
CS303 System Software Module 3

 Page 1

MODULE 3

SYLLABUS

Assembler Design Options: Machine Independent Assembler Features –

Program Blocks, Control Sections, Assembler Design Options- Algorithm for

Single Pass Assembler, Multi pass Assembler, Implementation Example of

MASM Assembler

3.1 MACHINE INDEPENDENT ASSEMBLER FEATURES

The features which are NOT closely dependent to machine architecture are called

machine independent assembler features. The machine independent assembler features

includes:

1. Literals

2. Symbol Defining Statements

3. Expressions

4. Program Blocks

5. Control Sections and Program Linking

3.1.1 LITERALS

 It is convenient for the programmer to be able to write the value of a constant operand as

part of the instruction that uses it.

 This avoids having to define the constant elsewhere in the program and make a label for it.

 Such an operand is called a Literal because the value is literally in the instruction.

 A literal is defined with a prefix '=' followed by a specification of the literal value.

 Consider the following example:

.

.

LDA FIVE

.

.

 FIVE WORD 5

 Using the concept of literal we can rewrite the above code as:

.

.

LDA =X’05’

CS303 System Software Module 3

 Page 2

Difference between literal operands and immediate operands

 For literals prefix is =, and for immediate addressing prefix is #.

 In immediate addressing, the operand value is assembled as part of the machine instruction,

 ie there is no memory reference.

 Line no Location Counter

55 0020 LDA #03 010003

 In the above example the last 12 bits of the machine code corresponds to 003 which is equal

 to the immediate value.

 With a literal, the assembler generates the specified value as a constant at some other

memory location. The address of this generated constant is used as the target address (TA)

for the machine instruction (using PC-relative or base-relative addressing with memory

reference.)

Literal Pool

 All the literal operands used in a program are gathered together into one or more literal

pools. This is usually placed at the end of the program.

 In some cases, it is desirable to place literals into a pool at some other location in the

object program. To allow this an assembler directive LTORG is used.

 When the assembler encounters a LTORG statement, it generates a literal pool containing

all literal operands used since previous LTORG or the beginning of the program

 Literals placed in a pool by LTORG will not be repeated in a pool at the end of the

program.

 Reason for using LTORG is to keep the literal operand close to the instruction (otherwise

PC-relative addressing may not be allowed)

CS303 System Software Module 3

 Page 3

Literal Table (LITTAB)

 A literal table(LITTAB) is created for storing the literals which are used in the program.

 The literal table contains the literal name, operand value and length.

 The literal table is usually created as a hash table on the literal name.

Duplicate literals

 The same literal used more than once in the program, then it can be consider as a duplicate

literal.

 In such cases, only one copy of the specified value needs to be stored

 To recognize the duplicate literals, two methods are there

1. Compare the character strings defining them

Easier to implement e.g. =X’05’. But not possible to handle the literals like

=C’EOF’ and =X’454F46’.

Here both literals are same in the form of their data value.

2. Compare the generated data value

Possible to handle the literals like =C’EOF’ and =X’454F46’. Here both literals are same

in the form of their generated data value. So comparison based on generated data value is

needed to identify duplicate literals or not. But this is difficult to implement compared to

the first method.

Implementation of Literals

During Pass-1:

The literal encountered is searched in the literal table. If the literal already exists, no

action is taken; if it is not present, the literal is added to the LITTAB and for the address

value it waits till it encounters LTORG or END statement for literal definition.

When Pass 1 encounters a LTORG statement or the end of the program, the

assembler makes a scan of the literal table. At this time each literal currently in the table

is assigned an address. As addresses are assigned, the location counter is updated to reflect

the number of bytes occupied by each literal.

During Pass-2:

The assembler searches the LITTAB for each literal encountered in the instruction

and replaces it with its equivalent value as if these values are generated by BYTE or WORD.

The following figure shows the difference between the SYMTAB and LITTAB

CS303 System Software Module 3

 Page 4

3.1.2 SYMBOL DEFINING STATEMENTS AND EXPRESSIONS

EQU Statement:

 Most assemblers provide an assembler directive that allows the programmer to define

symbols and specify their values.

 The directive used for this EQU (Equate).

 The general form of the statement is

 Symbol EQU value

 This statement defines the given symbol (i.e., entering in the SYMTAB) and assigns the

value specified to that symbol.

 The value can be a constant or an expression involving constants and any other symbol

which is already defined.

 One common usage is to define symbolic names that can be used to improve readability

 in place of numeric values. For example

LDA #100

This loads the register A with immediate value 100, this does not clearly mention what

exactly this value indicates. If a statement is included as:

MAXLEN EQU 100

and then LDA #MAXLEN then it clearly indicates that the value of MAXLEN is some

maximum length value and it is to be loaded in A register.

 When the assembler encounters EQU statement, it enters the symbol MAXLEN along

with its value in the symbol table. During LDA the assembler searches the SYMTAB for

its entry and its equivalent value as the operand in the instruction.

CS303 System Software Module 3

 Page 5

 The object code generated is the same for both the options discussed, but is easier to

understand.

 If the maximum length is changed from 100 to 500, it is difficult to change if it is

mentioned as an immediate value wherever required in the instructions. We have to scan

the whole program and make changes wherever 100 is used.

 If we mention this value in the instruction through the symbol defined by EQU, we may

not have to search the whole program but change only the value of MAXLENGTH in the

EQU statement.

ORG Statement:

 This directive can be used to indirectly assign values to the symbols. The directive is

usually called ORG (means origin).

 Its general format is:

ORG value

where value is a constant or an expression involving constants and previously defined

symbols.

 When this statement is encountered during assembly of a program, the assembler resets its

location counter (LOCCTR) to the specified value.

 Since the values of symbols used as labels are taken from LOCCTR, the ORG statement

will affect the values of all labels defined until the next ORG is encountered.

 Eg: ORG AlPHA

When this statement is encountered during assembly of a program, the assembler resets its

location counter (LOCCTR) to the value of ALPHA.

3.1.3 EXPRESSIONS

 The assemblers allow the use of expressions as operand

 The assembler evaluates the expressions and produces a single operand address or value.

 Assemblers generally allow arithmetic expressions as operands formed according to the

normal rules using arithmetic operators +, - *, /. (Division is usually defined to produce an

integer result.)

 Individual terms may be constants, user-defined symbols, or special terms.

 The only special term used is * (the current value of location counter) which indicates the

value of the next unassigned memory location.

CS303 System Software Module 3

 Page 6

Thus the statement

BUFFEND EQU *

Assigns the value of LOCCTR to BUFFEND, which is the address of the next byte

following the buffer area.

 Some values in the object program are relative to the beginning of the program and some

are absolute (independent of the program location, like constants). Hence, expressions are

classified as either absolute expression or relative expressions depending on the type of

value they produce.

 Absolute Expressions:

 The expression that uses only absolute terms is absolute expression. Absolute

expression may contain relative term provided the relative terms occur in pairs with

opposite signs for each pair.

 Example:

MAXLEN EQU BUFEND-BUFFER

In the above instruction the difference in the expression BUFEND-BUFFER gives a

value that does not depend on the location of the program and hence gives an

absolute value

 Relative Expressions:

 The expression that uses the values relative to the program are called relative

expression.

 Absolute expression may contain relative term provided the relative terms occur in

pairs with opposite signs for each pair.

 Example:

MAXLEN EQU ALPHA + BUFEND-BUFFER

In the above instruction the difference in the expression BUFEND-BUFFER gives

a value that does not depend on the location of the program but it is added to the

value of ALPHA which is program relative. Hence this expression is relative.

3.1.4 PROGRAM BLOCKS

 Program blocks allow the generated machine instructions and data to appear in the

object program in a different order by separating blocks for storing code, data, stack,

and larger data block.

 To implement the program block the Assembler Directive used is USE

CS303 System Software Module 3

 Page 7

 Syntax is

USE [block name]

 At the beginning, statements are assumed to be part of the unnamed (or default) block.

 Whenever a USE CDATA statement is encountered, statements upto next USE belongs

to the program block named CDATA.

 If no USE statements are included, the entire program belongs to this single block.

 Each program block may actually contain several separate segments of the source

program. Assemblers rearrange these segments to gather together the pieces of each

block and assign address.

 Consider the following example:

COPY START 0

 LDA LENGTH

………

………

USE CDATA

MAX RESW 1

LENGTH RESW 1

USE CBLOCKS

BUFFER RESB 00

………

//Subroutine to read record into buffer

USE

RDREC CLEAR X

 LDA INPUT

 ………..

 …………

 USE CDATA

INPUT BYTE X’F1’

…………

//Subroutine to write record from buffer

USE

WRREC STA MAX

………

USE CDATA

MIN RESW 1

BUFEND RESW 1

CS303 System Software Module 3

 Page 8

 In the example give above three program blocks are used :

DEFAULT: executable instructions.

CDATA: all data areas that are less in length.

CBLOCKS: all data areas that consists of larger blocks of memory.

Arranging code into program blocks:

During Pass 1 assembler performs the following operations:

 A separate location counter for each program block is maintained.

 At the beginning of a block, LOCCTR is set to 0.

 Save and restore LOCCTR when switching between blocks.

 Assign each label an address relative to the start of the block.

 Store the block name or number in the SYMTAB along with the assigned relative

address of the label

 Indicate the block length as the latest value of LOCCTR for each block at the end of

Pass1

 Assign to each block a starting address in the object program by concatenating the

program blocks in a particular order

 At the end of pass 1 a block table is generated.

Block Table

During Pass 2 assembler performs the following operations:

 Calculate the address for each symbol relative to the start of the object program by

adding

o The location of the symbol relative to the start of its block

o The starting address of this block

Program Blocks Loaded in Memory

Separation of program into blocks results in the movement of the large buffer

(CBLKS) to the end of the object program. As a result extended format, base register

DEFAULT

CDATA

CBLOCKS

Block Name
Block

Number

Starting

Address

Ending

Address

Length of

Block

Default 0 0000 0065 0066

CDATA 1 0066 0070 000B

CBLKS 2 0071 1070 1000

CS303 System Software Module 3

 Page 9

addressing etc are no longer needed. Modification records are also not needed. This improves

program readability.

3.1.5 CONTROL SECTIONS

 A control section is a part of the program that maintains its identity after assembly;

each control section can be loaded and relocated independently of the others.

Different control sections are most often used for subroutines or other logical

subdivisions.

 The programmer can assemble, load, and manipulate each of these control sections

separately. Because of this, there should be some means for linking control sections

together.

 For example, instructions in one control section may refer to the data or instructions

of other control sections. Since control sections are independently loaded and

relocated, the assembler is unable to process these references in the usual way. Such

references between different control sections are called external references.

 The assembler generates the information about each of the external references that

will allow the loader to perform the required linking. When a program is written

CS303 System Software Module 3

 Page 10

using multiple control sections, the beginning of each of the control section is

indicated by an assembler directive: CSECT

 The syntax

secname CSECT

 The assembler maintain separate LOCCTR beginning at 0 for each control sections.

 Control sections differ from program blocks in that they are handled separately by the

assembler.

Handling of External References

Instructions in one control section may need to refer to instructions or data located in

another section. This is called as external references. The external references are indicated

by two assembler directives: EXTDEF and EXTREF

EXTDEF (External Definition)

 It defines the symbols that are defined in this control section and may be used by

other sections

 Syntax - EXTDEF name [, name]

 Ex: EXTDEF BUFFER, BUFEND, LENGTH which means the symbols BUFFER,

BUFFEND and LENGTH are defined in this control section and may be used by

some other control sections.

EXTREF (External Reference)

 It names symbols that are used in this section but are defined in some other control

section.

 Syntax - EXTREF name [,name]

 Ex: EXTREF A,B which means the symbols A and B are used in this control section

but are defined in some other control section.

The assembler must include information in the object program that will cause the loader to

handle external references properly. For this three types of records are used in object

program: Define, Refer and Modification Record.

CS303 System Software Module 3

 Page 11

The format of modification record which we studied in Module 2 is revised to support

the handling of external references.

Consider the following code segments:

 COPY START 0

 EXTDEF BUFFER, BUFFEND, LENGTH

 EXTREF A,B

 LDA ALPHA

 ………………

 ………………

 ………………

 BUFFER WORD 3

 BUFFEND EQU *

 LENGTH EQU BUFFEND-BUFFER

 RDREC CSECT

 EXTREF BUFFER, BUFFEND, LENGTH

 ………………………..

 ………………………..

 …………………………

 LDA BUFFER

 …………………………

 …………………………..

 ………………………….

 END

CS303 System Software Module 3

 Page 12

The object program generated for the above code segment is:

H^ COPY ^ 000000^001033

D^BUFFER^000033^BUFEND^001033^LENGTH^00002D

R^A ^B

T^……………………………

T^……………………………

……………………………….

………………………………

M^000004^05^+RDREC

………………………………

E^000000

3.2 ASSEMBLER DESIGN OPTIONS

In this section, two alternatives to the standard two-pass assembler logic is discussed.

They are:

Single Pass Assembler

Multipass Assembler

3.2.1 SINGLE PASS ASSEMBLER

These assemblers are used when it is necessary or desirable to avoid a second pass

over the source program. The main problem in designing the assembler using single pass was

to resolve forward references.

One-pass assemblers could produce object codes either in memory or to external

storage. One-pass assemblers usually need to modify object code already generated, so

whether object code is stored in memory or external storage imposes different considerations

on assembler design. Based on this one-pass assemblers can be classified into two types:

1. One that produces object code directly in memory for immediate execution (Load-

and-go assemblers).

2. One pass assembler generating object code for later execution.

1. Load-and-Go Assembler

Load-and-go assembler generates their object code in memory for immediate

execution. Since no object program is written out, no loader is needed. It is useful in a system

with frequent program development and testing. Since the object program is produced in

memory, the handling of forward references becomes less difficult.

CS303 System Software Module 3

 Page 13

Working of One pass assembler (Load and Go Assembler)

In load-and-Go assemblers when a forward reference is encountered :

 Omits the operand address if the symbol has not yet been defined(placess 000 at the

operand addresses position)

 Enters this undefined symbol into SYMTAB and indicates that it is undefined

 Adds the location at which the operand is referenced to a list of forward references

associated with the SYMTAB entry

 When the definition for the symbol is encountered, scans the reference list and inserts

the address.

 At the end of the program, reports the error if there are still SYMTAB entries

indicated undefined symbols(* indicates undefined).

 When the END statement is encountered, search SYMTAB for the symbol named in

the END statement and jumps to this location to begin execution if there is no error.

In short, whenever any undefined symbol is encountered it will insert into SYMTAB as

a new entry and indicate that it is undefined and also adds the location at which the

operand is referenced as a linked list associated with that SYMTAB entry. When the

definition for the symbol is encountered, scans the reference list and inserts the address

in proper location.

Algorithm for Single Pass Assembler (Load and Go Assembler)

begin

 read first input line

 if OPCODE = ‘START’ then

 { save #[OPERAND] as starting address

 initialize LOCCTR as starting address

 } //end of if OPCODE = ‘START’

 else

 initialize LOCCTR to 0

 write Header record to object program

 read next input line

 while OPCODE ≠ ‘END’

 { if this is not a comment line

 { if there is a symbol in the LABEL field

 { search SYMTAB for LABEL

CS303 System Software Module 3

 Page 14

 if found

 { if symbol value as null

 { set symbol value as LOCCTR

search the attached forward reference list(if exist) and the address

of the symbol is inserted into any instructions previously generated

delete the forward reference list attached to that symbol

 }

 }

 else

 insert (LABEL, LOCCTR) into SYMTAB

} //end of if there is a symbol in the LABEL field

 search OPTAB for OPCODE

 if found

 search SYMTAB for OPERAND ADDRESS

 if found

 { if symbol value not equal to null

 store symbol value as operand address

 else

insert a node with address LOCCTR at the end of the

forward reference list of that symbol

 }

else

{ insert (symbol name, null)

insert a node with address LOCCTR at the end of the forward

reference list of that symbol

 }

add 3 to LOCCTR

 else if OPCODE =’WORD’

 add 3 to LOCCTR

 else if OPCODE =’RESW’

 add 3 #[OPERAND] to LOCCTR

else if OPCODE =’RESB’

 add #[OPERAND] to LOCCTR

 else if OPCODE = ‘BYTE’

CS303 System Software Module 3

 Page 15

 { find length of constant in bytes

 add length to LOCCTR

 convert constant to object code

 }

 if object code will not fit into current text record

 { write Text record to object program

 initialize new text record

 }

 add object code to Text record

 read next input line

 }

 }//end of while OPCODE ≠ ‘END’

 write last Text record to object program

 write End record to object program

end

Example:

The following figure shows the status upto this point. The symbol RREC is referred once at

location 2013, ENDFIL at 201C and WRREC at location 201F. None of these symbols are

defined. The figure shows that how the pending definitions along with their addresses are

included in the symbol table.

CS303 System Software Module 3

 Page 16

When the definition for the symbols RDREC and ENDFILL are encountered, the

reference list associated with the symbols is scanned and the address is inserted at proper

location. It is gioven in following figure:

2. One pass assembler generating object code for later execution.

In this type of one pass assembler, the generated object program is stored in external

storage (e.g.,files on disks). So random updates to operands target addresses(as in load-and-

go load-and- assemblers do) are not permitted.

For any symbol involved in forward references, once the target address of the symbol

is identified, additional text records must be generated to overwrite those previously omitted

target addresses. Records must be loaded in the same order as they appear in the object

program. Actually, the handling of forward references are jointly done by the assembler and

the linking loader.

One pass assembler which generates object code unlike load and go assembler

operates in the following fashion:

 If the operand contains an undefined symbol, use 0 as the address and write the Text

record to the object program.

 Forward references are entered into lists as in the load-and-go assembler.

CS303 System Software Module 3

 Page 17

 When the definition of a symbol is encountered, the assembler generates another Text

record with the correct operand address of each entry in the reference list.

 When loaded, the incorrect address 0 will be updated by the latter Text record

containing the symbol definition.

Example:

3.2.1 MULTI PASS ASSEMBLER

 For a two pass assembler, forward references in symbol definition are not allowed:

ALPHA EQU BETA

BETA EQU DELTA

DELTA RESW 1

 Here the problem is, the symbol BETA cannot be assigned a value when it is encountered

during Pass 1 because DELTA has not yet been defined. Hence ALPHA cannot be

evaluated during Pass 2. So that the symbol definition must be completed in pass 1.

 The general solution for this type of forward references is to use a multi-pass assembler

that can make as many passes as are needed to process the definitions of symbols.

 It is not necessary for such an assembler to make more than 2 passes over the entire

program.

 The portions of the program that involve forward references in symbol definition are

saved during Pass 1.Additional passes through these stored definitions are made as the

assembly progresses. This process is followed by a normal Pass 2.

Implementation of Multipass Assembler

CS303 System Software Module 3

 Page 18

 For a forward reference in symbol definition, we store in the SYMTAB:

o The symbol name

o The defining expression

o The number of undefined symbols in the defining expression

 The undefined symbol (marked as *) associated with a list of symbols depend on this

undefined symbol.

 When a symbol is defined, we can recursively evaluate the symbol expressions

depending on the newly defined symbol.

 The portions of the program that involve forward references in symbol definition are

saved during Pass 1.Additional passes through these stored definitions are made as the

assembly progresses. This process is followed by a normal Pass 2.

Example:

 Consider the symbol table entries from Pass 1 processing of the statement.

HALFS2 EQU MAXLEN/2

 Since MAXLEN has not yet been defined, no value for HALFS2 can be computed.

The defining expression for HALFS2 is stored in the symbol table in place of its

value.

 The entry &1 indicates that 1 symbol in the defining expression undefined.

 SYMTAB simply contain a pointer to the defining expression.

 The symbol MAXLEN is also entered in the symbol table, with the flag * identifying

it as undefined. Associated with this entry is a list of the symbols whose values

depend on MAXLEN.

CS303 System Software Module 3

 Page 19

If possible study the portion given below

