
CS303 System Software Module 2

 Page 1

MODULE II

ASSEMBLERS

SYLLABUS:

Basic Functions of Assembler. Assembler output format – Header, Text and End

Records- Assembler data structures, Two pass assembler algorithm, Hand assembly

of SIC/XE program, Machine dependent assembler features.

2.1 Basic Functions of Assembler

 Assembler is a system software which is used to convert an assembly language

program to its equivalent object code(machine code).

 The input to the assembler is a source code written in assembly language (using

mnemonics) and the output is the object code.

Assembly Language Object Code

 Functions of an assembler includes:

o Translating mnemonic operation codes to their machine language

equivalents.

o Assigning machine addresses to symbolic labels used by the programmer.

 The design of an assembler depends upon the machine architecture as the language

used is mnemonic language.

2.2 A simple SIC Assembler

 The translation of source program to object code requires the following functions:

1. Convert mnemonic operation codes to their machine language equivalents. Eg: In

the program given on next page Translate STL to 14 (line 10).

2. Convert symbolic operands to their equivalent machine addresses. Eg:Translate

RETADR to 1033 (line 10).

3. Build the machine instructions in the proper format.

 4. Convert the data constants specified in the source program into their internal

 machine representations. Eg: Translate EOF to 454F46(line 80).

5. Write the object program and the assembly listing.

 Consider the following assembly language program for SIC. This program contains

a main routine that calls the subroutine RDREC which reads records from an input device(

code F1) and WRREC which copies them to an output device(code 05).

The main routine calls subroutines:

• RDREC – To read a record into a buffer.

• WRREC – To write the record from the buffer to the output device.

 Assembler

CS303 System Software Module 2

 Page 2

At the end of the file it writes EOF on the output device.(The end of each record is marked

with a null character (hexadecimal 00)).

The line numbers are for reference only. Indexed addressing is indicated by adding

the modifier ”X” following the operand. Lines beginning with ”.” contain comments only.

CS303 System Software Module 2

 Page 3

 Figure 2.1 –Example of a SIC assembler language program

Explanation of above program(No need to study, just to understand the program):

CS303 System Software Module 2

 Page 4

Data transfer (RD, WD)

A buffer (BUFFER) is used to store record. The end of each record is marked with a

null character (0016). Buffer length is 4096 Bytes The end of the file is indicated by a zero-

length record(EOF). When the end of file is detected, the program writes EOF on the output

device and terminates by RSUB.

Subroutines (JSUB, RSUB)

RDREC is the subroutine for reading records, WRREC is the subroutine for writing

the records to output device. The contens of the linkage register (L) is saved into RETADR

variable before jumping to subroutine.

Figure 2.1 shows a sample SIC assembler language program along with the

generated object code for each statement. Assembler directives, START,END, RESW, RESB,

WORD, BYTE etc do not generate the object code but directs the assembler to perform certain

operation.. Assume the program starting at address 1000. The first column shows the line

number for that instruction, second column shows the addresses allocated to each instruction.

The third column indicates the labels given to the statement, and is followed by the instruction

consisting of opcode and operand. The last column gives the equivalent object code. The

object code later will be loaded into memory for execution. The object program contains three

types of records as explained below.

2.3 Assembler output format - Header, Text and End Records

The object program contains three types of records:

 • Header record

Col. 1 H

Col. 2 7 Program name

Col. 8 13 Starting address of object program (hex)

Col. 14 19 Length of object program in bytes (hex)

• Text record

Col. 1 T

Col. 2 7 Starting address for object code in this record (hex)

Col. 8 9 Length of object code in this record in bytes (hex)

CS303 System Software Module 2

 Page 5

Col. 10 69 Object code, represented in hex (2 col. per byte). So a maximum of

30 bytes can be stored in each text record.

 • End record

Col.1 E

Col.2 7 Address of first executable instruction in object program (hex).

(”ˆ” is only for separation only)

 Fig 2.2 - Object code for the above example program:

We have two columns per byte for object code. Each machine instruction is 3 bytes

that is it occupies 6 columns. In the first text record we are saving 10 machine instructions

each of 3 bytes size. So we are storing a total of 30 bytes (60 columns) which is 1E in

decimal.(IE marked in a circle in the example given).

2.4 Design of a two pass assembler

2.4.1 Necessity of two passes and Forward reference:

Forward reference: It is the reference to a label that is defined later in the program.

In the above example in line number 1000 the instruction STL will store the linkage

register with the contents of RETADR. But during the processing of this instruction the

value of this symbol is not known as it is defined at the line number 1033.

To generate the object code for the instruction at 1000 we need the opcode for STL

and the value for the symbol RETADR. But the value or address of RETADR is not

available until 1033. This reference of RETADR before it is defined is called forward

referencing.

CS303 System Software Module 2

 Page 6

So generating the object code by scanning the entire program only once becomes

difficult. Due to this reason usually the design is done in two passes. A two pass assembler

resolves the forward references with the help of a SYMBOL TABLE and then converts the

program into the object code.

Functions of the two passes of assembler:

Pass 1 (Define symbols)

1. Assign addresses to all statements in the program.

2. Save the addresses assigned to all labels for use in Pass 2.

3. Perform some processing of assembler directives.

Pass 2 (Assemble instructions and generate object programs)

1. Assemble instructions (translating operation codes and looking up addresses).

2. Generate data values defined by BYTE,WORD etc.

3. Perform processing of assembler directives not done in Pass 1.

4. Write the object program and the assembly listing.

2.4.2 Data Structures Used

The data structures used in the design of 2 pass algorithm are:

 • Operation Code Table (OPTAB)

 • Symbol Table (SYMTAB)

 • Location Counter(LOCCTR)

Operation Code Table (OPTAB)

It is used to lookup mnemonic operation codes and translates them to their machine

language equivalents. In more complex assemblers the table also contains information about

instruction format and length.

In pass 1 the OPTAB is used to look up and validate the operation code in the source

program and to find the instruction length for incrementing LOCCTR. In pass 2, it is used to

translate the operation codes to machine language.

(OPTAB is usually organized as a hash table, with mnemonic operation code as the

key. The hash table organization is particularly appropriate, since it provides fast retrieval

with a minimum of searching. Most of the cases the OPTAB is a static table that is, entries

are not normally added to or deleted from it. In such cases it is possible to design a special

hashing function or other data structure to give optimum performance for the particular set

of keys being stored.)

Symbol Table (SYMTAB)

 This table includes the name and value for each label in the source program, together

with flags to indicate the error conditions (e.g., if a symbol is defined in two different

places).

During Pass 1,labels are entered into the symbol table along with their assigned

address value as they are encountered. All the symbols address value should get resolved at

CS303 System Software Module 2

 Page 7

the pass 1. During Pass 2, symbols used as operands are looked up the symbol table to

obtain the address value to be inserted in the assembled instructions. SYMTAB is usually

organized as a hash table for efficiency of insertion and retrieval. A sample SYMTAB is

shown below.

Location Counter (LOCCTR)

Apart from the SYMTAB and OPTAB, this is another important variable which

helps in the assignment of the addresses. LOCCTR is initialized to the beginning address

mentioned in the START statement of the program. After each statement is processed, the

length of the assembled instruction is added to the LOCCTR to make it point to the next

instruction. Whenever a label is encountered in an instruction the LOCCTR value gives the

address to be associated with that label.

(Both pass 1 and pass 2 require reading the source program. Apart from this an

intermediate file is created by pass 1 that contains each source statement together with its

assigned address, error indicators, etc. This file is one of the inputs to the pass 2. A copy of

the source program is also an input to the pass 2, which is used to retain the operations that

may be performed during pass 1 (such as scanning the operation field for symbols and

addressing flags), so that these need not be performed during pass 2.)

CS303 System Software Module 2

 Page 8

2.4.3 The Algorithm for Pass 1

CS303 System Software Module 2

 Page 9

Explanation of Pass 1 Algorithm:

The algorithm scans the first statement START and saves the operand field (the

address) as the starting address of the program. Initializes the LOCCTR value to this

address. This line is then written to the intermediate file. If no operand is mentioned the

LOCCTR is initialized to zero.

If a label is encountered, the symbol has to be entered in the symbol table along with

its associated address value. If the symbol already exists that indicates an entry of the same

symbol already exists. So an error flag is set indicating a duplication of the symbol.

Next it checks for the mnemonic code, it searches for this code in the OPTAB. If

found then the length of the instruction is added to the LOCCTR to make it point to the next

instruction.

If the opcode is the assembler directive WORD it adds a value 3 to the LOCCTR. If

it is RESW, it needs to add the number of data word to the LOCCTR (each word is of size

3bytes so 3*no of words). If it is BYTE it adds the length of the constant to the LOCCTR, if

RESB it adds number of bytes reserved. If it is END directive then it is the end of the

program it finds the length of the program by evaluating current LOCCTR minus the starting

address mentioned in the operand field of the END directive. Each processed line is written

to the intermediate file.

2.4.2 The Algorithm for Pass 2

CS303 System Software Module 2

 Page 10

Explanation of Pass 2 Algorithm:

Here the first input line is read from the intermediate file. If the opcode is START,

then this line is directly written to the listing file(output file). A header record is written in

the object program which gives the starting address and the length of the program (which is

calculated during pass 1).

CS303 System Software Module 2

 Page 11

Then the first text record is initialized. Comment lines are ignored. OPTAB is

searched to find the object code of an opcode. If there is a symbol in the operand field, the

symbol table is searched to get the address value for this which gets appended to the object

code of the opcode. If the address is not found then zero value is stored as operand's address.

An error flag is set indicating it as undefined. If symbol itself is not found then store 0 as

operand address and the object code instruction is assembled.

If the opcode is BYTE or WORD, then the constant value is converted to its

equivalent object code(for example, for character EOF, its equivalent hexadecimal value

'454f46' is stored). If the object code cannot fit into the current text record, a new text record

is created and the rest of the instructions object code is listed. The text records are written to

the object program. Once the whole program is assemble and when the END directive is

encountered, the End record is written.

Machine Dependent Assembler Features

The features which are closely related(dependent) to machine architecture are called

machine dependent assembler features.The machine dependent assembler features includes

1. Instruction Formats and Addressing Modes

2. Program Relocation

Instruction Formats and Addressing Modes

 Study the instruction formats and addressing modes of SIC/XE from first module.

Program Relocation

Sometimes it is required to load and run several programs at the same time. The

system must be able to load these programs wherever there is place in the memory.

Therefore the exact starting address is not known until the load time.

In an absolute program the starting address to which the program has to be loaded is

mentioned in the program itself using the START directive. So the address of every

instruction and labels are known while assembling itself. This is called absolute addressing.

Consider an example

This statement says that the register A is loaded with the value stored at location

102D(which is the address of THREE). Suppose we need to load and execute the program at

location 3000 instead of location 1000. Since program is loaded into location 3000, at

address 102D (address of THREE) the required value which needs to be loaded in the

CS303 System Software Module 2

 Page 12

register A is no more available. The address of the symbols also get changed relative to the

displacement of the program. Hence we need to make some changes in the address portion

of the instruction so that we can load and execute the program at location 3000.

Since assembler will not know actual location where the program will get loaded, it

cannot make the necessary changes in the addresses used in the program. However, the

assembler can identifies and informs the loader those parts of the program which need

modification. An object program that has the information necessary to perform this kind of

modification is called the relocatable program.

The above diagram shows the concept of relocation. Initially the program is loaded at

location 0000. The instruction JSUB is loaded at location 0006. The address field of this

instruction contains 01036, which is the address of the instruction labeled RDREC. The

second figure shows that if the program is to be loaded at new location 5000. The address of

the instruction JSUB gets modified to new location 6036. Likewise the third figure shows

that if the program is relocated at location 7420, the JSUB instruction would need to be

changed to 4B108456 that correspond to the new address of RDREC.

The only part of the program that require modification at load time are those that

specify direct addresses. The rest of the instructions need not be modified. The instructions

which doesn't require modification are the ones that is not a memory address (immediate

addressing) and PC-relative, Base-relative instructions.

CS303 System Software Module 2

 Page 13

It is not possible for the loader to distinguish the address and constant from the

object program. So the assembler must keep some information to tell the loader which part

of the object program need to be modified. For this the concept of modification record is

record.

Modification record is a type of record which is added to the object program. One

modification record is created for each address to be modified. The assembler produces a

modification record to store the starting location and the length of the address field to be

modified.

The Modification record has the following format:

 The length is stored in half-bytes (4 bits)

 The starting location is the location of the byte containing the leftmost bits of the

address field to be modified.

 If the field contains an odd number of half-bytes, the starting location begins in

the middle of the first byte.

Example for a relocatable object program:

CS303 System Software Module 2

 Page 14

 The object code lines at the end starting with M are the descriptions of the

modification records for those instructions which need change if relocation occurs.

 M00000705 is the modification suggested for the statement at location 0007 and

requires modification 5-half bytes.

 Similarly for the remaining modification records.

