Implementation

Software design and implementation is the stage in the software engineering process at which an executable
software system is developed.
Software design is a creative activity in which you identify software components and their relationships, based
on a customer’s requirements

Implementation is the process of realizing the design as a program.

Process Models

Water fall model
The Waterfall Model was first Process Model to be introduced. It is also referred to as a linear-sequential life
cycle model. It is very simple to understand and use. In a waterfall model, each phase must be completed before

the next phase can begin and there is no overlapping in the phases.

Requirement
Analysis Waterfall Model
System
Design

Implementation

Deployment

e Requirement Gathering and analysis: All possible requirements of the system to be developed are

The sequential phases in Waterfall model are:

captured in this phase and documented in a requirement specification doc.

e System Design: The requirement specifications from first phase are studied in this phase and system design
is prepared. System Design helps in specifying hardware and system requirements and also helps in defining
overall system architecture.

e Implementation: With inputs from system design, the system is first developed in small programs called
units, which are integrated in the next phase. Each unit is developed and tested for its functionality which is

referred to as Unit Testing.

ICET Dept of CSE

e Integration and Testing: All the units developed in the implementation phase are integrated into a system
after testing of each unit. Post integration the entire system is tested for any faults and failures.

e Deployment of system: Once the functional and non functional testing is done, the product is deployed in
the customer environment or released into the market.

e Maintenance: There are some issues which come up in the client environment. To fix those issues patches
are released. Also to enhance the product some better versions are released. Maintenance is done to deliver
these changes in the customer environment.

RAD Model

RAD model is Rapid Application Development model. In RAD model the components or functions are
developed in parallel as if they were mini projects. The developments are time boxed, delivered and then
assembled into a working prototype.

This can quickly give the customer something to see and use and to provide feedback regarding the delivery and

their requirements.

Team #n
Modeling Construction
l P Business, data & Components reuse
process modeling Code generation
Co . ion Tesdng
Team 2
i Modeling Construction Deployment
Business, data & Components reuse Integratdion
P]aIIII:iIlg "| process modeling Code generation Delivery
Tesdng Feedback
Team 1
Modeling Construction
% Business, data & Components reuse
process modeling Code generadon
Tesdng

+————— 60 to 90 days — M9 —»

Figure : Flowchart of RAD model

The phases in the rapid application development (RAD) model are:

Business modeling: The information flow is identified between various business functions.

Data modeling: Information gathered from business modeling is used to define data objects that are needed for
the business.

Process modeling: Data objects defined in data modeling are converted to achieve the business information
flow to achieve some specific business objective.

Application generation: Automated tools are used to convert process models into code and the actualsystem.

Testing and turnover: Test new components and all the interfaces.

ICET Dept of CSE

Component based Development Model

the model composes applications from prepackaged software components.

Modeling and construction activities begin with the identification of candidate components. These components
can be designed as either conventional software modules or object-oriented classes or packages of classes.
Regardless of the technology that is used to create the components, the component-based development model

incorporates the following steps

* Available component-based products are researched and evaluated for the application domain in question
» Component integration issues are considered.

* A software architecture is designed to accommodate the components.

» Components are integrated into the architecture.

» Comprehensive testing is conducted to ensure proper functionality.

Unified Modeling Language(UML)

- UML is a modeling language for visualizing, specifying, constructing and documenting a software system
and its components.
Visualizing
- UML includes both graphical and textual representation
- Notations of UML are visual and well defined
Specifying
- UML helps to build models that are precise, unambiguous and complete
Constructing
- Models can be directly connected to a variety of programming language

- It is possible to map from model in UML to

. Object oriented languages such as Java or C++
. Tables in relational database
Documenting

- UML addresses the documentation of systems architecture and all of its details like
requirements, architecture, design, source code, project plan and tests
UML Primary Goals
- The primary goals in the design of UML are:
. Provide users a ready to use, expressive visual modeling language so that they can develop and
exchange meaningful models

. Provide extensibility and specialization mechanisms to extend core concepts

ICET Dept of CSE

. Provide required formal basis for understanding the modeling language

. Encourage the growth of Object Oriented tools
. Supports development concepts
UML Diagrams

1. Class Diagram(static)
2. Use case diagram
3. Behavior diagram(dynamic)
- Interaction Diagram
- Sequence Diagram
- Collaboration Diagram
- State chart Diagram
- Activity Diagram

4. Implementation Diagram
- Component Diagram
- Deployment diagram

Class diagram

- Class diagram describe the structure of systems in terms of classes and objects.

- Class is a collection of objects that share a set of attributes and operations

- Attributes are data held by objects

- Operations are transformations applied to objects

Class name

Attributes

Upcerations

It is a virtual representation of objecTs, TACIT TCIATONSNIP

Class Notation:

, and their structures is for ease of undersatnding

UML class is represented by the diagram shown below. The diagram is divided into four parts.

e The top section is used to name the class.

e The second one is used to show the attributes of the class.

e The third section is used to describe the operations performed by the class.

e The fourth section is optional to show any additional components.

ICET

Dept of CSE

Object Diagram
It is an instance of class diagram

It shows snapshot of the detailed state of the system at a point in time.

Sample Class Diagram
Customer Order
name:String i 5 date:Date s c
location:String number:String | *+——— c:!’:ﬁg
sendOrdern() confirm{)
receiveCrder() close()
Generaliza
-~ G
tiom
SpecialOrder NormalQrder
date:Date date:Date
rismiber:String number: String
confirml) confirm)
close{) _clc._‘rse{}
dispatch{) dispatchi)
receive])
Sub claas

Note: + public data, - private data, # protected data

ICET

Dept of CSE

Book % Transaction
soR Libzarian
0 +ransld
+author - — +netaherTd
EE +password +hookdd
+rice issues +searchB ook() _—creates__ +dateDflsque
ﬂ;attld% et flvembed) +ineDate
+atatus Hzzueh o :
tediion b ulatgl;i?l o) +ereateTransaction()
+dateOFurchase +ereateBl) +ilelete Transction()
- +retricve Tratisa chion)
+iisphyB ockD etails() HretumB ook}
+updateStatig)
requests creates
refers
MenmberRecond
Jomnak BudsB ool +membe]d
+Hype Eill
+itate OfvIetiber ship +H
+inB ooklased :ﬁit:o
M gzines Droiin o pays :memberl i
+adidress
+phomelo +hillCreated)
+ il Tcat
+retrivellernlser() pute)
HncreaseB ooklssued))
+ile creas B ookd ssusdl)
+payBill()
Stdent Faculty
Class Diagram for Library Management System
ICET Dept of CSE

Wisual Paradigm:far UML Commuiity Edition [nof for commeicial osg]

ndergoes

pay bl

register

I ™

Amedicings.

g : allocates
perfarming
operations

perfarm:

el af member of

Class Diagram for Hospital Management System

ICET Dept of CSE

CLERK

+id
+0kribate 1

+Form_detail?)
+Zarcellation_Form()

Hizes

RAILWAY SYSTE

1 +idt
+akkribate 1

PASS ENGER

TRAIMN Hiame
+address 1
Hraino +age
H#rairblame Prrag R

+gerder 15

+responsel’]

+searchTrain(l
+Bock_tickat!)
+Zancel ticket)
+Hay charges(

HladiFy. Foerni) +makes

1 1 PAYMENT
thoaks o3 reels

+arn ot

HorrHo

tstabe

o of person
+chargeT yoe

Hare _amtl)
Hiwe_ticket(
Hoelete ticketl)

Fig: Class Diagram for railway ticket reservation system

Use case Diagram

Use case diagrams are a set of use cases, actors and their relationships. They represent the use case view of a
system.

A use case represents a service provided by a system or a particular functionality of a system. So use case
diagram is used to describe the relationships among the functionalities and their internal/external controllers.
These controllers are known as actors.

The purpose of use case diagram is to capture the dynamic aspect of a system. Use case diagrams are used to
gather the requirements of a system including internal and external influences.

Basic Use Case Diagram Symbols and Notations

System

Draw your system's boundaries using a rectangle that contains use cases. Place actors outside the system's

boundaries.

ICET Dept of CSE

Lictor

i

Use Case

Draw use cases using ovals. Label with ovals with verbs that represent the system's functions.

Actors
Actors are the users of a system. When one system is the actor of another system, label the actor system with

the actor stereotype. An actor is an entity that must interact with the system under development

Actor

=< actor ==
wystem A

Relationships
Ilustrate relationships between an actor and a use case with a simple line. For relationships among use cases,
use arrows labeled either "uses" or "extends." A "uses" relationship indicates that one use case is needed by

another in order to perform a task. An "extends" relationship indicates alternative options under a certain use

case.
A
LSS CESE
Actboexr ==uses=I=

VI Case
o

=extercls==

LS Case

ICET Dept of CSE

SCLor

Customer

Use case diagram of an order management system

Use cases

relationship:
] <<extends>>

o

NormalOrder |
Exter ;
relationship

.ltlln__..--—-"""'-_._-—*
boundary

Figure: Sample Use Case diagram

Fig: Use case Diagram for Hospital Management System

ICET

Dept of CSE

Librarian

/

v
v
v

¢ irdudes =
. Yerfy Member
B

Issue Book

Check Availability of Book

< =indudes=

Calculate Fine
Maintaining Books

/

MMember

Fig: Use case Diagram for Library Management System

ICET

Dept of CSE

Introduction to Java

Genesis of Java

Java’s History

Developed and maintained by Oracle

o James Gosling and Sun Microsystems

O Originally called Oak but it was renamed “Java”

o0 Aimed at producing an operating environment for networked devices and embedded systems

-Design objectives for the language

Simple, secure, portable, object-oriented, robust, multithreaded, architecture-neutral, interpreted , distributed,
dynamic

-It can be integrated into browsers

Dynamic and self executing programs

Java Applications and Applets

Java can be used to create two types of programs

-An application is a program that runs on your computer, under the operating system of that computer.

-An applet is an application designed to be transmitted over the Internet and executed by a Java-compatible
Web browser.

An applet is actually a tiny Java program

An applet is a program that can react to user input and dynamically change

Java Programming Language Platforms
-A Java platform is a particular environment in which Java programming language applications
run.
-All Java platforms consist of a Java Compiler, Java Virtual Machine (JVM) and an application
programming interface (API).

An API is a collection of software components that you can use to create other software components or

applications.

The API is a library of available java classes, packages and interfaces.

Different Platforms

Java Platform, Standard Edition (J2SE)

o Java SE's API provides the core functionality of the Java programming language.

o J2SE can be used to develop standalone applications or applets.

Java Platform, Enterprise Edition (J2EE)

ICET Dept of CSE

The Java EE platform provides an API and runtime environment for developing and running large-scale
applications

Java platform Micro Edition (J2ME)

J2ME can be used to develop applications for mobile devices such as cell phones.
JavaFX

JavaFX is a platform for creating rich internet applications

Java Versions

o JDK Alpha and Beta (1995)

o JDK 1.0 (1996)

o JDK 1.1(1997)

o J2SE 1.2 (1998)

o J2SE 1.3 (2000)

o J2SE 1.4 (2002)

o J2SE 1.5 (2004)

o Java SE 6 (2006)

o JavaSE 7 (2011)

o Java SE 8 (2014)

The Compilation Process for Non-Java Programs

<4—
The Compilation Process for Java Programs 4+—
<«
e
ICET

Java Virtual Machine

How can bytecode be run on any type of computer?

B As a Java program’s bytecode runs, the bytecode is translated into object code by the computer's bytecode
interpreter program. The bytecode interpreter program is known as the Java Virtual Machine, or JVM for short.
B Bytecode is a highly optimized set of instructions designed to be executed by the Java run-time system,
which is called the Java Virtual Machine (JVM).

B JVM is a specification that provides runtime environment in which java bytecode can be executed.

B JVMs are available for many hardware and software platforms (i.e. JVM is platform dependent).

The JVM performs following operation:

o Loads code

o Verifies code

o Executes code

o Provides runtime environment

JVM provides definitions for the:

o Memory area

o Class file format

o Register set

o Garbage-collected heap

Java code can be run on multiple platforms e.g. Windows, Linux, Sun Solaris, Mac/OS etc. Java code is
compiled by the compiler and converted into bytecode. This bytecode is a platform-independent code because it

can be run on multiple platforms i.e. Write Once and Run Anywhere(WORA).

Simas Fla

- -
Wiy Tl Poarinam LT Folame AR SR P Tl
4
pon L TRTE D tor [(MTLTnY Pl i T
u
P = . P P

Features of Java

ICET Dept of CSE

e Javals Simple

e Java Is Object-Oriented

e Java Is Distributed

e Java Is Interpreted

e JavaIs Robust

e Javals Secure

e Java Is Architecture-Neutral

e Java Is Portable

e Java's Performance

e Java Is Multithreaded

e JavaIs Dynamic

Java Is Simple

e Java was designed to be easy for the programmer

e For Object-oriented programmers, learning Java will be even easier.
e Confusing concepts from C++ are left out of Java or implemented in a cleaner manner. Eg:explicit pointers,
operator overloading etc

e InJava, there are a small number of clearly defined ways to accomplish a given task.

Java Is Object-Oriented

e Java is inherently object-oriented.

e Although many object-oriented languages began strictly as procedural languages, Java was designed from
the start to be object-oriented

e The object model in Java is simple and easy to extend

e Object-oriented means we organize our software as a combination of different types of objects that
incorporates both data and behavior

Java Is Distributed

e Distributed computing involves several computers working together on a network.

e Java handles TCP/IP protocols

e Networking capability is inherently integrated into Java, writing network programs is like sending and
receiving data to and from a file.

e RMI and EJB are used for creating distributed applications.

Java Is Interpreted

ICET Dept of CSE

e You need an interpreter to run Java programs.

e The programs are compiled into the Java Virtual Machine code called byte code.

e The byte code is machine-independent and can run on any machine that has a Java interpreter

e Byte code is easy to translate into machine code for very high performance using JIT compiler

Java Is Robust

Robust simply means strong. Java uses strong memory management. There is lack of pointers that avoids
security problem.

There is automatic garbage collection in java. There is exception handling and type checking mechanism in
java. All these points make java robust.

e Java compilers can detect many problems that would first show up at execution time in other languages.

e Java has eliminated certain types of error-prone programming constructs found in other languages.

e Java manages memory allocation and deallocation for you

e Java has a runtime exception-handling feature to provide programming support for robustness.

Java Is Secure

+ Java implements several security mechanisms to protect your system against harm caused by stray
programs.

* Automatic array bounds checking and the lack of manual memory management

* No use of pointers, Exception handling concept etc

Java Is Architecture-Neutral

= Write once, run anywhere

= With a Java Virtual Machine (JVM), you can write one program that will run on any platform.

Java Is Portable

Because Java is architecture neutral, Java programs are portable. They can be run on any platform without being
recompiled.

Java's Performance

e The execution speed of Java programs improved significantly due to the introduction of Just-In

Time compilation (JIT)

e The Just-In-Time (JIT) compiler is a component of the Java Runtime Environment. It improves the
performance of Java applications by compiling bytecodes to machine code at run time

e They can be run on any platform without being recompiled.

Java Is Multithreaded

e Allows you to write programs that do many things simultaneously.

ICET Dept of CSE

e Multithread programming is smoothly integrated in Java, whereas in other languages you have to call
procedures specific to the operating system to enable multithreading

Java Is Dynamic

Java is considered as Dynamic because of Bytecode[a class file]. A source code written in one platform, the
same code can be executed in any platform [which JDK is installed.]. And it also loads the class files at runtime

e Java programs carry with them substantial amount of run time information

e Javaresolves accesses to object at runtime

e Allow dynamic linking

A Simple Java Program — Hello.java

Example 1
/ *
Hello World, first application, only output.
*/
import java.io.*;
class Hello

{

public static void main (String args [])
{
System.out.println(“Hello World\n”);
} //end main
+/end class
How to get it running
Text in Hello.java file
To compile:
javac Hello.java
To run:

java Hello

Java is CASE SENSITIVE!!

File name has to be the same as class name in file.
Need to import necessary class definitions

All statements in Java end with a semicolon.

Whitespace is ignored by compiler

ICET Dept of CSE

In Java, all code must reside inside a class.
Comments

Single line comments(//)

Multi line comments(*/ */)

Documentation comment(**/ */)

Java.io.*;

Similar to #include<stdio.h>

Access to all the classes defined in java.io

public keyword is an access modifier which represents visibility, it means it is visible to all.

static is a keyword, if we declare any method as static, it is known as static method. The core advantage of
static method is that there is no need to create object to invoke the static method. The main method is executed
by the JVM, so it doesn't require creating object to invoke the main method. So it saves memory.

String args| |

- String args[] declares a parameter named args, which is an array of instances of the class String.

- Objects of type String store character strings.

System.out.printin(“Hello World”);

- This line outputs the string “Hello World” followed by a new line on the screen.

-Output is actually accomplished by the built-in println() method.

- In this case, println() displays the string which is passed to it.

-System is a predefined class that provides access to the system, and out is the output stream that is connected to

the console.

Example 2
class Example2

{

public static void main(String args[])

{

int a; // this declares a variable called a

a=100; // this assigns a the value 100

System.out.println("This is num: " +a);

a=a*2;

ICET Dept of CSE

System.out.print("The value of num * 2 is ");

System.out.println(a);

Java Reserved Words or Keywords

There are 49 reserved keywords currently defined in the Java language.These keywords ,combined with the
syntax of the operators and seperators, from the definition of the Java language.These keywords cannot be used

as names for a variable,class or methods.

byte goto package private this
abstract for new protected throw
boolean float native public throws
break finally long return transient
case final interface short try
catch extends int static void
char else instanceof strictfp volatile
class double import super while
const do implements switch

continue default if synchronized

byte, char ,int ,long,short,float,double and boolean are data types in Java

The java instanceof operator is used to test whether the object is an instance of the specified type

break- used to exit from the loop

continue- used to move control to the beginning of loop

The keywords const and goto are reserved but not used.

try, catch , throw ,throws and finally are associated with exception handling

package-A java package is a group of similar types of classes, interfaces and sub-packages.

interface- An interface is a reference type in Java. It is similar to class. It is a collection of abstract methods

final- It is used to make a variable as a constant.

extends-extends is the keyword used to inherit the properties of a class

implements-A class uses the implements keyword to implement an interface

private, protected and public are access specifiers

synchronized- Synchronization in java is the capability fo control the access of multiple threads to any shared

resource.

ICET

Dept of CSE

volatile- volatile keyword is used to mark a Java variable as "being stored in main memory"
this-There can be a lot of usage of java this keyword. In java, this is a reference variable that refers to the
current object.

super-The super keyword in java is a reference variable which is used to refer immediate parent class object.

return-The return keyword is used to return from a method when its execution is complete.
assertion- Assertion is a statement in java. It can be used to test your assumptions about the program.
While executing assertion, it is believed to be true. If it fails, JVM will throw an error named AssertionError. It

is mainly used for testing purpose.

new - It creates a Javaobject and allocates memory for it. new is also used for array creation, as arrays are also
objects.

The “abstract” keyword can be used on classes and methods.

When a method is declared abstract, the method cannot have a definition

transient is a Java keyword which marks a member variable not to be serialized

When a method is marked as native, it cannot have a body and must ends with a semicolon

strictfp is a keyword in the Java programming language that restricts floating-point calculations.

using strictfp ensures result of floating point computations is always same on all platforms.

In addition to the keyword,Java reserved the following:true,false and null. These are the values defined by Java.

Identifiers
O An identifier is a word used by a programmer to name a variable, method, class, or label.
o Keywords and reserved words may not be used as identifiers.
O An identifier must begin with a letter, a dollar sign (§), or an underscore (_); subsequent characters may

be letter, dollar signs, underscores, or digits.

Data types in Java

Data types represent the different values to be stored in the variable. In java, there are two types of data types:
o Primitive data types
o Non-primitive data types

Primitive data types are predefined types of data, which are supported by the programming language.

ICET Dept of CSE

Non-primitive data types are not defined by the programming language, but are instead created by the
programmer. They are sometimes called "reference variables,since they reference a memory location, which

stores the data.

Data Type

/\

Primitive Mon-Primitive

/\‘ String
Booclean Mumeric Array
/\b etc.
Character Integral
Integer Floating-point
b ﬂ\ /\
boolean char byte short int long float double

Java defines eight simple data types : byte,short,int,long,char, float,double,and boolean.These can put in
four groups:
Integers This group includes byte, short, int, and long, which are for whole valued signed numbers.
Floating-point numbers This group includes float and double, which represent numbers with fractional
precision.
Characters This group includes char, which represents symbols in a character set, like letters and numbers.

Boolean This group includes boolean, which is a special type for representing true/false

Integer

byte

Variables of type byte are especially useful when you’re working with a stream of data from a network
or file. Size- 1 byte

short

It is probably the least-used Java type

This type is mostly applicable to 16-bit computers.

Size-2 byte

int

The most commonly used integer type is int.

Commonly employed to control loops and to index arrays. Size- 4 byte

ICET Dept of CSE

long
Large enough to hold the desired value. Size- 8 byte

MName Width Range

Iz £ -0 FFR AT 006 854775, 808 o 020 972 096 854, TTE 80T
imi 2 -2 147 AR 645 1o 2,147 GBS 64T

shiori] -52 768 o 22767

bye & 128 50 127

Floating Point
Float

Variables of type float are useful when you need a fractional component. Size — 4 byte

Double

All math functions, such as sin(), cos(), and sqrt(), return double values.

* many iterative calculations, or are manipulating large-valued numbers, double is the best choice.

= Size- § byte

Name Width in Bits Approximate Range

double fi 4 Oe—374 1 | Be<S08

o 52 | Ae=025 1o 8540058
Characters

B |n C/C++, char is 1 byte wide.

B Java uses Unicode to represent characters. It requires 2 bytes.

B Unicode defines a fully international character set that can represent all of the characters found in all human
languages

B The ASCII character set occupies the first 127 values in the Unicode character set.

Booleans

= Java has a simple type, called boolean, for logical values.

= It can have only one of two possible values, true or false.

= This is the type returned by all relational operators, such as a <b.

Demonstrate double variables
// Compute the area of a circle.

class Area

{

ICET Dept of CSE

public static void main(String args[])
{
double pi, 1, a;
r=10.8; // radius of circle
pi=3.14; // pi, approximately
a=pi*r*r; // compute area
System.out.println("Area of circle is " + a);
}
}

Demonstrate char variables
class Chardemo

{

public static void main(String args[])
{
char chl, ch2;
chl = 88; // ASCII code for X
ch2="Y";
System.out.print("chl and ch2: ");
System.out.println(chl + " " + ch2);

}

§
Output- chl andch2: XY

Variable
The variable is the basic unit of storage in a Java program.

Declaring a Variable

type identifier | = value][, identifier |= value] ...] ;

u The identifier is the name of the variable.

[| Eg:- int a,b,c;
int d=3;
Dynamic Initialization

class Example

{

ICET

Dept of CSE

public static void main(String args[])
{
double a=3.0,b=4.0;
// ¢ is dynamically initialized
double c = Math.sqrt(a * a+ b * b);
System.out.println("Hypotenuse is " + c);
j
}

Scope and Lifetime of Variables

Java allows variables to be declared within any block.

A block is begun with an opening curly brace and ended by a closing curly brace. A block defines a scope.
The scope of a variable defines the section of the code in which the variable is visible.

In Java, the two major scopes are those defined by a class and those defined by a method.

The lifetime of a variable refers to how long the variable exists before it is destroyed.

Scope example

class Scope

{
public static void main(String args[])
{
int x; // known to all code within main
x =10;
if(x ==10)

{ // start new scope

inty =20; //known only to this block

// x and y both known here.
System.out.printin("x and y: " +x+" " +y);
X=y*2;
}
y =100; // Error! y not known here. x is still known here.

System.out.println("x is " + x);

}
}

Lifetime example

class LifeTime

ICET Dept of CSE

public static void main(String args[])

{
int x;
for(x = 0; x < 3; x++)
{
inty =-1; // y is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
y =100;
System.out.println("y is now: " +y);
}
b
}

Type conversion

Type Casting(Type conversion). Assigning a value of one type to a variable of another type is known as Type
Casting.
Example : int x = 10; byte y = (byte)x;.

there are two kinds of conversion: implicit and explicit.

An implicit conversion means that a value of one type is changed to a value of another type without any
special directive from the programmer.

Automatic Type casting take place when,

e the two types are compatible

o the target type is larger than the source type

Example :

public class Test

{
public static void main(String[] args)
{
inti=100;
long 1 =1; //no explicit type casting required
float f=1; //no explicit type casting required

System.out.println("Int value "+i);

ICET Dept of CSE

System.out.println("Long value "+1);

System.out.println("Float value "+f);

}
H

Output :

Int value 100
Long value 100
Float value 100.0

Narrowing or Explicit type conversion

When you are assigning a larger type value to a variable of smaller type, then you need to perform explicit type
casting.

Example :

public class Test

{
public static void main(String[] args)

{
double d = 100.04;
long 1 = (long)d; //explicit type casting required
inti=(int)l; //explicit type casting required

System.out.println("Double value "+d);
System.out.println("Long value "+1);

System.out.println("Int value "+i);

}

Output :

Double value 100.04
Long value 100

Int value 100

Type Promotion Rules

All byte and short values are promoted to int

ICET Dept of CSE

If one operand is long then the whole expression is promoted to long
If one operand is float then the whole expression is promoted to float

If one operand is double then the whole expression is promoted to double

Arrays

Collection of homogenous elements stored in adjacent locations
Arrays can be of any type and dimensions

Array elements can be accessed using an index

One dimensional array

Declaring an array

Syntax: type var-name];
Eg: int a[];

Allocating an array

Syntax : var-name=new type[size];

Eg : a=new int[10];

Declaring and allocating

Eg: inta[]=new int[10];
These elements will be automatically initialized to Zero
All array index starts at zero
Example
class Array

{

public static void main(String args[])
{

int i=0;

intal[];

a=new int[10];

a[0]=1;

a[1]=2;

a[2]=3;

for(i=0;i<3;i++)

System.out.println(a[i]);

ICET

Dept of CSE

}
Array initialization

int a[]={1,2,3,4};

' Bvrerage an-carray ol walues.
clis= Alrerage
public acdtic wroid mafn(String stg=s[l) 1
double mams [] = [LL. 1y 112, 123y 1308, 143k
douclse resalt = IF

- - - .
LOE. L

fox(i=0: 107 T3+
resylly = resglt + o mumsil;
Svetem. ot printls {TArerzge I3 T o resulis F 5F;

Multi Dimensional Arrays

Array of arrays

Syntax : type array-name[][]=new type[row][col]
Eg : int a[][]=new int[4][5];

Initializing Multi Dimensional Array

mt a[][1={ {1,2,3,4}, {5,6,7,8} };

Example

class Two

{

public static void main(String args[])

{

intaf][]={ {1,2,3,4},{5,6,7.8} };

inti,j;

for(i=0;i<2;i++)

for(j=0;j<4;j++)

{

System.out.println(a[i][j] +" ");
H

ICET Dept of CSE

Literals
A literal is a program element that directly represents a value
Integral literals may be expressed in decimal, octal, or hexadecimal.
To indicate octal, prefix the literal with 0 (zero)
To indicate hexadecimal, prefix the literal with 0x or 0X;
int decimal = 100;
int octal = 0144,
int hexa = 0x64;
Floating-Point Literals
They can be expressed in either standard or scientific notation.
Standard notation consists of a whole number component followed by a decimal point followed by a fractional
component.
Eg:- 2.0, 3.14159, and 0.6667
Scientific notation uses a standard-notation, floating-point number plus a suffix that specifies a power of 10 by
which the number is to be multiplied.
Eg:- 6.022E23, 314159E-5, and 2e+100.
Boolean Literals
Either takes the value true or false
Character Literal
can be expressed by enclosing the desired character in single quotes,
charc="'w"
String Literals
By enclosing a sequence of characters between a pair of double quotes.
Eg:- “Hello World”

Operators
Arithmetic Operators

Operator Result
+ Addition
- Subtraction(Also Unary Minus)
* Multiplications
/ Division
% Modulus
++ Increment
+= Addition Assignment
ICET Subtraction ™ Dept of CSE
. A 1er 1c .

Modulus Operator
It can be applied to floating point as well as integers(in c¢/c++ only applicable to integers)
Eg: at+=b is equivalent to a=a+b

/ Deponstrate the bazmic arichmetic operators.
—la=sas BasicHMath |

public =tatic void main|(String args=[] 1
'/ arithmetic asing integers
System.ont.printlnl{TInoteger Lrithmetic™)s
iAG & = 1 &+ 1:
intk'b = & 3:
intk = b 3
int d = o - a;
ink e =o-di
System_cot.printlalT™s = 7 + als
System.cut.pringlni{™b = 7 = k)=
System.out_pringlni{Tc = T F Cl:
Svstem_ocut.prinslni(™d = " = d}:
System.out:printlni(™e = " + el
/ arzthmetic asing donbles
System_cut_printlal™nfloating Point Arichmetic™):
double da = 1 + 1z
double db = da & 2v
double dc = dhb £:
doukle dd = dg - &z
double de = -=dds
Sy=stem.ouk_printlni(Tda = " + da):
Svstem_out.prinsln("db = " + db:
System.out:printlni{Tdc = " + dc] s
System.ont.printlalTdd = " + ddl -
Sy=tem_out.printla(Tde = ™ + de];

o
£
B
=

i you run this program, you will see the following ougpuc

Integer Arithmetic
el

B =8

= = 1

g = =1

e = 1

pating Foint Rrithmetic

Bitwise Operators

Operator Result

~ Bitwise Unary NOT

& Bitwise AND

| Bitwise OR

A Bitwise Exclusive OR

>> Shift Right

>>> Shift Right Zero Fill

ICET Dept of CSE

<< Shift Left
&= Bitwise AND Assignment
|= Bitwise OR ,,
A= Bitwise Excusive OR ,,
>>= Shift right ,,
>>>= Shift right zero fill ,,
<<= Shift left ,,
The Left Shift

Syntax: value<<num;

Shifts all the bits in a value to the left a specified number of times

For each shift a high order bit is shifted out and a zero is brought in on the right
The right shift

Syntax: value>>num;

Shifts all the bits in a value to the right a specified number of times

For each shift a low order bit is shifted out and a zero is brought in on the left
But the MSB bit will not be changed to keep the sign

right Shift fill zero>>>

10111010>>4=11111011

10111010 >>>4 = 00001011

Bitwise operator Assignment

Combines the assignment and bit wise operators

a>>=4 ie a=a>>4

aj=b iea=alb

Relational Operator

To determine relationship that one operand has to the other
=, |=> < >= <=

Can be used with int,float,char and boolean

Result is a boolean

Boolean Logical Operators

Operator Result
& Logical AND
Logical OR

ICET Dept of CSE

A Logical XOR
I Short circuit OR
&& Short Circuit AND
! Logical Unary NOT
&= AND assignment
|= OR Assignment
N= XOR Assignment
= Equal to

I= Not Equal to

7 Ternary if then else

Short circuit Logical Operators
The && and || operators "short-circuit", meaning they don't evaluate the right hand side if it isn't necessary.
The & and | operators, when used as logical operators, always evaluate both sides.
Eg
If(d!'=0 && num/d>10)- there is no risk for run time exception when d=0.
If we use & , both sides have to be evaluated, causing run time exception.

Assignment Operator

variable=expression;

Variable must be compactable with expression
= can be used to create chain of assignments
int x,y,z;

x=y=z=100;

Ternary(Three way) operator

expressionl? Expression2 : expression3;

If expressionl is true then expression2 is evaluated else expression3 will be evaluated

Control Statements

Cause the flow of execution
3 categories

Selection

Iteration

Jump

Selection Control Statement

ICET Dept of CSE

Allows to choose different paths of execution based on o/p of an expression or state of a variable according to
run time conditions
if
switch
if statement
if(condition)
statementl;

else

statement2;
= Each statement may be single or compound enclosed in curly brackets
= Condition is an expression that returns a boolean value
= Else clause is optional

Eg:- int a,b,c;
if(a>b)

c=a;
else

c=b;

If-else-if ladder
if(condition)
statement;
else if(condition)

statement;

else
statement;
Executed from the top down
As soon as one if is found true the statement(s) will be executed and the rest is bypassed

If none is true statement(s) in else will be executed

Switch Statement

Multi way branch statement based on value of an expression

switch(expression)

ICET Dept of CSE

{

case valuel:
//statement sequence
break;

case value 2:

// statement sequence

break;

case value n:
// statement sequence
break;
default:
//statement sequence
H

Example

class Test

{

public static void main(String args[])
{
int i;
for(i=1;1<5;i++)
switch(i)
{
case 1: System.out.println("One");
break;
case 2: System.out.println("Two");
break;
case 3: System.out.println("Three");
break;
case 4: System.out.println("Four");
break;

default: System.out.println("Five");

}

ICET

Dept of CSE

}
}
Example

class Test

{

public static void main(String args[])
{

int 1;

for(i=0;1<12;i++)
switch(i)
{
case 0:
case 1:
case 2:
case 3:
case 4: System.out.println("i is less than 5");
break;
case 5:
case 6:
case 7:
case 8:
case 9: System.out.println("i is less than 10");

break;

default: System.out.println("i is 10 or more");

}
}
}

ICET Dept of CSE

{f Use I '=23ring to comtroi 4 switch statement.

class Stzingdwitch

public static woid main{dtring Zcgal]) |

Scring =tT = "fwo"s

=witch (=5

cam= "pma'
Sy=tEm_ ouk,

break:
caz= “two

SystEm. ouk

bre=ak:

cazs "thres":
System.ouk.

break:
d=fault:

SystEm.oat.

break:

Nested Switch

switch(cond)

{

case 1:

switch(cond)

{

case 0: ----
break;

case 1:

break;

break;

case 2:

Comparison with if

Cintln{ "thra=

| “one") ;

rintlisd ne match"]:

Switch can only test for equality whereas if can evaluate any type of boolean expression

ICET

Dept of CSE

No two case statements can be identical in a switch block
Switch statement is more efficient than set of nested ifs

Switch is faster because it can perform equality of case constants and expression and both are of same type

Iteration Statements

Loops repeatedly executes the same set of instructions until a termination condition is met

while and do- while
for
while

The most fundamental loop — Entry controlled loop

while(condition)
{
//body of loop
}
Ll Condition can be any boolean expression
Ll Body of the loops is executed as long as the

condition is true
do while
Exit control loop
do
{
// body of loop
} while(condition);
Used for menu driven programs
Loop will display the menu once then user gives the choice
For loop
Count control loop
for(initialization;condition;iteration)
{
// body of loop
}
Possible to declare the variable inside the initialization portion of for

Eg:- for(int i=0; i<10;i++)

ICET Dept of CSE

Scope of this variable is limited to the for block
It is possible to include more than one statement in initialization and iteration part of for loop
class Comma {
public static void main(String args[])
{
int first, second ;
for (first = 0, second = 10 ; first < second ; first++, second--)
{
System.out.println(first + " " + second) ;
}
h

Some loop variations
Condition can be any boolean expression
boolean done=false;
int i=0;
for(;!done;)
{
System.out.println(i);
if(i==10)
done=true;
i+t
}
Infinite loop
for(; ;)
{
//body of the loop
}
Nested loops
for(i=0;i<m;i++)
for(j=i;j<n;j++)

{

ICET Dept of CSE

//body of the inner loop
H

Jump Statements

Break, continue and return

break statement has three uses

1. It terminates a statement sequence in switch
2. It can be used to exit a loop
3. It can be used as goto

Java does not have goto statement

Instead break can be used to tell where the execution exactly should resume

Labeled break

Syntax :- break label;

Label is a java identifier

Continue

Continue the loop but by pass the remaining code in the body of loop for the current iteration
class Test

{

public static void main(String args[])
{
for(int 1=0;i<10;i++)
{
if(i%2!=0)
continue;

System.out.println(i);

}
b
}

Return
Explicitly return from a method/function to the caller function
class return

{

public static void main(String args|[])

{

boolean t=true;

ICET Dept of CSE

System.out.println("Before return");
if(t)
return;

System.out.println("This wont execute!");

b
}

Here control is transferred to Java run time system since main is called by Java Run time system

ICET Dept of CSE

