

CSE ,ICET Page 1

Module III

Software vulnerabilities: Buffer and stack overflow, Crosssite scripting(XSS) , and vulnerabilities, SQL

injection and vulnerabilities , Phishing.

SOFTWARE VULNERABILITIES

-Software vulnerability is a glitch, flaw, or weakness present in the software or in an OS (Operating

System). Of course, all systems include vulnerabilities. The thing is whether or not they‟re exploited

to cause damage.

-Software vulnerability is an instance of a fault in the specification, development, or

configuration of software such that its execution can violate the (implicit or explicit) security

policy.

-It is generally found after the system has been released to the public

-Software vulnerabilities involve bugs in software. Bugs are coding errors that cause the system to

make an unwanted action. All software has bugs of one form or another. Some bugs cause the system

to crash, some cause connectivity to fail, some do not let a person to log in, and some cause printing

not to work properly.

-Some bugs create information leakage or elevate user privileges or grant otherwise unauthorized

access. These are security vulnerabilities. If all software has bugs and it is inevitable that some bugs

will be security vulnerabilities, all software will have security vulnerabilities.

-It is important to consider that just about every device has software, and therefore security

vulnerabilities. Operating systems are composed of software, as are web browsers, word processing

programs, spreadsheets, video players, websites, and every other application. Even computer

hardware includes a form of software called firmware. Networking equipment and cell phones also

have software, and therefore inevitably security vulnerabilities.

Software vulnerabilities are explained by three ideal factors. These are:

a) Existence – The existence of vulnerability in the software.

b) Access – The possibility that hackers gain access to the vulnerability.

c) Exploit – The capability of the hacker to take advantage of that vulnerability via tools or with certain

techniques.

Exploiting the weaknesses

Once an attacker identifies vulnerability, he can write a new computer program that uses that

opportunity to get into a machine and take it over.

In recent years, attackers began targeting web browsers, which are allowed to connect to the internet

and often to run small programs; they have much vulnerability that can be exploited. Those initial openings

can give an attacker control of a target computer, which in turn can be used as a point of intrusion into a larger

sensitive network.

CSE ,ICET Page 2

Sometimes the vulnerabilities are discovered by the software developers themselves, or users or

researchers who alert the company that a fix is needed. But other times, hackers or government spy agencies

figure out how to break into systems and don‟t tell the company. These weaknesses are called “zero days,”

because the developer has had no time to fix them. As a result, the software or hardware has been

compromised until a patch or fix can be created and distributed to users.

The best way users can protect themselves is to regularly install software updates, as soon as updates

are available.

Types of Software Vulnerabilities

 Buffer overflows

 Heap overflows

 Format string vulnerabilities

 Integer Overflow

 SQL Injection

 XSS/Cross site scripting

Buffer Overflow

A buffer is a sequential section of memory allocated to contain anything from a character string to an array of

integers.

A buffer overflow, or buffer overrun, occurs when more data is put into a fixed-length buffer than the buffer

can handle. The extra information, which has to go somewhere, can overflow into adjacent memory space,

corrupting or overwriting the data held in that space.

This overflow usually results in a system crash, but it also creates the opportunity for an attacker to run

arbitrary code or manipulate the coding errors to prompt malicious actions.

SQL Injection

SQL injection, also known as SQLI, is a common attack that uses malicious SQL code for backend

database manipulation to access information that was not intended to be displayed. This information may

include any number of items, including sensitive company data, user lists or private customer details.

Uncontrolled format string

It involves accepting unchecked/unauthorized user inputs as a format string to execute

Format string bugs most commonly appear when a programmer wishes to print a string containing user

supplied data. The programmer may mistakenly write printf(buffer) instead of printf("%s", buffer). The first

version interprets buffer as a format string, and parses any formatting instructions it may contain. The second

version simply prints a string to the screen, as the programmer intended.

Heap overflow

A heap overflow attack is a type of a buffer overflow attack that specifically targets the heap, as it's name

implies.

In these attacks the data in the heap is overwritten to exploit some aspect of the program.

https://theconversation.com/should-spies-use-secret-software-vulnerabilities-77770
https://theconversation.com/why-installing-software-updates-makes-us-wannacry-77667
https://sites.google.com/site/bufferattack/attacks/heap/what_is

CSE ,ICET Page 3

A buffer overflow attack on a heap works by corrupting information in the heap in an effort to change

specific things to be what they want.

Heap attacks are typically harder to perform than a Stack based attack because the presence of an

overflow is not the only factor that determines the success, quite often the information in the heap must be

corrupted not just overwritten.

Integer Overflow

An Integer Overflow is the condition that occurs when the result of an arithmetic operation, such as

multiplication or addition, exceeds the maximum size of the integer type used to store it. When an integer

overflow occurs, the interpreted value will appear to have “wrapped around” the maximum value and started

again at the minimum value, similar to a clock that represents 13:00 by pointing at 1:00.

 For example, an 8-bit signed integer on most common computer architectures has a maximum value of 127

and a minimum value of -128. If a programmer stores the value 127 in such a variable and adds 1 to it, the

result should be 128. However, this value exceeds the maximum for this integer type, so the interpreted value

will “wrap around” and become -128.

XSS or Cross site scripting

Cross-site scripting (XSS) is a type of injection security attack in which an attacker injects data, such

as a malicious script, into content from otherwise trusted websites. Cross-site scripting attacks happen

when an untrusted source is allowed to inject its own code into a web application, and that malicious code is

included with dynamic content delivered to a victim's browser.

BUFFER OVERFLOW

A buffer is a temporary area for data storage. When more data (than was originally allocated to be

stored) gets placed by a program or system process, the extra data overflows. It causes some of that data to

leak out into other buffers, which can corrupt or overwrite whatever data they were holding.

A buffer overflow, or buffer overrun, is a common software coding mistake that an attacker could

exploit to gain access to your system.

To effectively mitigate buffer overflow vulnerabilities, it is important to understand what buffer

overflows are, what dangers they pose to your applications, and what techniques attackers use to successfully

exploit these vulnerabilities.

Buffer overflows can be exploited by attackers with a goal of modifying a computer’s memory in

order to undermine or take control of program execution.

Programming languages like C and C++ are prone to buffer overflow attacks as they have no built-in

protection against accessing or overwriting data in any part of their memory and as actors can perform direct

memory manipulation with common programming constructs.

Modern programming languages like C#, Java and Perl reduce the chances of coding errors creating

buffer overflow vulnerabilities, but buffer overflows can exist in any programming environment where direct

https://www.veracode.com/security/code-security
https://searchwindowsserver.techtarget.com/definition/C
https://searchsqlserver.techtarget.com/definition/C
https://searchwindevelopment.techtarget.com/definition/C
https://www.theserverside.com/definition/Java
https://whatis.techtarget.com/definition/Perl

CSE ,ICET Page 4

memory manipulation is allowed, whether through flaws in the program compiler, runtime libraries or

features of the language itself.

This function uses 2 pointers as parameters, the source which points to the source array to copy from

and the destination pointer to the character array to write to.

When the function is executed the source array of chars will be copied to the destination array and

does not have a check for bounds when it does so. When the source buffer is larger than the destination

buffer, than the buffer is overrun.

How do attackers exploit buffer overflows?

An attacker can deliberately feed a carefully crafted input into a program that will cause the program to try

and store that input in a buffer that isn‟t large enough, overwriting portions of memory connected to the buffer

space.

If the memory layout of the program is well-defined, the attacker can deliberately overwrite areas known to

contain executable code. The attacker can then replace this code with his own executable code, which can

drastically change how the program is intended to work.

How to protect against buffer overflow attacks

-Qualify all input from users and ensure input size validation

-Use strong programming languages like C#, Java etc

-Avoid functions like strcpy, strcat,gets etc

 Address space randomization - Randomly rearranges the address space locations of key data areas

of a process. Buffer overflow attacks generally rely on knowing the exact location of important

executable code, randomization of address spaces makes that nearly impossible.

https://whatis.techtarget.com/definition/compiler
https://searchsoftwarequality.techtarget.com/definition/runtime
https://searchsqlserver.techtarget.com/definition/library

CSE ,ICET Page 5

 Data execution prevention - Marks certain areas of memory either executable or non-executable,

preventing an exploit from running code found in a non-executable area.

What are the different types of buffer overflow attacks?

There are a number of different buffer overflow attacks which employ different strategies and target different

pieces of code. Below are a few of the most well-known.

 Stack overflow attack - This is the most common type of buffer overflow attack and involves

overflowing a buffer on stack

 Heap overflow attack - This type of attack targets data in the open memory pool known as the heap.

 Integer overflow attack - In an integer overflow, an arithmetic operation results in an integer (whole

number) that is too large for the integer type meant to store it; this can result in a buffer overflow.

 Unicode overflow - A unicode overflow creates a buffer overflow by inserting unicode characters

into an input that expect ASCII characters. (ASCII and unicode are encoding standards that let

computers represent text. For example the letter „a‟ is represented by the number 97 in ASCII. While

ASCII codes only cover characters from Western languages, unicode can create characters for almost

every written language on earth. Because there are so many more characters available in unicode,

many unicode characters are larger than the largest ASCII character.)

STACK OVERFLOW

-A stack is contiguous block of memory containing data.

-Stack pointer (SP) – a register that points to the top of the stack.

-The bottom of the stack is at fixed address.

-Its size is dynamically adjusted by kernel at run time.

-CPU implements instructions to PUSH onto and POP off the stack.

-A stack consists of logical stack frames that are pushed when calling a function and popped when

returning. Frame pointer (FP) – points to a fixed location within a frame.

When a function is called, the return address, stack frame pointer and the variables are pushed

on the stack (in that order).

-So the return address has a higher address as the buffer.

-When we overflow the buffer, the return address will be overwritten

CSE ,ICET Page 6

The following figure shows the stack layout after the execution has entered the function func().

Stack Direction: Stack grows from high address to low address (while buffer grows from low address to high

address)

Return Address: address to be executed after the function returns.

Frame Pointer (FP): is used to reference the local variables and the function parameters.

Buffer-Overflow Problem: The above program has a buffer-overflow problem.

– The function strcpy(buffer, str) copies the contents from str to buffer[].

– The string pointed by str has more than 12 chars, while the size of buffer[] is only 12.

– The function strcpy() does not check whether the boundary of buffer[] has reached. It only stops

when seeing the end-of-string character ‟\0‟.

– Therefore, contents in the memory above buffer[] will be overwritten by the characters at the end of

str.

Exploit the Buffer-Overflow Vulnerability

To fully exploit stack buffer-overflow vulnerability, we need to solve several challenging problems.

1)Injecting the malicious code: We need to be able to inject the malicious code into the memory of the target

process. This can be done if we can control the contents of the buffer in the targeted program.

For example, in the above example, the program gets the input from a file. We can store the malicious code in

that file, and it will be read into the memory of the targeted program.

2)Jumping to the malicious code: With the malicious code already in the memory, if the targeted program

can jump to the starting point of the malicious code, the attacker will be in control.

CSE ,ICET Page 7

3)Writing malicious code: Writing a malicious code is not trivial. A special type of malicious code,

shellcode, can be written.

Countermeasures

1. Apply Secure Engineering Principles

_ Use strong type language, e.g. java, C#, etc. With these languages, buffer overflows will be detected.

_ Use safe library functions.

– Functions that could have buffer overflow problem: gets, strcpy, strcat, sprintf, scanf, etc.

– These functions are safer: fgets, strncpy, strncat, and snprintf.

2.Systmetic Code Modification

StackShield: seperate control (return address) from data.

– It is a GNU C compiler extension that protects the return address.

– When a function is called, StackShield copies away the return address to a non-

overflowable area.

StackGuard: mark the boundary of buffer

3.Operating System Approach

Address Space Randomization(already mentioned above)

Non-executable stack: From the attack, we can observe that the attackers put the malicious code in

the stack, and jump to it. Since the stack is a place for data, not for code, we can configure the stack to be non-

executable, and thus preventing the malicious code from being executed. This protection scheme is called

ExecShield

SQL INJECTION

SQL injection, also known as SQLI, is a common attack that uses malicious SQL code for backend

database manipulation to access information that was not intended to be displayed.

This information may include any number of items, including sensitive company data, user lists or

private customer details.

CSE ,ICET Page 8

 A successful attack may result in the unauthorized viewing of user lists, the deletion of entire tables and, in

certain cases, the attacker gaining administrative rights to a database, all of which are highly detrimental to a

business.

SQL injection is one of the most common web hacking techniques.

It is a type of injection attack

Most dangerous vulnerability

To perform this attack needs a web browser and some guesses to work to find important tables and

field names

Once attacker realizes that the system is vulnerable to SQL Injection they are able to inject SQL

Query through input field.

Attacker use SQL injection to find credentials of other users in database

To gain complete access to all data in database server

Alter data in database and add new data

Delete records from database even drop table

In some database server, you can access Operating System using database server

Attacker works on dynamic SQL statements. Dynamic SQL Statement is a statement that is generated at

run time using parameters password from a web form or URI Query string

SQL injection usually occurs when you ask a user for input, like their username/userid, and instead of a

name/id, the user gives you an SQL statement that you will unknowingly run on your database.

Look at the following example which creates a SELECT statement by adding a variable (txtUserId) to a select

string. The variable is fetched from user input (getRequestString):

CSE ,ICET Page 9

Example

txtUserId=getRequestString("UserId");

txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

SQL Injection Based on 1=1 is Always True

Look at the example above again. The original purpose of the code was to create an SQL statement to select a

user, with a given user id.

If there is nothing to prevent a user from entering "wrong" input, the user can enter some "smart" input like

this:

UserId:
105 OR 1=1

1

Then, the SQL statement will look like this:

SELECT * FROM Users WHERE UserId = 105 OR 1=1;

The SQL above is valid and will return ALL rows from the "Users" table, since OR 1=1 is always TRUE.

Does the example above look dangerous? What if the "Users" table contains names and passwords?

The SQL statement above is much the same as this:

SELECT UserId, Name, Password FROM Users WHERE UserId = 105 or 1=1;

A hacker might get access to all the user names and passwords in a database, by simply inserting 105 OR 1=1

into the input field.

SQL Injection Based on Batched SQL Statements

Most databases support batched SQL statement.

A batch of SQL statements is a group of two or more SQL statements, separated by semicolons.

The SQL statement below will return all rows from the "Users" table, then delete the "Suppliers" table.

Example

SELECT * FROM Users; DROP TABLE Suppliers

Look at the following example:

CSE ,ICET Page 10

Example

txtUserId=getRequestString("UserId");

txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

And the following input:

User id:
105; DROP

The valid SQL statement would look like this:

Result

SELECT * FROM Users WHERE UserId = 105; DROP TABLE Suppliers;

How to prevent SQL injection attack

1.Validating user input

You should do an input validation first to make sure the value is of the accepted type, length, format, etc.

Only the input which passed the validation can be processed to the database. But remember, this method can

only stop the most trivial attacks, it does not fix the underlying vulnerability.

2. Use SQL Parameters for Protection

To protect a web site from SQL injection, you can use SQL parameters.

SQL parameters are values that are added to an SQL query at execution time, in a controlled manner.

txtUserId=getRequestString("UserId");

txtSQL="SELECT*FROMUsersWHEREUserId=@0";

db.Execute(txtSQL,txtUserId);

Note that parameters are represented in the SQL statement by a @ marker.

The SQL engine checks each parameter to ensure that it is correct for its column and are treated literally, and

not as part of the SQL to be executed.

3. Limiting privileges

Don‟t connect to your database using an account with root access unless required because the attackers might

have access to the entire system. Therefore, it‟s best to use an account with limited privileges to limit the

scope of damages in case of SQL Injection.

4. Hidding info from the error message

Error messages are useful for attackers to learn more about your database architecture, so be sure that you

show only the necessary information. It‟s better to show a generic error message telling something goes

wrong and encourage users to contact the technical support team in case the problem persists.

5. Updating your system

SQL injection vulnerability is a frequent programming error and it‟s discovered regularly, so it‟s vital to

apply patches and updates your system to the most up-to-date version as you can, especially for your SQL

Server.

CSE ,ICET Page 11

6. Keeping database credentials separate and encrypted

If you are considering where to store your database credentials, also consider how much damaging it can be if

it falls into the wrong hands. So always store your database credentials in a separate file and encrypt it

securely to make sure that the attackers can‟t benefit much.

Also, don‟t store sensitive data if you don‟t need it and delete information when it‟s no longer in use.

7. Disabling shell and any other functionalities you don’t need

Shell access could be very useful indeed for a hacker. That‟s why you should turn it off if possible. Remove

or disable all functionalities that you don‟t need too.

Types of SQL Injection

SQL Injection can be classified into three major categories – In-band SQLi, Inferential SQLi and Out-of-band

SQLi.

1.In-band SQLi (Classic SQLi)

In-band SQL Injection is the most common and easy-to-exploit of SQL Injection attacks. In-band SQL

Injection occurs when an attacker is able to use the same communication channel to both launch the attack

and gather results.

The two most common types of in-band SQL Injection are Error-based SQLi and Union-based SQLi.

Error-based SQLi

Error-based SQLi is an in-band SQL Injection technique that relies on error messages thrown by the database

server to obtain information about the structure of the database. In some cases, error-based SQL injection

alone is enough for an attacker to enumerate an entire database.

While errors are very useful during the development phase of a web application, they should be disabled on a

live site, or logged to a file with restricted access instead.

Union-based SQLi

Union-based SQLi is an in-band SQL injection technique that leverages the UNION SQL operator to combine

the results of two or more SELECT statements into a single result which is then returned as part of the HTTP

response.

2. Inferential SQLi (Blind SQLi)

In an inferential SQLi attack, no data is actually transferred via the web application and the attacker would not

be able to see the result of an attack in-band (which is why such attacks are commonly referred to as “blind

SQL Injection attacks”). Instead, an attacker is able to reconstruct the database structure by sending payloads,

observing the web application‟s response and the resulting behavior of the database server.

The two types of inferential SQL Injection are Blind-boolean-based SQLi and Blind-time-based SQLi.

Boolean-based (content-based) Blind SQLi

Boolean-based SQL Injection is an inferential SQL Injection technique that relies on sending an SQL query to

the database which forces the application to return a different result depending on whether the query returns a

TRUE or FALSE result.

https://www.acunetix.com/websitesecurity/blind-sql-injection/
https://www.acunetix.com/websitesecurity/blind-sql-injection/
https://www.acunetix.com/websitesecurity/blind-sql-injection/

CSE ,ICET Page 12

Depending on the result, the content within the HTTP response will change, or remain the same. This allows

an attacker to infer if the payload used returned true or false, even though no data from the database is

returned.

Time-based Blind SQLi

Time-based SQL Injection is an inferential SQL Injection technique that relies on sending an SQL query to

the database which forces the database to wait for a specified amount of time (in seconds) before responding.

The response time will indicate to the attacker whether the result of the query is TRUE or FALSE.

Depending on the result, an HTTP response will be returned with a delay, or returned immediately. This

allows an attacker to infer if the payload used returned true or false, even though no data from the database is

returned.

3. Out-of-band SQLi

Out-of-band SQL Injection is not very common, mostly because it depends on features being enabled on the

database server being used by the web application. Out-of-band SQL Injection occurs when an attacker is

unable to use the same channel to launch the attack and gather results.

PHISHING ATTACK

Phishing is a type of social engineering attack often used to steal user data, including login credentials and

credit card numbers.

It occurs when an attacker, masquerading as a trusted entity, dupes a victim into opening an email, instant

message, or text message.

The recipient is then tricked into clicking a malicious link, which can lead to the installation of malware.

Example

Phishing email come from Bank directing the individual to a website where their username and password can

be reset and collect login information.

Goal of this attack is to steal sensitive data or install malware on victims machine.

What are the dangers of phishing attacks?

Sometimes attackers are satisfied with getting a victim‟s credit card information or other personal data for

financial gain. Other times, phishing emails are sent to obtain employee login information or other details for

use in an advanced attack against a specific company. Cybercrime attacks such as advanced persistent threats

(APTs) and ransomware often start with phishing.

https://www.acunetix.com/blog/articles/blind-out-of-band-sql-injection-vulnerability-testing-added-acumonitor/
https://www.cisco.com/c/en/us/products/security/advanced-persistent-threat.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/ransomware-defense/what-is-ransomware.html

CSE ,ICET Page 13

Example

How to protect against phishing attacks?

1. User education

One way to protect your organization from phishing is user education. Education should involve all

employees. High-level executives are often a target. Teach them how to recognize a phishing email and what

to do when they receive one. Simulation exercises are also key for assessing how your employees react to a

staged phishing attack.

CSE ,ICET Page 14

2.Security technology

No single cyber security technology can prevent phishing attacks. Instead, organizations must take a layered

approach to reduce the number of attacks and lessen their impact when they do occur. Network security

technologies that should be implemented include email and web security, malware protection, user behavior

monitoring, and access control.

3. Email authentication

4. Think before you click

5. Install antiphishing tool

6. Verify site security

7. Check your online account regularly

8. Keep your browser up-to-date

9. Use firewalls

Different types of phishing

1.Deceptive phishing

Deceptive phishing is the most common type of phishing. In this case, an attacker attempts to obtain

confidential information from the victims. Attackers use the information to steal money or to launch other

attacks. A fake email from a bank asking you to click a link and verify your account details is an example of

deceptive phishing.

Eg:fake email from Bank

2. Spear phishing

Spear phishing targets specific individuals instead of a wide group of people. Attackers often research

their victims on social media and other sites. That way, they can customize their communications and appear

more authentic. Spear phishing is often the first step used to penetrate a company‟s defenses and carry out a

targeted attack.

3. Whaling

When attackers go after a “big fish” like a CEO, it‟s called whaling. These attackers often spend

considerable time profiling the target to find the opportune moment and means of stealing login credentials.

Whaling is of particular concern because high-level executives are able to access a great deal of company

information.

4. Pharming

Similar to phishing, pharming sends users to a fraudulent website that appears to be legitimate. However, in

this case, victims do not even have to click a malicious link to be taken to the bogus site. Attackers can infect

either the user‟s computer or the website‟s DNS server and redirect the user to a fake site even if the correct

URL is typed in.

5. Man-in-the-Middle Phishing is harder to detect than many other forms of phishing. In these attacks

hackers position themselves between the user and the legitimate website or system. They record the

https://www.cisco.com/c/en/us/products/security/index.html
https://www.cisco.com/c/en/us/products/security/index.html
https://www.cisco.com/c/en/us/products/security/index.html

CSE ,ICET Page 15

information being entered but continue to pass it on so that users' transactions are not affected. Later they can

sell or use the information or credentials collected when the user is not active on the system.

6. Search Engine Phishing occurs when phishers create websites with attractive (often too attractive)

sounding offers and have them indexed legitimately with search engines. Users find the sites in the normal

course of searching for products or services and are fooled into giving up their information.

7. Clone Phishing In this type phisher creates a cloned email. He does this by getting information such as

content and recipient addresses from a legitimate email which was delivered previously, then he sends the

same email with links replaced by malicious ones. He also employs address spoofing so that the email appears

to be from the original sender. The email can claim to be a re-send of the original or an updated version as a

trapping strategy

8. Content injection

Content injection is the technique where the phisher changes a part of the content on the page of a reliable

website. This is done to mislead the user to go to a page outside the legitimate website where the user is then

asked to enter personal information.

9.Link Manipulation

Link manipulation is the technique in which the phisher sends a link to a malicious website. When the user

clicks on the deceptive link, it opens up the phisher‟s website instead of the website mentioned in the link.

10. Smishing (SMS Phishing)

Phishing conducted via Short Message Service (SMS), a telephone-based text messaging service. A smishing

text, for example, attempts to entice a victim into revealing personal information via a link that leads to a

phishing website.

Countermeasures

DO NOT respond to any email from unknown source or emails pretend to be from known source with request

for divulging confidential information especially credentials of Internet banking, credit cards, debit cards,

online wallets, mobile wallets etc.

 Countermeasure against phishing

The defensive mechanisms to counter the phishing technique threats.

The Client-side – this includes the user‟s PC and desktop.

The Server-side – this includes the business‟ Internet visible systems and custom applications.

Enterprise Level – distributed technologies and third-party management services.

Client side :

- At the client-side, protection against phishing can be afforded by:

- Desktop protection technologies

-User application-level monitoring solutions

-Locking-down browser capabilities

-Digital signing and validation of email

CSE ,ICET Page 16

-General security awareness

 Server side:

-Improving customer awareness

- Providing validation information for official communications

-Ensuring that the Internet web application is securely developed and doesn‟t include easily exploitable attack

vectors.

-Using strong token-based authentication systems

-Keeping naming(domain name) systems simple and understandable

 Enterprise level:

- Automatic validation of sending e-mail server addresses

-Digital signing of e-mail services

-Monitoring of corporate domains and notification of “similar” registrations

-Perimeter or gateway protection agents

-Third-party managed services

