently are used 

in fuzzy logic. Employing these we can have proposition like "Many people are educated." 

A fuzzy quantifier can be interpreted as a fuzzy number or a fuzzy proposition. 

 

4. Fuzzy qualifiers: There are four modes of qualification in fuzzy logic, which are as 

follows:  

• Fuzzy truth qualification 

It is expressed as "x is τ," in which τ is a fuzzy truth value. A fuzzy truth value claims 

the degree of truth of a fuzzy proposition. Consider the example,  

(Paul is Young) is NOT VERY True. 

Here the qualified proposition is (Paul is Young) and the qualifying fuzzy truth value is 

"NOT Very True." 
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• Fuzzy probability qualification 

It is denoted as "x is 𝜆," where 𝜆 is fuzzy probability. In conventional logic, probability 

is either numerical or an interval. In fuzzy logic, fuzzy probability is expressed by terms 

such as likely, very likely, unlikely, around and so on. Consider the example, 

(Paul is Young) is Likely. 

Here qualifying fuzzy probability is "Likely." These probabilities may be interpreted as 

fuzzy numbers, which may be manipulated using fuzzy arithmetic.  

• Fuzzy possibility qualification 

It is expressed as "x is π," where π is a fuzzy possibility and can be of the following 

forms: possible, quire possible, almost impossible. These values can be interpreted as 

labels of fuzzy subsets of the real line. Consider the example, 

(Paul is Young) is Almost Impossible. 

Here the qualifying fuzzy possibility is "Almost Impossible."  

• Fuzzy usuality qualification 

It is expressed as "usually (X) =usually (X is F)," in which the subject X is a variable 

raking values in a universe of discourse U and the predicate F is a fuzzy subset of U and 

interpreted as a usual value of X denoted by U(X) = F. The propositions that are usually 

true or the events that have high probability of occurrence are related by the concept of 

usuality qualification. 

 

5.3 Formation of fuzzy rules 

The general way of representing human knowledge is by forming natural language expressions 

given by  

IF antecedant THEN consequent. 

The above expression is referred to as the IF- THEN rule based form. There are three general 

forms that exist for any linguistic variable. They are: (a) assignment statements; (b) conditional 

statements; (c) unconditional statements. 
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1. Assignment statements: They are of the form  

y =small 

      Orange color = orange  

a=s  

Paul is not tall and not very short  

Climate = autumn 

      Outside temperature = normal  

These statements utilize "=" for assignment. 

 

2. Conditional statements 

 The following are some examples.  

IF y is very cool THEN stop. 

 IF A is high THEN B is low ELSE B is not low. 

      IF temperature is high THEN climate is hot. 

 The conditional statements use the "IF.THEN" rule-based form. 

 

3. Unconditional statements 

They can be of the form 

      Goto sum.  

Stop.  

Divide by a.  

Turn the pressure low. 

 

5.4 Decomposition of rules (Compound Rules) 

A compound rule is a collection of many simple rules combined together. Any compound rule 

structure may be decomposed and reduced to a number of simple canonical rule forms. The 

rules are generally based on natural language representations. 

1. Multiple conjunctive antecedents 

𝐼𝐹 𝑥 𝑖𝑠  𝐴
~
1,  𝐴

~
2, … ,  𝐴

~
𝑛 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠  𝐵

~
𝑚 

Assume a new fuzzy subset 𝐴
~
𝑚defined as 

 𝐴
~
𝑚 =   𝐴

~
1 ∩  𝐴

~
2 ∩…∩  𝐴

~
𝑛  

and expressed by means of membership function 
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𝜇 𝐴
~𝑚
(𝑥) = 𝑚𝑖𝑛 [𝜇 𝐴

~ 1
(𝑥), 𝜇 𝐴

~ 2
(𝑥),… , 𝜇 𝐴

~ 𝑛
(𝑥)] 

In view of the fuzzy intersection operation, the compound rule may be rewritten as 

𝐼𝐹  𝐴
~
𝑚  𝑇𝐻𝐸𝑁  𝐵

~
𝑚 

 

2. Multiple disjunctive antecedents 

𝐼𝐹 𝑥 𝑖𝑠  𝐴
~
1 𝑂𝑅 𝑥 𝑖𝑠  𝐴

~
2, …𝑂𝑅 𝑥 𝑖𝑠 𝐴

~
𝑛 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠  𝐵

~
𝑚 

This can be written as 

𝐼𝐹 𝑥 𝑖𝑠  𝐴
~
𝑛  𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠  𝐵

~
𝑚 

where the fuzzy set  𝐴
~
𝑚 is defined as 

 𝐴
~
𝑚 =  𝐴

~
1 ∪  𝐴

~
2 ∪  𝐴

~
3 ∪ …∪  𝐴

~
𝑛 

The membership function is given by 

𝜇 𝐴
~𝑚
(𝑥) = 𝑚𝑎𝑥 [𝜇 𝐴

~ 1
(𝑥), 𝜇 𝐴

~ 2
(𝑥),… , 𝜇 𝐴

~ 𝑛
(𝑥)] 

which is based on fuzzy union operation. 

 

3. Conditional statements (with ELSE and UNLESS) 

Statements of the kind 

𝐼𝐹  𝐴
~
1 𝑇𝐻𝐸𝑁( 𝐵

~
1𝐸𝐿𝑆𝐸 𝐵

~
2)  

can be decomposed into two simple canonical rule forms, connected by "OR": 

𝐼𝐹 𝐴
~
1 𝑇𝐻𝐸𝑁 𝐵

~
1 

𝑂𝑅
𝐼𝐹 𝑁𝑂𝑇 𝐴

~
1 𝑇𝐻𝐸𝑁 𝐵

~
2

𝐼𝐹 𝐴
~
1  (𝑇𝐻𝐸𝑁 𝐵

~
1)  𝑈𝑁𝐿𝐸𝑆𝑆  𝐴

~
2                                                                                                                    

 

can be decomposed as 

𝐼𝐹 𝐴
~
1 𝑇𝐻𝐸𝑁 𝐵

~
1 

𝑂𝑅
𝐼𝐹  𝐴

~
2 𝑇𝐻𝐸𝑁 𝑁𝑂𝑇 𝐵

~
1

𝐼𝐹 𝐴
~
1 𝑇𝐻𝐸𝑁(𝐵

~
1)  𝐸𝐿𝑆𝐸 𝐼𝐹 𝐴

~
2 𝑇𝐻𝐸𝑁 (𝐵

~
2)                                                                                       

 

can be decomposed into the form 

𝐼𝐹 𝐴
~
1 𝑇𝐻𝐸𝑁 𝐵

~
1 

𝑂𝑅
𝐼𝐹 𝑁𝑂𝑇 𝐴

~
1 𝐴𝑁𝐷 𝐼𝐹 𝐴

~
2 𝑇𝐻𝐸𝑁 𝐵

~
2
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4. Nested-IF-THEN rules 

The rule can be of the form "IF A
~
1 THEN [IF A

~
2 THEN(B

~
1)] " can be of the form 

𝐼𝐹 𝐴
~
1 𝐴𝑁𝐷 𝐴

~
2 𝑇𝐻𝐸𝑁 𝐵

~
1 

Thus, based on all the above mentioned methods compound rules can be decomposed into 

series of canonical simple rules. 

 

5.5 Aggregation of rules 

Aggregation of rules is the process of obtaining the overall consequents from the individual 

consequents provided by each rule. The following two methods are used for aggregation of 

fuzzy rules: 

1. Conjunctive system of rules 

For a system of rules to be jointly satisfied, the rules are connected by "and" connectives. 

Here, the aggregated output, y, is determined by the fuzzy intersection of all individual rule 

consequents yi where i = 1 to n, as 

𝑦 = 𝑦1 𝑎𝑛𝑑 𝑦2 𝑎𝑛𝑑 …𝑎𝑛𝑑 𝑦𝑛 

or 

𝑦 = 𝑦1  ∩  𝑦2  ∩  …∩ 𝑦𝑛 

This aggregated output can be defined by the membership function 

𝜇𝑦(𝑦) = 𝑚𝑖𝑛[𝜇𝑦1(𝑦), 𝜇𝑦2(𝑦),… , 𝜇𝑦𝑛(𝑦)] 𝑓𝑜𝑟 𝑦𝜖 𝑌 

2. Disjunctive system of rules 

In this case, the satisfaction of at least one rule is required. The rules are connected by "or" 

connectives. Here, the fuzzy union of all individual rule contributions determines the 

aggregated output, as 

𝑦 = 𝑦1 𝑜𝑟 𝑦2 𝑜𝑟 … 𝑜𝑟 𝑦𝑛 

or 

𝑦 = 𝑦1  ∪  𝑦2  ∪  …∪ 𝑦𝑛 

Again it can be defined by the membership function 

𝜇𝑦(𝑦) = 𝑚𝑎𝑥[𝜇𝑦1(𝑦), 𝜇𝑦2(𝑦),… , 𝜇𝑦𝑛(𝑦)] 𝑓𝑜𝑟 𝑦𝜖 𝑌 
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5.6 Fuzzy Inference Systems 

Fuzzy rule based systems, fuzzy models, and fuzzy expert systems are generally known as 

systems. The key unit of a fuzzy logic system is FIS. The primary work of this system is 

decision making. FIS uses "IF ... THEN" rules along with connectors "OR" or "AND" for 

making necessary decision rules. The input to FlS may be fuzzy or crisp, but the output from 

FIS is always a fuzzy set. 

Construction and Working Principle of FIS: 

 

Figure 5.1: Block diagram of FIS 

 

1. A rule base that contains numerous fuzzy IF-THEN rules.  

2. A database that defines the membership functions of fuzzy sets used in fuzzy rules. 

3. Decision-making unit that performs operation on the rules. 

4. Fuzzification interface unit that converts the crisp quantities into fuzzy quantities.  

5. Defuzzification interface that converts the fuzzy quantities into crisp quantities. 

Initially, in the fuzzification unit, the crisp input is convened into a fuzzy input. Various 

fuzzification methods are employed for this. After this process, rule base is formed. Database 

and rule base are collectively called the knowledge base. Finally, defuzzification process is 

carried out to produce crisp output. Mainly, the fuzzy rules are formed in the rule base and 

suitable decisions are made in the decision-making unit. 
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5.6.1 Methods of FIS 

 

There are two important types of FIS. They are 

1. Mamdani FIS(1975); 

2. Sugeno FIS(1985); 

 

5.6.1.1 Mamdani types 

Ebsahim Mamdani proposed this system in the year 1975 to control a steam engine and 

boiler combination by synthesizing a set of fuzzy rules obtained from people working on the 

system. In this case, the output membership functions are expected to be fuzzy sets. After 

aggregation process, each output variable is a fuzzy set, hence defuzzification is important at 

the output stage. The steps include: 

Step 1: Determine a set of fuzzy rules.  

Step 2: Make the inputs fuzzy using input membership functions.  

Step 3: Combine the inputs according to the fuzzy rules for establishing a rule strength.  

Step 4: Determine the consequent of the rule by combining the rule strength and the output 

membership function.  

Step 5: Combine all the consequents to get an output distribution.  

Step 6: Finally, a defuzzified output distribution is obtained. 

 

The fuzzy rules are formed using "IF-THEN" statements and "AND/OR'' connectives. The 

consequence of the rule can be obtained in two steps: 

1. By computing the rule strength completely using the fuzzified inputs from the fuzzy 

combination.  

2. By clipping the output membership function at the rule strength 

The outputs of all the fuzzy rules are combined to obtain one fuzzy output distribution. From 

FIS, it is desired to get only one crisp output. This crisp output may be obtained from 

defuzzification process. The common techniques of defuzzification used are center of mass 

and mean of maximum. 
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Figure 5.2: A two-input, two-rule Mamdani FIS with a fuzzy input 

 

5.6.1.2 Sugeno types Takagi-Sugeno Fuzzy Model (TS Method) 

Sugeno fuzzy method was proposed by Takagi, Sugeno and Kang in the year 1985.The 

format of the fuzzy rule of a Sugeno fuzzy model is given by  

IF x is A and y is B THEN z = f(x,y) 

where AB are fuzzy sets in the antecedents and z = f (x,y) is a crisp function. 

The main steps of the fuzzy inference process namely, 

1. Fuzzifying the inputs. 

2. Applying the fuzzy operator. 
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Figure 5.3: Sugeno rule 

Sugeno's method can act as an interpolating supervisor for multiple linear controllers, which 

are to be applied, because of the linear dependence of each rule on the input variables of a 

system. A Sugeno model is suited for smooth interpolation of linear gains that would be 

applied across the input space and for modeling nonlinear systems by interpolating between 

multiple linear models. The Sugeno system uses adaptive techniques for constructing fuzzy 

models. The adaptive techniques are used to customize the membership functions. 

  

5.6.1.3 Comparison between Mamdani and Sugeno model 

The main difference between Mamdani and Sugeno methods lies in the output membership 

functions. The Sugeno output membership functions are either linear or constant. The 

difference also lies in the consequents of their fuzzy rules as a result their aggregation and 

defuzzification procedures differ suitably. A large number of fuzzy rules must be employed 

in Sugeno method for approximating periodic or highly oscillatory functions. The 

configuration of Sugeno fuzzy systems can be reduced and it becomes smaller than that of 

Mamdani fuzzy systems if nontriangular or nontrapezoidal fuzzy input sets are used. Sugeno 

controllers have more adjustable parameters in the rule consequent and the number of 

parameters grows exponentially with the increase of the number of input variables. There 

exist several mathematical results for Sugeno fuzzy controllers than for Mamdani 

controllers. Formation of Mamdani FIS is easier than Sugeno FIS. 
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• The main advantage of Mamdani method are:  

1. It has widespread acceptance. 

2. It is well-suitable for human input. 

3. It is intuitive.  

• The advantages of Sugeno method include:  

1. It is computationally efficient.  

2. It is compact and works well with linear technique, optimization technique and 

adaptive technique. 

3. It is best suited for analysis.  

4. It has a guaranteed continuity of the output surface. 

 

5.7 Neuro-fuzzy hybrid systems 

It is a learning mechanism that utilizes the training and learning algorithms from neural 

networks to find parameters of a fuzzy system (i.e., fuzzy sets, fuzzy rules, fuzzy numbers, and 

so on). The neuro-fuzzy is divided into two areas:  

1.  Linguistic fuzzy modeling focused on interpretability (Mamdani model). 

2. Precise fuzzy modeling focused on accuracy [mainly the Takagi-Sugeno-Kang (TSK) 

model]. 

 

5.7.1 Comparison of Fuzzy Systems with Neural Networks: 

When neural networks are concerned, if one problem is expressed by sufficient number of 

observed examples then only it can be used. These observations are used to train the black 

box. Though no prior knowledge about the problem is needed extracting comprehensible 

rules from a neural network's structure is very difficult.  

A fuzzy system, on the other hand, does not need learning examples as prior knowledge, 

rather linguistic rules are required. Moreover, linguistic description of the input and output 

variables should be given. If the knowledge is incomplete, wrong or contradictory, then the 

fuzzy system must be tuned. This is a time consuming process. 
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Neural processing Fuzzy processing 

Mathematical model not necessary Mathematical model not necessary 

Learning can be done from search A priori knowledge is needed 

There are several learning algorithms Learning is not possible 

Black-box behavior 
Simple interpretation and 

implementation 
 

 

Table 5.2: Comparison of neural and fuzzy processing 

 

5.7.2 Characteristics 

An NFS approximates an n-dimensional unknown function, partly represented by training 

examples. Thus fuzzy rules can be interpreted as vague prototypes of the training data 

 

Figure 5.4: Architecture of neuro-fuzzy hybrid system 

It can be represented by a three-layer feed forward neural network model. It can also be 

observed that the first layer corresponds m the input variables·, and the second and third 

layers correspond to the fuzzy rules and output variables, respectively. The fu7zy sets are 

converted to (fuzzy) connection weights. NFS can also be considered as a system of fuzzy 

rules wherein the system can be initialized in the form of fuzzy rules based on the prior 

knowledge available. Some researchers use five layers- the fuzzy sets being encoded in the 

units of the second and the fourth layer, respectively 

5.7.3 Classification 

NFSs can be classified into the following two systems: 

1. Cooperative NFSs.  
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2. General neuro-fuzzy hybrid systems. 

 

5.7.3.1 Cooperative Neural Fuzzy Systems 

In this type of system, both artificial neural network (ANN) and fuzzy system work 

independently from each other. Four different kinds of cooperative fuzzy neural networks 

are shown in figure 5.5.  

 

The FNN in figure 5.5(A) learns fuzzy set from the given training data. This is done, 

usually, by fining membership functions with a neural network; the fuzzy sets then being 

determined offline. This is followed by their utilization m form the fuzzy system by fuzzy 

rules that are given, and not learned. The NFS in figure 5.5 (B) determines, by a neural 

network, the fuzzy rules from the training data. Here again, the neural networks learn offline 

before the fuzzy system is initialized. The rule learning happens usually by clustering on 

self-organizing feature maps. There is also the possibility of applying fuzzy clustering 

methods to obtain rules.  

 

For the neuro-fuzzy model shown in figure 5.5 (C), the parameters of membership function 

are learnt online, while the fuzzy system is applied. This means that, initially, fuzzy rules 

and membership functions must be defined beforehand. Also, in order to improve and guide 

the learning step, the error has to be measured. The model shown in figure 5.5 (D) 

determines the rule weights for all fuzzy rules by a neural network. A rule is determined by 

its rule weight-interpreted as the influence of a rule. They are then multiplied with the rule 

output. 
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Figure 5.5: Cooperative neural fuzzy systems 

 

5.7.3.2 General Neuro-Fuzzy Hybrid Systems (General NFHS) 

The architecture of general NFHS gives it an advantage because there is no communication 

between fuzzy system and neural network. Figure 5.6 illustrates an NFHS. In this figure the 

rule base of a fuzzy system is assumed to be a neural network; the fuzzy sets are regarded as 

weights and the rules and the input and output variables as neurons. The choice m include or 

discard neurons can be made in the learning step. Also, the fuzzy knowledge base is 

represented by the neurons of the neural network; this overcomes the major drawbacks of 

both underlying systems.  

 

Membership functions expressing the linguistic terms of the inference rules should be 

formulated for building a fuzzy controller. However, in fuzzy systems, no formal approach 

exists to define these functions. Any shape, such as Gaussian or triangular or bell shaped or 
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trapezoidal, can be considered as a membership function with an arbitrary set of parameters. 

Thus for fuzzy systems, the optimization of these functions in terms of generalizing the data 

is very important; this problem can be solved by using neural networks. Using learning 

rules, the neural network must optimize the parameters by fixing a distinct shape of the 

membership functions; for example, triangular. But regardless of the shape of the 

membership functions, training data should also be available. 

 

The neuro fuzzy hybrid systems can also be modeled in another method. In this case, the 

training data is grouped into several clusters and each cluster is designed to represent a 

particular rule. These rules are defined by the crisp data points and are not defined 

linguistically. The testing can be carried out by presenting a random testing sample to the 

trained neural network. 

 

 

Figure 5.6: A general neuro-fuzzy hybrid system 
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6.1 Introduction to genetic algorithm 

6.1.1 Genetic Algorithms 

Genetic algorithm (GA) is reminiscent of sexual reproduction in which the genes of two 

parents combine to form those of their children. When it is applied to problem solving, the 

basic premise is that we can create an initial population of individual’s representing possible 

solutions to a problem we are trying to solve. Each of these individuals has certain 

characteristics that make them more or less fit as members of the population. The more fir 

members will have a higher probability of mating and producing offspring that have a 

significant chance of retaining the desirable characteristics of their parents than the less fit 

members. This method is very effective at finding optimal or near-optimal solutions m a 

wide variety of problems  

 

6.1.2 Biological Background 

The science that deals with the mechanisms responsible for similarities and differences in a 

species is called Genetics. The word "genetics" is derived from the Greek word "genesis" 

meaning "to grow" or "to become."  

• Cell 

Every animal/human cell is a complex of many "small" factories that work together. The 

center of all this is the cell nucleus. The genetic information is contained in the cell 

nucleus. 

 

Figure 6.1: Anatomy of the animal cell 
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Figure 6.2: The cell nucleus 

• Chromosomes 

All the genetic information gets stored in the chromosomes. Each chromosome is build of 

deoxyribonucleic acid (DNA). In humans, chromosomes exist in pairs (23 pairs found). 

The chromosomes are divided into several parts called genes. Genes code the properties of 

species, i.e., the characteristics of an individual. The possibilities of combination of the 

genes for one property are called alleles, and a gene can take different alleles. For example, 

there is a gene for eye color, and all the different possible alleles are black, brown, blue and 

green (since no one has red or violet eyes!). The set of all possible alleles present in a 

particular population forms a gene pool. This gene pool can determine all the different 

possible variations for the future generations. The size of the gene pool helps in 

determining the diversity of the individuals in the population. The set of all the genes of a 

specific species is called genome. Each and every gene has a unique position on the 

genome called locus. 

• Genetics 

A particular individual, the entire combination of genes is called genotype. The phenotype 

describes the physical aspect of decoding a genotype to produce the phenotype. 

Chromosomes contain two sets of genes. These are known as diploids.  
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Figure 6.3: Model of chromosome 

 

 

Figure 6.4: Development of genotype to phenotype 

 

• Reproduction 

Reproduction of species via genetic information is carried out by the following; 

1. Mitosis: In mitosis the same genetic information is copied to new offspring. There is no 

exchange of information. This is a normal way of growing of multicell structures, such 

as organs. 
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Figure 6.5: Mitosis form of reproduction 

 

2. Meiosis: Meiosis forms the basis of sexual reproduction. When meiotic division takes 

place, two gametes appear in the process. When reproduction occurs, these two gametes 

conjugate to a zygote which becomes the new individual. 

 

Figure 6.6: Meiosis form of reproduction 
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Natural evolution Genetic algorithm 

Chromosome String 

Gene Feature or Character 

Allele Feature value 

Locus String position 

Genotype Structure or coded string 

Phenotype 
Parameter set, a decoded 

structure 

 

Table 6.1: Comparison of natural evolution and genetic algorithm terminology 

 

• Natural Selection 

The origin of species is based on "Preservation of favorable variations and rejection of 

unfavorable variations." The variation refers to the differences shown by the individual of a 

species and also by offspring's of the same parents. There are more individuals born than 

can survive, so there is a continuous struggle for life. Individuals with an advantage have a 

greater chance of survival, i.e., the survival of the fittest.  

For example, 

Giraffe with long necks can have food from tall trees as well from the ground; on the other 

hand, goat and deer having smaller neck can have food only from the ground. As a result, 

natural selection plays a major role in this survival process. 

 

6.1.3 Basic Terminologies in Genetic Algorithm 

• Individuals 

An individual is a single solution. 

 

• Genes 

Genes are the basic "instructions" for building a GA. A chromosome is a sequence of 

genes. Genes may describe a possible solution to a problem, without actually being the 
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solution. A gene is a bit string of arbitrary lengths. The bit string is a binary 

representation of number of intervals from a lower bound. 

 

 

Figure 6.7: Representation of a gene 

 

• Fitness 

The fitness of an individual in a GA is the value of an objective function for its 

phenotype. For calculating fitness, the chromosome has to be first decoded and the 

objective function has to be evaluated. The fitness not only indicates how good the 

solution is, but also corresponds to how close the chromosome is to the optimal one. 

 

• Populations 

A population is a collection of individuals. A population consists of a number of 

individuals being tested, the phenotype parameters defining the individuals and some 

information about the search space. The two important aspects of population used in GAs 

are: 

1. The initial population generation. 

2. The population size. 

 

Figure 6.8: Population 
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6.1.4 General Genetic Algorithm 

Step 1: Create a random initial state 

An initial population is created from a random selection of solutions (which are 

analogous to chromosomes). This is unlike the situation for symbolic AI systems, 

where the initial State in a problem is already given. 

Step 2: Evaluate fitness 

A value for fitness is assigned to each solution (chromosome) depending on how 

close it actually is w solving the problem (thus arriving to the answer of the desired 

problem). (These "solutions" are not to be confused with "answers" to the problem; 

think of them as possible characteristics that the system would employ in order to 

reach the answer.) 

Step 3: Reproduce (and children mutate) 

Those chromosomes with a higher fitness value are more likely to reproduce 

offspring (which can mutate after reproduction). The offspring is a product of the 

father and mother, whose composition consists of a combination of genes from the 

two (this process is known as "crossingover").  

Step 4: Next generation 

If the new generation contains a solution that produces an output that is close enough 

or equal to the desired then the problem has been solved. If this is not the case, then 

the new generation will go through the same process as their parents did. This will 

continue until a solution is reached. 
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Figure 6.9: Flowchart for generic algorithm 

 

6.2  Operators in genetic algorithm 

The basic operators include: encoding, selection, recombination and mutation operators. The 

operators with their various types are explained with necessary examples. 

6.2.1 Encoding  

Encoding is a process of representing individual genes. The process can be performed using 

bits, numbers, trees, arrays, lists or any other object. 
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• Binary Encoding  

Each chromosome encodes a binary (bit) string. Each bit in the string can represent some 

characteristics of the solution. Every bit string therefore is a solution but not necessarily 

the best solution. Another possibility is that the whole string can represent a number. 

The way bit strings can code differs from problem to problem.  

Binary encoding gives many possible chromosomes with a smaller number of alleles. 

Binary coded strings with 1s and 0s are mostly used. The length of the string depends on 

the accuracy. 

 

Figure 6.10: Binary encoding 

 

• Octal Encoding  

This encoding uses string made up of octal numbers (0-7). 

 

Figure 6.11: Octal encoding 

 

• Hexadecimal Encoding  

This encoding uses string made up of hexadecimal numbers (0-9, A-F). 

 

Figure 6.12: Hexadecimal encoding 
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• Permutation Encoding (Real Number Coding)  

Every chromosome is a string of numbers, represented in a sequence. In permutation 

encoding, every chromosome is a suing of integer/real values, which represents number 

in a sequence. 

 

Figure 6.13: Permutation encoding 

 

• Value Encoding  

Every chromosome is a string of values and the values can be anything connected to the 

problem. In value encoding, every chromosome is a string of some values. Values can be 

anything connected to problem, form numbers, real numbers or characters to some 

complicated objects.  

  

Figure 6.14: Value encoding 

 

• Tree Encoding  

This encoding is mainly used for evolving program expressions for genetic 

programming. Every chromosome is a tree of some objects such as functions and 

commands of a programming language 

 

 

 



 

Department of  CSE, ICET                                                                         110 

6.2.2 Selection  

Selection is the process of choosing two parents from the population for crossing. After 

deciding on an encoding, the next step is to decide how to perform selection, i.e., how to 

choose individuals in the population that will create offspring for the next generation and 

how many offspring each will create. The purpose of selection is to emphasize fitter 

individuals in the-population in hopes that their offspring have higher fitness. According to 

Darwin’s theory of evolution the best ones survive to create new offspring.  

Selection is a method that randomly picks chromosomes out of the population according to 

their evaluation function. The higher the fitness function, the better chance that an individual 

will be selected. The selection pressure is defined as the degree to which the better 

individuals are favored. The higher the selection pressure, the more the better individuals are 

favored. This selection pressure drives the GA to improve the population fitness over 

successive generations. 

Two types of selection: 

• Proportionate-based selection  

Proportionate-based selection picks out individuals based upon their fitness values 

relative to the fitness of the other individuals in the population. 

 

• Ordinal-based selection 

Ordinal-based selection schemes select individuals not upon their raw fitness, but upon 

their rank within the population. This requires that the selection pressure is independent 

of the fitness distribution of the population, and is solely based upon the relative 

ordering (ranking) of the population. 

 

Figure 6.15: Selection 
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6.2.2.1 Roulette Wheel Selection  

The commonly used reproduction operator is the proportionate reproductive operator where 

a string is selected from the mating Pool with a probability proportional to the fitness. The 

principle of Roulette selection is a linear search through a Roulette wheel with the slots in 

the wheel weighted in proportion to the individual's fitness values. A target value is set, 

which is a random proportion of the sum of the fitness’s the population. The population is 

stepped through until the target value is reached. This is only a moderately strong selection 

technique, since fit individuals are not guaranteed to be selected for, but somewhat have a 

greater chance. A fit individual will contribute more to the target value, but if it does not 

exceed it, the next chromosome in line has a chance, and it may be weak. It is essential that 

the population not be sorted by fitness, since this would dramatically bias the selection. 

The Roulette process can also be explained as follows: The expected value of an individual 

is individual's fitness divided by the actual fitness of the population. Each individual is 

assigned a slice of the Roulette wheel, the size of the slice being proportional to the 

individual's fitness. The wheel is spun N times, where N is the number of individuals in the 

population. On each spin, the individual under the wheel's marker is selected to be in the 

pool of parents for the next generation.  

This method is implemented as follows:  

5. Sum the total expected value of the individuals in the population. Let it be T.  

6. Repeat N times: 

i. Choose a random integer "r" between 0 and T.  

ii. Loop through the individuals in the population, summing the expected values, 

until the sum is greater than or equal to "r." The individual whose expected value 

puts the sum over this limit is the one selected. 

6.2.2.2 Random Selection  

This technique randomly selects a parent from the population. In terms of disruption of 

generic codes, random selection is a little more disruptive, on average, than Roulette wheel 

selection. 

 



 

Department of  CSE, ICET                                                                         112 

6.2.2.3 Rank Selection  

Rank Selection ranks the population and every chromosome receives fitness from the 

ranking. The worst has fitness 1 and the best has fitness N. It also keeps up selection 

pressure when the fitness variance is low. In effect, potential parents are selected and a 

tournament is held to decide which of the individuals will be the parent. 

There are many ways this can be achieved and two suggestions are:  

1. Select a pair of individuals at random. Generate a random number R between 0 and 1. If 

R< r use the first individual as parent. If R ≥ r then use second individual as parent. This 

process is repeated to select second parent. 

2. Select two individuals at random. The individual with the highest evaluation function 

becomes the parent. This process is repeated to select second parent. 

6.2.2.4 Tournament Selection 

The best individual from the tournament is the one with the highest fitness, who is the 

winner of Nu. Tournament competitions and the winner are then inserted into the mating 

pool. The tournament competition is repeated until the mating pool for generating new 

offspring is filled. The mating pool comprising the tournament winner has higher average 

population fitness. The fitness difference provides the selection pressure, which drives GA 

to improve the fitness of the succeeding genes. This method is more efficient and leads to an 

optimal solution.   

6.2.2.5 Boltzmann Selection  

In Boltzmann selection, a continuously varying temperature controls the rate of selection 

according to a preset schedule. The temperature scans our high, which means that the 

selection pressure is low. The temperature is gradually lowered, which gradually increases 

the selection pressure, thereby allowing the GA to narrow in more closely to the best part of 

the search space while maintaining the appropriate degree of diversity. 

6.2.2.6 Stochastic Universal Sampling  

Stochastic universal sampling provides zero bias and minimum spread. The individuals are 

mapped to contiguous segments of a line, such that each individual's segment is equal in size 

to its fitness exactly as in Roulette wheel selection. Here equally spaced pointers are placed 
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over the line, as many as there are individuals to be selected. Consider N Pointer the number 

of individuals to be selected, then the distance between the pointers are 1/N Pointer and the 

position of the first pointer is given by a randomly generated number in the range [0, l/N 

Pointer]. For 6 individuals to be selected, the distance between the pointers is 1/6 = 0.167. 

Figure 6.16 shows the selection for the above example. Sample of 1 random number in the 

range [0, 0.167]: 0.1. After selection the mating population consists of the individuals, 

1,2,3,4,6,8. 

 

Figure 6.16: Stochastic universal sampling 

 

Stochastic universal sampling ensures selection of offspring that is closer to what is 

deserved as compared to Roulette wheel selection. 

6.2.3 Crossover (Recombination)  

Crossover is the process of taking two parent solutions and producing from them a child. 

After the selection (reproduction) process, the population is enriched with better individuals. 

Reproduction makes clones of good strings but does not create new ones. Crossover 

operator is applied to the mating pool with the hope that it creates a better offspring. 

Crossover is a recombination operator that proceeds in three steps:  

1. The reproduction operator selects at random a pair of two individual strings for the 

mating.  

2. A cross site is selected are random along the string length. 

3. 3. Finally, the position values are swapped between the two strings following the cross 

site. 
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6.2.3.1 Single-Point Crossover 

The two mating chromosomes are cur once at corresponding points and the sections after the 

cuts exchanged. Here, a cross site or crossover point is selected randomly along the length 

of the mated strings and bits next to the cross sites are exchanged. If appropriate site is 

chosen, better children can be obtained by combining good parents, else it severely hampers 

string quality. 

  

Figure 6.17: Single – point crossover 

6.2.3.2 Two-Point Crossover  

In two-point crossover, two crossover points are chosen and the contents between these 

points are exchanged between two mated parents. 

 

Figure 6.18: Two – point crossover 

Originally, GAs were using one point crossover which cuts two chromosomes in one point 

and splices the two halves to create new ones. But with this one-point crossover, the head 
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and the rail of one chromosome cannot be passed together to the offspring. If both the head 

and the tail of a chromosome contain good genetic information, none of the offspring 

obtained directly with one-point crossover will share the two good features. Using a two-

point crossover one can avoid this drawback, and so it is generally considered better than 

one-point crossover. 

5.2.3.3 Multipoint Crossover (N-Point Crossover)  

There are two ways in this crossover. One is even number of cross sires and the other odd 

number of cross sites. In the case of even number of cross sites, the cross sites are 

selected randomly around a circle and information is exchanged. In the case of odd 

number of cross sites, a different cross point is always assumed at the string beginning. 

5.2.3.4 Uniform Crossover  

Each gene in the offspring is created by copying the corresponding gene from one or the 

other parent chosen according to a random generated binary crossover mask of the same 

length as the chromosomes. Where there is a 1 in the crossover mask, the gene is copied 

from the first parent, and where there is a 0 in the mask the gene is copied from the 

second parent. A new crossover mask is randomly generated for each pair of parents. In 

the below figure, while producing child 1, when there is a 1 in the mask, the gene is 

copied from parent 1 else it is copied from parent 2. On producing child 2, when there is 

a 1 in the mask, the gene is copied from parent 2, and when there is a 0 in the mask, the 

gene is copied from the parent 1. 

 

Figure 6.19: Uniform crossover 
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6.2.3.5 Three-Parent Crossover  

In this crossover technique, three parents are randomly chosen. Each bit of the first parent is 

compared with the bit of the second parent. If both are the same, the bit is taken for the 

offspring, otherwise the bit from the third parent is taken for the offspring. 

 

Figure 6.20: Three - parent crossover 

 

6.2.3.6 Crossover with Reduced Surrogate  

The reduced surrogate operator constraints crossover to always produce new individuals 

wherever possible. This is implemented by restricting the location of crossover points such 

that crossover points only occur where gene values differ. 

6.2.3.7 Shuffle Crossover  

Shuffle crossover is related to uniform crossover. A single crossover position (as in 

crossover) is selected. But before the variables are exchanged, they are randomly shuffled in 

both parents. After recombination, the variables in the offspring are unshuffled. This 

removes positional bias as the variables are randomly reassigned each rime crossover is 

performed. 

6.2.3.8 Precedence Preservative Crossover  

The operator passes on precedence relations of operations given in two parental 

permutations to one offspring at the same race, while no new precedence relations are 

introduced. PPX is illustrated below for a. problem consisting of six operations A-F. The 

operator works as follows: 

1. A vector of length Sigma, sub i == 1 to mi, representing the number of operations 

involved in the problem, is randomly filled with elements of the set [1, 2].  
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2. This vector defines the order in which the operations are successively drawn from 

parent 1 and parent 2.  

3. We can also consider the parent and offspring permutations as lists, for which the 

operations "append" and "delete'' are defined.  

4. First we start by initializing an empty offspring. 

5. The leftmost operation in one of the two parents is selected in accordance with the order 

of parents given in the vector. 

6. After an operation is selected, it is deleted in both parents. 

7. Finally the selected operation is appended to the offspring. 

8. Step 7 is repeated until both parents are empty and the offspring contains all operations 

involved. 

 

Figure 6.21: Precedence preservative crossover (PPX) 

 

6.2.3.9 Ordered Crossover  

Ordered two-point crossover is used when the problem is order based, for example in 

assembly line balancing, Given two parent chromosomes, two random crossover points are 

selected partitioning them into a left, middle and right portions. The ordered crossover 

behaves in the following way: child 1 inherits its left and right section from parent l, and its 

middle section is determined by the genes in the middle section of parent 1 in the order in 

which the values appear in parent 2. A similar process is applied to determine child 2. 

 

Figure 6.22: Ordered crossover 
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6.2.3.10 Partially Matched Crossover  

Partially matched crossover (PMX) can be applied usefully in the TSP. Indeed, TSP 

chromosomes are simply sequences of integers, where each integer represents a different 

city and the order represents the time at which a city is visited. Under this representation, 

known as permutation encoding, we are only interested in labels and not alleles. PMX 

proceeds as follows:  

1. The two chromosomes are aligned. 

2. Two crossing sites are selected uniformly at random along the strings, defining a 

matching section. 

3. The matching section is used to effect a cross through position-by-position exchange 

operation. 

4. Alleles are moved to their new positions in the offspring. 

 

Figure 6.23: Given strings 

 

 

 

Figure 6.24: Partially matched crossover 

 

The matching section defines the position-wise exchanges that must take place in both 

parents to produce the offspring. The exchanges are read from the matching section of one 

chromosome to that of the other. In the example illustrate in Figure 6.23, numbers that 

exchange places are 5 and 2, 6 and 3, and 7 and 10. 

6.2.3.11 Crossover Probability  

Crossover probability is a parameter to describe how often crossover will be performed. If 

there is no crossover, offspring are exact copies of parents. If there is crossover, offspring 

are made from parts of both parents chromosome. If crossover probability is 100%, then all 

offspring are made by crossover. If it is 0%, whole new- generation is made from exact 

copies of chromosomes from old population. 



 

Department of  CSE, ICET                                                                         119 

6.2.4 Mutation  

After crossover, the strings are subjected to mutation. Mutation prevents the algorithm to be 

trapped in a local minimum. Mutation plays the role of recovering the lost genetic materials as 

well as for randomly distributing generic information. Mutation is viewed as a background 

operator to maintain genetic diversity in the population. It introduces new generic structures in 

the population by randomly modifying some of its building blocks. Mutation helps escape 

from local minima's trap and maintains diversity in the population. It also keeps the gene pool 

well stocked, thus ensuring ergodicity. A search space is said to be ergodic if there is a non-

zero probability of generating any solution from any population state. 

6.2.4.1 Flipping  

Flipping of a bit involves changing 0 to 1 and 1 to 0 based on a mutation chromosome 

generated. A parent is considered and a mutation chromosome is randomly generated. For a 

1 in mutation chromosome, the corresponding bit in parent chromosome is flipped (0 to 1 

and 1 to 0) and child chromosome is produced. In the case illustrated in Figure 6.25, 1 

occurs at 3 places of mutation chromosome, the corresponding bits in parent chromosome 

are flipped and the child is generated. 

 

Figure 6.25: Mutation flipping 

6.2.4.2 Interchanging 

Two random positions of the string are chosen and the bits corresponding to those positions 

are interchanged. 

 

Figure 6.26: Interchanging 
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6.2.4.3 Reversing  

A random position is chosen and the bits next to that position are reversed and child 

chromosome is produced. 

 

Figure 6.27: Reversing 

6.2.4.4 Mutation Probability  

It decides how often parts of chromosome will be mutated. If there is no mutation, offspring 

are generated immediately after crossover (or directly copied) without any change. If 

mutation is performed, one or more parts of a chromosome are changed. If mutation 

probability is 100%, whole chromosome is changed; if it is 0%, nothing is changed. 

 

6.2.5 Stopping Condition for Generic Algorithm Flow 

1. Maximum generations: The GA stops when the specified number of generations has 

evolved. 

2. Elapsed time: The generic process will end when a specified time has elapsed.  

Note: If the maximum number of generation has been reached before the specified time has 

elapsed, the process will end.  

3. No change in fitness: The genetic process will end if there is no change to the population's 

best fitness for a specified number of generations.   

4. Stall generations: The algorithm stops if there is no improvement in the objective function 

for a sequence of consecutive generations of length "Stall generations."  

5. Stall time limit. The algorithm stops if there is no improvement in the objective function 

during an interval of time in seconds equal to "Stall time limit." 
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6.2.5.1 Best Individual  

A best individual convergence criterion stops the search once the minimum fitness in the 

population drops below the convergence value. This brings the search to a faster conclusion, 

guaranteeing at least one good solution. 

6.2.5.2 Worst Individual  

Worst individual terminates the search when the least fit individuals in the population have 

fitness less than the convergence criteria. This guarantees the entire population be of 

minimum standard, although the best individual may not be significantly better than the 

worst. In this case, a stringent convergence value may never be met, in which case the 

search will terminate after the maximum has been exceeded. 

6.2.5.3 Sum of Fitness  

In this termination scheme, the search is considered to have satisfaction converged when the 

sum of the fitness in the entire population is less than or equal to the convergence value in 

the population record. This guarantees that virtually all individuals in the population will be 

within a particular fitness range, although it is better to pair this convergence criteria with 

weakest gene replacement, otherwise a few unfit individuals in the population will blow out 

the fitness sum. The population size has to be considered while setting the convergence 

value. 

6.2.5.4 Median Fitness  

Here at least half of the individuals will be better than or equal to the convergence value, 

which should give a good range of solutions to choose from. 

6.2 Genetic-neuro hybrid systems 

A neuro-genetic hybrid or a genetic-neuro hybrid system is one in which a neural network 

employs a genetic algorithm to optimize its structural parameters that define its architecture. 

6.2.1 Properties of Genetic Neuro-Hybrid Systems  

a. The parameters of neural networks are encoded by generic algorithms as a string of 

properties of the network, that is, chromosomes. A large population of chromosomes is 
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generated, which represent the many possible parameter sets for the given neural 

network.  

b. Genetic Algorithm- Neural Network, or GANN, has the ability to locate the 

neighborhood of the optimal solution quickly, compared to other conventional search 

strategies. 

 

6.3.2 Genetic Algorithm Based Back-Propagation Network (BPN)  

BPN is a method of reaching multi-layer neural networks how to perform a given task. Here 

learning occurs during this training phase. 

The limitations of BPN are as follows:  

1. BPN do not have the ability to recognize new patterns; they can recognize patterns 

similar to those they have learnt. 

2. They must be sufficiently trained so that enough general features applicable to both seen 

and unseen instances can be extracted; there may be undesirable effects due to over 

training the network. 

 

Figure 6.28: Block diagram of genetic-neuro hybrids 

6.3.2.1 Coding  

Assume a BPN configuration n-l-m where n is the number of neurons in the input layer, l is 

the number of neurons in the hidden layer and m is the number of output layer neurons. The 

number of weights to be determined is given by  



 

Department of  CSE, ICET                                                                         123 

(n+m )l 

Each weight (which is a gene here) is a real number. Let d be the number of digits (gene 

length) in weight. 

6.3.2.2 Weight Extraction  

In order to determine the fitness values, weights are extracted from each chromosome. Let 

a1, a2…..ad….al represent a chromosome and let apd+l, apd+2... , a(p+l)d represent pth gene (p≥0) 

in the chromosomes. 

The actual weight wp is given by 

𝑤𝑝 =

{
 

 −
𝑎𝑝𝑑+210

𝑑−2 + 𝑎𝑝𝑑+310
𝑑−3 +⋯+ 𝑎(𝑝+1)𝑑

10𝑑−2
, 𝑖𝑓 0 ≤ 𝑎𝑝𝑑+1 < 5

+
𝑎𝑝𝑑+210

𝑑−2 + 𝑎𝑝𝑑+310
𝑑−3 +⋯+ 𝑎(𝑝+1)𝑑  

10𝑑−2
, 𝑖𝑓 5 ≤ 𝑎𝑝𝑑+1 ≤ 9

 

6.3.2.3 Fitness Function  

Consider the matrix given by 

{
  
 

  
 

(𝑥11, 𝑥21, 𝑥31, … , 𝑥𝑛1)     (𝑦11, 𝑦21, 𝑦31, … , 𝑦𝑛1)

(𝑥12, 𝑥22, 𝑥32, … , 𝑥𝑛2)     (𝑦12, 𝑦22, 𝑦32, … , 𝑦𝑛2)

(𝑥13, 𝑥23, 𝑥33, … , 𝑥𝑛3)     (𝑦13, 𝑦23, 𝑦33, … , 𝑦𝑛3)
.                                               .
.                                               .
.                                               .

(𝑥1𝑚, 𝑥2𝑚, 𝑥3𝑚, … , 𝑥𝑛𝑚)     (𝑦1𝑚, 𝑦2𝑚 , 𝑦3𝑚 , … , 𝑦𝑛𝑚)}
  
 

  
 

 

where X and Yare the inputs and targets, respectively. Compute initial population I0 of size 

'j'. Let O10, O20, ... , Oj0 represent 'j' chromosomes of the initial population I0. Let the 

weights extracted for each of the chromosomes upto jth chromosome be w10, w20,w30, ... , wj0 

For n number of inputs and m number of outputs, let the calculated output of the considered 

BPN be 
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{
  
 

  
 
(𝑐11, 𝑐21, 𝑐31, … , 𝑐𝑛1)

(𝑐12, 𝑐22, 𝑐32, … , 𝑐𝑛2)

(𝑐13, 𝑐23, 𝑐33, … , 𝑐𝑛3)
.
.
.

(𝑐1𝑚, 𝑐2𝑚 , 𝑐3𝑚 , … , 𝑐𝑛𝑚)}
  
 

  
 

 

As a result, the error here is calculated by 

𝐸𝑅1 = (𝑦11 − 𝑐11)
2 + (𝑦21 − 𝑐21)

2 + (𝑦31 − 𝑐31)
2 +⋯+ (𝑦𝑛1 − 𝑐𝑛1)

2

𝐸𝑅2 = (𝑦12 − 𝑐12)2 + (𝑦22 − 𝑐22)2 + (𝑦32 − 𝑐32)2 +⋯+ (𝑦𝑛2 − 𝑐𝑛2)2

…………………………………………………………………………………
…………………………………………………………………………………

𝐸𝑅𝑚 = (𝑦1𝑚 − 𝑐1𝑚)
2 + (𝑦2𝑚 − 𝑐2𝑚)

2 + (𝑦3𝑚 − 𝑐3𝑚)
2 +⋯+ (𝑦𝑛𝑚 − 𝑐𝑛𝑚)

2

 

The fitness function is further from this root mean square error given by 

𝐹𝐹𝑛 =
1

𝐸𝑟𝑚𝑠𝑒
 

6.3.2.4 Reproduction of Offspring  

In this process, before the parents produce the offspring with better fitness, the mating pool 

has to be formulated. This is accomplished by neglecting the chromosome with minimum 

fitness and replacing it with a chromosome having maximum fitness, In other words, the 

fittest individuals among the chromosomes will be given more chances to participate in the 

generations and the worst individuals will be eliminated. 

6.3.2.5 Convergence  

The convergence for generic algorithm is the number of generations with which the fitness 

value increases towards the global optimum. Convergence is the progression towards 

increasing uniformity. When about 95% of the individuals in the population share the same 

fitness value then we say that a population has converged. 

6.2.2 Advantages of Neuro-Genetic Hybrids 

The various advantages of neuro-genetic hybrid are as follows: 

1. GA performs optimization of neural network parameters with simplicity, ease of 

operation, minimal requirements and global perspective. 
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2. GA helps to find out complex structure of ANN for given input and the output data set 

by using its learning rule as a fitness function. 

3. Hybrid approach ensembles a powerful model that could significantly improve the 

predictability of the system under construction. 

6.3 Genetic-Fuzzy rule based system(GFRBSs) 

For modeling complex systems in which classical tools are unsuccessful, due to them being 

complex or imprecise, an important tool in the form of fuzzy rule based systems has been 

identified. 

The main objectives of optimization in fuzzy rule based system are as follows:  

1. The task of finding an appropriate knowledge base (KB) for a particular problem. This is 

equivalent to parameterizing the fuzzy KB (rules and membership functions). 2. To find 

those parameter values that are optimal with respect to the design criteria. 

 

Figure 6.29: Block diagram of genetic fuzzy systems 

Considering a GFRBS, one has to decide which parts of the knowledge base (KB) are 

subject to optimization by the GA. The KB of a fuzzy system is the union of qualitatively 

different components and not a homogeneous structure.  
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Tuning Learning 

It is concerned with optimization of an 

existing FRRS. 

It constitutes an automated design method 

for fuzzy rule sets that start from scratch. 

Tuning processes assume a predefined RB 

and have the objective to find a set of 

optimal parameters for the membership 

and/or the scaling functions, DB 

parameters 

Learning processes perform a more 

elaborated search in the space of  possible 

RBs or whole KB and do not depend on a 

predefined set of rules. 

 

Table 6.2: Tuning versus learning problems 

6.3.1 Genetic Tuning Process 

The task of tuning the scaling functions and fuzzy membership function is important in 

FRBS design. 

 

Figure 6.30: Process of using the DB 

• Tuning Scaling Function 

The universes of discourse where fuzzy membership function are defined are 

normalized by scaling functions applied to the input and output variables of FRBSs. 

In case of linear the scaling functions are parameterized by a single factor or either 

by specifying a lower and upper bound.  In case of non-linear scaling, the scaling 

functions are parameterized by one or several contradiction/dilation parameters. 

These parameters are adapted such that the scaled universe of discourse matches the 

underlying variable range. 
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• Tuning Membership Functions: 

For FRBSs of the descriptive (using linguistic variables) or the approximate (using 

fuzzy variables) type, the structure of the chromosome is different. In the process of 

tuning the membership functions in a linguistic model, the entire fuzzy partitions are 

encoded into the chromosome and in order to maintain the global semantic in the 

RB, it is globally adapted. 

 

6.4.2 Genetic Learning of Rule Bases 

When considering a rule based system and focusing on learning rules, there are three main 

approaches that have been applied in the literature:  

1. Pittsburgh approach. 

2. Michigan approach. 

3. Iterative rule learning approach 

 

Figure 6.31: Genetic learning of rule base 

The Pittsburgh approach is characterized by representing an entire rule set as a generic code 

(chromosome), maintaining a population of candidate rule sets and using selection and 

generic operators to produce new generations of rule sets. The Michigan approach considers 

a different model where the members of the population are individual rules and a rule set is 

represented by the entire population. In the third approach, the iterative one, chromosomes 

code individual rules, and a new rule is adapted and added to the rule set, in an iterative 

fashion, in every run of the genetic algorithm. 
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6.4.3 Genetic Learning of Knowledge Base 

 

Figure 6.32: Genetic learning of the knowledge base 

Genetic learning of a KB includes different generic representations such as variable length 

chromosomes, multi-chromosome genomes and chromosomes encoding single rules instead 

of a whole KB as it deals with heterogeneous search spaces. As the complexity of the search 

space increases, the computational cost of the generic search also grows. To overcome this 

issue an option is to maintain a GFRBS that encodes individual rules rather than entire KB. 

In this manner one can maintain a flexible, complex rule space in which the search for a 

solution remains feasible and efficient. The three learning approaches as used in case of rule 

base can also be considered here: Michigan, Pittsburgh, and iterative rule learning approach. 
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