MICROPROCESSOR 8085

MODULE 1

3085 Bus Structure

Ag | ‘
AO
- B
Memory
8085
WPU A
0

g Architecture A

INTA RST6.5 TRAP

INl"R ‘RST 55 RST+?.5 SID SOD
Serial I/0
Interrupt control control

3

8-bit internal data bus

8 la |_:L I):_ | (8) ¢ A
.ﬁ.t'ﬂ.lli'ﬂ:.l'atﬂf tarr;(:. reg. ﬂipﬁpﬁ i"m“ Bmﬂ] . Cmﬂ}]

(8) (8)
Dreg. | Ereg.
(8) (8)
instruction | |0] Lreg. }regisler
decoder (16) array
and stack pointer
machine
ALU cycle (16)
encoding program counter
incrementer/ (16
decrementer
l J
Power { +5\/ =
SUPPIY |GND —p Timing and control
X
X, :: ol ® ®
2 Gen Control Status DMA Reset address buffer address buffer

mk“om F?D ﬁ‘#ﬁ A{'E gu‘-“:t I{Z}+fﬁf THI*I)A Restt out l

As - Ag AD; - AD,
@ Ready Hold Resetin address bus address/data buy

PIN DIAGRAM

—

1

w2

RESET QUT
SOoD

SID

TRAP
RSTY.5
HFSTG.5
FST5.5

IMNTR

I
A

AL
Al

=

Al

=]

AD4

A0

5

[[T FA 1 R N

0o =

Y S . Y
[T S T

5

—
n

16
17
18
19

20

qananananananannnan

s8085A

40
39
28
3F
36
35
=4
33
22
31
30
29
28
27

26
25
24
23
22

21

i
<
1

HOLD
HL A,

CLE (OuUT)
RESET W
R EADY
1O RA

=5,

RD

WWR

AlLE

I.'Jm

A T T I S|

(=]

i

duubutuobutiuiuuuyd

prrre> 2?2

KA

2,

|}——2 | Al —Dg ’ " \
Power Supply| = ol s vl -
& frequency | o—— U © 3
(O 5§ - m
s e] i o
Serial 1O [o—« O 0
(O0—— 500 0 0 0
ports g 4 é—ﬂ 3
D—g TRAP A Z]_D L")
O— W18 W o <
Externally | & i ;
SRRy g T w0
initiated [o—— i W o
: O v B
signals D_g_m i I T y
DT READY 1
00 T s
N e o Control &
OO o —Dg Status
Control & | O—5— U
=1 RSKT I
Status \ 1 o

e
Instruction & Data Formats

8085 Instruction set can be classified according to size (in
bytes) as

1. 1-byte Instructions

2. 2-byte Instructions

3. 3-byte Instructions

1. Includes Opcode and Operand in the same byte

2. First byte specifies Operation Code Second byte specifies
Operand

3. First byte speciﬁes Operation Code Second & Third byte
specifies Operand

Instruction & Data Formats

1. l—byte Instructions
Eg. MOV A, M, CMA, DAA etc

2. 2-byte Instructions
Eg. MVI A, 08, IN 02, CP1 03 etc

3. 3—byte Instructions
Eg. LXI H, 4500, STA 4600, LDA 4200

g Addressing Modes of 8085

® The microprocessor has different ways of specifying the
data or Operand for the instruction.

® The various formats of specifying operands are called

addressing modes

® The 8085 has Five addressing modes:

* 1) Register Addressing mode: This type of addressing mode

specifies register or register pair that contains data.

* Example: ADD B, MOV BA

e

Addressing Modes of 8085

* 2) Immediate Addressing Mode:

® In this type of addressing mode, immediate data byte is
provided with the instruction.

* Example: MVI A 47H, LXIH, 4100H etc.

Memory Addressing

One of the operands is a memory location

Depending on how address of memory location is
specified, memory addressing is of two types

* Direct addressing

¢ Indirect addressing

3) Direct Addressing Mode: In this type of addressing
mode, the 16bit memory address is directly provided with

the instruction.

Example: LDA C5 00, STA 3050H etc

g Addressing Modes of 8085

* 4) Indirect Addressing Mode: In this type of addressing
mode, the 16bit memory address is indirectly provided with the

instruction using a register pair
° Example: LDAX B

° (Load the accumulator with the contents of the memory
location whose address is stored in the register pair BC)

* MOV M, A ;copy register A to memory location whose address is

stored in register pair HL

H L
A [0 [EORIISORR — 2050+ SR

.

g Addressing Modes of 8085

* 5) Implied Addressing mode: In this type of addressing
mode, No operand (register or data) is specified in the
instruction.

e The operand 1s inborn to the instruction.

* Example: CMA (Complement Accumulator) , SIM , RIM etc

INSTRUCTION SET

Instruction Set of 8085

Consists of

* 74 operation codes, e.g. MOV, MVI
® 246 Instructions, e.g. MOV A,B, MVI A,03

8085 instructions can be classified as
1. DataTransfer (Copy)
Arithmetic
Logical and Bit manipulation

Branch

or. > =D

Machine Control

Data Transfer Instruction

MOV Move

MVI Move Immediate

LDA Load Accumulator Directly from Memory
STA Store Accumulator Directly in Memory

LHLD Load Hand L Registers Directly from Memory
SHLD Store Hand L Registers Directly in Memory
LXI Load register pair Immediate

LDAX Load accumulator indirect

STAX Store Accumulator In direct

XCHG Exchange DE pair and HL pair
XTHL Exchange between HL pair and stack

Data Transfer Instruction

1&6bit Data transfer
LHLIL 1chit addrass

Example:
LHLD <CoOo50

Loads data from CO50 meamory location to Hegister L
and Loads=s data from CO05S1 mamory location to Registar H

SHLD 168bit addrass

Example:

SHLD CO50

Storas data of Regisfor L 1o mamony locaton GOS0

and Storaes data of Regisfor H 1o memory location C051.
XCHG

Exchanges the comtent of HL and DE Registar Pair

11

g Data Transfer Instructions

e IN portaddr

® i.e. IN 00 (Reads data from the Input Switch, O Orepresents the
port address of the input switch)

e OUT portaddr

® i.e. OUT 00 (Writes data to the Display device where 00
represents the Port address of the display)

Arithmetic Instructions
ADDAdd to Accumulator
ADI Add Immediate Data to Accumulator

ADCAdd to Accumulator Using Carry Flag

ACI Add Immediate Data to Accumulator Using Carry Flag
SUB Subtract from Accumulator
SUl Subtract Immediate Data from

Accumulator

Arithmetic Instructions

SBB Subtract from Accumulator Using Borrow ((:Carry)
Flag

SBI Subtract I mmediate from Accumulator Using

Borrow
INR Increment Specified Byte by One
DCRDecrement Specified Byte by One
INX Increment Register Pair by One
DCXDecrement Register Pair by One

DADDouble Register Add: Add Contents of Register
Pair to Hand L Register Pair

Arithmetic Instructions

16 bit addition instructions

DAD Rp : Adds the contant of the HL register with the content of the Ragister pair specified by Rp
and stores the result in the HL registar pair

Exampla:
DAD B

Adds the content of the HL register with the content of the BC raegister pair stores the
result in the HL registaer pair

HL « HL+BC

41 (01 06 02

H L D E

DAD B will result in :

47 (03
H L
What DAD B does :
4101 [HL] 0100 0001 0000 0001
+ 06802 [DE] 0000 0110 0000 0010

4703 0100 0111 0000 0011

ANA
ANI
ORA
ORI
XRA
XRI
CMP
CPI

Logical Instructions

Logical AND with Accumulator
Logical AND with Accumulator Using Immediate Data
Logical OR with Accumulator
Logical OR with Accumulator Using Immediate Data
Exclusive Logical OR with Accumulator
Exclusive OR Using Immediate Data
Compare

Compare Using Immediate Data

RLC
RRC
RAL
RAR
CMA
CMC
STC

Logical Instructions
Rotate Accumulator Left
Rotate Accumulator Right
Rotate Left Through Carry
Rotate Right Through Carry
Complement Accumulator
Complement Carry Flag
Set Carry Flag

Logical Instructions

RLC (Rotate Accumulator Laft)

Every bit of the Accumulator is shifted one bit left and the MSEB bit of the Accumulator is copied
into the Carry flag and into the Acth bit

Cy

be

Cy

An < A7
An < An1
Cy < A7

Logical Instructions

RRC (Rotate Accumulator Right)

Eveary bit of the Accumulator is shifted one bit Right and the LSB bit of the Accumulator is copied
into the Carry flag and into the Arth bit

Cy

After the RRC instruction is executed the content of the Accumulator and the carry flag
will be

A7 <« Ao
An < An+i
Cy < Ao

Logical Instructions

RAL (Rotate Accumulator Left through Carry)

Every bit of the Accumulator is shifted one bit keft and the MSE bit of the Accumulator is copied
into the Carry flag and the Carry flag value is copied into the Acth bit

Cy

: ,
LIGIUIIII

4 4 + 4 4 4+ *

After the RAL instruction is executed the content of the Accumulator and the carry flag will
be

.I

Cy
o1 fo |1t [t [1]1]o0

Apo <« Cy
An < An1
Cy <« A7

Logical Instructions

RAR (Rotate Accumulator Right through Carry)

Every bit of the Accumulator is =hifted one bit Right and the LSB bit of the Accumulator is copied
into the Carry flag and the Carry flag value is copied into the Arth bit

1' 1
I{FIDIIIDJ

After the RAR instruction is executed the content of the Accumulator and the carry flag
will be

AT+ Cy
An < An+

Cy < Ap

Branching Instructions

® The unconditional branching instructions are as follows:

e |JMP Jump
e CALL Call
e RET Return

® Conditional branching instructions

® jumps Calls Returns

° JC CC RC (Carry)

* JNC CNC RNC (No Carry)
° JZ CZ RZ (Zero)

° INZ CNZ RNZ (Not Zero)

4 N

Jump Instructions

JC Jump if Carry CY=1
JNC Jump if No Carry C(Y=0
P Jump if Positive S=o0
M Jump if Minus 5=1
|7 Jump if Zero L=1
NZ Jump if No Zero =0
JPE Jump if Parity Even P-1
JPO Jump if Parity Odd P=0

Call Instructions A

tatus lgs

CC Call if Carry CY=1
CNC Callif No Carry (Y=o
CP Call if Positive S=o0
CM Call if Minus S5=1
CZ Call if Zero Z=1
CNZ Call if No Zero Z=0
CPE Call if Parity Even P=1
CPO Call if Parity Odd P=0o

Return Instructions A

Status Flags

RC Return if Carry Y=1
RNC Return if No Carry (V=0
RP Return if Positive S=0
RM Return if Minus S=1
RZ Return if Zero Z=1
RN7 Return if No Zero Z=0
RPE Return if Parity Even P=1
RPO Return if Parity Odd P=0

Stack, I/0, and Machine Control Instructions.

PUSH Push Two Bytes of Data onto the Stack
POP Pop Two Bytes of Data off the Stack

XTHL Exchange Top of Stack with Hand L
SPHL Move contents of Hand L to Stack Pointer

The I/ O instructions are as follows:

IN Initiate Input Operation
ourT Initiate Output Operation

™~

Stack, I/0, and Machine Control Instructions.

The machine control instructions are as follows:

EI Enable Interrupt System
DI Disable Interrupt System
HLT Halt

NOP No Operation

™~

MODULE 2

TIMING DIAGRAM

PROCESSOR AND MECHINE
CYCLE

Processor cycle

Tnstruction Cyele (IC) = Fetch eyele (FC) + Exeoute Cyele (EC)

— Fehogk) — Euleik —
‘ Insrucion el (C = FC + EC))
Processor cytle

(¥

4 | N
Machine Cycle

A separate operation performed by microprocessor Is
called machine cycle.

e MC1= Opcode Fetch---- 4/7 T states

e MC2= Memory Read, Memory write, 1/O/read, 1/0O
write------ 3 T states

(- y

INSTUCTION EXECUTION

4 T

® Microprocessor reads the instruction byte by byte and then

executes it.

® The instruction execution Cycle can be clearly
divided into three different parts

* Fetch Cycle
The fetch cycle takes data required from memory, stores it in

the instruction register.

(- y

Instruction execution

eDecode Cycle
It determines which opcode and addressing mode have been
used, and as such what actions need to be carried out in order

to execute the instruction.

eExecute Cycle
The actual actions which occur during the execute cycle of an

Instruction.

o

Instruction execution

*OPCODE

OOpcode is nothing but the machine language instruction which
denotes the microprocessor about what Operation should
be performed on the specific data.

*OPERAND

eThe data followed by opcode.

(-

4 Instruction Execution

e 8085 Instruction cycle includes
1. ldentify the memory location
2. Generate timing and control signals
3. Data transfer takes place
4. Decoding the instruction

5. EXxecution

1. Identify Memory Location
o)
Al5 :
A 16-Bit Memory Address Address Bus
a0
1
Instruction
LY
8085 3| and
—:: - Data
MPU Dy <—_ Q Memory
- Chip
Do E
g
A
3
Data Bus Data |
2 MEMR Memory Read

2. Generating Control Signals

Machine cycle status and control signals

Machine cycle
Cpcode Fetch (OF)
Memory Eead
Memory Write

[0 Bead (IOR)

IO Write (T/OW)
Acknowledge of INTE (INTA)
BUS Idle (ED) : DAD
ACE of R5T, TEAP
HALT

HCLD

status Cantrals
o/M | 5 | & D | WR | INTa
(1 1 (1 1
(1 ((1 1
((1 1 (1
1 1 ((1 1
1 i 1 1 i 1
1 1 1 1 1 (
(1 (1 1 1
1 1 1 1 1 1
z ((Z Z 1
z X X Z Z 1

X = TUnspectfied, and 2 = High impedance state

4 N

3,4,5. Data flow from memory to microprocessor

h OFFF

5
1 1000 | 41H
Memory 1001
? . 1002
Instruction
decoder DIE 1003
H|L —_—
RD I
Control logic sP
PC

/
3,4,5. Data flow from memory to microprocessor

®*Memory usually starts at address 0000h and could go up to
FFFFh (216 or 64K or 65536 in total).

*'Jo access these locations, a 16 bit address is presented to

memory and the byte at that location is either read or written.

®The Program Counter is what holds this address when the

micro 1S executing Instructions.

(-

TIMING DIAGRAMS

Timing Diagram examples

® Timing diagram is the graphical representation of the
initiation of read /write and transfer of data operations
under the control of 3-status signals IO / M, S1, and

SO.

® In 8085 , we have 5 machine cycles

1.

Opcode fetch

2. Memory read
3. Memory Write
4,
5

I1/0 read
1/0 write

e

Opcode Fetch cycle
e [t Is similar to memory read

Receive Instructions
' from memo

send address | - Memory gets; Transfe
= ransrer
to memory™> opcode 'Lripmda to

SRR

Time ——p
Figure (b) A Typical Fetch Cycle

Figure 4

Clock ——p»

Opcode Fetch cycle

8085
Microprocessor

il

Flag
Accumulator | | Flip-

Flops

Arithmetic/Logic Unit

=1

4F<+«—0100111]1
Data Bus
Memory
[nternal Data Bus 2
Instruction B C 2005(01001111
Decoder D E
H 1>
SP
PC
ontrol I ‘ [
Unit 2005
——r- Address Bus
Control Signals 4F =
MEMR

Opcode fetch
SIGNAL , T, I T, |, T,
|
CLOCK \J_/_‘_/‘l N/]
| |
I - _l I .
As-Ag bl(HIGHER ADDRESs | —XUNSPECIFIED
= a
AD-AD, | X iaveonoes .0y }\
| 1 .
: | l
ALE /i \ !
| | 1 :
| |
— I |
IOM,S, S, | X S, =181
| i
| |
RD i _
|

e

Memory Read

Data Bus
4F
Internal Data Bus
Memo
B C >
2000
ALU Instruction D I
Decoder
H L 1
Stack 2004
ac
Pointer ‘ 2005 aF 2005
Program
Counter
/L; /:
Control 2005 1
Logee Address Bus
2 4F

Memory Read

Memory Read M,

Signal
T, T, T,

CLK \—/—‘w
IO/M

S, S, IO/M=0, S,=1,S,=0

AiAss PCH

ouT IN
AD-AD, X A-A, >/< DS-D;>3 ----------------

ALE

Memory write

SIGNAL

T,

cock N__~ PN '

A IS_AE

ADT'ADD

ALE

[% |

T, |

':X HIGHER

ORDER ADDRESS

i

B e)\I
"\ |
BN W
J | -

/0 Read

1/0 Write

SIGNAL T, T, T,
Agay | X PORT ADDRESS
AD,-A]:')“ | :>< PORT ADDRESS)— EERETE : DATA | (D,Dy
ALE L/ \
| WR \L
- {
:X IO/M =1 5y =0 Sp=1

TIMING DIAGRAMS
EXAMPLE

Timing Diagram INR M

2pcode fetoh RMemory read Mearnory wirits
i< > g

o

W
=
g

“ngs”

e e —

N

-
. —
e ———

http://www.8085projects.info/images/Timing-Diagram-Pic10-pic45.png

Timing Diagram ADD M

(]
pcode Fetck M:?HMW R-Eﬂ:t:f
T1 T2 T3 T4 T1 T2 T3
CLE

ABALS X PCl,, X _Xue..mu- Address (Higher]
R S D = aroat
s} [\
o \ / \ 3

IO /I
S0, 51 X IOME =D, 50=1, §141 X TO/MME =0, 5020, 511

Timing Diagram MVI B, Data

Hizh-Crder | LI High-Urder
A 1 20m Mtn:ﬂ Addrezs -[Umpm: ﬁ":'fl 0n Memory Address
Low -Order v < Druder
AD
otY . }--{08. oo H o j--A Afow }-
Memory Address emory Adkdre
ALE _

s Iﬂrlﬁ #ﬂ.S,-I.Sqill

I

WG/ FA. S, é?}(”“ﬁrﬁ O1s

Opoode fetoh

Timing Diagram IN, 8 bit address

A= reeeaad R read
—se = — -

TR I

FJ 1
I

if
&,‘J
e
¥
xm
|
|
1
o
-
¢)
:O
\.,,r»

X

mﬁﬂf \

ol

T

SE,,

i
s

= = {-—_— 472;— S S0
{ q

N\ U |

AL : T! o =1l -

— | :

RE® <5 B LI | ==
[% ¥ ' N .
| |]

— %_ | (] [
PR . . c |
i l l !

i ! 18 :

| ., 1}

'

f

!

S — —

(-

http://www.8085projects.info/images/Timing-Diagram-Pic9-pic44.png

Timing Diagram OUT, 8 bit address

IMH:CLE —)

OUT byte
M,

TE N T.'-» TI

/W S

Mg A X Ty X P, b4 10 FORT
\D, - AT, _: ar g, RS e T TERE SERE { rc, >-—- -{ byte »—- -(m F::JRT){ ACCUM
ate /N F AR 7N |
S I W A | /]
WE .
/]
10/M .

N

L Ot

PC 1 2 PC

Instr — TR

Instruction fetch

PCOut PC+1—PClbyte—ZW| WZ Out

= Memury read .':! -

B e P11t

Output BTite ——

\

Timing Diagram STA w
< Opcode fetch *_Memnry read *Memuw rea?d %Memury write N

T, T,
U\ NS
AD-AD, [YFr [} {]
A s | _X 41

}(_ 0,0, 1 0,1,0

10/M.50.5]Y 10,1,1 Y iﬂ, 0,1

Timing Diagram STA

[
Opcode fetch Memoryread , Memory read Memory write
N, T, Ty Ty | T (T (T Ty | Ty Ty Ty, Ty Ty
CLK
AT\ I\
AD-AD, [YFF [} { [32, - - %0,

-A X at, - { laz, X E41H

|

|
o1 X 001 Y 001 10,1,0]
| : | |

e

Programming

* 1.Write an assembly program to add two numbers

o MVI D, 02BH
o MVI C, 06FH
o MOVA,C

o ADD D

0 STA 4500

o HLT

e

1.

Program

Write an assembly program to add two numbers

0 LXI H, 4500
o MOVA M
o INXH

o ADD M

o STA 4500

o HLT

e

Program

2.Write an Assembly Language Program to add two numbers ;
results contain carry

L X1 H, 4500
MOV A, M
INX H
ADD M
JNC LOOP1
INR C

LOOP1 STA 4500
MOVA, C
STA 4501
HLT

Program

2.Write an Assembly Language Program to add two numbers ;
results contain carry (write the program using JC)

LOOP1

LOOP1

LX1 H, 4500
MOV A, M

INX H

ADD M

JC LOOP 1
JMP LOOP 2
INR C

STA 4500
MOVA, C

STA 4501

HLT

e

ADDITION OF TWO 16 - BIT NUMBERS

3.To write an assembly language program for adding two 16 bit numbers

using 8085 micro Processor.

Address Lahel AMnemonics Hex Code Comments
4500 MVI C.00 OE C = 00y
4501 00
4502 LHLD 4800 2A HIL — 1¥ No.
4503 o0
4504 48
4505 NCHG EB HI. — DE
4506 LHLD 4802 A HI — 2™ No.
4507 02
4508 48
4509 DAD D 19 Double additiom DE +
HL
450A JMNC Ahead D2 If Cv =0, G0 to 450E
450E
4508 0E
450C 45
450D INE. Z oC C=0C+01
450E AHEAD SHI.ID» 4804 22 HI — 43804 (sum)
450F 04
4510 48
4511 MOV CA 7O Cwv— A
4512 5TA 48006 32 Cv — 4806
4513 06
4514 48
4515 HLT 76 Stop excution

e

SUM OF DATAS

4. To write an assembly language program to calculate the sum of

datas using 8085 miCroprocessor

Address Label Mnemonics Hex Code Comments

4100 LDA 4200 3A 00 42 Load the accumulator with
mumber of values

4103 MOV B.A 4F Move it from A to C

4104 ILXTH, 4201 21.01.42 Load the starting address of
data array

4107 SUB A a7 Intialise A’ as 00

4108 MOV B.A 47 Intialise “B" as 00

4109 Loop ADD M 36 Add the previous sum with
next data

410A JNC Skp D2 0E, 41 Jump on 1f no carry

410D INE.B 04 Increment carry by one

410E Skip INXH 23 Increment poimnter for next
data

410F DCE. C oD Decrement “C’ by one

4110 INZ Loop cC2 09 41 Jump if not zero

4113 STA 4400 32,00 44 Store the SIHIL in
accumulator

4116 MOV AB 78 Movwve the value of carry to A
from B

4117 STA 4401 32.01.44 Store the carrv in memory

411A HLT 76 End of program

e

SUBTRACTION OF TWO 8 BIT NUMBERS

5.To write a assembly language program for subtracting 2 bit (8)

numbers by using- 8085

Address Label AMnemonics Hex Code Comments

4100 MVI C.00 OE. 00 Initialize the carry as zero

4102 LDA 4300 3A (00,43) |Load the first 8 bit data into the
accummulator

4105 MOV BA 47 Copy the valoe into register ‘B’

4106 LDA 4301 3A (01,43) |Load the 2™ 8 bit data into the
accummulator

41009 SUBB o0 Subtract both the values

410A Loop INC D2 0E, 41 Jump on if no borrow

410D INE.C OC If borrow 1s there, increment it by
one

410E Loop CMA 2F Compliment of 2°° data

410F ADI 01 6, 01 Add one to 1's compliment of 2™
data

4111 STA 4302 320243 Store the result 1n accumulator

4114 MOV AC 79 Moul the value of borrow mto the
accummulator

4115 STA 4303 32.03.43 Store the result in accumulator

4118 HLT 76 Stop Program execution

™~

e

SUBTRACTION OF TWO 16 BIT NUMBERS

numbers using 8085 microprocessor kit.

6. To write an assembly language program for subtracting two 16 bit

Address Label Mnemonics Hex Code Comments
4500 MVI C.00 0E C =00g
4501 00
4502 LHLD 4800 2A L - 1" No.
4503 00
4504 48
4505 XIHG EB HL —DE
4506 LHILD 4802 2A HIL — 2" No.
4507 02
4508 48
4509 MOV AE 7B LSB of °1" to "A°
450A SUB L 95 A-A-L
450B STA 4804 32 A — memorv
450C 04
450D 48
450E MOV AD TA MSBoflto A
450F SEBB H aC A-A-H
4510 STA 48035 32 A — memorv
4511 05
4512 48
4513 HLT 76 Stop execution

™~

Multiplication ; No carry

LDA 2000 // Load multiplicant to accumulator

MOV B,A // Move multiplicant from A(acc) to B register
LDA 2001 // Load multiplier to accumulator

MOV C,A // Move multiplier from A to C

MVIA,00 // Load immediate value 00 to a

L: ADD B // Add B(multiplier) with A

DCR C // Decrement C, it act as a counter

JNZ L /7 Jump to L it C reaches 0

STA 2010 // Store result in to memory

HLT // End

e

e 7.Write an assembly program to multiply a number by

8

Multiplication ; With carry

MVI C,00
LXI H, 4100
MOV B, M
INX H
MOV A, M
DCR B

LOOP 2 ADD M
JNC LOOPI
INR C

LOOP 1 DCR B
JNZ LOOP2
STA 4500
HLT

Multiplication

Address Label Mnemonics Hex Code Comments

4100 LDA 4300 3A 00 45 Load the first 8 bit number

4103 MOV BA 47 Move the 1 & bit data to
register °B’

4104 LDA 4301 3A 01,45 Load the 2 16 it number

4107 MOV CA 4F Move the 2" 8 bit data to
register “C’

4108 MVIA. OO 3E. 00 Intialize the accumulator as
ZEro

410A MVID., 00 16, 00 Intialize the carrv as zero

410C ADDBE 80 Add the contents of ‘B’ and
accumulator

410D INC D211.41 Jump if no carry

4110 INE. D 14 Increment carmry if there 13

4111 DCE. C oD Decrement the value “C°

4112 INZ C20C, 41 Jump if number zero

4115 STA 4502 3202, 45 Store the result in
accummulator

4118 MOV AD TA Move the camry info
accummulator

4119 STA 4503 32.03.45 Store the result in
accummulator

411C HIT 76 Stop the program execution

numbers using microprocessor

DIVISION OF TWO 8 - BIT NUMBERS

e To write an assernbly language program for dividing two 8 bit

Address Label AMnemonics Hex Code Comments

4100 MVIC, 00 0E. 00 Intialise Quotient as zero

4102 LDA. 4500 3A 00, 45 Get the 1* data

4105 MOV B.A 47 Copy the 1% data into
register ‘B’

4106 LDA. 4501 JA 01, 45 Get the 2™ data

4109 CMP B B2 Compare the 2 values

410A JC (LDP) DA 1241 Jump if dividend lesser than
divisor

410D Loop 2 SUEB B o0 Subtract the 17 value by 2™
value

410E INE. C O Increment CQuotient (410D

410F JMP (LDP, 41) C3,0D, 41 Jump to Loop 1 till the value
of dividend becomes zero

4112 Loop 1 STA 4502 320245 Store the value in
accumulator

4115 MOV AC 79 Move the value of remainder
to accumulator

4116 STA 4503 3203.45 Store the remainder value in
accumulator

4119 HILT 76 Stop the program execuotion

e

ASCENDING ORDER

® 9.To write a program to sort given ‘h’ numbers in ascending

Address Label Mnemonics Hex Code Comments

4100 LDA 4500 3A 0045 Load the mumber of values

4103 MOV B A 47 Movwve it "B’ register

4104 DCE. B 05 For (IN-1) comparisons

4105 Loop 3 ILXT H, 4500 21, 00 45 Set the pointer for array

4108 MOV C M 1E Count for (IN-1) comparnsons

4109 DCE. C 0D For (IN-1) comparisons

410A INX H 23 Increment pointer

410B Loop 2 MOV A M TE Get one data in arrvay "A°

410 INX H 23 Increment pointer

410D CMP M BE Compare next with
accumulator

410E JC DA 16, 41 If content less memory go
ahead

4111 MOV D M 56 If it iz greater than
mterchange it

4112 MOV M A 77 Memory contemnt

4113 DCX H 2B Exchange the content of
memory pointed by “HL’ by
previouns location

4114 MOV M. D T2 Cne 1n by "HL" and previous
location

4115 INX H 23 Increment pointer

4116 Loop 1 DCE. C 0Ly Decrement "C’ register

4117 INZLoop 1 C2, 0B, 41 Eepeat until *C" 1s zero

411A DCE. B 05 Decrement in "B’ values

411E INZ Loop 2 C2, 05,41 Bepeat 11l ‘B’ 15 zero

411E HLT 76 Stop the program execution

e

DESCENDING ORDER

e 10.To write a program to sort given ‘n’ numbers in descending

order
Address Label AMnemonics Hex Code Comments

4100 LA 4500 3A 0045 Load the nunmber of wvalues
in accumulator

4103 MOV B A 47 Mowe it to "B’ register

4104 DCE B 0% For (IM-1) comparisons

4105 Loop 3 LT H, 4500 21, 00,45 Set the pointer for array

4108 MOV C M 4E Count for {IN-1) comparisons

4109 DR O Oy For (IM-1) comparisons

410A INK H 23 Increment pointer

410E Loop 2 MO A D TE Get one data Hom array

410 INX H 23 Increment pointer

410D ChIP WA EBEE Compare next with oomber

410E ICE, Loop 1 D2 1641 If content “A° is greater than
content of "“HL™ pair

4111 MOW Dy I 56 If it is greater than
interchange the datas

4112 IOV DI A 7T Accumulator to memory
walne

4113 DCEH 2B Diecrement memory pointer

4114 KON DD T2 MMowve the old to "HL™ and
previons location

4115 INKH 23 Increment pointer

4116 Loop 1 DR O o Decrement "C7 register

4117 JNZ Loop 2 2 0B, 41 Fepeat 11l *C° is zero

4114 DCE. B 0% Decrement in "B° wvalues

411E JNE Loop 3 C2, 05, 41 Jump to loop till the valoe of
‘BT be

411E HLT TG Stop the program execution

g Program

11.Write an Assembly Language Program to transfer a block of
data from a series of locations to other.

« MVIC, OAH ; Initialize counter i.e no. of bytes
Store the count in Register C, ie ten

e LXI H, 2200H ; Initialize source memory pointer Data Starts from
2200 location

® LXID, 2300H ; Initialize destination memory pointer

BK: MOV A, M ; Get byte from source memory block i.e 2200 to

accumulator.

e STAXD ; Store byte in the destination memory block i.e 2300 as
stored in D-E pair

Program

INX H ; Increment source memory pointer

INX D ; Increment destination memory pointer

DCR C ; Decrement counter to keep track of bytes
moved

JNZ BK ; If counter O repeat steps

HLT ; lerminate program

Largest Number

e Write an Assembly Language Program to find a

largest number.

LOOP1
LOOP2

LX1 H, 4500
MOV A, M

INX H

CMP M

JNC LOOP1
JMP LOOP 2
STA 4500
MOV A, M

STA 4500

HLT

Smallest Number
e Write an Assembly Language Program to find a

smallest number.

LOOP1
LOOP2

LX1 H, 4500
MOV A, M

INX H

CMP M

JC LOOP1
JMP LOOP 2
STA 4500
MOV A, M

STA 4500

HLT

9/8/14

STACK AND SUBROUTINE

- STACK

® The stack 1s an area of memory identified by the

programmer for temporary storage of information.

® The stack is a LIFO structure.

® The stack normally grows backwards into memory.

* Programmer can defines the bottom of (SP) the stack

and the stack grows up into reducing address range.

STACK

* Stack is defined by setting the SP (Stack Pointer)
register.

* LXI SP, FFFFH ,This sets SP to location FFFFH (end of memory

for 8085).
Memory
The Stack
Erows
backwards T E?:;m

into memory Stack

STACK

Save information by PHSHing onto STACK
Retrieved from STACK by POPing it off.
PUSH and POP work with register pairs only.

Example “PUSH B” B

C

— Decrement SP, Copy B to (SP-1) =

F3

— Decrement SP, Copy C to (SP-1)

FFFB
FFFC
FFFD

p FFFE

Example “POP B”
— Copy (SP+1) to C, Increment SP
— Copy (SP+1) to B, Increment SP

FFFF

F3

12

+« SP

g SUBROUTINE

e A subroutineis a group of instructions that is used
repeatedly in different places of the program.

® [t can be grouped into a subroutine and call from the
different locations.

e The CALL instruction is used to redirect program execution

to the subroutine.

e The RET instruction is used to return the execution to the

calling routine.

CALL 5000H

SUBROUTINE

You must set the SP correctly before using CALL

— Push the PC value onto the stack
— Load PC with 16-bit address supplied CALL ins.

RET : Load PC with stack top; POP PC

2000 CALL 5000
2003

PC| 2003

FFFB
FFFC
FFFD

,. FEFE
FFFF

03

20

~——SP

SUBROUTINE

Subroutine

|

CALL

I\

l:.-"i"u.LL.

= subroutine

e

e SUBRTN:
e PUSH PSW
e PUSH B
e PUSH D
e PUSH H

® subroutine coding
e POPH
e POP D
e POPB
e POP PSW
e RETURN

SUBROUTINE

MODULE 3
INTERFACING

e

e SORT ARRAY OF DATA IN

ASCENDING ORDER

LDA 2100
MOV B,A
DCR B

LOOP 2: LXI H,2100

MOV C,M
DCR C
INX H
LOOP 1: MOV AM
INX H
CMP M
JC AHEAD
MOV D,M
MOV M,A
DCXH
MOV M,D
INX H
AHEAD: DCR C
JNZ LOOP 1
DCR B
JNZ LOOP 2
HLT

ICET

SORT ARRAY OF DATA IN

DESCENDING ORDER
LDA 2100
MOV B,A
DCR B

LOOP 2: LXI H,2100
MOV C.M
DCRC
INX H

LOOP 1: MOV A M
INX H
CMP M
JNC AHEAD
MOV D,M

MOV M,A
DCX H
MOV M,D
INX H

AHEAD: DCR C
JNZ LOOP 1
DCR B
JNZ LOOP 2
HLT

/ CONVERSION OF BCD NUMBER TO

CONVERSION OF HEXADECIMAL TO BCD

™~

HEXADECIMAL MVI B ,00
LDA 2100 MOV C,B
MOV B,A LDA 2100
ANI OF SKIP : CPI 64
MOV CA JC LOOP
MOV A,B SuUl 64
ANI FO INR B
JZ SKIP JMP SKIP
RRC LOOP : CPI OA
RRC JC UNIT
RRC SUl OA
RRC INR C
MOV D,A JMP LOOP
XRA UNIT : MOV D,A
LOOP : ADI OA MOV A,B
DCR D STA 2200
JNZ LOOP MOV A,C
SKIP : ADD C RLC
STA 2200 RLC
HLT RLC
RLC
ADD D

@ ICET STA 2201
K HLT /

INTERFACING

° Interfacing a microprocessor is to connect it with various
peripherals to perform various operations to obtain a desired

output.

°* Memory Interfacing and I/0 Interfacing are the two

main types of interfacing.

® Memory Interfacing is used when the microprocessor needs
to access memory frequently for reading and writing data
stored in the memory . It is used when reading/ writing to a

specific register of a memory chip.

® 1/0O Intertfacing is achieved by connecting keyboard(input)

and display monitors(output) with the microprocessor.

Memory and 1/O addressing

/0
Devices

System Bus

[w |
| Interface \

|

Memory

'Integral part of microprocessor
'Primary memory:rom,eprom, static ram etc
'Secondary memory: hard disc

*One is Program memory.
e This is where the program is located.
*ROM

*Another is Data memory.

®This is where data, that might be used by the program, is located.

*RAM

memory

Address

Lines

ROM

Output Buffer b—— RD

Data Lines
Input Buffer [— WR
Address N CS
Lines
Ol_.ltp_uiEluff_er D— 5
Data Lines Tl. oe b
Gnd —

JKX8
RAM
Chip

Date

HDTD Lines

Memory addressing or Mapping A

Memory Mapping

8085 has 16-bit Address Bus

The complete address space is thus given by
the range of addresses 0000H - FFFFH

The range of addresses allocated to a
memory device is known as its memory map

Memory addressing or Mapping

AisAis A Ap [An Ap Ag Ag | A7 Ag As Ay | A3 Ay A) Ap | Hex Address
0 0 0 00 0 0 0000 00 00 0 0000H
0O 00 0,0 00O0}j00O0O0C[0 001 (001H
O 00 0,0 00O0(00O0O0C[0O0TO0 0002H
| O R R e e O e O FFFEH
| U R O D e e O e e O FFFFH

™~

Memory addressing or Mapping

Memory map: 64K memory devic

Address lines required: 16 (A0 — A15)
Memory map: 0000H - FFFFH

Memory map: 32K memory device

Address lines required: 15 (A0 — A14)

Memory map: depends on how address line
A15 is connected

™~

Memory interfacing

ADO_AD7
A
ALE - > MU X »| AO_A7
A8 A1S » AB_ALS
8085 —|
- .| DO_D7
RD
RD
WR WR
10/M
Fy

Spacing || Memory || Mo, of Address ines || used address lines || Unused address lines
D3FFH kB 10 AD-AS A10-A15
O7FFH Kb 11 AD-A10 Al11-A15G
OFFFH akB 12 AO-A11 A12-A15
1FFFH ake 13 AO-A1Z A13-A15
3FFFH 1ekB 14 AO-A13 Al4-A15
JFFFH 3zkB 15 AD-A14 AlS
FFFFH &4k 16 AO-AIS) e

e

Memory interfacing 64 KB

e|nterface a 8085 system in which full memory space
utilized for EPROM memory

D[I-D? DG-D?

Memory interfacing 64KB

e|n this system the entire 16 address lines of the processor are

connected to address input pins of memory IC.

®The chip select (CS) pin of EPROM is permanently tied to

logic low (i.e., tied to ground).

® Since the processor is connected to EPROM, the active low

RD pin is connected to active low output enable pin of
EPROM.

e The range of address for EPROM is O000H to FFFFH.

Two 32 kb Memory interfacing

e|nterface a system 8085 in which the available memory

64 k is equally divided between EPROM &RAM

Dn'DT
8

D,D,
- WR ”s
RD {15 RD
g
&< 9 Bl <2
< © -|;t' 6"
=]
27256 62256

™~

Two 32 kb Memory interfacing

o Implement 32kb memory capacity of EPROM using single
IC 27256.

e 32kb RAM capacity is implemented using single IC 62256.

eThe 32kb memory requires 15 address lines and so the

address lines AO - A14 of the processor are connected to 15

address pins of both EPROM and RAM.

Two 32 kb Memory interfacing

e The 32kb memory requires 15 address lines and so the

address lines AO - A14 of the processor are connected to 15

address pins of both EPROM and RAM.

® The unused address line A15 is used as to chip select. If
A15 is 1, it select RAM and If A15 is O, it select EPROM.

® The memory used is both Ram and EPROM, so the low RD
and WR pins of processor are connected to low WE and OE

pins of memory respectively.

® The address range of EPROM will be 0000H to 7FFFH and
that of RAM will be 7FFFH to FFFFH.

-

e

32kb Memory interfacing using 4 “8 kb”

AD-AD,

8-hit
Latch

iEe-:

Bkb

1764

&

J-:l-n:‘-?
S0

EFROM-I

(18
]E-r: ﬂ lﬂ'gﬂf E]i-u: ﬂﬁ
l-f o) < |
s -': "? LEL o |
é O Dlg..:“ ;- ﬂ[;:; E.:
$kb skb = || skp =
EFROM-I] RAM-1 RAM-II
1764 6164 6164
3 &5 05
~ X

D,:D

Agh

i)

™~

32kb Memory interfacing using 4 “8 kb” h

® The total memory capacity is 32Kb. So, let two number of

8kb n memory be EPROM and the remaining two numbers
be RAM.

e Each 8kb memory requires 13 address lines and so the
address lines AO- A12 of the processor are connected to 13

address pins of all the memory.

® The address lines and A13 - A14 can be decoded using a 2-

to-4 decoder to generate four chip select signals.

® These four chip select signals can be used to select one of

the four memory IC at any one time.

® The address line A15 is used as enable for decoder.

Multiple Memory interfacing

] f
52 N .ﬁ_m L mum LEl1ooo b
3] o0 .
173 mmm = Emm M lvws V9090 ™
Llo~o -|o~0 - |O0~0 = | O=0 =
<|loo~ . =00~ ...~ OO~ . ~|0OO= . .~
Q | {|oco .. .~|o00 . i .~ |00O | 00O .~
¢ | {|ooo - | 000 - = 000 + = | 000 : -~
m_
g | {looco .. .~lo00O ... =000 ~|00OO: .~
5 | <{|loco .. .~|o00~ |00O: =000 .~
e | floco .. .~|ooO~ |0OO . ~|0O0O : .~
w &l ¢loco . =000 = |000 - =] 000 -
i s
1R Q00 : + =~ | Q00 : - = |O0O : '~ | 000 : =
0 | _ .
m. o | £|eco -~ | 00O . '~ 000 - = | D00 « .~
=
| 5| |eco ~|o00 .-~ |00O .~ |00O -
g
= | floco - m[000O .. = 000 =| 00O
o
{|Q00 + .~ [QOO . = 000 + '~ | 000 « +
3| {|eco 0| mmm .~ |ooo 0| mem -
¢ £
ww .._.._“H GDD ' ..nU Dﬂﬁ_ ' .D_ - i P = v -
] .
0% J|oco - o|ooco .. -0 lo00 - 0|000 0
m . 2 oS 8¢ 4
: : 3 |
© ©
g | & oY
o . o
w L

I/O addressing or Mapping

Processot Memory |/p Port
Bus ‘ s <: VPB Ef%'r“ <:| D0-D7 E:;ab g:s
10 device 1 v ‘HDdevioen EnaJIe
Olp Port /O interfacing techniques

i :> OfP PORT :> D0-D7 B?;;‘.;‘; Li‘(;)ydsewces can be interfaced in two

‘ 1) 1/0 mapped I/O
Enabl 2) Memory mapped I/O

e

/O Addressing Schemes :comparison

Memory Mapping of I/O device

I/0O Mapping of /O device

1.16-bit addresses are provided for /O devices.

2.The devices are accessed by memory read or
. memory write cycles.

3.The I/O ports or peripherals can be treated
like memory locations and so all instructions
related to memory can be used for data
transfer between I/O device and the processor.
4.In memory mapped ports the data can be
moved from any register to ports and vice-
versa.
5.When memory mapping is used for IO
devices, the full memory address space cannoq
be used for addressing memory. Hence
memory mapping is useful only for small
systems, where the memory reguirement is
less.
6.In memory mapped 1/O devices, a large
number of [/O ports can be interfaced.
7.For accessing the memory mapped devices,
the processor executes memory read or write

cycle. During this cycle IO/ M is asserted low

1. 8-bit addresses are provided for [/O devices.

2. The devices are accessed by /O read or 1/0|
write cycle. During these cycles the 8-bit
address is available on both low order address
lines and high order address lines.

3.0Only IN and OUT instructions can be used for
data transfer between I/0O device and the
" pProcessor:

4. In 1/O mapped ports the data transfer can take
place only between the accumulator and ports.

5. When I/O mapping is used for /O devices
then the full memory address space can be
used for addressing memory. Hence it is
suitable for systems which requires large
memory capacity.

6.In 1I/O mapping only 256
(2% = 256) can be interfaced.

7. For accessing the /O mapped devices, the
processor executes /O read or write cycle.

During this cycle 10/ M is asserted high (10/
M=4).

ports

(10/M = 0).

BASIC INTERFACING IN MICROPROCESSOR

< Address Bus >

< Data Bus >

Microprocessor

Control Bus f
Nfa \Sfoaslist NfinaNl

Memory I/O device

BASIC INTERFACING IN MICROPROCESSOR

In memory interfacing, 8 bit data line, 16 bit
address line , control signals are connected to

corresponding lines of memory IC.

In I/ O device interfacing, 8 bit data line, only 8
bit address line , control signals are connected to

corresponding lines of I/ O devices.

Classification of 1I/0 Interfacing

Input/Cutput Interface

'

'

'

CPU initiated Davice initiated

l

l

Conditional

l

Unconditional Interrupt

Classification of 'O Interface.

Data Transfer using |/0 STRUCTURE

- Io_
{ ! —
Programmed Interrupt 'O Direct “T""J" Access
r 1 o ke Do
e ema
o4 " Memory transfer - stealing transfer
o Mapped /O DMA DMA DMA
Isolated 170 _
or v
Port /O External Internal -
{ i) !}
Maskable Non-maskable Due to Software
exceptional interrupts

condition=

e

-

Data Transfer using |/0 STRUCTURE

e There are three major types of data transfer between the
microprocessor and 1/O device.

e Programmed I/O : In programmed I/O the data transfer is
accomplished through an 1/O port and controlled by
software.

e Interrupt driven I/O : In interrupt driven 1/O, the 1/O device
will interrupt the processor, and initiate data transfer.

e Direct memory access (DMA) : In DMA, the data transfer
between memory and 1/O can be performed by bypassing
the microprocessor.

e

-

INTERFACING OF INPUT AND OUTPUT DEVICE

™~

I/P device Tri state
Buffer

O/P () DO- D7
device

Address decoder

Logic

ADO- AD7
%

e

INTERFACING OF INPUT AND OUTPU'

e|/O mapped or programmed interfacing sc
commonly used.The data lines are connectec

" DEVICE

neme IS

to the 1/0

devices through Tri-state buffer.Tri- State buffer is

enabled from address decoder logic.

eThe address decoder logic makes an enable signal

according to the address data coming from
MICroprocessor.

eThese address Is the address of a ports.

eIN and OUT Iinstruction is used for data transfer

eEqg. IN ,Port address; IN 02
e QUT, Port address: OUT 03

e

INTERFACING OF INPUT DEVICE

lIp Port

Interface 1 Input devic 1
oo (' il lerace 2 Il dovica 2

— Intmﬁcn:i ——i[rpl! clevice 3|
—

4-‘ Intertace 5 —rlnpuldm:az\
-‘Intedanaﬁ i ipul ovice 3

Enable

SorsrsmErcClloue T [y

/

INTERFACING OF INPUT DEVICE

I/P device .| Tri state
. —| Buffer
ADO- AD7 i i A DO- D7
\ s
|/O/|_/| !.---------------.i \ Not USIng
\ 1
> \ 1
Fa—ﬂ—/ . /

Active High
/

INTERFACING OF INPUT DEVICE

Active Low

I/P device .| Tri state
! —| Buffer
ADO- AD7 i i A DO- D7
\ 1 s
|/O/|_/| !.---------------.i \ Not USIng
0
o \ O
RD B /

e

INTERFACING OF INPUT DEVICE

® The address lines are decoded to generate a signal
that 1s active when the particular port 1S being
accessed.

e An IORD signal 1S generated by combining the
10/M and the RD Signals from the microprocessor.

® [ets choose I/0 port OFH for the Input devices.

® So, the buffers must be enabled when:

e RD=0
[O/M =1
AO-A8= OFH

INTERFACING OF OUTPUT DEVICE

O/P

evice

S

1

Tri state

™~

Buffer

Active High

DO- D7

"~ Not Using

/

INTERFACING OF OUTPUT DEVICE

® The address lines are decoded to generate a signal
that 1s active when the particular port 1S being
accessed.

* An IOWR signal is generated by combining the
I0/M and the WR Signals from the microprocessor.

The Latch will be enabled when:
— Wi = O
— 1M = A1
— The address on A2 — A15 = FFH

A-E >——\—
A > ttttttttt

=L R I

R o

i

e

Memory Mapped 1I/O Interfacing

* Input and output transfer using memory mapped [/O are not

limited to the accumulator.

® Same of 8085 instructions can be used for memory mapped

[/O ports.

®* MOV r, m move the connects of input port whose address is

available in (H,L) register pair to any internal register.

® LDA address load the acc with the content of the input port
whose address is available as a second and third byte of the

Instruction.

™~

e

INTE

o ED IN

RFACING OF OUTPUT DEVICE

'ERFACING

S025 LED SR

4 N

Interrupts

® Aninterrupt is considered to be an emergency Signal that may

be serviced.
e The Microprocessor may respond to it as soon as possible.

® When the Microprocessor receives an interrupt signal, it suspends
the currently executing program and jumps to an
Interrupt Service Routine (ISR) to respond to the incoming

interrupt.

* Each interrupt will most probably have its own ISR.

- /

e

8085 Interrupts TYPES
* HARDWARE & SOFTWARE
e HARDWARE INTERRUPTS ARE

RST 7.5

3 Vectored ANES RST6.5

RST 5.5

4 Maskable

1 Non-Vectored

1 Non-
Vectored

g Interrupts

® There are two ways of redirecting the execution to the ISR
depending on whether the interrupt is vectored or non-vectored.

e Vectored: The address of the subroutine 1is already known to

the Microprocessor

e Non Vectored:The device will have to supply the address of
the subroutine to the Microprocessor

e The ‘EI’ instruction is a one byte instruction and is used to Enable

the maskable interrupts.

® The ‘DI’ instruction is a one byte instruction and is used to

Disable the maskable interrupts.

8085 Interrupts

Interrupt Masking Triggering
Name Maskable Vethod Vectored | Memory Method
INTR Yes DI/El No No Leve

Sensitive
RSTS5.5/ DI/ El Level
RST6S5 | €8 SIM Yes No" | gensitive
RST75 | Yes DI/E Yes Yes Edge
SIM Sensitive
Level &

TRAP No None Yes No Edge
Sensitive

8085 Interrupts

+ 8085 has 8 software interrupt

f)RSTO Interrupt Restart locations
2)RST! RSTO 0X8=0000n
3)RST2 RST1 1 X8=0008h
4)RST3 RST2 2x8=0010h
5)RST4 RST3 3X8=0018h
6)RST5 RST4 4 X8=0020h
7)RST6 RST5 5X8=0028h
B)RST7 RST6 6 X8=0030h

RST7 7 X8=0038h

- Interrupts PRIORITY

o

I N A N

Interrupt STRUCTURE

Prionty Input Wector
EST D Q : ! Locatioms
2 " . CLE O - I—c. ™ 0034
Reset Dj
EST 7.5 Interrupt Racoznizad) ; : 00385
. S I
BEST ! i
yn D
| 6.5 ' T
—> RST : ?GJGH
* I | 5.5 : :)D H02Cs
Q0281
— TRAD 42416
1 El — Q
Dl
Faset 020
Ary Intermapt Becosnized s Lt E 0185
Enshls
Q0108
. Get BT Code 00816
from External
5 INTE.)1 e 000,4

Figure (12.1) The 8085 Interrupts and Vector Locations.

SIM Instruction

SIM instruction can be used to perform two different tasks: 1. For masking of 3
interrupts 2. For serial data transmission (Each time a SIM instruction is executed, 7t bit
of Accumulator is automatically copied to SOD pin of 8085)

A ey 0 —Available
Serial Data Output : =
P —: RST6.5Mask ¢ 1 o cked)
RST7.5Mask < 1 _Masked
Enable Serial Data < » Mask Set Enable
0 - lgnore bit 7 0 - Ignore bits 0-2
1 - Send bit 7 to SOD pin 1 - Set the masks according
to bits 0-2
Not Used <« » Force RST7.5Flip Flop toreset

While EI/DI instructions enable/disable all maskable interrupts at once, SIM
instruction can be used to selectively mask (or disable) 3 out of 4 maskable
interrupts which are RST7.5,RST6.5 & RST5.5. Fourth maskable interrupt INTR
can only be enabled/disabled by using EI/DI instructions.

e SIM

Interrupts

7 6 4 3 2 1 0
50D SDE R75| MSE | M7.5| M6.5| M35
—_ e Y ,.J'
EST 7.3 MASK

Ignored

Senal Output Data - ignored if bt 6=0

t——Mask Set Enable -- {

If 1, bit 7 13 output to Serial Output Data Latch

available

BST 6.3 MASK |1=masked

RST 53 MASK

If 0 Bits 0-2 1gnored

If 1, mask is zet
RESET RST 7.5:1f1 RST 7.5 flip-flop iz reset OFF

Figure (12.2) Interpretation of the Accumulator Bit

RIM instruction "\

Like SIM instruction, RIM can be used to perform two different tasks: 1. To read current
status of 3 maskable interrupts 2. For serial data reception (Each time a SIM instruction
is executed, the bit present on SID pin of 8085 is automatically moved to 7% bit of the
Accumulator)

Indicate current

I RST5.5Mask masking status of
Serial DataIn RST6.5 Mask intgrruglsMset by user
usin
PR T2 Ve g -Av%ilabl;
RSTS.5 Interrupt Pending 1 - Masked
RST6.5 Interrupt Pending
RST7.5 Interrupt Pending Status of Interrupt Enable Flip Flop: 1

Set 0 Reset

Pending Interrupts: Since the 8085 has 5 interrupt lines, another interrupts may
occur while an interrupt is being attended and thus remain pending. Such
interrupts are called pending interrupts & would be attended as soon as ISR of
current interrupt is executed. A programmer may know the status (current value of
high/low on the respective interrupt pin) of such interrupts anytime by using RIM
instruction.

- /

e RIM

Interrupts

3f 20 1, 0

sID

17

16

15

1IE} 7.5] 6.53] 3.3

l_‘_L /

L Interropt Masks - 1= masked

Interrupt Enable Flag : 1= enabled

Pending Interrupts: 1= Pending

Serial Input Data Bit, if any

Peripheral Interfacing

Microprocessor

8085

How 8255 work

2 39
3 38
4 37
5 36
6 35
7 34
8 33
9 8255A 33
10 31
11 30
12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

8255 PIN

PA,
PA, D,
PA,
PA
WER RD
RESET
D, W
Di
D, A
D

k]
D, =
nﬁ
p, RESET
D'J‘ —
l!illlll:'_'l:_" {3
FB, +5V
pB, (*SV)Ve
PB

5 ovV
PB _{ MW

| PE.! - F':-u
K>
4
PB, - PB,
8

Pin Description I

D, - D, Data lines
RESET - Reset input

CS Chip select

RD Read control
WER Write control
Ay A Internal address
_ Pﬁ:, - PA Port-A pins
 PB, - PB, | Port-B pins
PC, - PC, Port-C pins

| V. +5V
A\ oV (GND)

e

PPI 8255 ™~

e Itis an I/O port chip used for interfacing I/O devices with
microprocessor.The parallel input-output port chip 8255
IS also called as programmable peripheral input-output
port.lt has 40 PINS. 24 input/output lines which may be
Individually programmed in groups.The groups of I/O pins
are named as Group A, Group B and group C upper and
Group C lower. Each of these two groups contains a
subgroup of eight I/O lines called as 8-bit port and another
subgroup of four lines or a 4-bit port. The port A lines are
identified by symbols PAO-PA7 while the port C lines are
identified as PC4-PC7. Similarly, Group B contains an 8-bit
port B, containing lines PBO-PB7 and a 4-bit port C with
lower bits PCO- PC3.All of these ports can function
Independently either as input or as output ports. This
can be achieved by programming the bits of an internal
register of 8255 called as control word register (CWR).

/

Block Diagram of 8255

® [Jp—"
Group A — Group A
control — Port A(S)

Dig- D Data > Groap A PCn-FCy
1 bus = = || PortC
'y 8 bit int data bus | upper(4)

CGroup B PCy-FCs
@ o Fort
"RD—p LWH14}
WER—s READ/
WRITE
‘ o P B-Plbo
i.jm_i Contrel L, Group B || Group B I——>
A—» Laogic control — Port B(8)
RESEF 1. —
S —

Block Diagram of 8255

Pin Diagram of 8255
The 8255 is a 40 pin integrated circuit (IC), designed to

perform a variety of interface functions in a computer

environment.

DO - D7 These are the data input/output lines for the device.

All iInformation read from and written to the 8255 occurs via
these 8 data lines.

CS (Chip Select Input). If this line is a logical 0, the
microprocessor can read and write to the 8255.

RD (Read Input) Whenever this input line is a logical 0 and the
CS input is a logical 0, the 8255 data outputs are enabled onto
the system data bus.

/
Pin Diagram of 8255

e WR (Write Input) Whenever this input line is a logical 0 and the
CS input is a logical 0, data is written to the 8255 from the
system data bus

e AO - Al (Address Inputs) The logical combination of these two
Input lines determines which internal register of the 8255 data is
written to or read from.

e RESET The 8255 is placed into its reset state if this input line is
a logical 1. All peripheral ports are set to the input mode.

\
Pin Diagram of 8255

PAO - PA7, PBO - PB7, PCO - PC7 These signal lines are used
as 8-bit 1/0O ports.

They can be connected to peripheral devices.

The 8255 has three 8 bit I/O ports and each one can be connected
to the physical lines of an external device.

These lines are labeled PAO-PA7, PB0O-PB7, and PCO-PC?7.

The groups of the signals are divided into three different I/O
ports labeled port A (PA), port B (PB), and port C (PC).

Control word Format of 8255 w

Iy [} Dis Dy Dy Dy Iy Dy
AERIer pa | pcy | Mede | pp PCL
G Port A for PB
Mide Set flag ‘
1- actife
0 BSH mode
Group - A Group - B
1 Input
PCu PCL 1l Input
_..___________I;I._;:_::_l?;t_ — 0 Output
PA 0 le L Pg 1 Input
Mode 00" maode put
L——p Select 0l-model — 2% Omode0
of PA 10 —mode 2 ¢ 1l mode 1

Control Word Fomat of 8255

J

Modes of 8255
® There are two basic modes of operation of 8255, They are:
°* 1.1/0 mode.
e 2. BSR mode.

* In I/0 mode, the 8255 ports work as programmable 1/0
ports, while

* In BSR mode only port C (PCO—PC7) can be used to set or
reset its individual port bits.

Modes of 8255
There are 3 I/0O modes of operation for the ports of 8255.

Mode 0, Mode 1,and Mode 2

1) Mode 0 - Basic I/0 mode
2) Mode 1 - Strobed I/0 mode

3) Mode 2 - Strobed bi-directional 1/0

Modes of 8255
Mode 0 Operation

[t is Basic or Simple 1/0.

It does not use any handshake signals.

It is used for interfacing an1i/ P device or an o/ P device.

It is used when timing characteristics of I1/0 devices is
well known

Modes of 8255

Mode 1 Operation
It uses handshake 1/ O.

3 lines are used for handshaking.

It is used for interfacing ani/p device or an o/ p device.

Mode 1 operation is used when timing characteristics of I/ O devices
is not well known, or used when I/0O devices supply or receive data

at irregular intervals.

a I
Modes of 8255

e Handshake signals of the port inform the processor that the data is

available, data transfer complete etc.

°* Mode 2 Operation
® |t is bi-directional handshake 1/ O.
® Mode 2 operation uses 5 lines for handshaking.

e Jtis used with an I/ O device that receives data some times and sends

data sometimes.

e Mode 2 operation is useful when timing characteristics of I/ O
devices is not well known, or when I/O devices supply or receive

data at irregular intervals.

e

Modes of 8255
® PortA, Port B and Port C can work in Mode O

e Port A and Port B can work in Mode 1

© Only Port A can work in Mode 2

e

IO MODE CONTROL WORD

D?|m|ns|mlns|m|n1|nﬂ'

Group A

Port C
(Upper: PCT - PC4)
1 = input; 0 = output

FPort A

Group B

Port C
(Lower: PC3 - PCO)
1 = input; 0 = output

1 = input; 0 = output

Mode Selection
00 = Mode 0

Port B
1 = input; 0 = output

rMude Selection

01 = Mode 1
1x = Mode 2

1 = /O Mode
0 = BSR Mode

0=Mode D
1 = Mode 1

Control Word Format §255A

e

BSR MODE WORD

D

7| Dg 1| P3 Dy

DSD

D, D, D

1

0 | x X X | Bit Select

S/R

\l/ Not Used

BSE. Mode

—t = = = 3 2
= = 3 0 = = 2

— T =t 3 = T et

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

Set=1
Reset=0

Interfacing WITH8255

AD-AD -t+-—r1
| 8 ‘1 B-bit

Latch |
ALE M EN
8085 > PA,-PA.
A IO ™S-0 8
— . | =
i s A " o G5 -
.I.I‘rH -+ II'Hl' F't _.ihl B % ¥ I{::“: '.'l"': stq |I: H: a i~ 5
? w | I00s3 ;
RESET > RESET A %E F‘Eﬁ 4 }
v G - p— e
(VM *[;l{_” 3 el MO S-S r'(-;:-}l-"l.u-l-‘{ .
Gy 1 i —_ .
- S-6 RD = RD
: = o
M (i, NS WR - WR
RESET —» RESET

LED INTERFACING

WC C
==
A) 330E-SIL
Do 34
oo PN el
D b HC DO FPAO 7N
— D1 Y pai e —e
oE =7 D2 PA2 5y
D4 0 | D3 P A3 B
05 in | D4 FAadg y o e
io]= 2g | DS PAS B S
= A
o7 >7 DG P AG g—" v N
D7 P AT NN
A1
2 =4 AD
N Al
RST 35
" RESET
RAD =]
T 0 3!515_\{%.
=i =] A d a.s
CLSaL o 35

8255

e

-

A/D Interfacing

* In most of the cases, the PIO 8255 is used for interfacing the
analog to digital converters with microprocessor through its

ports.

e The analog to digital converters is treated as an input device by
the microprocessor, that sends an initializing signal to
the ADC to start the analogy to digital data

conversation process.

® The process of analog to digital conversion is a slow
process, and the microprocessor has to wait for the
digital data till the conversion is over.

A/D Interfacing

® After the conversion is over, the ADC sends end of
conversion EOC signal to inform the microprocessor

that the conversion is over and the result 1s ready at the
output buffer of the ADC.

® These tasks of issuing an SOC pulse to ADC, reading EOC
signal from the ADC and reading the digital output of
the ADC are carried out by the CPU using 8255 I/0 ports.

g A/D Interfacing

® The time taken by the ADC from the active edge of SOC pulse
till the active edge of EOC signal 1s called as the
conversion delay of the ADC.

® Successive approximation techniques and dual slope integration

techniques are the most popular techniques used in the integrated

ADC chip.

e The analog to digital converter chips 0808 and 0809 are 8-bit

CMOS, successive approximation converters.

CLK IN

A GND

D GND

O

1

2
3
4
2
&
7
8
o

ADC 0804

Vee (OR VRer)
CLK R

DBO (LSB)
DB1
DB2
DB3
DB4
DB5
DB6
DB7 (MSB)

ADC Interfacing

e CS :Active low input used to activate the ADC0804
chip.

RD (data enable) : Active low input used to get
converted data out of the ADC0804 chip. When CS =0,
If a high-to-low pulse is applied to the RD pin, the 8-bit
digital output shows up at the DO-D7 data pins.

WR (start conversion): Active low input used to inform
the ADCO0804 to start the conversion process. If CS=0
when WR makes a low-to-high transition, the ADC0804
starts converting the analog input value of Vin to an 8-
bit digital number. When the data conversion is
complete, the INTR pin is forced low by the ADC0804.

ADC Interfacing

e CLK IN and CLK R : Connect to external capacitor and
resistor for self-clocking, f = 1/(1.1RC). The clock affect
the conversion time and this time cannot be faster than
110 micros.

INTR (end of conversion) This is an active low output
pin. When the conversion is finished, it goes low to
signal the CPU that the converted data is ready to be
picked up. After INTR goes low, we make CS =0 and
send a high-to-low pulse to the RD pin to get the data
out of the ADCO0804 chip.

ADC Interfacing

® Vin (+) andVin (-) :These are the ditferential analog inputs
where Vin = Vin (+) - Vin (-). Often the Vin (-) pin is
connected to ground and the Vin (1) pin is used as the

analog input to be converted to digital.

® VCC:This is the +5V power supply. It is also used as a
reference voltage when the Vret/2 (pin 9) input is open.

Vrefi2 (V) Vin (V) Step Size (mV)
Not connected Oto§ 5/255=19.60
2.0 0to 4 4/255=15.69
1.5 Oto3 3/255=11.76
1.28 0to2.56 2.56/255=10.04
1.0 0to2 21255 ="1.84
0.5 Oto1 1/255=3.92

™~

ADC Interfacing

® Vref/2 :- Input Voltage pin used for the reference Voltage. If

this pin is open, the analog input voltage for the the ADC is
ranged from O to 5 volts. This is optional input pin. It is used
only when the input signal range is small. When pin 9 is at
2V, the range is 0-4V, i.e. Twice the voltage at pin 9. Pin 6
(V+), Pin 7(V-): The actual input is the difference in voltages

applied to these pins. The analogue input can range from O to

5V.

DO — D7 output PINs of ADC: DO — D7 are the digital data
output pins. These are the tri-state buffered and the

converted data is accessed only when CS = 0 and RD is

forced low. The output Voltage:

ADC Interfacing R

P
P
P
P
P
P
P
P
P
P
P
P

A/D Interfacing [0808 |}

_ ﬁ
| D, Tri-State | D,
&] Ana]og - Buffer
b Ag——d put 1 ap | Digita __{1\,__ G-
AS——G}_T A; Converter | Output Data Bus
v A3-——Q A : ' 0. . l s DO
; » START R + Tri-State
E| -Ez E3 - lOW ' Buffer
: | 74LSI138 Lﬂ
Hge—s 0,p—— ¥ j‘—-{ —
A— | :
Oo>—| [—

e
D/A INTERFACING

e INTERFACING DIGITALTO ANALOG CONVERTERS:
The digital to analog converters convert binary number into
their equivalent voltages. The DAC find applications in areas
like digitally controlled gains, motors speed controls,

programmable gain amplifiers etc.

4 D/A Interfacina -

"."JE@ Ann
Apy ¥ Ay

OV —y ﬁ

From Fesst —p
5085 out

.J'ILI:I—F"

Ag—

MODULE 4

EMBEDDED SYSTEM

EMBEDDED SYSTEM

e System

A system iIs an arrangement in which all its unit
assemble work together according to a set of rules.
It can also be defined as a way of working,
organizing or doing one or many tasks according to
a fixed plan.

For example, a watch is a time displaying system.
Its components follow a set of rules to show time. If
one of its parts fails, the watch will stop working. So
we can say, In a system, all its subcomponents
depend on each other

EMBEDDED SYSTEM

®* Embedded means something that is attached to
another thing. An embedded system can be
thought of as a computer hardware system having
software embedded in it. An embedded system
can be an independent system or it can be a part
of a large system. An embedded system is a
microcontroller or microprocessor based system
which is designed to perform a specific task. For
example, a fire alarm is an embedded system; it

will sense only smoke.

COMPONENTS

® |t has hardware.

o It has application software.

° It has Real Time Operating system (RTOS)
that supervises the application software and
provide mechanism to let the processor run a
process as per scheduling by following a plan to
control the latencies. RTOS defines the way the
system works. It sets the rules during the
execution of application program. A small scale

embedded system may not have RTOS.

e

-

Characteristics of an Embedded A

System

e Single-functioned - An embedded system
usually performs a specialized operation and
does the same repeatedly. For example: A pager
always functions as a pager.

e [] Tightly constrained — All computing systems
have constraints on design metrics, but those on
an embedded system can be especially tight

e Reactive and Real time - Many embedded
systems must continually react to changes in the
system's environment and must compute certain
results in real time without any delay. J

" Characteristics

e Microprocessors based - It must be
microprocessor or microcontroller based.

e [1 Memory — It must have a memory, as Its
software usually embeds in ROM. It does not
need any secondary memories in the computer.

e [Connected - It must have connected
peripherals to connect input and output devices.

e [HW-SW systems — Software is used for more
features and flexibility. Hardware is used for
performance and security.

ADVANTAGES & DISADVANTAGES

ADVANTAGES

e [] Easlly
Customizable

e [Low power
consumption

e [] Low cost

e [] Enhanced
performance

ICET

DISADVANTAGES

e High development
effort

e [] Larger time to
market

ES BLOCK DIAGRAM

o Lo om | eesasl DA |,
S0 Converter ASIC Converter AcUakY

™~

Sensor — It measures the physical quantity and converts it to an
electrical signal which can be read by an observer or by any
electronic instrument like an A2D converter. A sensor stores the

measured quantity to the memory.

A-D Converter — An analog—to—digital converter converts the

analog signal sent by the sensor into a digital signal.

Processor & ASICs — Processors process the data to measure

the output and store it to the memory.

D-A Converter — A digital—to—analog converter converts the

digital data fed by the processor to analog data.

Actuator — An actuator compares the output given by the D-A

Converter to the actual (expected) output stored in it and stores

the approved output.

www.pantechsolutions.net PANCECK YOLUTIONY

Technology Beyond The Dreams
‘Generalization of Application Areas

» Embedded Systems cover such a broad range of products that
generalization is difficult. Here are some broad categories:
J Aerospace and Defense Electronics

J Automotive

L

Broadcast and Entertainment
Consumer and Internet Appliances

Data Communication

E [

Digital Imaging

Industrial Measurement and Control

B B

Telecommunications

L

Mobile Data Infrastructures etc.

@ 2008 Pantech Solutions™ | All ri

SYSTEM SOFTWARE

® |t consist of many programs that support the operation of a

computer
o |t helps the user to concentrate in the application program

without worrying about how the computers work internally

* System softwares are

Text editor is used to create;and modify program. -
Compiler translates the high-level language program into machine language.
Assembler is used for translating assembly language program into machine language.

Loader loads the machine language program into the memory.
Linker or sometimes loader itself is used to execute the program.

Debugger detects the errors in the program.

ASSEMBLER

* A computer will not understand any program written in a
language, other than its machine language. The programs
written in other languages must be translated into the
machine language. Such translation is performed with the
help of software. A program which translates an assembly
language program into a machine language program is called
an assembler. If an assembler which runs on a computer and
produces the machine codes for the same computer then it is
called self assembler or resident assembler. If an assembler
that runs on a computer and produces the machine codes for

other computer then it is called Cross Assembler

COMPILER

® It is a program which translates a high level language
program into a machine language program. A compiler is
more intelligent than an assembler. It checks all kinds of
limits, ranges, errors etc. But its program run time is more
and occupies a larger part of the memory. It has slow speed.
Because a compiler goes through the entire program and
then translates the entire program into machine codes. If a
compiler runs on a computer and produces the machine
codes for the same computer then it is known as a self
compiler or resident compiler. On the other hand, if a
compiler runs on a computer and produces the machine
codes for other computer then it is known as a cross

compiler.

LINKERS

® In high level languages, some built in header files
or libraries are stored. These libraries are
predefined and these contain basic functions
which are essential for executing the program.
These functions are linked to the libraries by a
program called Linker. If linker does not find a
library of a function then it informs to compiler
and then compiler generates an error. The
compiler automatically invokes the linker as the

last step n compiling a program.

LOADER

® Loader is a program that loads machine codes of a program
into the system memory. In Computing, a loader is the part
of an Operating System that is responsible for loading
programs. It is one of the essential stages in the process of
starting a program. Because it places programs into memory
and prepares them for execution. Loading a program involves
reading the contents of executable file into memory. Once
loading is complete, the operating system starts the program
by passing control to the loaded program code. All operating
systems that support program loading have loaders. In many
operating systems the loader is permanently resident in

meOI'y.

COMPARISON MUP & MUC

MICROPROCESSOR MICROCONTROLLER

: E
= < 3
m fa —
= —
= =
-
= = o
= S 5
= o o
= =
= =)
= 1 = — E" =l
2 = S 3 =
= o ® =
=
(] b |
(]
(]
2 S S =L
= — =] =

WOd| | Jawi]
|
10d WO [eLBS
WOY

|eLiag

|
4oy

Microprocessor

Microprocessors are multitasking in
nature. Can perform multiple tasks at a
time. For example, on computer we can
play music while writing text in text
editor.

RAM, ROM, I/0O Ports, and Timers can be
added externally and can vary in
numbers.

Designers can decide the number of
memory or I/O ports needed.

External support of external memory and
I/O ports makes a microprocessor-based
system heavier and costlier.

External devices require more space and
their power consumption is higher.

Microcontroller

Single task oriented. For example, a washing
machine is designed for washing clothes only.

RAM, ROM, 1/O Ports, and Timers cannot be
added externally. These components are to be
embedded together on a chip and are fixed in
numbers.

Fixed number for memory or I/O makes a
microcontroller ideal for a limited but specific
task.

Microcontrollers are lightweight and cheaper
than a microprocessor.

A microcontroller-based system consumes less
power and takes less space.

g Recent trends in Embedded

systems

® With the fast developments in semiconductor industry and
VLSI technology ,one can find tremendous changes in the
embedded system design in terms of processor speed , power
,communication interfaces including network capabilities and
software developments like operating systems and

programming languages etc

Processor speed and Power
Communication interfaces
Operating systems

Programming Langauage

Challenges in Embedded Systems

1. Amount and type of hardware needed.

Optimizing various hardware elements for a particular

design.

2. Taking into account the design metrics

Design metrics examples —power dissipation, physical size,

number of gates and engineering, prototype development

and manufacturing COsts.

3. Optimizing the Power Dissipation.

Clock Rate Reduction and Operating Voltage Reduction

4. Disable use of certain structural units of the processor to
reduce power dissipation the processor to reduce power

dissipation.

Control of power requirement, for example, by screen

auto-brightness control

5. Process Deadlines
6. Flexibility and Upgradeability
7. Reliability

8. Testing, Verification and Validation

Real-time embedded systems

® An embedded system which gives the required output in a
specified time or which strictly follows the time dead lines

for completion of a task is known as a Real time system.

® i.eaRealTime system , in addition to functional

correctness, also satisfies the time constraints .

There are two types of Real time systems. (i) Soft real time

system and (ii) Hard

Soft Real Real time system

® A Real time system in which ,the violation of time
constraints will cause only the degraded quality, but the
system can continue to operate is known as a Soft real time

system.

o In soft real-time systems, the design focus is to offer a
guaranteed bandwidth to each real-time task and to

distribute the resources to the tasks.

® Ex: A Microwave Oven

, washing machine ,TV remote

etc.

Hard Real-Time system

® A Real time system in which ,the violation of time
constraints will cause critica failure and loss of life or
property damage or catastrophe is known as a Hard Real

time system.

© These systems usually interact directly with physical

hardware instead of through a human being

o Ex: Deadline in a missile control embedded system

b/

Delayed alarm during a Gas leakage , car airbag control

system , A delayed response in pacemakers ,Failure in
RADAR functioning

Embedded Product Development A

Life Cycle (EDLC)

e EDLC is Embedded Product Development Life Cycle

o It is an Analysis — Design — Implementation based

problem solving approach for embedded systems

development.

o There are three phases to Product development

EDLC

Implementation

e
el

Need for EDLC

e EDLC 1is essential for understanding the scope and
cornplexity of the work involved in embedded systems

development

® It can be used in any developing any embedded product

e EDLC defines the interaction and activities among various

groups of a product development phase.

® Example:-project management, system design

Objectives of EDLC

¢ 1. Ensure that high quality products are delivered to
user

* 2. Risk minimization defect prevention in product
development through project management

e 3. Maximize the productivity

Different Phases of EDLC:

VY AR

Retirement Need

I (EDLC)
Upgrade N
Support Deployment

_/

Figure : Phases of EDLC

conceptualization

Analysis

Design

!

Development

and testing

Need

The need may come from an individual or from the public

or from a company.

Conceptualization

Defines the scope of concept, performs cost benefit

analysis and feasibility study and repare project management

and risk management plans.

Analysis

The product is defined in detail with respect to the inputs,

processes, outputs, and interfaces at a functional level

-

Design

The design phase identifies application environment and

creates an overall architecture for the product.

Development and Testing

Development phase transforms the design into a

realizable product.

Deployment

Deployment is the process of launching the first fully

functional model of the product

in the market,

Support

The support phase deals with the operational and

maintenance of the product in the production environment.

Hpgrades

Deals with the development of upgrades (new versions)

for the product which is already present in the market.

Retirement/ Disposal

The retirement/disposal of the product is a gradual

pI'OCGSS

WATER FALL MODEL
-smmenoncm)

CONCEFTUALISATION | « SYSTEM BOUNDARY CRA REPORT

l ANALYSS | | pEQUIREMENTS GATHERING
@ » PRELIMINARY AND DETARLED DESIGN

DEVELOPMENT &
TESTING

DEPLOYMENT | » PRODUCT LAUNCHING

» PRODUCT UPGRADES

RETIREMENT] * PRODUCT DISPOSAL

Figure: Waterfall Model

Embedded Tool Chain System

e Fditor:

o An editor is a software application used for editing plain

text.

° Preprocessor:

o Preprocessor directives are lines included i n the code of
programs that are not program statements but directives for

the preprocessor
® Assembler

* Assembler creates object code by translating mnemonics into

machine language.

Compiler

A compiler is a computer program (or set of programs) that
translates text written in a high level language into object

code
Linker:

A linker is a program that takes one or more objects
generated by compilers and assemblers and combine them

into a single executable program

Debuggers:

These tools are used for targeting, validating (error

checking and correction) and performance monitoring,

® Joader

e A Loader is an operating system utility that copies programs
from a storage device to main memory, where they can be

executed

e Profilers

o Profilers are used to find out what parts of the code have

been executed and how much time was spent in each part.

o Test Coverage tool

o A coverage tool can tell you what part of your code has

been exercised by a test run or an interactive session.

® This helps you to identify dead code missing tests

-

MODULE 5

8051

DIFEERENCE BETWEEN MICROPROCESSORS AND MICROCONTROLLERS

Microprocessors contain no RAM, no ROM and no 1/O ports on the chip itself. We have to add RAM,
ROM 1/0O ports and timers externally to the microprocessors to make them functional.

A microcontroller has a CPU in addition to a fixed amount of RAM ROM , 1/O ports, and a timer all
on a single chip.In other words, the processor , the RAM, ROM, I/O ports, and timer are all embedded
together on one chip. The fixed amount of on-chip ROM, Ram, and number of 1/O ports in microcontrollers
makes them ideal for many applications in which cost and space are critical

e The speed of operation of microcontrollers are higher than microprocessors
e Microcontrollers have much more bit handling instructions than microprocessors.

e The memories of microcontrollers are not expandable.

Data bus

General-

purpose
Micro-
Processor

Serial
COM

Port

Address bus

Microcontroller

ROM

Serial

COM
Port

ARCHITECTURE OF 8051

The 8051 architecture consists of these specific features

e Eight bit CPU with registers A (the accumulator) and B

e Sixteen bit program counter (PC) and data pointer(DPTR)

e Eight bit program status word(PSW)

e Eight bit stack pointer(SP)

e Internal ROM of 4K bytes

¢ Internal RAM of 128 Bytes
= Four register banks each containing eight registers
= Sixteen bytes which may be addressed at the bit level
= Eighty bytes of general purpose data memory

e Thirty- two input/output pins arranged as four 8-bit ports: PO-P3

Two 16-bit timer/counters: TO and T1

Full duplex serial data receiver/transmitter: SBUF
Control Registers: TCON, SCON, PCON,IP AND IE
Two external and three internal interrupt sources

Oscillator and clock circuits

IGURE 2.1a 8051 Block Diagram

—
Arithmetic Special- = o V0
and PSW Function £ T [aoaz
Logic Unit Registers = & | po-n7
RAM |—
A B 8-Bit Data and —
Address Bus = -
2 s 1o
| | . £k
DPTR
PC DPH ROM .
DPL 5 S C o
= & [nsais
16-Bit Adress Bus I
p—— /O
—_ . pecial- ™ p— Interrupt
EA —J System Byte/Bit Function g t b Counter
ALE — gy Addresses : 8 -
Timing Registers o |~ gerial Data
PSEN — — FBD-WR
XTAL1 — System Register 1€ |
xTaL2 —{ Interrupts Bank 3 IP
RESET — Timers PCON :
Data Buffers - SBUF
Voo — Register
GND Memory Cantrol Bank 2 SCoN l
T TCON |
| Register TMOD |
Bank 1 TLO |
l THO
| Register TLL {
Bank O
) ? TH1 !
' tnternal RAM Structure I
I I
s s s S SO I e s AN DD I WA SIS I DT NS I G S M M |

External
Interrupts

Int 1 On-chip
nterrupt pE R OM
Contro] il

Etc.
Timer O

for code Timer 1

sinduj 191uno)H)

Senal
Port

POP1P2P3 TXD RXD

.

Counter and Data Pointer

The 8051 contains two 16-bit registers, the program counter (PC) and the data pointer (DPTR).Each is
used to hold the address of a byte in memory.

Program instruction bytes are fetched from locations in memory that are addressed by the PC. The PC
is automatically incremented after every instruction byte is fetched. The PC is the only register that does not
have an internal address.

The DPTR register is made up of two 8-bit registers, named DPH and DPL, which are used to furnish
memory addresses for internal and external code access and external data access. DPTR can be specified by
its 16-bit name or by each individual byte name, DPH and DPL.DPTR does not have a single internal

address, DPH and DPL are each assigned an address.
A and B Reqisters

The 8051 contains 34 working registers. Two of these registers A and B hold results of many instructions,

particularly math and logical operations. The A (accumulator) register is the most versatile of the two CPU
registers and is used for many operations, including addition, subtraction, multiplication and division, and
Boolean bit manipulations. The A register is also used for all data transfers between the 8051 and any
external memory. The B register is used with the A register for multiplication and division operations and

also for storing data.

The 8051 Oscillator and Clock

The heart of the 8051 is the circuitry that generates the clock pulses by which all internal operations are

synchronized. Pins XTAL1 and XTALZ2 are provided for connecting a resonant network to form an oscillator.
Typically a quartz crystal and capacitors are employed. Crystal frequency is the basic internal clock
frequency of the microcontroller. Typically the maximum and minimum frequencies of 8051 are 1 megahertz
and 16 megahertz. Minimum frequencies imply that some internal memories are dynamic and must always

operate above a minimum frequency or data will be lost.
c1
1 11
L il 18 XTAL2

Crystal —
ar 1 8051 DIP
Ceramic Resonator =——e=—

L il
dl; 13
c2

19 XTALl

The time to execute any particular instruction is found by multiplying C by 12 and dividing the product by

Cx12d
crystal frequency

The Stack and the Stack Pointer

The stack is a section of RAM used by the CPU to store information temporarily. The 8-bit stack pointer
(SP) register is used by the 8051 to hold an internal RAM address that is called the top of the stack. The

the crystal frequency. Tj,s = ,where C is the number of cycles

address held in the SP register is the location in internal RAM where the last byte of data was stored by a
stack operation.

When data is to be placed on the stack the SP increments before storing data on the stack so that the stack
grows up as data is stored. As data is retrieved from the stack, the byte is read from the stack and then the SP
decrements to point to the next available byte of stored data. * PUSH ’ is the instruction used to place data on
the
stack and ‘ POP ’ is the instruction used to retrieve data from the stack.

Stack Operation
Stack Operation

Store Data Get Data
SP = QA Address DA SP = 0A
Store Data Get Data
SP =09 > Address 09 — SF =09
Store Data Get Data
SP =08 c Address 08 - SP =08
SP = 07 Address 07 SP = 07
Storing Data on the Stack Internat! RAM Getting Data From the Stack
{Increment then store) {Get then decrement)

Internal Memory

8051 have ROM for program code bytes and RAM for variable data that can be altered as the program
runs. The 8051 has internal RAM and ROM memory for these functions. Additional memory can be added
externally using suitable sources.

Internal RAM
The 128 byte internal RAM is organized into three distinct areas.

1. Thirty two bytes from address 00H to 1FH that makes up 32 working registers organized as four banks
of eight registers each. The four register banks are numbered 0 to 3 and are made up of eight registers
named RO to R7.Each register can be addressed by name (when its bank is selected) or by its RAM
address. Thus RO of bank 3 is RO if bank 3 is selected or addresses 18H whether bank 3 is selected or
not. Bank O is selected on reset.

2. A bit addressable area of 16 bytes occupies RAM byte address 20H to 2FH forming a total of 128

addressable bits. An addressable bit may be specified by its bit address of 00H to 7FH or 8 bits may
form any byte address from 20H to 2FH. For example bit address 4FH is also bit 7 of byte address
29H.

3. A general purpose RAM area above the bit area from 30H to 7FH , addressable as bytes.

Internal RAM QOrganization

7F
T F R7
1E R6
1D RS
m 1¢ R4
E 1B R3
1A R2
19 R1
18 RO
R R7
16 R6
15 R5
%' 14 R4
5 13 R3
12 R2
11 R1
10 RO
T T TR R7 2F [7F 78
43 R6 2€ | 77 70
0D RS 2D | 6F 68
v 0c R4 2c [67 60 %
L] 08B R3 28 | 5F 58
0A R2 2a |57 50
09 R1 29 | 4F 48
08 RO 28 | a7 40
T T Tor R7 27 [3F 38
06 RE 26 | 37 30
05 R5 25 | 2F 28
© 04 R4 24 [27 20
5 03 R3 23 | 1F 18
® 02 R2 22 |17 10
01 R1 21 |oF 08
00 RO 20 |07 00 30
Working Bit Addressable General Purpose
Registers

Flag and The Program Status Word(PSW)

The 8051 has four math flags that respond automatically to the outcomes of math operations and three

general purpose user flags that can be set to 1 or cleared to 0 by the programmer. The math flags include
carry (C) , Auxiliary Carry (AC), Overflow (OV), and Parity(P).User flags are named FO, RS0, and RS1.All
the flags can be set and cleared by the programmer at will. The math flag however are also affected by math
operations.

CY, the carry flag — This flag is set whenever there is a carry out from the d7 bit.This flag bit is affected
after an 8-bit addition or subtraction.

AC, the auxiliary carry flag — If there is a carry from D3 to D4 during an ADD or SUB operation this bit is

set, otherwise it is cleared.

P, the parity flag — The parity flag reflects the number of 1s in the A (accumulator) register only. If the A
register contains an odd number of 1s then P=1 and P=0 if A has an even number of ones.
OV, the overflow flag — This flag is set whenever the result of a signed operation is too large, causing the
high-order bit to overflow into the sign bit.

The PSW contains the math flags, user program flag FO and the register select bit that identify which of
the four general purpose register bank is currently in use by the program.

7 6 5 4 3 2 1 0

cy | AC | FO | RS2 | RSO | ov | - | P

THE PROGRAM STATUS WORD (PSW)

Bit Symbol Function
7 CY Carry flag
6 AC Auxiliary carry flag
5 FO User flag 0
4 RS1 Register bank select bit 1
3 RSO Register bank select bit 0
2 oV Overflow flag
1 - Reserved for future use
0 P Parity flag
RS1 | RSO
0 0 Select register bank 0
0 1 Select register bank 1
1 0 Select register bank 2
1 1 Select register bank 3

1/O Ports in 8051

The four ports PO,P1,P2 and P3 each use 8 pins, making them 8-bit ports. All the ports on RESET are
configured as output , ready to be used as output port.

Port 0

Port 0 occupies a total of 8 pins (pins 32-39).It can be used for input or output. Upon reset port O is
configured as output port. In order to make it an input port the port must be programmed by writing 1 to all
the bits.Port 0 is also designated as ADO-AD?7, allowing it to be used for both address and data.The 8051
multiplexes address and data through port 0 to save pins.ALE indicates if PO has address or data.When ALE
=0 it provides data DO-D7, but when ALE=1 it has address A0-A7

Portl

Port 1 occupies a total of 8 pins(pins 1 through8).It can be used as input or output.Upon reset port 1 is
configured as an output port. To make port 1 an input port it must programmed as such by writing 1 to all its

bits.

Port 2
Port 2 occupies a total of 8 pins(pins 21 through 28).1t can be used as input or output. To make port 2 an input
port it must be programmed as such by writing 1 to all its bits.Port 2 must be used along with port 0 to
provide the 16 bit address for the external memory.Port 2 is also designated as A8-Al5 indicating its dual
function.While PO provides the lower 8 bits via AO-A7 it is the job of P2 to provide bits A8-A15 of the
address.
Port 3
Port 3 occupies a total of 8 pins pins 10 through 17.It can be used as input or output.Although port 3 is
configured as an output port upon reset this is not the way it is most commonly used.Port 3 has the additional

function of providing some extremely important signals such as interrupts.

P3 Bit Function Pin
P3.0 RxD 10
P3.1 TxD 11
P3.2 INTO 12
P3.3 INT1 13
P3.4 T0 14
P3.5 T1 15
P3.6 WR 16
P3.7 RD 17

P3.0 and P3.1 are used for the RxD and TxD serial communication signals. Bits P3,2 and P3.3 are set aside
for external interrupts. Bits P3.4 and P3,5 are used for counters 0 and 1. Finally , P3.6 and P3.7 are used to

provide The WR and RD signals of external memory.

Special Function Reqisters (SFRs)

Special Function Registers uses addresses from 80H to FFH. They are addressed much like internal RAM.

Some SFRs are also bit addressable. Not all of the addresses from 80H to FFH are used for SFRs and

attempting to use an address that is not defined or empty results in unpredictable results.

INTERNAL

NAME FUNCTION ADDRESS
A Accumulatar OED
B Arithmetic OFO
DPH Addressing external memory 83
DPL Addressing external memory 82
iE Interrupt enable control 0OAR
P Interrupt priority OBS8
PO Input/output port latch 80
1 Input/output port latch 30
P2 Input/output port latch AO
F3 Input/output port latch OBO
PCON Power controi 87
PSW Program status word obo
SCONM Serial port control 98
SBUF Serial port data buffer a9
SP Stack pointer 81
TMOD Timer/counter mode control 89
TCON Timer/counter control 88
TLO Timer O low byte 8A
THO Timer O high byte 8C
LY Timer 1 low byte 88
TH1 Timer 1 high byte 8D

Note that the PC is not part of the SFR and has no internal RAM address.

SFRs are named in certain opcodes by their functional names, such as A or THO, and
are referenced by other opcodes by their addresses, such as OEOh or 8Ch. Note that any
address used in the program must start with a number; thus address ECh for the A SFR
begins with (. Failure to use this number convention will result in an assembler error

when the program is assembled.

Interrupt Enable (|E) Register

7

6 5 4

0

EA

-=-- ET2 ES

ET1

EX1

ETO

EXO

(7) EA- Enable interrupt bit. Cleared to 0 by program to disable all interrupts. Set to 1 to permit individual

interrupts to be enabled by their enable bits.

(6) ---- Not implemented
(5) ET2 - Reserved for future use.

(4) ES - Enable serial port interrupt. Set to 1 by program to enable serial port interrupt; cleared to 0 to
disable serial port interrupt.
(3) ET1 - Enable Timer 1 overflow interrupt. Set to 1 by program to enable Timer 1 overflow interrupt;
cleared to O to disable Timer 1 overflow interrupt.
(2) EX1- Enable external interrupt 1.Set to 1 by program to enable INT1 interrupt.; cleared to O to disable
INT1 interrupt.
(1) ETO - Enable Timer 0 overflow interrupt. Set to 1 by program to enable Timer O overflow interrupt;
cleared to O to disable Timer 0 overflow interrupt.
(0) EXO - Enable external interrupt 0.Set to 1 by program to enable INTO interrupt.; cleared to O to disable
INTO interrupt.
Interrupt Priority (IP) Reqister

7 6 5 4 3 2 1 0

PT2 PS PT1 PX1 PTO PX0

(7) ---- Not implemented

(6) ---- Not implemented

(5) PT2 - Reserved for future use.

(4) PS - Priority of serial port interrupt.

(3) PT1 - Priority of timer 1 overflow interrupt.

(2) PX1 - Priority of external interrupt 1(1) PTO - Priority of timer 0 over flow interrupt.
(0) PXO - Priority of External interrupt 0. Priority may be 1 (highest) or 0 (lowest)

Timers and Counters in 8051

The 8051 has two timers/counters.; timer 0 and timer 1. They can be used either as timers to generate a time
delay or as counters to count events happening outside the microcontroller. Both timer 0 and timer 1 are 16
bit wide.Since the 8051 has an 8-bit architecture, each 16-bit timer is accessed as two separate registers of
low byte and high byte.

Timer 0 Registers

The 16 bit register of timer 0 is accessed as low byte and high byte.The low byte register is called TLO (timer
0

low byte) and the high byte register is referred to as THO (Timer 0 high byte.)

THO TLO

D15 | D14 | D13 | D12 | D11 (D10 (D9 (D8 |D7 |D6 |DS |D4 (D3 |D2 |D1 |DO

Timer 1 Registers
Timer 1 is also 16 bits and its 16 bit register is split into two bytes referred to as TL1(timer 1 low byte) and
THZ1(timer I high byte).

TH1 TLI

D15 | D14 | D13 | D12 |D11 (D10 (D9 (D8 |D7 |D6 |D5 |D4 (D3 |D2 |D1 |DO

All timer/counter action is controlled by bit states in the timer mode control register (TMOd) ,the
timer/counter control register(TCON) and certain program instructions.
Timer Mode Control (TMOD) Reqister

7 6 5 4 3 2 1 0

Gate CIT M1 MO Gate CIT M1 MO

(7) , (3) Gate — Gating control when set.The hardware way of starting and stopping the timer by an external
source is achieved by mating Gate = 1.When gate = 0 meaning that no external hardware is needed to start
and stop the timers.The start and stop of the timer are controlled by way of software by the TR (timer start)
bits TR) and TR1.

(6), (2) C/T — Set to 1 by program to make timer 1/0 act as a counter by counting pulses from external input
pins P 3.5(T1) or P 3.4 (T0).Cleared to 0 by program to make timer ct as a timer by counting internal
frequency.

(5), (1) M1 — Timer/Counter operating mode select bit 1.Set /cleared by program to select mode

(4), (0) MO — Timer/Counter operating mode select bit 0.Set /cleared by program to select mode

M1 MO Mode
0 0 0
0 1 1
1 0 2
1 1 3

The Timer Control (TCON) Reqister
7 6 5 4 3 2 1 0

TF1 TR1 TFO TRO IE1 IT1 IEO ITO

(7) TF1 - Timer 1 overflow flag.Set when timer 1 overflows.
(6) TR1 — Timer 1 run control bit. Set/ cleared by software to turn timer/counter 1 on/off
(5) TFO — Timer o overflow flag. Set when timer 0 overflows.
(4) TRO - Timer 1 run control bit. Set/ cleared by software to turn timer/counter 1 on/off

(3) IE1 — External interrupt 1 edge flag.Set to 1 when a high to low edge signal is received on port 3 pin 3.3

(2) IT1 - External interrupt 1 signal type control bit.Set to 1 by program to enable external interrupt 1 to be
triggered by a falling edge signal. Set to O to enable a low level signal on external interrupt 1 to
generate
an interrupt.
(2) 1EO - External interrupt 0 edge flag.Set to 1 when a high to low edge signal is received on port 3 pin 3.3
(0) IT1 — External interrupt 0 signal type control bit.Set to 1 by program to enable external interrupt 1 to be

triggered by a falling edge signal. Set to O to enable a low level signal on external interrupt 1 to
generate

an interrupt.
IEO and IE1 are used by the 8051 to keep track of the edge triggered interrupts only.In other words if the ITO
and It1 are 0 meaning that the hardwar interrupts are low level triggered , IEOQ and IE1 are not used at all. The
IEO and IE1 are used by the 8051 to latch the high to low edge transition on the INTO and INT1 pins.
SBUF Reqister
SBUF is an 8-bit register used for serial communication in the 8051.For a byte of data to be transferred via
the TxD line it must be placed in the SBUF register.Similarly SBUF holds the byte of data when it is

received by the 8051°s RxD line.SBUF can be accessed like any other registers in the 8051.The moment a
byte is written into SBUF it is framed with the start and stop bits and transferred serially via the TxD
pin.When the bits are received serially via RXD the 8051 deframes it by eliminating the stop and start bits
and then placing in the SBUF.

SCON (serial control) Register.

The SCON register is an 8-bit register.
7 6 5 4 3 2 1 0

SMO0 SM1 SM2 REN TB8 RB8 T1 R1

(7, 6) SMO, SM1
SMO0 and SM1 are D7 andD6 of the SCON register respectively. These two bits determine the different modes

of serial communication

SMO0 | SM1 | Mode

0 0 Serial Mode 0

0 1 Serial Mode 1

1 0 Serial Mode 2

1 1 Serial Mode 3

Of the 4 serial modes normally mode 1 is used. In mode 1 there is 8-bit data ,1 stop bit and one start bit.
(5) SM2

SM2 is the D5 of the SCON register. SM2 is the multiprocessor communication bit.Set/cleared by the
program to enable multiprocessor communication in modes 2 and 3.

(4) REN

The REN (receive enable) bit is D4 of the SCON register.When the REN bit is high ,it allows the 8051 to
receive data on the RxD pin of the 8051.1f we want the 8051 to both transfer and receive data,REN must be
set to 1.By making REN=0,the receiver is disabled.This bit can be used to block any serial data reception and
is an extremely important bit in the SCON register.

(3) TB8

Transmitted bit 8.Set/cleared by program in modes 2 and 3.

(2) RB8
Received bit 8. Bit 8 of received data in modes 2 and 3
(1, 0) TI ,RI (Serial data interrupts)

TI (transmit interrupt) is bit D1 of the SCON register.This is an extremely important flag in the SCON
register.When the 8051 finishes the transfer of the 8-bit character it raises the Tl flag to indicate that it is
ready to transfer another byte. The TI flag is raised at the beginning of the stop bit.

RI (receive interrupt) is the DO bit of the SCON register.This is also an important flag bit in the SCON
register.When the 8051 receives data serially via RxD it, the data is placed in the SBUF register.Then it
raises the RI flag to indicate that a byte has been received and should be picked up before it is lost.RI is
raised half way through the stop bit.

Power mode control (PCON) Register
7 6 5 4 3 2 1 0

SMOD | ——= | —= [== GF1 GFO PD IDL

(7) SMOD - Serial baud rate modify bit.Set to 1 by program to double baud rate using timer 1.Cleared to 0 to
use timer 1 baud rate.

(6,5,4) --- Not implemented

(3) GF1 — General purpose user flag bit 1

(2) GFO — General purpose user flag bit 0

(1) PD — Power down bit.

(0) IDL — Idle mode bit.

Instruction Syntax of 8051

An Assembly instruction consists of four fields.

[label:] mnemonic [operands] [; comment]

The label field allows the program to refer to a line of code by name. The label field cannot exceed a certain
number of characters. Any label referring to an instruction must be followed by a colon symbol.

The assembly language mnemonic (instruction) and operands fields together perform the real work of the
program and accomplish the tasks for which the program was written. In assembly language program such as
ADD A /B

8051 Instruction Set
The instruction sets in 8051 are classified as

1. Data transfer instructions

2. Jump and Call instructions
3. Single bit instructions

4. Logic instructions

5. Arithmetic instructions

Data transfer instructions

The data transfer instructions may be divided into the following three main types
1. MOV destination, source
2. PUSH source or POP destination
3. XCH destination, source

MOV
A data MOV does not alter the contents of the data source address. A copy of the data is made from the
source and moved to the destination address. The contents of the destination address are replaced by the

source address contents.

Eg:- MOV 56H, A ; save content of A in RAM location 56H
MOV A, RO ; copy the contents of RO into A
MOV RO, 40H ; save content of RAM location 40H in RO.

An X is added to the MOV mnemonics to serve as a reminder that the data move is external to the
8051.MOVX can be used only with register indirect addressing mode.
Eg:- MOVXA, @R1 ; copy the contents of the external address in R1 to A

MOVX @RO, A ; copy data from A to the 8-bit address in RO
The letter C is added to the MOV mnemonics to highlight the use of the opcodes for moving data from the
source address to the code ROM to the A register in 8051
Eg:- MOVC A, @A+DPTR ; copy the code byte found at the ROM address formed by adding A and
the

DPTRto A

PUSH and POP

PUSH opcode copies data from the source address to the stack. Stack pointer (SP) is incremented by 1
before the data is copied to the internal RAM location contained in SP.
Eg:- PUSHRS3 ; push R3 of bank 0 onto stack

POP opcode copies data from the stack to the destination address. SP is decremented by 1 after data is
copied from the stack RAM address to the direct destination.
Eg:- POPR4 ; pop the stack top into R4 of bank 0

XCH
XCH instruction moves data in two directions; from source to destination and from destination to source.

XCH instruction exchanges the contents of destination and source.

Eg:- XCH ARY ; exchange byte between register A and register R7
XCH A, OFOH ; exchange byte between register A and register B
XCHD exchanges lower nibbles of destination and source.While using XCHD the upper nibble of destination
and source do not change.
Eg:- XCHD A, @R1 ; exchange lower nibbles in, A and address in R1

Jump and Call instructions

Conditional Jump Instructions
DINZ

The syntax is “DJNZ reg , label” . In this instruction the register is decremented ; if it is not zero, it jumps to
the target address referred to by the label. In this instruction both the register decrement and the decision to
jump are combined into a single instruction.

Eg:- MOV R2, #09H
AGAIN: ADD A, #03H
DINZ R2, AGAIN ; Decrement R2 by 1 and jump to “AGAIN” if R@ is not zero
JZ (jumpifA=0)
In this instruction the content of register A is checked.If it is zero it jumps to the target address.
Eg:- MOV A, RO
JZ OVER
MOV A, R1 ;jump if A=0
OVER: MOV AR2
JNC (jump if no carry, jump if CY =0)

In executing “JNC label” the processor looks at the carry flag to see if it is raised (CY = 1). If it is not the
CPU starts to fetch and execute instructions from the address of the label. If CY = 1it will not jump but will
execute the next instruction below JNC.

ADD A, #79H
JNC LOOP ;jump if CY =0
INC R5

LOOP: ADD A, #0F5H

JC (jump ifcarry, jumpif CY =1)
In the JC instruction if CY =1 it jumps to the target address

ADD A, #79H
JC LOOP ;jump ifCY =1
INC R5

LOOP: ADD A, #0F5H

8051 Conditional Jump Instructions

Instruction Action

JZ JumpifA=0

JNZ Jump if A not equal to O

DJNZ Decrement and jump if A not equal to zero
CINE A, byte Compare and jump if A not equal to byte

CJNE reg, #data

Compare and jump if byte not equal to #data

JC

Jumpif CY =1

JNC Jump if CY =0
JB Jump if bit=1
JNB Jump if bit=1
JBC Jump if bit =1 and clear bit

Unconditional Jump Instructions
LIMP (long jump)

LJMP is an unconditional long jump.lIt is a 3-byte instruction in which the first byte is the opcode and the
second and third byte represent the 16-bit address of the target location.The 2-byte target address allows a
jump to any memory location from 0000 to FFFFH.

SJIMP (short jump)
In this 2-byte instruction the first byte is the opcode and the second byte is the relative address of the target

location. The relative address range is from 00 to FFH.

CALL Instructions

Call instructions are always used to call subroutines. In the 8051 there are two instructions for call:
LCALL (long call) and ACALL (absolute call).
LCALL (long call)

It is a 3-byte instruction in which the first byte is the opcode and the second and third byte represent the
address of the target subroutine. Therefore LCALL can be used to call subroutines located anywhere within
64Kbyte address space of the 8051.

ACALL (absolute call)

ACALL is a 2-byte instruction in contrast to LCALL which is 3 bytes.Since ACALL is a 2-byte instruction

the target address of the subroutine must be within 2K bytes address.

Single bit instructions

Instructions that are used for single bit operations are called single bit instructions.
SETB bit

Set the bit ie, bit =1
Eg:- SETB P10 ; Bit 0 of port 1 is set to high
CLR bit
Clear the bit ie, bit ==
Eg:- CLR P1.0 ; Bit 0 of port 1 is cleared
CPL bit
Complement the bit
Eg:- CPL P13 ; complement bit 3 of port 1
Other single bit instructions are JB. INB, JBC etc.

Logic instructions
ANL
The syntax is ANL destination , source

This instruction will perform a logical AND on the two operands and place the result in the destination.

destination is normally the accumulator. The source operand can be a register, in memory or immediate.

ANL instruction has no effect on any of the flags.
Eg:- MOV A, #35H

ANL A, #0FH ; A= A AND OFH = 05H
ORL

The syntax is ORL destination , source

This instruction will perform a logical OR on the two operands and place the result in the destination.

destination is normally the accumulator. The source operand can be a register, in memory or immediate.

ORL instruction has no effect on any of the flags.
Eg:- MOV A, #04H

ORL A, #68H ; A=6CH
XRL

The syntax is XRL destination , source

This instruction will perform a logical OR on the two operands and place the result in the destination.

destination is normally the accumulator. The source operand can be a register, in memory or immediate.

XRL instruction has no effect on any of the flags.
Eg:- MOV A, #54H
XRL A, #78H ; A=2CH

CPL A (complement accumulator)

The
The

The
The

The
The

This instruction complements the contents of register A. The complement action changes the 0s to 1s and

the 1s to Os.
Eg:- MOV a, #55H
CPL A now ; A= AAH 0101 0101 (55H) becomes 1010 1010 (AAH)

CINE

The syntax is CJNE destination, source

The CJINE instruction compares two operands and jumps if they are not equal.In addition it changes the carry
flag to indicate if the destination operand is larger or smaller. If destination > source then CY = 0. If
destination < source then CY = 1.In CINE the destination operand can be in the accumulator or in one of the

Rn registers. The source operand can be a register, in memory or immediate.

Eg:-

MOV A ,# 55H
CINE A,#99H, HERE ; jump to ‘HERE’ because 55H and 99H are not equal

RR (Rotate right A)

The syntax is RR A. In rotate right the 8 bits of the accumulator are rotated right one bit and bit DO exits

from the least significant bit and enters into D7 (most significant bit).

R

— b

Eg:-

MOV A, #36H ; A=00110110
RR A ; A=0001 1011

RL (Rotate left A)

The syntax is RR A. In rotate left the 8 bits of the accumulator are rotated left one bit and bit D7 exits from

the MSB and enters into DO.

—

«— |

Eg:-

MOV A, #72H ; A=0111 0010
RL A ; A=1110 0100

RRC (Rotate right through carry)
The syntax is RRC A. In RRC A the LSB is moved to CY and CY is moved to the MSB.

L

—~] 4

Eg:-

CLRC

MOV A, #26H ; A=0010 0110

RRC A ;A=00010011 CY =0
RRC A ;A=00001001 Cy=1

RLC (Rotate left through carry)

The syntax is RLC A. In RLC A the MSB is moved to the carry flag and CY (carry flag) is moved to the

LSB.

e =

Eg- SETB C
MOV A, #15H : A= 0001 0101
RLC A : A=00101011 CY =0
RLC A : A=0101 0110 CY =0
SWAP

It works only on the accumulator. It swaps the lower nibble and the higher nibble.
Eg:- MOV A, #72H
SWAP A ;A=27H

Arithmetic instructions
ADD

In the 8051 in order to add numbers together the accumulator register ,A must be involved.The form of the

ADD instruction is
ADD A, source ; A=A+ source
The destination operand is always in register A while the source operand can be a register, immediate data or
in memory. The instruction could change any of the AF, CF or PF bits of the flag register, depending on the
operands involved.
Eg:- MOV A, #0F5H
ADD a, #0BH : A=F5+0B=00
ADDC

The instruction ADDC is used when adding two 16-bit data operands where there is propogation of carry
from the lower byte to the higher byte. The syntax is ADDC a, source.
Eg:- MOV A#OET7H

ADD A#8DH ;A=8DH+E7TH=74HCY =1

MOV A, #3CH

ADDC A, #3BH ; add with the carry , A = 3BBH+3CH+1 = 78H
DA (decimal adjust for addition)

Adding two BCD numbers must give a BCD number. The DA instruction in the 8051 is provided to correct
the problem associated with BCD addition.The mnemonic “DA™ has its only operand the accumulator A. The
DA instruction will add 6 to the lower nibble or higher nibble if needed, otherwise it will leave the result
alone.The works only after an ADD instruction.

Eg:- MOV A, #47H
MOV B, #25H
ADD A/ B ; A=6CH

DA A ; adjust for BCD addition (A =72H) ;
SUBB (subtract with borrow)
The syntax is SUBB A, source ; A=A -source
8051 executes the SUBB instruction for unsigned numbers as follows.
1. Take the 2°s complement of the subtrahend (source operand)
2. Add it to the minuend. (accumulator)
3. Invert the carry
If after the execution of SUBB the CY = 0 the result is positive, if the CY =1 the result is negative and the
destination has the 2’s complement of the result.
Eg:- MOV A, #4CH
SUBB A, #6EH ; A=4C-6E
MUL
The syntax is MUL AB. MUL is used for byte by byte multiplication. One of the operands must be in
register A, and the second operand must be in register B. After multiplication the result is in the A and B
registers. ; the lower byte is in A and the upper byte is in B.
Eg:- MOV A, #25H
MOV B, #65H
MUL AB ; 25H * 65H = E9Q9H where B = OEH and A = 99H

DIV
DIV instruction is used for byte over byte division. The syntax is DIV AB ; Divide A by B. The numerator
must be in register A and the denominator must be in B.After the DIV instruction is performed the quotient
isin
A and the remainder is in B.The instruction always makes CY = 0 and OV = 0 if the denominator is not
zero.If
the denominator is 0 OV = 1 indicates an error and CY = 0.
Eg:- MOV A, #95H

MOV B, #10H

DIV AB ; now A = 09H (quotient) and B= 05H (remainder)

8051 Addressing Modes.

The CPU can access data in various ways.The data could be in a register ,or in memory or be provided as an

immediate value. These various ways of accessing data are called addressing modes.The 8051 provides a total
of five addressing modes. They are

1. Immediate addressing mode

2. Register addressing mode

3. Direct addressing mode

4. Register indirect addressing mode
5. Indexed addressing mode

Immediate addressing mode

In this addressing mode the source operand is a constant. In immediate addressing mode as the name
implies the operand comes immediately after the opcode. Notice that the immediate data must be preceded by
the pound sign, “ # ” .This addressing mode can be used to load information into any of the registers,
including the DPTR register.

Eg:- MOV A, #25H ; load 25H into A
MOV B, #40H ; load 40H into B
MOV DPTR, #4521H ; load 4512H into DPTR
MOV R4, #62H : load 62H into R4

Register addressing mode

Register addressing mode involves the use of registers to hold the data to be manipulated. It should be
noted that the source and destination registers must match in size. In other words , coding “ MOV DPTR , A”
will give an error, since the source is an 8- bit register and the destination is a 16-bit register. Also notice that
we can move data between the accumulator and Rn(for n = 0 to 7) but movement of data between Rn

registers is not allowed.

Eg:i- MOV A RO ; copy the contents of RO into A
MOV R2, A ; copy the contents A into R2
MOV R6, A ; copy the contents A into R6
ADD A, R7 ; add the contents of R7 to contents of A

Direct addressing mode

In direct addressing mode , the data is in a RAM memory location whose address is known and this
address is
given as a part of the instruction. The “ # “ sign distinguishes between the immediate and direct addressing
modes. Another major use of direct addressing mode is the stack. In 8051 only direct addressing mode is
allowed for pushing onto the stack. Direct addressing mode must be used for the POP instruction as well.
There for an instruction such as ‘PUSH A’ is invalid. Pushing the accumulator onto the stack is coded as
‘PUSH OEOH’ where OEO is the address of register A. The SFRs can be accessed by their names or by their
addresses.

Eg:- MOV RO, 40H ; save content of RAM location 40H in RO.
MOV 56H, A ; save content of A in RAM location 56H
PUSH R3 ; push R3 of bank 0 onto stack
POP R4 ; pop the stack top into R4 of bank 0

MOV B, # 25H :is the same as

MOV OFOH, # 25H : which means load 25H into B

Register indirect addressing mode

In the register indirect addressing mode a register is used as a pointer to the data.If the data is inside the
CPU only registers RO and R1 are used for this purpose.In other words R2- R7 cannot be used to hold the
address of an operand located in RAM when using this addressing mode.When RO and R1 are used they must
be preceded by the “@” sign.One of the advantage of register indirect addressing mode is that looping can
be done by using this addressing mode.Looping is not possible in direct addressing mode.This the main
difference between the direct and register indirect addressing modes.

Eg:- Mov A, @RO ; move contents of RAM location whose address is held by RO into A
MOV @R1, B ; move contents of B into RAM location whose address is held by R1
KEIL C

The use of C language to program microcontrollers is becoming too common. And most of the time its not easy to buld
an application in assembly which instead you can make easily in C. So its important that you know C language for
microcontroller which is commonly known as Embedded C. As we are going to use Keil C51 Compiler, hence we also
call it Keil C.

Some keywords associated with Keil C programming are

data/idata

Description: The variable will be stored in internal data memory of controller

bdata

Description: The variable will be stored in bit addressable memory of controller.

xdata

Description: The variable will be stored in external RAM memory of controller

Code

Description: This keyword is used to store a constant variable in code memory

pdata

Description: This keyword will store the variable in paged data memory

at

Description: This keyword is used to store a variable on a defined location in ram

shit

Description: This keyword is used to define a special bit from SFR (special function register) memory.

Sfr

Description: sfr is used to define an 8-bit special function register from sfr memory.

using
Description: This keyword is used to define register bank for a function. User can specify register bank 0 to 3

interrupt

Description: This keyword will tells the compiler that function described is an interrupt service routine. C51 compiler
supports interrupt functions for 32 interrupts (0-31).

Memory Models

There are three kind of memory models available for the user:

Small

All variables in internal data memory.

Compact

Variables in one page, maximum 256 variables (limited due to addressing scheme, memory accessed indirectly using rO
and r1 registers);

Large

All variables in external ram. variables are accessed using DPTR.

Pointers in Keil C

Pointers in keil C is are similar to that of standard C and can perform all the operations that are available in standard C.
In addition, keil C extends the operatability of pointers to match with the 8051 Controller architecture. Keil C provides
two different types of pointers:

e Generic Pointers
e Memory-Specific Pointers

Example program
Generate a square wave of 2 KHz frequency at pin P1.0 of 8051 using timer 0

#include <reg51.h> /l'include 8051 register file
sbit pin = P110; /I decleare a variable type sbit for P1.0
main()
{
P1 = 0x00; /I clear port
TMOD = 0x09; /I initialize timer 0 as 16 bit timer
loop:TLO = Ox1A; /I load valur 15535 = 3CAFh so after
THO = OxFF; // 50000 counts timer 0 will be overflow
pin=1; /I send high logic to P1.0
TRO=1; / start timer
while(TFO==0) {} // Delay
TLO = Ox1A; /I again reload count
THO = OxFF;
pin = 0; /Il now send 0 to P1.0
while(TFO==0) {} // Delay
goto loop; /I continue with the loop
}

Buzzer interface with 8051 microcontroller
Buzzer is a electronic device that converts the electronic signal into buzzing noise, that is applied to it. It can

be used as electronic bell or as quiz buzzer in many applications around us. Here, i world like to discuss the
interfacing of a small buzzer with 8051 microcontroller and how different projects can be constructed.

Buzzer Interfacing:

This project shows the interface with AT89S52 microcontroller to a buzzer. When a push button is pressed,
the buzzer will get ON and OFF (number of times set in the code) and then stops.
Circuit Diagram:

The port P1 of the microcontroller is connected to buzzer. This type of connection is possible, if the

current requirements of the buzzer is not more than 20mA. The output is in current source mode so that
buzzer will turn ON when the output of the port is logic LOW. Switch is connected to port P3 which remains
at logic HIGH by pull up resistor.

Code:
#include "REG52.h"
#define buz P1

shit SW=P3"0;
long int i;

void main()

{

while(1)

{

if (SW==0)

{
for(i=0;i<=90000;i++);
if(SW==0)

{

while(SW==0);

buz=0x01; // ON Buzzer
for(i=0;i<4500;i++); // Delay
buz=0x00; // OFF Buzzer

for(i=0;i<4500;i++); // Delay
3}
3}

According to the code: The buzzer is interfaced to Port P1 of the microcontroller and simple ON/OFF

program is written as an example using delay in between them. For half period, buzzer gets ON automatically
and for next half period, buzzer gets OFF automatically as described in the code. One can also use the switch
concept to control the ON/OFF operation of buzzer. Here, switch is connected to Port P3.0 pin

and Debouncing concept is applied.

EE309
Microprocessor and
Embedded Systems

Embedded Programming in C, data type and time delay in C, I/O port
programming

EEEEEEE

Module

Vi

Embedded Programming in C,
data type and time delay in C, I/O port
programming, Timer/ counter programming, serial

port programming, Interfacing —LCD, Stepper
motor, ADC and DAC.

ARUN XAVIER, VAST

ICET EEE

WHY PROGRAM 8051 INC

3
-D Compilers produce hex files that is downloaded to ROM of

microcontroller

[0 The size of hex file isthe main concern
[1 Microcontrollers have limited on-chip ROM

[0 Code spacefor 8051 is limited to 64K bytes

(1 C programming is less time consuming, but has larger hex file
size
1 The reasons for writing programs inC

[0 Itis easier and less time consuming to write in C than
Assembly

[] Cis easier to modify and update
[YOU can use code available in function libraries

[0 C code is portable to other microcontroller with little of no
modification

ICET EEE

DATA TYPES

1 A good understanding of C data types for 8051
can help programmers to create smaller hexfiles

Unsigned char
Signed char
Unsigned int
Signed int

Sbit (single bit)
Bit and sfr

I s O N A

ICET EEE

DATA TYPES-Unsigned char

1 The character data type isthe most natural
choice

] 8051 isan 8-bit microcontroller

1 Unsigned char isan 8-bit data type in the range
of 0 - 255 (00 —FFH)

1 One of the most widely used data types for the
8051

[] Counter value

1 ASCII characters

1 Ccompilers use the signed char as the default fwe
do not put the keyword unsigned

ICET EEE

) DATA TYPES-Unsigned char

e Writeairan8@5 T {rogram to send

values 00 — FFéo IRort P1
program to sen ex

valuegofuotlror@SCIl

charatterswof <reg51.h>
+ 0, 1202 378 5OK)B, C,
and Dto.port P1.
unsigned char z;
for (z=0;2z<=255;z++)

o Solution:

e #ihclude
<regbl.h>

* voi1d mailn (void)
* |
* unsigned char

mynum|[]="01234
S5ABCD”;

*.unsigned
char z; for

DATA TYPES-Signed char

1 The signed char is an 8-bit data type
1 Use the MSB D7 to represent — or+
1 Give us values from —128 to +127

1 We should stick with the unsigned char unless the
data needs to be represented as sighed numbers

1 Temperature
1 Voltage

ICET EEE

- DATA TYPES-Signed char

Write an 8051 C program to send values of —4 to +4 to port P1.

Solution:
//Singed numbers
#include <reg5l.h>
vold main (void)
{
char mynum[]={+1,-1,+2,-2,+3,-3,+4,-4};
unsigned char z;
for (z=0;z<=8;z++)
Pl=mynum[z];

ICET EEE

DATA TYPES-Unsigned &

- Signed int

1 The unsigned intisa 16-bit datatype
(1 Takes a value in the range of 0 to 65535 (0000 FFFFH)

[Define 16-bit variables such as memory addresses
] Set counter values of more than 256

1 Since registers and memory accesses are in 8-bit chunks, the
misuse of int variables will resultin a larger hex file

ISigned int IS @ 16-bit datatype

(1 Use the MSB D15 to represent — or +

1 We have 15 bits for the magnitude of the number from —32768
to +32767

ICET EEE

DATA TYPES-Single Bit(Sbit)

1 Widely used in 8081 C data type specifically to
access single-bit addressable registers

1 Itallows access to thesingle bit of SFR registers

[SFR are widely used & also the bit-addressable ports
of PO-P3

ICET EEE

DATA TYPES-Bitand sfr

1 The bit data type allows access to single bits of bit-
addressable memory spaces of RAM 20 - 2FH

1 To access the byte-size SFR registers, we use the sfr
data type

Data Type Size in Bits Data Range/Usage

unsigned char 8-bit 0 to 255

(signed) char ~ 8-hit -128 to +127

unsigned int 16-bit 0 to 65535

(signed) int 16-bit -32768 to +32767

shit 1-bit SFR bit-addressable only
bit 1-bit RAM bit-addressable only

sfr 8-bit RAM addresses 80 — FFH only

ICET EEE

TIME DELAY

1 There are two ways to create a time delay in 8051 C

[J Using the 8051 timer

[Using a simple for loop be mindful of three factors that
can affect the accuracy of the delay

[] 8051 design

[0 The number of machine cycle

[0 The number of clock periods per machine cycle
[1 Crystal Frequency connected to the X1 — X2 input pins
[Compiler Choice

[0 C compiler converts the C statements and functions to
Assembly language instructions

[Different compilers produce differentcode

ICET EEE

TIME DELAY

13
- Write an 8051 C program to toggle bits of P1 continuously forever

with some delay.

Solution:

//Toggle Pl forever with some delay in between
//Yon” and “off”

#include <regbl.h>
vold main (void)
{
unsigned 1nt x;
for (;;) //repeat forever

{

pl1=0x55;

for (x=0;x<40000;x++); //delay size
/ /unknown

pl=0xAA;

for (x=0;x<40000;x++);

ICET EEE

TIME DELAY

Write an 8051 C program to toggle bits of P1 ports continuously with
a 250 ms.

14

Solution:
#include <regb5l.h>

vold MSDelay (unsigned int) ;
volid main (void)
{
while (1) //repeat forever
{
pl=0x55;
MSDelay (250) ;
pl=0xAA;
MSDelay (250) ;

}

void MSDelay (unsigned int 1time)
{
unsigned int 1i,73;
for (1=0;1<itime;i++)
for (3=0;3<1275;73++);

ICET EEE

/0O
PROGRAMMING
1 Here we control the I/O ports of 8051 with C

programming
1 We can control by both byte & bit I/O programming
1 Byte Size I/O -
[0 PO-P3 are byte accessible

(1 Bitaddressable I/O >
[0 PO-P3 are also bit-addressable;

[J we can access a single bit of PO-P3, without disturbing
the rest of the ports

[1 uses sbit data type to access the single bit

0 Px”y —isthe format we uses, here x for the PO-P3 & y for
the bit 0-7of that port

ICET EEE

/O
PROGRAMMING
Byte Size|/O

LEDs are connected to bits P1 and P2. Write an 8051 C program that shows
the count from 0 to FFH (0000 0000 to 1111 1111 in binary) on the LEDs.

Solution:
#include <reg5l.h>
#define LED P2;
vold main (void)
{
P1=00; //clear P1
LED=0; //clear P2
for (;;) //repeat forever
{
Pl++; //increment P1
LED++; //increment P2

ICET EEE

/0O
PROGRAMMING
Byte Sizel/O

Write an 8051 C program to get a byte of data form PO. If it is less than 100,
send it to P1; otherwise, send it to P2.

Solution:
#include <regbl.h>
volid main (void)

{

unsigned char mybyte;

PO=0xFF; //make PO input port
while (1)

{

mybyte=P0; //get a byte from PO
if (mybyte<100)

Pl=mybyte; //send it to Pl
else

P2=mybyte; //send it to P2

ICET EEE

/0O
PROGRAMMING
Bit-addressable I/O

Write an 8051 C program to toggle only bit P2.4 continuously without
disturbing the rest of the bits of P2.

Solution:

//Toggling an individual bit
#include <regb5l.h>

sbit mybit=P2"4;

vold main (void)

{

while (1)

{

mybit=1; //turn on P2.4
mybit=0; //turn off P2.4
}

ICET EEE

PROGRAMMING
TIMERS

] The 8051 has two timers/counters, they can beused
either as

I Timers to generate a time delay

_|Event counters to count events happening outside
the microcontroller

| Both Timer 0 and Timer 1 are 16 bits wide

" 1Since 8051 has an 8-bit architecture, each 16- bits
timer is accessed as two separate registers of low
byte and high byte

ICET EEE

FRUGRAIVIIVIING

| TIMERS - |
imer 0 & 1 Registers

] The low byte register is called TLO/TL1
] The high byte register is called THO/TH1

] Accessed like any other register

MOV TLO, #4FH
MOV R5, THO

D15 | D14 | D13 DII‘DII‘DM‘DD‘DS‘DT‘DE D5 (D4 | D3 DI‘DI‘]}I}

DIS‘DH‘DH‘DH‘DII‘DM‘ D9 ‘ D8 ‘ D7 ‘ D6 ‘ D5 ‘ D4 ‘ D3 ‘ D2 ‘ D1 ‘ Do

ICET EEE

FRUGRAIVIIVIING

TIMERS
'] Both til;l-eMaqu Dusﬁﬁgjn%tegscer, called TMOD (timer

mode), to set the various timer operation modes

[J] TMOD is a 8-bit register

[1 The lower 4 bits are for Timer 0

[J The upper 4 bits are for Timer 1
1 In each case,
[] The lower 2 bits are used to set the timer mode

[J The upper 2 bits to specify the operation

(MSB) (LSB)

care | om | | w0 Joure | cx [| w0

Timerl Timer(

ICET EEE

eS FRUGRAIVIIVIING
TIMERS

Getit

TMOD Register e
came] o | o [w Jowm | cx [| w

Timerl Timer0

M1 /M0 Mode Operating Mode

0O 0 0 13-bit timer mode
8-bit timer/counter THx with TLx as 5-bit
prescaler

0 1 i 16-bit timer mode
16-bit timer/counter THx and TLx are

cascaded; there is no prescaler

2 8-bit auto reload

. i 8-bit auto reload timer/counter; THx holds a
Timer/ C9u11ter 1S enabl.e . value which is to be reloaded TLx each time
only while the INTx pin is it overfolws

high and the TRx control 1 1 3 Split timer mode

pin is set
When cleared, the timer 1s mmml Timer or counter selected
enabled whenever the TRx

control bit 1s set

Gating control when set. 1 0

Cleared for timer operation (input from internal

system clock)
Set for counter operation (input from Tx mnput pin)

ICET EEE

ICET EEE

COUNTER
PROGRAMMING

Timers can also be used as counters counting events
happening outside the 8051

When it is used as a counter, it is a pulse outside of the
8051 that increments the TH, TL registers

TMOD and TH, TL registers are the same as for the timer
discussed previously

Programming the timer in the last section also applies
to programming it as a counter

Except the source of the frequency

ICET EEE

COUNTER
PROGRAMMING

Thecté big’ niiiz;':ei ‘H/IJDMLQeQd&@ngé stogrcr:.e

of the clock for the timer

When C/T = 1, the timer is used as a counter and
gets its pulses from outside the 8051

The counter counts up as pulses are fed from pins 14 and

15, these pins are called TO (timer 0 input) and T1 (timer
1 input)

Port 3 pins used for Timers 0 and 1

Pin Port Pin Function Description
14 P34 T0 Timer/counter 0 external input
15 P3.5 T1 Timer/counter 1 external input

ICET EEE

TMOD &
TCON

The timers are started by using instructions to set timer
start bits TRO and TR1, which are called timer run
control bits.

They can be cleared by Clearing these bits.

When a timer counts to its maximum value, it sets lag TFO
or TF1. At this point, it is necessary to know more about the
bits TF and TR for timers 0 and 1.

While TMOD controls the timer modes, another register
called the TCON controls the timer / counter operations.

The lower four hits of TCON cater to interrupt
functions, but the upper four bits are for timer
operations .

COUNTER
PROGRAMMING

] TCON (timer c-cl)-ng(Q rle\glis!gr%&i égigrer;gister

TCON: Timer/Counter Control Register

TF1 ‘ TR1 ‘ THD ‘ TRO ‘ IE1 ‘ Im1 ‘ IEO ‘ I

The upper four
bits are used to The lower 4 bits

store the TF and are set aside for
-I:R bits of both F:Dntr{]lllng _ﬂ"ie TR - Timer Run Control bit
timer 0 and 1 interrupt bits

TF - Timer Overflow Flag

ICET EEE

COUNTER PROGRAMMING

TCON Register

| TCON register is a bit-addressable register

Equivalent instruction for the Timer Control Register

For timer 0
SETE TR0 = BSETE TCON.4
CLR TR0 = CLR TCON.4
SETE TF0 = SETE TCON.S
CLR TF0 = CLR TCON.5S
For timer 1
SETE TRl = SETE TCON.6
CLR TRl = CLR TCON.é€
SETE TF1 = SETE TCON.7
CLR TFl = CLR TCON.7

ICET EEE

Calculating Delay

| To speed up the 8051, many recent versions of the
8051 have reduced the number of clocks per
machine cycle from 12 to four, or even one

| The frequency for the timer is always 1/12th the
frequency of the crystal attached to the 8051,
regardless of the 8051 version

ICET EEE

BASICS OF SERIAL
1 computds @ IMHVARNICAT ION

1 Parallel

] Often 8 or more lines (wire conductors) are used totransfer
data to a device that is only a few feet away

1 Serial

| To transfer to a device located many meters away,
the serial method is used

"1 The data is sent one bit at atime

Serial Transfer Parallel Transfer

D0
[

sencer IR Roccives

D7

ICET EEE

BASICS OF SERIAL
COMMUNICATION

_| At the transmitting end, the byte of data
must be converted to serial bits using
parallel-in-serial-out shift register

_| At the receiving end, there is a serial-in-
parallel-out shift register to receive the
serial data and pack them into byte

_IWhen the distance is short, the digital
signal can be transferred as it is on a simple
wire and requires no modulation

| If data is to be transferred on the
telephone line, it must be converted from
Os and 1s to audio tones

ICET EEE

ICET EEE

I O R O B A

BASICS OF SERIAL
Serial &Q)M\MLJJNJSQAII I‘IQMS

Synchronous method transfers a block of data ata time
Asynchronous method transfers a single byte ata time

There are special IC chips made by many
manufacturers for serial communications

UART (universal asynchronous Receiver
transmitter)

USART (universal synchronous-asynchronous
Receiver-transmitter)

ridli- diiu ruli-

Dup ex
[If data ca-rI.-EQtQéth% §|Iprneived, it is aluplex

transmission

| If data transmitted one way a time, it is referred toas half
duplex

"1 If data can go both ways at a time, it is full duplex

rccaver N T
! Recois
Recever

Full Duplex

ICET EEE

Start and Stop

Bits

[] A protocol is a set of rules agreed by both the sender and
receiver on

[How the data is packed
[1 How many bits constitute a character

[When the data begins and ends

[] Asynchronous serial data communication is widely used for
character-oriented transmissions

[J Each character is placed in between start and stop bits,
this is called framing

[1 Block-oriented data transfers use the synchronous method

[] The start bit is always one bit, but the stop bit can beone or
two bits

ICET EEE

(] The start bit is always a 0 (low) and the stop bit(s) is 1 (high)

The 0 (low) 1s
referred to as space

ICET EEE

Start and Stop Bits

ASCII character “A” (8-bit binary 0100 0001)

)

Spfce Stop| o 1 0

L

Mark

Goes out last

The transmission begins with a
start bit followed by DO, the
LSB, then the rest of the bits

until MSB (D7), and finally,

the one stop bit indicating the
end of the character

5)
~r
&
pu §

Goes out firpt

When there 1s no
transfer, the signal

1s 1 (high), which 1s
referred to as mark

- ———————] — ————

ICET EEE

Start and Stop
Bits

Due to the extended ASCII characters, 8-bit ASCI|
data is common

"I In older systems, ASCII characters were 7-bit

'] In modern PCs the use of one stop bit s

standard

In older systems, due to the slowness of the
receiving mechanical device, two stop bits were
used to give the device sufficient time to organize
itself before transmission of the next byte

Data Transfer
Pate

[l The rate of data transfer in serial data
communication is stated in bps (bits per
second)

"I Another widely used terminology for bps is baud rate

"l Itis modem terminology and is defined as the
number of signal changes per second

'] As far as the conductor wire is concerned, the baud
rate and bps are the same, and we use the terms
interchangeably

ICET EEE

ICET EEE

SBUF
Register

SBUF is an 8-bit register used for serial
communication

For a byte data to be transferred via the TxD line, it
must be placed in the SBUF register

The moment a byte is written into SBUF, it is framed with
the start and stop bits and transferred serially via the TxD
line

SBUF holds the byte of data when it is received by8051
RxD line

When the bits are received serially via RxD, the 8051 de-
frames it by eliminating the stop and start bits, making a
byte out of the data received, and then placing it in SBUF

SCON Register

(] SCON is an 8-bit register used to program the start bit, stop bit, and
data bits of data framing, among other things

SMO ‘ SM1 ‘ SM2 ‘ REN ‘ TE

SMO SCON.T Serial port mode specifier
SM1 SCON.6 Sernal port mode specifier
SM2 SCON.S Used for multiprocessor communication
EEN SCON4 Set/cleared by software to enable/disable reception
TBS SCON3 Not widely used
RBS SCON.2 Not widelv used
TT SCON.1 Transmat interrupt flag. Set by HW at the
begin of the stop bit mode 1. And cleared by SW
Rl SCON.DO Eeceive interrupt flag. Set by HW at the

begin of the stop bit mode 1. And cleared by SW

Note: Make SM2, TBS, and RBS =0

ICET EEE

SCUN
o, JRegister

I They determine the framing of data by specifying the number of
bits per character, and the start and stop bits

SMO sM1
0 0 Serial Mode 0
0 1 Serial Mode 1, 8-bit data,

1 stop bit, 1 start bit

1 0 Serial Mode\2)
1 1 cerial Mode 3 Only mode 1 1s
] SM2 of interest to us

'] This enables the multiprocessing capability of the 8051

] REN (receive enable)
[Itis a bit-adressable register
[When it is high, it allows 8051 to receive data on RxD pin

[J If low, the receiver is disable

ICET EEE

SCON
Register

Tl (transmit interrupt)

]

1 When 8051 finishes the transfer of 8-bit character

] It raises Tl flag to indicate that it is ready to transfer another
byte

[] Tl bit is raised at the beginning of the stop bit
| Rl (receive interrupt)

[1 When 8051 receives data serially via RxD, it gets rid ofthe start
and stop bits and places the byte in SBUF register

] It raises the RI flag bit to indicate that a byte has been received
and should be picked up before it is lost

] Rl is raised halfway through the stop bit

ICET EEE

Programming Serial Data Transmitting

In programming the 8051 to transfer character bytes serially

ICET EEE

[

[]

1. TMOD register is loaded with the value 20H, indicating the use of
timer 1 in mode 2 (8-bit auto-reload) to set baud rate

2. The TH1 is loaded with one of the values to set baud rate for serial
data transfer

3. The SCON register is loaded with the value 50H, indicating serial
mode 1, where an 8-bit data is framed with start and stop bits

4. TR1 is set to 1 to start timer 1
5. Tlis cleared by CLR Tl instruction

6. The character byte to be transferred serially is written into SBUF
register

7. The Tl flag bit is monitored with the use of instruction JNB Tl, xx to
see if the character has been transferred completely

8. To transfer the next byte, go to step 5

ICET EEE

Programming Serial

Data Transmitting

Write a program for the 8051 to transfer letter “A” serially at 4800

baud, continuously.

Solution:
MOV TMOD, #20H

MOV TH1, #-6

MOV SCON, #50H

SETB TR1
AGAIN: MOV SBUF, #”A”
HERE: JNB TI,HERE

CLR TI

SJMP AGATIN

;timer 1,mode 2 (auto reload)
;4800 baud rate

;8-bit, 1 stop, REN enabled
;start timer 1

;letter “A” to transfer
;wailt for the last bit
;clear TI for next char

; keep sending A

ICET EEE

[]

Programming Serial Data Receiving

In programming the 8051 to receive character bytes serially

1. TMOD register is loaded with the value 20H, indicating the use of
timer 1 in mode 2 (8-bit auto-reload) to set baud rate

2. TH1 is loaded to set baud rate

3. The SCON register is loaded with the value 50H, indicating serial
mode 1, where an 8-bit data is framed with start and stop bits

4.TR1 is set to 1 to start timer 1
5. Rl is cleared by CLR Rl instruction

6. The Rl flag bit is monitored with the use of instruction JNB RI, xx
to see if an entire character has been received yet

7. When Rl is raised, SBUF has the byte, its contents are moved
into a safe place

8. To receive the next character, go to step 5

Programming Serial
Data Receiving

Write a program for the 8051 to receive bytes of data serially, and put them in P1, set
the baud rate at 4800, 8-bit data, and 1 stop bit

Solution:
MOV TMOD, #20H ;timer 1,mode 2 (auto reload)
MOV THI1, #-6 ;4800 baud rate
MOV SCON, #50H ;8-bit, 1 stop, REN enabled
SETB TRI1 ;start timer 1
HERE: JNB RI, HERE ;walt for char to come in
MOV A, SBUF ;saving 1ncoming byte in A
MOV P1,A ;send to port 1
CLR RI ;get ready to receive next byte

SJMP HERE ; keep getting data

ICET EEE

RS232 Standards

I An interfacing standard RS232 was set by the
Electronics Industries Association (EIA) in 1960

ICET EEE

RS232 DB-25 Pins

Pin Description Pin Description

1 Protective ground 14 Secondary transmitted data

2 Transmitted data (TxD) 15 Transmitted signal element timing
3 Received data (RxD) 16 Secondary receive data

Bl Request to send (-RTS) 17 Receive signal element timing
5 Clear to send (-CTS) 18 Unassigned

6 Data set ready (-DSR) 19 Secondary receive data

7 Signal ground (GND) 20 Data terminal ready (-DTR)

8 Data carrier detect (-DCD) 21 Signal quality detector

9/10 Reserved for data testing 22 Ring indicator (RI)

11 Unassigned 23 Data signal rate select

12 Secondary data carrier detect 24 Transmit signal element timing
13

Secondary clear to send 25 Unassigned
1

- il B9 8
I

IQETsEEE

1415 16 17 18 19 20 21 22 23 24 25

https://arunxeee.blogspot.in/

RS232 Standards

'] Since not all pins are used in PC cables, IBM introduced the
DB-9 version of the serial I/O standard

RS232 Connector DB-9 RS232 DB-9 Pins

T Pin Description

Data carrier detect (-DCD)

Received data (RxD)

Transmitted data (TxD)

Data terminal ready (DTR)

Signal ground (GND)

Data set ready (-DSR)

Request to send (-RTS)

Clear to send (-CTS)

WO INfOONN|H | WIN |-

Ring indicator (RI)

ICET EEE

'] We need a line driver (voltage converter) to convert the
R232’s signals to TTL voltage levels that will be acceptable to
8051’s TxD and RxD pins

vee o MAX232 requires
—_ +
F

four capacitors

. 1 MAX232
1:1 —
3 & 8051
i c4
& T ‘ + MAX232
5 = P31l 11 11 P
TxD 14 2 |5
Tiin Tiout -
11 L,,,. o 14) s 3
FElout R1i
12 o I i 13 P30 10 14
TZin | TZ2out
10 | = 7
R2out | R Zint
’) 8 _)
MAX232 has two
TTL side ﬁl R5232 side i = i
L sets of line dnivers

ICET EEE

ICET EEE

