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QUANTUM MECHANICS 

Quantum Mechanics 

 Up to 19th century, classical mechanics proposed by Newton was enough to explain all types of 

motion. But to understand and deal the laws of particles or bodies on the atomic and subatomic scale, a new 

branch was introduced called quantum mechanics.  

 Classical Mechanics failed to explain photoelectric effect, atomic structure, optical spectra, black 

body radiation. But after the introduction of Planck’s quantum theory, all these are successfully explained. 

Quantum theory: According to Quantum theory, energy or radiation is emitted or absorbed by matter in 

discrete packets called quanta. Each quanta of energy is called photon.  

It can be represented as E = h. where h = 6.626 × 10−34Js ( Planck’s Constant) 

Matter waves: De Broglie concept 

 According to De Broglie, a wave is associated with a particle in motion and is called matter waves or  

De Broglie waves. Its wavelength is  = 
h

p
 =  

h

mv
 where m is the mass of the particle and p is its momentum. 

• If KE of moving particle is given by   E = 
1

2
mv2 = 

P2

2m
    or P = √2mE 

Then De Broglie wavelength  = 
𝐡

𝐩
 = 

𝐡

√𝟐𝐦𝐄
 

• If an electron is accelerated by a potential V,  

then De Broglie wavelength  = 
𝐡

𝐩
 = 

𝐡

√𝟐𝐦𝐞𝐕
          ( since E = eV) 

Putting the values of   h = 6.626 × 10−34Js, mass of electron, m = 9.1 × 10−31kg  

and charge of electron , e = 1.6 × 10−19C, we have   = 
𝟏𝟐.𝟑

√𝐕
 A   or    = √

𝟏𝟓𝟎

𝐕
 A    

Heisenberg’s Uncertainty Principle 

(i) Uncertainty in position and momentum 

 According to Heisenberg’s Uncertainty principle, it is impossible to measure both the position and 

momentum of an object precisely at same time. 

 If x is the uncertainty in position and p is the uncertainty in momentum, then 

 xp    
ħ

𝟐
  where   ħ = 

h

2
      i.e.,    xp    

𝐡

𝟒
   

(ii) Uncertainty in energy and time 

 According to energy-time uncertainty principle, the energy of an object can be uncertain by an 

amount E for a time t.   i.e., Et    
ħ

𝟐
   

(iii) Uncertainty in angular displacement and angular momentum:   Jx .     
ħ

𝟐
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Applications of Uncertainty Principle 

 Some atomic phenomena can be explained using uncertainty principle. 

(i) Non existence of electron in the nucleus: 

 The nucleus of the diameter is in the order of 10-15m.  If an electron exists in the nucleus, it can be 

anywhere within the diameter of the nucleus. Then the uncertainty in position, x = 10-15m. 

By Uncertainty principle, xp    
ħ

2
    or p = 

ħ

2𝑥
    =  

h

4𝑥
 = 

6.626×10−34

4×3.14×10−15 = 5.27 × 10−20kgm/s 

i.e., the momentum of the electron p must be the order of 5.27 × 10−20kgm/s 

 We have E = pc = 5.27 × 10−20 × 3 × 108 = 15.81 × 10−12J 

 E = 
15.81×10−12

1.6×10−19  eV = 98.8MeV 

 For an electron to exist in the nucleus, it must have an energy of this order. However, the energy of 

electron is of order of few MeV. So electrons cannot present within the nucleus. 

(ii) Uncertainty in frequency of light emitted by an atom (spectral lines have a finite width or 

natural line broadening) 

 If an atom is in the excited state, it undergoes a transition to the lower energy state. Such an atom 

remains in the excited state for about 10−8 second. i.e., 𝑡 = 10−8s 

  We have E𝑡   
ħ

2
   

  =   
h

4×h×𝑡
 = 

1

4×3.14×10−8 = 0.7 × 107Hz = 7MHz. 

Here the uncertainty in frequency is of the order of MHz.  So this width  of the emitted line is 

experimentally observed. That means the emitted spectral line is not sharp. This broadening of spectral line 

which cannot be reduced further is known as natural line broadening. 

Schrodinger Wave Equation – Time Dependent Equation 

 In quantum mechanics, the state of a particle is described by the wave function . Schrodinger wave 

equations are the equation of motion which governs the propagation of matter waves. 

 Consider a particle moving forward along the x-direction with momentum P. The wave function of 

the particle is (𝑥,𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝑡) → (1) 

Substituting for  and k in equation (1), we get, 

 (𝑥,𝑡) = 𝐴𝑒
𝑖

ħ
(𝑝𝑥−𝐸𝑡)

 → (2) 

Total energy of a particle is the sum of kinetic energy and potential energy. i.e., E = 
1

2
𝑚v2 + V 

           E = 
P2

2𝑚
 + V   

Multiplying both sides by , we get,    E = 
P2

2𝑚
  + V  → (3) 

Since  = 2 = 2
h

h
 = 

E

ħ
 

We have  = 
h

p
  

Also,  k = 
2


 = 

2p

h
  or k = 

p

ħ
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Differentiating equation (2) w.r.t x,       
 

 𝑥
 = A𝑒

𝑖

ħ
(𝑝𝑥−𝐸𝑡)

 × 
𝑖

ħ
 p → (4) 

Again differentiating eqn (2) w.r.t x,       


2


𝑥2
 = A𝑒

𝑖

ħ
(𝑝𝑥−𝐸𝑡)× 

𝑖2

ħ
2 p2 

        


2


𝑥2
 = −  

p2

ħ 
2 ×   

                                                              P2  = − ħ2 


2


𝑥2
   → (5) 

Differentiating eqn (2) w.r.t time,   


𝑡
  = A𝑒

𝑖
ħ⁄ (𝑃𝑥−𝐸𝑡)

 
−𝑖

ħ
 E  =  

−𝑖

ħ
 E 

         i.e.,  E  =  i ħ 


𝑡
   → (6) 

Substituting, P2 and E in eqn (3),  we get,  i ħ 


𝒕
  = 

−ħ𝟐

𝟐𝒎
 


𝟐


𝒙𝟐
  + V 

This is Schrodinger’s time dependent equation in one dimension. 

In three dimensions, i ħ 


𝒕
  = 

−ħ𝟐

𝟐𝒎
 𝟐

  + V  where  2   = 


2


𝑥2  + 


2


𝑦2  + 


2


z2  

Here we have , i ħ 


𝑡
  = (

−ħ2

2𝑚
 

2 + V)     

or  i ħ 


𝑡
  = Ĥ   where Ĥ is the Hamiltonian operator. 

For free particle, PE = V = 0, then  i ħ 


𝒕
  = 

−ħ𝟐

𝟐𝒎
 𝟐

    

Time independent Schrodinger Equation 

 In some cases, potential energy V of a particle does not depend on time, it varies with the position of 

the particle only and then the field is said to be stationary.  In such stationary problems, Schrodinger 

equation can be simplified by separating out time- dependent and position – dependent parts. Accordingly, 

we write the wave function as a product of a function of position x (
𝑥
) and a function of time t (

𝑡
) 

Thus (𝑥,𝑡) = 
𝑥


𝑡
 → (1) 

Differentiating (1) w.r.t x twice,   


2


𝑥2
 = 

𝑡


2



𝑥
2 → (2) 

Differentiating (1) w.r.t t, we get 


𝑡
 = 

𝑥



𝑡
  → (3) 

Time dependent Schrodinger equation is i ħ 


𝑡
  = 

−ħ2

2𝑚
 


2


𝑥2
  + V → (4) 

Substituting (2) and (3) in (4), 
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i ħ
𝑥



𝑡
   = 

−ħ2

2𝑚
 

𝑡


2



𝑥
2  + V

𝑥


𝑡
 

Dividing throughout by 
𝑥


𝑡
,  i ħ

1

𝑡



𝑡
   = 

−ħ2

2𝑚
 

1

𝑥


2



𝑥2
  + V 

The LHS is a function of t alone while the RHS is a function of x alone. For the equation to be consistent, 

each side must be equal to same constant K. 

 



   = 

−𝑖

ħ
 K𝑡 

 Integrating, (t) = 𝑒
−𝑖

ħ
 K𝑡

 

 (𝑥,𝑡) = 
𝑥

𝑒
−𝑖

ħ
 K𝑡

 → (5) 

Differentiating (5) w.r.t t,  


𝑡
 = −𝑖

ħ
K          or    K  = 𝑖 ħ


𝑡

 → (6) 

 Here we can see that K is identical with E, the total energy. 

Then we can write,  
−ħ2

2𝑚
 

1

𝑥


2



𝑥2
  + V   =  E 

 Or    
 ħ2

2𝑚
 


2


𝑥2
  + (E − V)  = 0  

 Or,   


2


𝑥2
  + 

2𝑚

ħ
2  (E − V)  = 0  

This is Schrodinger’s time-independent equation in one dimension or also called as steady state form of 

Schrodinger equation. 

For free particle, PE = V = 0, then one dimensional time independent Schrodinger eqn becomes  


𝟐



𝒙𝟐
  +  

 𝟐𝒎

ħ𝟐
 𝐄  = 0 

In three dimensional,  𝟐
 +  

 𝟐𝒎

ħ𝟐
 (𝐄 − 𝐕)  = 0    

Wave function ()  

  It is a mathematical function which describes the state of a particle or a system. It is a function of 

position coordinates and time.  = (𝑥,𝑦,𝑧,𝑡).  Wave function  is a complex quantity. Wave function  

describes the behavior of a single particle.  

 Probability density:  The wave function  itself has no physical meaning, but the square of 

absolute magnitude ||2 or  gives the probability of finding the particle in unit volume (probability 

density),  where  is the complex conjugate of . i.e., P(x) =  = ||2 



ICET                                     Module III           Quantum Mechanics And  Nanotechnology 

5 

 

 ,  as such, is not an observable (physically measurable quantity). But  is an observable. This is 

the statistical interpretation of .  

 Normalization:  Since the square of modulus of a complex valued function is non negative, so is 

 = ||2 .  A wave function that satisfies the condition ∫ 
𝐝𝒙𝐝𝒚𝐝𝒛



−
 = 1  → (1) is called a 

normalized wave function and is called normalization condition. This condition means that the probability to 

find the particle somewhere in the whole region where the particle is trapped is unity. The solution of 

Schrodinger equation need not satisfy this above condition directly. But we can normalize it by multiplying 

the function by a suitable constant called normalization constant.Essential requisites for a well behaved 

wave function (constraints on wave function) for a given system are 

 Wave function  should be single valued.  

 Wave function  should be finite. 

 Wave function and its derivatives  


𝑥
 , 


2



𝑥2
 etc must be continuous . 

   must be a normalized function.  

Operators 

 In quantum mechanics, every observable quantity of classical mechanics like position, momentum, 

energy etc are represented by a linear operator. 

 Operator transform one function to another. 

• Energy Operator:  

  We have (𝑥,𝑡)  =  A𝑒
𝑖

ħ⁄ (𝑃𝑥−𝐸𝑡)
 

             Differentiating w.r.t time t,  


𝑡
  = A𝑒

𝑖
ħ⁄ (𝑃𝑥−𝐸𝑡)

 
−𝑖

ħ
E    =   

−𝑖

ħ
 E 

            i.e.,  E  =  i ħ 


𝑡
    

 Here the energy operator is E = i ħ 


𝒕
    

• Momentum Operator:  

  We have (𝑥,𝑡)  =  A𝑒
𝑖

ħ⁄ (𝑃𝑥−𝐸𝑡)
 

  Differentiating w.r.t x,   


𝑥
 =  A𝑒

𝑖
ħ⁄ (𝑃𝑥−𝐸𝑡)  

𝑖

ħ
 P   =    

𝑖

ħ
 P 

 P   =  − i ħ


𝑥
 

 Here the momentum operator is P = − i ħ 


𝒙
    

 In 3D,  momentum operator is P = − i ħ 

 

• Kinetic Energy Operator:  

  We have, KE = 
1

2
𝑚v2 = 

P2

2𝑚
 where m is the mass of the particle. 
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            So, KE operator Ek = 
P2

2𝑚
 = 

1

2𝑚
 (− 𝑖 ħ 



𝑥
)

2

 

 Ek  = − 
ħ𝟐

𝟐𝒎


𝟐

𝒙𝟐 

 In 3D,  kinetic energy operator is Ek = − 
ħ𝟐

𝟐𝒎


2
 

• Hamiltonian Operator/ Total Energy Operator:  

 TE  = 
𝑃2

2𝑚
  + V  Here TE is equal to the Hamiltonian function. 

 H(𝑥,𝑝𝑥)     = 
𝑃2

2𝑚
    +   V   

 𝐇(𝒙,𝒑𝒙)     =  − 
ħ𝟐

𝟐𝒎


𝟐

𝒙𝟐
  +   V(x)  

 In 3D, Hamiltonian operator, 𝐇(𝒙,𝒑𝒙)     =  − 
ħ𝟐

𝟐𝒎


𝟐  +   V(x) 

Eigen value and Eigen function 

 An equation of the form   𝐀̂  = a   is called eigen value equation where Â is an operator and a is a 

scalar called an eigen value. The function  is called an eigen function of the operator Â . In an eigen value 

equation, the operator transforms the function   with a number a multiplied to it. 

 In quantum mechanics, a dynamical variable is represented by a linear operator. The state of a 

physical system corresponding to an eigen value is called an eigen state. It is represented by eigen function 

of the operator having the particular eigen value.  Eigen values represent the only possible value of that 

property of the system in that state. 

 Schrodinger equation is an eigen value function. 

 (− ħ
2

2𝑚
2 +  V) = E 

 Ĥ  = E  where Ĥ = − 
ħ2

2𝑚


2 +  V is Hamiltonian operator. 

 Here E is the eigen value and   is the eigen function. 

Particle in a one dimensional infinite square well potential 

 Consider the motion of a particle of mass m confined to move 

 between two walls of infinite height at x = 0 and x = L.  

The width of the box is L. Let this is moving along x - direction. 

 The particle is bouncing back and forth between the walls of the box. 

 Potential energy is V = 0, everywhere within the walls  

and  V =  outside the wall. 

 

One dimensional Schrodinger equation is 


2


𝑥2
  +  

 2𝑚

ħ2
 (E − V)  = 0 

V = 0 

V = 0 for 0 < x < L                            

V =  for x  0 and x  L   

x = 0 x = L 

L 

x 

V 

   

m 
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Inside the box, V = 0, then 1D Schrodinger equation becomes,  

 


𝟐


𝒙𝟐
  +  

 𝟐𝒎

ħ𝟐
 𝐄   = 0 → (1) 

  Putting 
 2𝑚E

ħ2
  =  k2, then eqn (1) becomes,   


2



𝑥2
  + k2   = 0 → (2) 

The general solution of the equation is  = A 𝐬𝐢𝐧 𝐤𝒙 + B 𝐜𝐨𝐬 𝐤𝒙 → (3) 

Now we apply the continuity condition on . Since it is impossible to find the particle outside the box,  

must be zero for all points outside the box.  

ie,    = 0 for  x  0  

    = 0 for  x    L 

Applying first condition at x = 0 on eqn (3),  0 = A sin 0 + B cos 0 .   

 Then  B = 0 

Then eqn (3) becomes  = A 𝐬𝐢𝐧 𝐤𝒙  → (4) 

Using the  condition at x = L on eqn (3), we get 0 = A 𝐬𝐢𝐧 𝐤𝐋  

Since A  0,   sin kL must be equal to 0.   Hence  sin kL  = 0 

Or  kL = n  where n is the integer or  k = 
 𝐧

𝐋
  →  (5) 

Hence the eqn (4) becomes  𝐧 = A 𝐬𝐢𝐧 (
 𝐧

𝐋
) 𝒙       →  (6) 

To find A, apply the normalization condition,     ∫ ||2𝐿

0
 d𝑥 = 1 

 i.e.,  ∫ A  sin (
 n

L
) 𝑥

𝐿

0
. A  sin (

 n

L
) 𝑥  d𝑥 = 1  

A2 ∫ sin2 (
 n

L
) 𝑥 𝑑𝑥 

𝐿

0
 = 1 

A2

2
  ∫ [1 − cos2 (

 n𝑥

L
)] 𝑑𝑥 

𝐿

0
 = 1 

A2

2
  [𝑥 −  

sin
2 n𝑥

L

2
 n

L

]
0

L

= 1  or  
A2

2
  [𝐿 −  

sin
2 n𝐿

L

2
 n

L

] = 1                          

Since sin2n = 0,   
A2

2
 × L  = 1  Or    A = √

𝟐

𝐋
   →  (7) 



ICET                                     Module III           Quantum Mechanics And  Nanotechnology 

8 

 

Thus eqn (6) becomes 𝐧 = √
𝟐

𝐋
 𝐬𝐢𝐧 (

 𝐧

𝐋
) 𝒙  .   This is the normalized wave function of particle in a 

potential box of length L. 

 

 

 

 

 

 

Energy eigen values 

We have 
 2𝑚E

ħ2
  =  k2 .  

Then E = 
k2ħ2

2𝑚
 = (

 n

L
)

2

(
ħ2

2𝑚
) = 

n22ħ2

2mL2
 

i.e.,  E  = 
𝐧𝟐𝟐ħ𝟐

𝟐𝐦𝐋𝟐
        where n = 1,2,3,….. 

For ground state, n = 1,  E1  = 
2ħ2

2mL2
   

For n = 2, E2  = 
(2)22ħ2

2mL2
 = 4E1 

For n = 3, E3  = 
(3)22ħ2

2mL2
 = 9E1……………. 

 Different values of energy for n are called energy eigen values  and n = √
2

L
 sin (

 n

L
) 𝑥 is eigen 

function.   

According to quantum mechanics, a system can take only certain specific energies. Such discrete energies 

are the energy eigen values of the Schrodinger equation for the system. 

Quantum Mechanical Tunneling  

 Consider a particle of mass m and energy E < V0 incident on a potential barrier V0. Quantum 

mechanically, there will be a finite probability for the particle to penetrate through a barrier even if E < V0. 

This phenomenon of tunneling through barriers higher than their own incident energy is known as tunneling 

in quantum mechanics.  

 

 

 

 
0 L 

V0 

Incident wave 

transmitted 

wave I II 
III 

x = 0 x = L 
E1 

E2 

E3 

3 

2 

1 

 

Wave function of first three energy level 
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 The solution of the Schrödinger equation for the particle gives the wave function for the three 

regions. 

 The concept of barrier penetration is used to explain a number of phenomenon in physics. Some of 

them are as follows. 

(i) The emission of -particles from radioactive nuclei. 

(ii) Barrier penetration in electronic devices such as tunnel diode and Josephson junction. 

(iii) Electron tunneling in scanning tunneling microscope.  

NANOTECHNOLOGY 

 Most of the properties of a solid depends on size of the solid. When size of the material becomes 

smaller and smaller, the properties of materials change drastically in  

Most of the nanomaterials exhibit remarkable variations in physical properties as compared to bulk materials. The 

cause of variation may be due to following facts. 

(i)  Large ratio of surface to volume 

 (ii) Quantum confinement  

 (iii) Large surface energy  

(iv) Reduced imperfections. 

 

Surface area to volume ratio 

 Surface area to volume ratio in nanoparticle have a significant effect on the nanoparticle properties. 

Nanoparticles have a relatively larger surface area when compared to the same volume of the material. 

 Let us consider a sphere of radius r, the surface area of the sphere is 4r2 and the volume of the 

sphere is 
4

3
r3. 

The surface area to volume ratio = 
4r2

4

3
r3

 = 
3

𝑟
 

 It means that the surface area to volume ratio increases with the decrease in radius of the sphere and 

vice versa. It can also be concluded here that when given volume is divided into smaller pieces, the surface 

area increases. So a greater portion of the atoms are found at the surface compared to those inside. Therefore 

nanoparticles have a much greater surface area per unit volume compared with the larger particles. It leads 

nanoparticles to become more chemically reactive. As growth and catalytic chemical reaction occurs at 

surfaces, a given mass of nanomaterials will be much more reactive than the same mass of material made up 

of large particles. 

Quantum confinement 
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 The phenomenon of the nonzero lowest energy and quantization of the allowed energy levels 

arising from the confinement of electrons within a limited space. The physical properties of 

semiconducting nanostructures arise from quantum confinement. 

 Consider the motion of an electron in a small length L, but with two walls of infinite height at the 

ends. The electron is confined to move in the portion x = 0 to x = L only. 

 

 

 

 

 

 

 

 

 

 

 

 

Potential energy is zero, since there is no attraction or repulsion. Wave associated with motion of a 

particle is called de Broglie wave or matter wave. The motion of the particle is such that the width of the one 

dimensional box must be an integral multiple of  


2
 . This is the formation of standing waves in the width L 

of the box. i.e., L = 
n

2
    where n = 1, 2, 3 ……. 

De Broglie wavelength  = 
h

p
  

Kinetic energy E  =  
p2

2m
  =  

h2

2m
2   =  

h2

2m
2   =  

h2

2m(
2L

n
) 2

  =  
n2h2

8mL 2
  

Since potential energy is zero, the above expression gives the total energy. 

 Total energy E = 
n2h2

8mL 2
  where n = 1,2,3…….. is called the quantum number. The above expression can be 

derived from Schrodinger’s equation in Quantum mechanics. The minimum energy is non zero and is given 

by E1 = 
h2

8mL 2
  = 

n22ħ2

2mL2
 

The first excited energy is E2 = 4E1  

Thus the possible energies are E1, 4E1 , 9E1 ,…… where E1  is the ground state energy. This shows that 

particle confined to move in a small space can have only particular energy values. It cannot have any value 

of energy. Thus the quantum confinement leads to nonzero lowest energy and quantized higher energy 

values. 

V = 0 

x = 0 x = L 

L 

x 

V 

  0 

A one dimensional box of width L 

3 

2 

1 

 

x = 0 x = L 

E1 

E2 

E3 

Wave functions of first three energy levels 
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Quantum dot – Quantum confinement in 3D 

 Quantum dots are zero dimensional structures in which the electron is confined in all three 

dimensions. Their energy states are quantized in all three directions. 

In this case Schrodinger equation is  

   2(𝑟) +  
 2𝑚

ħ2
 (E − V(𝑟))(𝑟)  = 0     

(𝑥,𝑦,𝑧) =  √
𝟐

L(𝑥)
√

𝟐

L(𝑦)
√

𝟐

L(z)
 𝐬𝐢𝐧 (

 𝑛(𝑥)𝒙

L(𝑥)
)  𝐬𝐢𝐧 (

 𝑛(𝑦)𝒚

L(𝑦)
)  𝐬𝐢𝐧 (

 𝑛(𝑧)𝒛

L(𝑧)
) 

Energy values E𝑛 = 
2ħ2

2m
[

n𝑥
22

L(𝑥)
2 +  

n𝑦
2 2

L(𝑦)
2 +  

n𝑧
22

L(𝑧)
2 ] 

          Quantum dots are usually formed by a definite number of atoms. They are represented by atomic 

clusters or nanocrystallites. 

Quantum wire (Nano wires) – Quantum confinement in 2D 

 A nanowire or quantum wire is a wire of dimensions of the order of nanometers. This is called 

quantum wire because their properties are governed by the law of quantum mechanics. Nano wire is a one 

dimensional structure in which the electrons are confined in two dimensions and are allowed to move freely 

along one dimension. 

 Suppose the carriers are confined in Y and Z directions to small distances L(𝑦) and L(𝑧) respectively 

and free to move in x direction, then we have, 

(𝑥,𝑦,𝑧) =  √
𝟐

L(𝑦)
√

𝟐

L(z)
 𝐬𝐢𝐧 (

 𝑛(𝑦)𝒚

L(𝑦)
)  𝐬𝐢𝐧 (

 𝑛(𝑧)𝒛

L(𝑧)
) e𝑖𝑘𝑥𝑥 

Energy values E𝑛 = 
ħ2

2m
[ 

n𝑦
2 2

L(𝑦)
2 +

n𝑧
22

L(𝑧)
2 ] + 

ħ2K𝑥
2

2m
  

 Nanowires can be used to link or connect tiny components in nanocircuits. Their area of  applications 

are electronics, optoelectronics and Micro Electro Mechanical Systems (MEMS). 

Nanosheet – Quantum confinement in 1D 

 In nanosheet confinement is present in only one dimension. That is carriers are allowed to 

movefreely along a two dimensional plane. Suppose the confinement is present along  Z direction to a small 

distance LZ and free to move along x and y directions.  

Schrodinger equation in this case is  

(𝑥,𝑦,𝑧) =  √
𝟐

L(z)
  𝐬𝐢𝐧 (

 𝑛(𝑧)𝒛

L(𝑧)
) e𝑖𝑘𝑥𝑥. e𝑖𝑘𝑦𝑧 

Energy values E𝑛 = 
ħ2

2m
[

n𝑧
22

L(𝑧)
2 ] + 

ħ2K𝑥
2

2m
+ 

ħ2K𝑦
2

2m
 

Properties of nanomaterials 
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Mechanical Properties 

* Nanomaterials have lower melting point and reduced lattice constant due to large surface to volume 

ratio. 

 It is observed that nanoparticles of metals, semiconductors and molecular crystals have lower 

melting point as compared to their bulk form, when the particle size is less than 100nm.  

For example, melting point of gold decreases rapidly for nanoparticles with diameter below 5nm. 

* Smaller structures have less surface defects. Hence, nanowires have mechanical strength much 

greater than that of thick ones. 

 For example, copper with an average grain size of 6nm has 5 times higher hardness over a sample size 

50micron. Strength of the material increases significantly as the particle size decreases. 

* Hardness and yield strength of the material increases as the particle size is decreased. 

* Nanostructured materials have high modulii of elasticity and their toughness also increases. 

Optical Properties 

 As we go in nanorange, number of atoms decreases on the surface and hence the band gap is more. 

Optical properties such as colour and transparency are observed to change at nanoscale level. 

For examples, 

Bulk gold – appears yellow in colour while nano gold appeare red, orange, purple or greenish depends on 

the size. 

Bulk silicon appears grey in colour while nanosized silicon appears red in colour. 

Zinc oxide gives white appearance while nanoscale zinc oxide appears transparent. 

Optical properties of nanomaterials are due  

(i) to increase in energy level spacing- quantum size effect. 

(ii) surface plasmon resonance (SPR) 

Surface Plasmon Resonance (SPR): SPR is a dipolar excitation of the entire particle between the 

negatively charged free electrons and its positively charged lattice. 

Plasmon is the quantum of oscillation arising as a result of collective excitation in a plasma like system 

composed of positive ions and free electrons.  The Plasmon which is concentrated at surface of the material 

are referred as Surface Plasmon. When the size of nanocrystal is comparable to the wavelength of incident 

light, they exhibits different colours.  

The electric field of an incoming light induces a polarization of the free electrons with respect to the ionic 

core of a spherical metal particle. The net charge difference occurs at the nanoparticle surface. It acts as a 

restoring force. Hence a dipolar oscillation of electrons is created with a certain frequency. Noble metals 

have the resonance frequency in the visible light range. The surface Plasmon resonance is responsible for 

colour of gold nanoparticles and silver nanoparticles in solutions. Analysis shows that the Plasmon 

resonance depends on the particle size. 
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The colouration of nanoparticles renders practical applications and some of the applications have been 

explored and practically used. 

Electrical Properties 

 Electrical conductivity of nanomaterials depends on increased perfection, reduced impurity and 

dislocations. The electrical conductivity decreases with reduced dimensions due to increased surface 

scattering. As the bulk material reduces its size, continuous energy bands are replaced by discrete energy 

levels and bandgap increases as the size decreases. As a result, some metal nanowires undergo transition to 

become semiconductors and semiconductors might become insulators when the diameter changes below a 

critical value. 

Electrical conductivity of nanomaterials may be enhanced due to better ordering in microstructure. Ballistic 

conduction occurs when the length of the conductor is smaller than the electron mean free path. Tunneling 

conduction is another charge transport mechanism in nanometer range. 

Applications  

 Nanomaterials have very wide ranging applications. 

* Nanotechnology can play a key role in the improvement of efficiency of fuel cells,  storing hydrogen 

in fuel cells. 

* Nanomaterials are harder than conventional materials. Therefore, cutting tools and drills made of 

nanocrystalline materials such as titanium carbide, tungsten carbide etc are harder and wear resistant.  Nano 

crystalline silicon nitride an dsilicon carbide are extremely useful for the manufacture of high strength 

springs, ball bearings etc. 

* In new generation batteries, nanomaterials can hold more energy as compared to the conventional 

plates. Frequent recharging is not needed with nickel metal hydride (Ni-MH) batteries made of 

nanocrystalline nickel and metal hydrides. The life time of such batteries is also much longer. 

* Carbon nanotubes are used in nanoelectronics, batteries, displays, high strength composites, solar 

panels etc. CNT are very efficient materials for the manufacturing of low cost solar panels. Composite 

materials reinforced with CNT fibres are used for space applications. CNT employed solar panels will 

significantly reduce the cost of solar panels for the conversion of solar energy into electrical energy at 

affordable cost. CNT are very much stronger than steel and hence used for car bodies, aeroplanes, used as 

armour on military vehicles etc. 

* Nanomaterials are used in the preparation of cosmetic powder, spray perfumes and deodorants. 

Finely dispersed pharmaceuticals are good in rapid drug delivery and hence reduced dosage for patients.  

* When nanocrystalline powders compacted and applied as coating, they provide improved strength 

and ductility to conventional materials like ceramics, composite materials and metal alloys. 

* Nanoshells can be used to destroy cancer cells. 

* Quantum dots may be used in future for locating cancer tumours. 



ICET                                     Module III           Quantum Mechanics And  Nanotechnology 

14 

 

* Nanoparticle can be used to improve MRI images of cancer tumouirs. 

* Nanocrystalline silver can be used to treat wounds. 

* Nanotechnology is being used to reduce air pollution and can be used to reduce water pollution. 

* Fabric with nanosized particle or fibres will improve its properties without increase in weight,  

  thickness or stiffness. 

* By using nanomaterials air leakage from tennis balls can be minimized. 

* Nanorods can be used as cleaning agent. 

* TiO nanoparticles in sunscreen film  can absorb harmful ultraviolet radiation. 

* Nanoparticle can be used in better packaging of food items. 

 

 

 

Excitons 

 When an atom at a lattice site loses an electron, the atom acquires a positive charge and is called a 

hole. If the hole remains localized at the lattice site and the detached negative electron remains in its 

neighbourhood, it will be attracted to the positively charge hole through Coulomb interaction and can bound 

to form a hydrogen type atom. This bound pair of electron-hole is known as exciton. 

 Exciton has the properties of a particle, it is mobile and able to move around the lattice. The electron 

and hole forming a given exciton could be physically close to each other or separated by a few lattice 

spacing. If ‘d’ is the dimension of nanoparticle and 𝑎𝑒𝑓𝑓 is the exciton radius, then 

  d  >   𝑎𝑒𝑓𝑓    -  weak confinement 

  d  <   𝑎𝑒𝑓𝑓    -  strong confinement 

  d  >>   𝑎𝑒𝑓𝑓  -  no confinement 


