
MICROPROCESSOR 8085

MODULE 1

8085 Bus Structure

Architecture

4

ALU

PIN DIAGRAM

Instruction & Data Formats

8085 Instruction set can be classified according to size (in

bytes) as

1. 1-byte Instructions

2. 2-byte Instructions

3. 3-byte Instructions

1. Includes Opcode and Operand in the same byte

2. First byte specifies Operation Code Second byte specifies

Operand

3. First byte specifies Operation Code Second & Third byte

specifies Operand

Instruction & Data Formats
1. 1-byte Instructions

Eg. MOV A, M, CMA, DAA etc

2. 2-byte Instructions

Eg. MVI A, 08, IN 02, CPI 03 etc

3. 3-byte Instructions

Eg. LXI H, 4500, STA 4600, LDA 4200

Addressing Modes of 8085
 The microprocessor has different ways of specifying the

data or operand for the instruction.

 The various formats of specifying operands are called

addressing modes

 The 8085 has Five addressing modes:

 1) Register Addressing mode: This type of addressing mode

specifies register or register pair that contains data.

 Example: ADD B, MOV B A

Addressing Modes of 8085

 2) Immediate Addressing Mode:

 In this type of addressing mode, immediate data byte is

provided with the instruction.

 Example: MVI A 47H, LXIH, 4100H etc.

Memory Addressing

 One of the operands is a memory location

 Depending on how address of memory location is

specified, memory addressing is of two types

 Direct addressing

 Indirect addressing

 3) Direct Addressing Mode: In this type of addressing

mode, the 16bit memory address is directly provided with

the instruction.

 Example: LDA C5 00 , STA 3050H etc

Addressing Modes of 8085

 4) Indirect Addressing Mode: In this type of addressing

mode, the 16bit memory address is indirectly provided with the

instruction using a register pair

 Example: LDAX B

 (Load the accumulator with the contents of the memory

location whose address is stored in the register pair BC)

 MOV M, A ;copy register A to memory location whose address is

stored in register pair HL

30HA 20H

H

50H

L

30H2050H

Addressing Modes of 8085

 5) Implied Addressing mode: In this type of addressing

mode, No operand (register or data) is specified in the

instruction.

 The operand is inborn to the instruction.

 Example: CMA (Complement Accumulator) , SIM , RIM etc

INSTRUCTION SET

Instruction Set of 8085

 Consists of

 74 operation codes, e.g. MOV, MVI

 246 Instructions, e.g. MOV A,B, MVI A,03

 8085 instructions can be classified as

1. Data Transfer (Copy)

2. Arithmetic

3. Logical and Bit manipulation

4. Branch

5. Machine Control

Data Transfer Instruction

 MOV Move

 MVI Move Immediate

 LDA Load Accumulator Directly from Memory

 STA Store Accumulator Directly in Memory

 LHLD Load Hand L Registers Directly from Memory

 SHLD Store Hand L Registers Directly in Memory

 LXI Load register pair Immediate

 LDAX Load accumulator indirect

 STAX Store Accumulator In direct

 XCHG Exchange DE pair and HL pair

 XTHL Exchange between HL pair and stack

Data Transfer Instruction

Data Transfer Instructions
 IN portaddr

 i.e. IN 00 (Reads data from the Input Switch, 0 0represents the

port address of the input switch)

 OUT portaddr

 i.e. OUT 00 (Writes data to the Display device where 00

represents the Port address of the display)

Arithmetic Instructions

 ADDAdd to Accumulator

 ADI Add Immediate Data to Accumulator

 ADCAdd to Accumulator Using Carry Flag

 ACI Add Immediate Data to Accumulator Using Carry Flag

 SUB Subtract from Accumulator

 SUI Subtract Immediate Data from

Accumulator

Arithmetic Instructions

 SBB Subtract from Accumulator Using Borrow ((:Carry)

Flag

 SBI Subtract I mmediate from Accumulator Using

Borrow

 INR Increment Specified Byte by One

 DCRDecrement Specified Byte by One

 INX Increment Register Pair by One

 DCXDecrement Register Pair by One

 DADDouble Register Add: Add Contents of Register

Pair to Hand L Register Pair

Arithmetic Instructions

Logical Instructions

 ANA Logical AND with Accumulator

 ANI Logical AND with Accumulator Using Immediate Data

 ORA Logical OR with Accumulator

 ORI Logical OR with Accumulator Using Immediate Data

 XRA Exclusive Logical OR with Accumulator

 XRI Exclusive OR Using Immediate Data

 CMP Compare

 CPI Compare Using Immediate Data

Logical Instructions
 RLC Rotate Accumulator Left

 RRC Rotate Accumulator Right

 RAL Rotate Left Through Carry

 RAR Rotate Right Through Carry

 CMA Complement Accumulator

 CMC Complement Carry Flag

 STC Set Carry Flag

Logical Instructions

Logical Instructions

Logical Instructions

Logical Instructions

Branching Instructions
 The unconditional branching instructions are as follows:

 JMP Jump

 CALL Call

 RET Return

 Conditional branching instructions

 jumps Calls Returns

 JC CC RC (Carry)

 JNC CNC RNC (No Carry)

 JZ CZ RZ (Zero)

 JNZ CNZ RNZ (Not Zero)

Jump Instructions

Call Instructions

Return Instructions

Stack, I/O, and Machine Control Instructions.

 PUSH Push Two Bytes of Data onto the Stack

 POP Pop Two Bytes of Data off the Stack

 XTHL Exchange Top of Stack with Hand L

 SPHL Move contents of Hand L to Stack Pointer

 The I/O instructions are as follows:

 IN Initiate Input Operation

 OUT Initiate Output Operation

Stack, I/O, and Machine Control Instructions.

 The machine control instructions are as follows:

 EI Enable Interrupt System

 DI Disable Interrupt System

 HLT Halt

 NOP No Operation

MODULE 2

TIMING DIAGRAM

ICET34

PROCESSOR AND MECHINE

CYCLE

Processor cycle

36

Machine Cycle

A separate operation performed by microprocessor is

called machine cycle.

 MC1= Opcode Fetch---- 4/7 T states

 MC2= Memory Read, Memory write, I/O/read, I/O

write------ 3 T states

37

INSTUCTION EXECUTION

Instruction Execution

 Microprocessor reads the instruction byte by byte and then

executes it.

The instruction execution cycle can be clearly

divided into three different parts

• Fetch Cycle

The fetch cycle takes data required from memory, stores it in

the instruction register.

39

Instruction execution

Decode Cycle

It determines which opcode and addressing mode have been

used, and as such what actions need to be carried out in order

to execute the instruction.

Execute Cycle

The actual actions which occur during the execute cycle of an

instruction.

40

Instruction execution

OPCODE

Opcode is nothing but the machine language instruction which

denotes the microprocessor about what operation should

be performed on the specific data.

OPERAND

The data followed by opcode.

41

Instruction Execution

 8085 instruction cycle includes

1. Identify the memory location

2. Generate timing and control signals

3. Data transfer takes place

4. Decoding the instruction

5. Execution

42

1. Identify Memory Location


43

2. Generating Control Signals

44

3,4,5. Data flow from memory to microprocessor

45

3,4,5. Data flow from memory to microprocessor

Memory usually starts at address 0000h and could go up to

FFFFh (216 or 64K or 65536 in total).

To access these locations, a 16 bit address is presented to

memory and the byte at that location is either read or written.

The Program Counter is what holds this address when the

micro is executing instructions.

46

TIMING DIAGRAMS

Timing Diagram examples

 Timing diagram is the graphical representation of the
initiation of read/write and transfer of data operations
under the control of 3-status signals IO / M, S1, and
S0.

 In 8085 , we have 5 machine cycles

1. Opcode fetch

2. Memory read

3. Memory Write

4. I/O read

5. I/O write

48

Opcode Fetch cycle

 It is similar to memory read

49

Opcode Fetch cycle



50

Opcode fetch

51

Memory Read

52

Memory Read

53

Memory write

54

I/O Read

55

I/O Write

56

TIMING DIAGRAMS

EXAMPLE

Timing Diagram INR M



58

http://www.8085projects.info/images/Timing-Diagram-Pic10-pic45.png

Timing Diagram ADD M



59

Timing Diagram MVI B, Data



60

Timing Diagram IN, 8 bit address



61

http://www.8085projects.info/images/Timing-Diagram-Pic9-pic44.png

Timing Diagram OUT, 8 bit address



62

Timing Diagram STA



63

Timing Diagram STA



64

Programming
 1. Write an assembly program to add two numbers

o MVI D, 02BH

o MVI C, 06FH

o MOV A, C

o ADD D

o STA 4500

o HLT

Program

1. Write an assembly program to add two numbers

o LXI H, 4500

o MOV A, M

o INX H

o ADD M

o STA 4500

o HLT

Program

2. Write an Assembly Language Program to add two numbers ;

results contain carry

LXI H, 4500

MOV A, M

INX H

ADD M

JNC LOOP 1

INR C

LOOP1 STA 4500

MOV A, C

STA 4501

HLT

Program

2. Write an Assembly Language Program to add two numbers ;

results contain carry (write the program using JC)

LXI H, 4500

MOV A, M

INX H

ADD M

JC LOOP 1

JMP LOOP 2

LOOP1 INR C

STA 4500

LOOP1 MOV A, C

STA 4501

HLT

ADDITION OF TWO 16 – BIT NUMBERS

3. To write an assembly language program for adding two 16 bit numbers

using 8085 micro processor.

SUM OF DATAS

4. To write an assembly language program to calculate the sum of

datas using 8085 microprocessor

SUBTRACTION OF TWO 8 BIT NUMBERS

5. To write a assembly language program for subtracting 2 bit (8)

numbers by using- 8085

SUBTRACTION OF TWO 16 BIT NUMBERS

6. To write an assembly language program for subtracting two 16 bit

numbers using 8085 microprocessor kit.

Multiplication ; No carry
 LDA 2000 // Load multiplicant to accumulator

 MOV B,A // Move multiplicant from A(acc) to B register

 LDA 2001 // Load multiplier to accumulator

 MOV C,A // Move multiplier from A to C

 MVI A,00 // Load immediate value 00 to a

 L: ADD B // Add B(multiplier) with A

 DCR C // Decrement C, it act as a counter

 JNZ L // Jump to L if C reaches 0

 STA 2010 // Store result in to memory

 HLT // End

Multiplication ; With carry
 7. Write an assembly program to multiply a number by

8
MVI C,OO

LXI H, 4100

MOV B, M

INX H

MOV A, M

DCR B

LOOP 2 ADD M

JNC LOOP1

INR C

LOOP 1 DCR B

JNZ LOOP2

STA 4500

HLT

Multiplication

DIVISION OF TWO 8 – BIT NUMBERS

 To write an assembly language program for dividing two 8 bit

numbers using microprocessor

ASCENDING ORDER

 9. To write a program to sort given ‘n’ numbers in ascending

order

DESCENDING ORDER

 10. To write a program to sort given ‘n’ numbers in descending

order

Program

11. Write an Assembly Language Program to transfer a block of

data from a series of locations to other.

• MVI C, 0AH ; Initialize counter i.e no. of bytes

Store the count in Register C, ie ten
 LXI H, 2200H ; Initialize source memory pointer Data Starts from

2200 location
 LXI D, 2300H ; Initialize destination memory pointer

BK: MOV A, M ; Get byte from source memory block i.e 2200 to
accumulator.

 STAX D ; Store byte in the destination memory block i.e 2300 as
stored in D-E pair

Program

 INX H ; Increment source memory pointer

 INX D ; Increment destination memory pointer

 DCR C ; Decrement counter to keep track of bytes
moved

 JNZ BK ; If counter 0 repeat steps

 HLT ; Terminate program

Largest Number

 Write an Assembly Language Program to find a

largest number.

LXI H, 4500

MOV A, M

INX H

CMP M

JNC LOOP 1

JMP LOOP 2

LOOP1 STA 4500

LOOP2 MOV A, M

STA 4500

HLT

Smallest Number

 Write an Assembly Language Program to find a

smallest number.

LXI H, 4500

MOV A, M

INX H

CMP M

JC LOOP 1

JMP LOOP 2

LOOP1 STA 4500

LOOP2 MOV A, M

STA 4500

HLT

STACK AND SUBROUTINE

DEEPAK.P83

9/8/14

STACK

 The stack is an area of memory identified by the

programmer for temporary storage of information.

 The stack is a LIFO structure.

 The stack normally grows backwards into memory.

 Programmer can defines the bottom of (SP) the stack

and the stack grows up into reducing address range.

STACK

 Stack is defined by setting the SP (Stack Pointer)

register.

 LXI SP, FFFFH ,This sets SP to location FFFFH (end of memory

for 8085).

STACK

 Save information by PUSHing onto STACK

 Retrieved from STACK by POPing it off.

 PUSH and POP work with register pairs only.

 Example “PUSH B”

 – Decrement SP, Copy B to (SP-1)

 – Decrement SP, Copy C to (SP-1)

 Example “POP B”

 – Copy (SP+1) to C, Increment SP

 – Copy (SP+1) to B, Increment SP

SUBROUTINE
 A subroutine is a group of instructions that is used

repeatedly in different places of the program.

 It can be grouped into a subroutine and call from the

different locations.

 The CALL instruction is used to redirect program execution

to the subroutine.

 The RET instruction is used to return the execution to the

calling routine.

SUBROUTINE
 You must set the SP correctly before using CALL

 CALL 5000H

 – Push the PC value onto the stack

 – Load PC with 16‐bit address supplied CALL ins.

 RET : Load PC with stack top; POP PC

SUBROUTINE

SUBROUTINE
 SUBRTN:

 PUSH PSW

 PUSH B

 PUSH D

 PUSH H

 subroutine coding

 POP H

 POP D

 POP B

 POP PSW

 RETURN

MODULE 3

INTERFACING

 SORT ARRAY OF DATA IN

ASCENDING ORDER

LDA 2100

MOV B,A

DCR B

LOOP 2: LXI H,2100

MOV C,M

DCR C

INX H

LOOP 1: MOV A,M

INX H

CMP M

JC AHEAD

MOV D,M

MOV M,A

DCX H

MOV M,D

INX H

AHEAD: DCR C

JNZ LOOP 1

DCR B

JNZ LOOP 2

HLT

SORT ARRAY OF DATA IN

DESCENDING ORDER

LDA 2100

MOV B,A

DCR B

LOOP 2: LXI H,2100

MOV C,M

DCR C

INX H

LOOP 1: MOV A,M

INX H

CMP M

JNC AHEAD

MOV D,M

MOV M,A

DCX H

MOV M,D

INX H

AHEAD: DCR C

JNZ LOOP 1

DCR B

JNZ LOOP 2

HLT

92 ICET

CONVERSION OF BCD NUMBER TO

HEXADECIMAL

LDA 2100

MOV B,A

ANI OF

MOV C,A

MOV A,B

ANI FO

JZ SKIP

RRC

RRC

RRC

RRC

MOV D,A

XRA

LOOP : ADI 0A

DCR D

JNZ LOOP

SKIP : ADD C

STA 2200

HLT

CONVERSION OF HEXADECIMAL TO BCD

MVI B ,00

MOV C,B

LDA 2100

SKIP : CPI 64

JC LOOP

SUI 64

INR B

JMP SKIP

LOOP : CPI 0A

JC UNIT

SUI 0A

INR C

JMP LOOP

UNIT : MOV D,A

MOV A,B

STA 2200

MOV A,C

RLC

RLC

RLC

RLC

ADD D

STA 2201

HLT
93 ICET

INTERFACING

 Interfacing a microprocessor is to connect it with various

peripherals to perform various operations to obtain a desired

output.

 Memory Interfacing and I/O Interfacing are the two

main types of interfacing.

 Memory Interfacing is used when the microprocessor needs

to access memory frequently for reading and writing data

stored in the memory . It is used when reading/writing to a

specific register of a memory chip.

 I/O Interfacing is achieved by connecting keyboard(input)

and display monitors(output) with the microprocessor.

Memory and I/O addressing

Memory
Integral part of microprocessor

Primary memory:rom,eprom, static ram etc

Secondary memory: hard disc

One is Program memory.

This is where the program is located.

ROM

Another is Data memory.

This is where data, that might be used by the program, is located.

RAM

memory

ROM

Memory addressing or Mapping

Memory addressing or Mapping

Memory addressing or Mapping

Memory interfacing

Memory interfacing 64KB

Interface a 8085 system in which full memory space

utilized for EPROM memory

Memory interfacing 64KB

In this system the entire 16 address lines of the processor are

connected to address input pins of memory IC.

The chip select (CS) pin of EPROM is permanently tied to

logic low (i.e., tied to ground).

 Since the processor is connected to EPROM, the active low

RD pin is connected to active low output enable pin of

EPROM.

 The range of address for EPROM is 0000H to FFFFH.

Two 32 kb Memory interfacing

Interface a system 8085 in which the available memory

64 k is equally divided between EPROM &RAM

Two 32 kb Memory interfacing

 Implement 32kb memory capacity of EPROM using single

IC 27256.

 32kb RAM capacity is implemented using single IC 62256.

The 32kb memory requires 15 address lines and so the

address lines A0 - A14 of the processor are connected to 15

address pins of both EPROM and RAM.

Two 32 kb Memory interfacing

 The 32kb memory requires 15 address lines and so the

address lines A0 - A14 of the processor are connected to 15

address pins of both EPROM and RAM.

 The unused address line A15 is used as to chip select. If

A15 is 1, it select RAM and If A15 is 0, it select EPROM.

 The memory used is both Ram and EPROM, so the low RD

and WR pins of processor are connected to low WE and OE

pins of memory respectively.

 The address range of EPROM will be 0000H to 7FFFH and

that of RAM will be 7FFFH to FFFFH.

32kb Memory interfacing using 4 “8 kb”

32kb Memory interfacing using 4 “8 kb”

 The total memory capacity is 32Kb. So, let two number of

8kb n memory be EPROM and the remaining two numbers

be RAM.

 Each 8kb memory requires 13 address lines and so the

address lines A0- A12 of the processor are connected to 13

address pins of all the memory.

 The address lines and A13 - A14 can be decoded using a 2-

to-4 decoder to generate four chip select signals.

 These four chip select signals can be used to select one of

the four memory IC at any one time.

 The address line A15 is used as enable for decoder.

Multiple Memory interfacing

I/O addressing or Mapping

I/O Addressing Schemes :comparison

BASIC INTERFACING IN MICROPROCESSOR

BASIC INTERFACING IN MICROPROCESSOR

• In memory interfacing, 8 bit data line, 16 bit

address line , control signals are connected to

corresponding lines of memory IC.

• In I/O device interfacing, 8 bit data line, only 8

bit address line , control signals are connected to

corresponding lines of I/O devices.

Classification of I/O Interfacing

Data Transfer using I/O STRUCTURE

Data Transfer using I/O STRUCTURE

 There are three major types of data transfer between the

microprocessor and I/O device.

 Programmed I/O : In programmed I/O the data transfer is

accomplished through an I/O port and controlled by

software.

 Interrupt driven I/O : In interrupt driven I/O, the I/O device

will interrupt the processor, and initiate data transfer.

 Direct memory access (DMA) : In DMA, the data transfer

between memory and I/O can be performed by bypassing

the microprocessor.

INTERFACING OF INPUT AND OUTPUT DEVICE

I/P device

O/P

device

Tri state

Buffer

Address decoder

Logic

AD0- AD7

D0- D7

INTERFACING OF INPUT AND OUTPUT DEVICE

I/O mapped or programmed interfacing scheme is

commonly used.The data lines are connected to the I/O

devices through Tri-state buffer.Tri- State buffer is

enabled from address decoder logic.

The address decoder logic makes an enable signal

according to the address data coming from

microprocessor.

These address is the address of a ports.

IN and OUT instruction is used for data transfer

Eg. IN ,Port address; IN 02

 OUT, Port address; OUT 03

INTERFACING OF INPUT DEVICE

INTERFACING OF INPUT DEVICE

I/P device

O/P

device

Tri state

Buffer

AD0- AD7 D0- D7

I/O/ M

RD Active High

1

1
1

Not Using

INTERFACING OF INPUT DEVICE

1

0
0

I/P device

O/P

device

Tri state

Buffer

AD0- AD7 D0- D7

I/O/ M

RD Active Low

Not Using

INTERFACING OF INPUT DEVICE

 The address lines are decoded to generate a signal

that is active when the particular port is being

accessed.

 An IORD signal is generated by combining the

IO/M and the RD signals from the microprocessor.

 Lets choose I/O port 0FH for the Input devices.

 So, the buffers must be enabled when:

 RD = 0

IO/M = 1

A0-A8= 0FH

INTERFACING OF OUTPUT DEVICE

I/P device

O/P

device

Tri state

Buffer

AD0- AD7 D0- D7

I/O/ M

WR Active High

1

1
1

Not Using

INTERFACING OF OUTPUT DEVICE

 The address lines are decoded to generate a signal

that is active when the particular port is being

accessed.

 An IOWR signal is generated by combining the

IO/M and the WR signals from the microprocessor.

Memory Mapped I/O Interfacing

 Input and output transfer using memory mapped I/O are not

limited to the accumulator.

 Same of 8085 instructions can be used for memory mapped

I/O ports.

 MOV r, m move the connects of input port whose address is

available in (H,L) register pair to any internal register.

 LDA address load the acc with the content of the input port

whose address is available as a second and third byte of the

instruction.

INTERFACING OF OUTPUT DEVICE

LED INTERFACING

Interrupts

 An interrupt is considered to be an emergency signal that may

be serviced.

 The Microprocessor may respond to it as soon as possible.

 When the Microprocessor receives an interrupt signal, it suspends

the currently executing program and jumps to an

Interrupt Service Routine (ISR) to respond to the incoming

interrupt.

 Each interrupt will most probably have its own ISR.

8085 Interrupts TYPES

 HARDWARE & SOFTWARE

 HARDWARE INTERRUPTS ARE

Interrupts

 There are two ways of redirecting the execution to the ISR

depending on whether the interrupt is vectored or non-vectored.

 Vectored: The address of the subroutine is already known to

the Microprocessor

 Non Vectored: The device will have to supply the address of

the subroutine to the Microprocessor

 The ‘EI’ instruction is a one byte instruction and is used to Enable

the maskable interrupts.

 The ‘DI’ instruction is a one byte instruction and is used to

Disable the maskable interrupts.

8085 Interrupts

8085 Interrupts

Interrupts PRIORITY



Interrupt STRUCTURE

SIM

Interrupts

 SIM

Interrupts

 RIM

Peripheral Interfacing

8255 PIN

PPI 8255

 It is an I/O port chip used for interfacing I/O devices with

microprocessor.The parallel input-output port chip 8255

is also called as programmable peripheral input-output

port.It has 40 PINS. 24 input/output lines which may be

individually programmed in groups.The groups of I/O pins

are named as Group A , Group B and group C upper and

Group C lower. Each of these two groups contains a

subgroup of eight I/O lines called as 8-bit port and another

subgroup of four lines or a 4-bit port. The port A lines are

identified by symbols PA0-PA7 while the port C lines are

identified as PC4-PC7. Similarly, Group B contains an 8-bit

port B, containing lines PB0-PB7 and a 4-bit port C with

lower bits PC0- PC3.All of these ports can function

independently either as input or as output ports. This

can be achieved by programming the bits of an internal

register of 8255 called as control word register (CWR).

Block Diagram of 8255

Pin Diagram of 8255

 The 8255 is a 40 pin integrated circuit (IC), designed to

perform a variety of interface functions in a computer

environment.

 D0 - D7 These are the data input/output lines for the device.

 All information read from and written to the 8255 occurs via

these 8 data lines.

 CS (Chip Select Input). If this line is a logical 0, the

microprocessor can read and write to the 8255.

 RD (Read Input) Whenever this input line is a logical 0 and the

CS input is a logical 0, the 8255 data outputs are enabled onto

the system data bus.

Pin Diagram of 8255

 WR (Write Input) Whenever this input line is a logical 0 and the

CS input is a logical 0, data is written to the 8255 from the

system data bus

 A0 - A1 (Address Inputs) The logical combination of these two

input lines determines which internal register of the 8255 data is

written to or read from.

 RESET The 8255 is placed into its reset state if this input line is

a logical 1. All peripheral ports are set to the input mode.

Pin Diagram of 8255

 PA0 - PA7, PB0 - PB7, PC0 - PC7 These signal lines are used

as 8-bit I/O ports.

 They can be connected to peripheral devices.

 The 8255 has three 8 bit I/O ports and each one can be connected

to the physical lines of an external device.

 These lines are labeled PA0-PA7, PB0-PB7, and PC0-PC7.

 The groups of the signals are divided into three different I/O

ports labeled port A (PA), port B (PB), and port C (PC).

Control word Format of 8255

Modes of 8255

 There are two basic modes of operation of 8255, They are:

 1. I/O mode.

 2. BSR mode.

 In I/O mode, the 8255 ports work as programmable I/O

ports, while

 In BSR mode only port C (PC0-PC7) can be used to set or

reset its individual port bits.

Modes of 8255

 There are 3 I/O modes of operation for the ports of 8255.

 Mode 0, Mode 1, and Mode 2

 1) Mode 0 - Basic I/O mode



2) Mode 1 - Strobed I/O mode



3) Mode 2 - Strobed bi-directional I/O

Modes of 8255

 Mode 0 Operation

 It is Basic or Simple I/O.

 It does not use any handshake signals.

 It is used for interfacing an i/p device or an o/p device.

 It is used when timing characteristics of I/O devices is

well known

Modes of 8255

 Mode 1 Operation

 It uses handshake I/O.

 3 lines are used for handshaking.

 It is used for interfacing an i/p device or an o/p device.

 Mode 1 operation is used when timing characteristics of I/O devices

is not well known, or used when I/O devices supply or receive data

at irregular intervals.

Modes of 8255

 Handshake signals of the port inform the processor that the data is

available, data transfer complete etc.

 Mode 2 Operation

 It is bi-directional handshake I/O.

 Mode 2 operation uses 5 lines for handshaking.

 It is used with an I/O device that receives data some times and sends

data sometimes.

 Mode 2 operation is useful when timing characteristics of I/O

devices is not well known, or when I/O devices supply or receive

data at irregular intervals.

Modes of 8255

 Port A, Port B and Port C can work in Mode 0

 Port A and Port B can work in Mode 1

 Only Port A can work in Mode 2

IO MODE CONTROL WORD

BSR MODE WORD

Interfacing WITH8255

LED INTERFACING

A/D Interfacing

 In most of the cases, the PIO 8255 is used for interfacing the

analog to digital converters with microprocessor through its

ports.

 The analog to digital converters is treated as an input device by

the microprocessor, that sends an initializing signal to

the ADC to start the analogy to digital data

conversation process.

 The process of analog to digital conversion is a slow

process, and the microprocessor has to wait for the

digital data till the conversion is over.

A/D Interfacing

 After the conversion is over, the ADC sends end of

conversion EOC signal to inform the microprocessor

that the conversion is over and the result is ready at the

output buffer of the ADC.

 These tasks of issuing an SOC pulse to ADC, reading EOC

signal from the ADC and reading the digital output of

the ADC are carried out by the CPU using 8255 I/O ports.

A/D Interfacing
 The time taken by the ADC from the active edge of SOC pulse

till the active edge of EOC signal is called as the

conversion delay of the ADC.

 Successive approximation techniques and dual slope integration

techniques are the most popular techniques used in the integrated

ADC chip.

 The analog to digital converter chips 0808 and 0809 are 8-bit

CMOS, successive approximation converters.

ADC 0804

ADC Interfacing
 CS :Active low input used to activate the ADC0804

chip.

RD (data enable) : Active low input used to get

converted data out of the ADC0804 chip. When CS = 0,

if a high-to-low pulse is applied to the RD pin, the 8-bit

digital output shows up at the D0-D7 data pins.

WR (start conversion): Active low input used to inform

the ADC0804 to start the conversion process. If CS = 0

when WR makes a low-to-high transition, the ADC0804

starts converting the analog input value of Vin to an 8-

bit digital number. When the data conversion is

complete, the INTR pin is forced low by the ADC0804.

ADC Interfacing
 CLK IN and CLK R : Connect to external capacitor and

resistor for self-clocking, f = 1/(1.1RC). The clock affect

the conversion time and this time cannot be faster than

110 micros.

INTR (end of conversion) This is an active low output

pin. When the conversion is finished, it goes low to

signal the CPU that the converted data is ready to be

picked up. After INTR goes low, we make CS = 0 and

send a high-to-low pulse to the RD pin to get the data

out of the ADC0804 chip.

ADC Interfacing

 Vin (+) and Vin (-) :These are the differential analog inputs

where Vin = Vin (+) -Vin (-). Often the Vin (-) pin is

connected to ground and the Vin (+) pin is used as the

analog input to be converted to digital.

 VCC : This is the +5V power supply. It is also used as a

reference voltage when the Vref/2 (pin 9) input is open.

ADC Interfacing
 Vref/2 :- Input voltage pin used for the reference voltage. If

this pin is open, the analog input voltage for the the ADC is

ranged from 0 to 5 volts.This is optional input pin. It is used

only when the input signal range is small. When pin 9 is at

2V, the range is 0-4V, i.e. Twice the voltage at pin 9. Pin 6

(V+), Pin 7(V-): The actual input is the difference in voltages

applied to these pins. The analogue input can range from 0 to

5V.

D0 – D7 output PINs of ADC: D0 – D7 are the digital data

output pins. These are the tri-state buffered and the

converted data is accessed only when CS = 0 and RD is

forced low. The output voltage:

ADC Interfacing

A/D Interfacing [0808]

D/A INTERFACING

 INTERFACING DIGITAL TO ANALOG CONVERTERS:

The digital to analog converters convert binary number into

their equivalent voltages. The DAC find applications in areas

like digitally controlled gains, motors speed controls,

programmable gain amplifiers etc.

D/A Interfacing

MODULE 4

EMBEDDED SYSTEM

EMBEDDED SYSTEM

 System

A system is an arrangement in which all its unit

assemble work together according to a set of rules.

It can also be defined as a way of working,

organizing or doing one or many tasks according to

a fixed plan.

For example, a watch is a time displaying system.

Its components follow a set of rules to show time. If

one of its parts fails, the watch will stop working. So

we can say, in a system, all its subcomponents

depend on each other

EMBEDDED SYSTEM

 Embedded means something that is attached to

another thing. An embedded system can be

thought of as a computer hardware system having

software embedded in it. An embedded system

can be an independent system or it can be a part

of a large system. An embedded system is a

microcontroller or microprocessor based system

which is designed to perform a specific task. For

example, a fire alarm is an embedded system; it

will sense only smoke.

COMPONENTS

 It has hardware.

 It has application software.

 It has Real Time Operating system (RTOS)

that supervises the application software and

provide mechanism to let the processor run a

process as per scheduling by following a plan to

control the latencies. RTOS defines the way the

system works. It sets the rules during the

execution of application program. A small scale

embedded system may not have RTOS.

Characteristics of an Embedded

System

 Single-functioned – An embedded system

usually performs a specialized operation and

does the same repeatedly. For example: A pager

always functions as a pager.

 Tightly constrained – All computing systems

have constraints on design metrics, but those on

an embedded system can be especially tight

 Reactive and Real time – Many embedded

systems must continually react to changes in the

system's environment and must compute certain

results in real time without any delay.

Characteristics

 Microprocessors based – It must be

microprocessor or microcontroller based.

 Memory – It must have a memory, as its

software usually embeds in ROM. It does not

need any secondary memories in the computer.

 Connected – It must have connected

peripherals to connect input and output devices.

 HW-SW systems – Software is used for more

features and flexibility. Hardware is used for

performance and security.

ADVANTAGES & DISADVANTAGES

ADVANTAGES DISADVANTAGES

 Easily

Customizable

 Low power

consumption

 Low cost

 Enhanced

performance

 High development

effort

 Larger time to

market

175 ICET

ES BLOCK DIAGRAM

 Sensor – It measures the physical quantity and converts it to an

electrical signal which can be read by an observer or by any

electronic instrument like an A2D converter. A sensor stores the

measured quantity to the memory.

 A-D Converter – An analog-to-digital converter converts the

analog signal sent by the sensor into a digital signal.

 Processor & ASICs – Processors process the data to measure

the output and store it to the memory.

 D-A Converter – A digital-to-analog converter converts the

digital data fed by the processor to analog data.

 Actuator – An actuator compares the output given by the D-A

Converter to the actual (expected) output stored in it and stores

the approved output.

SYSTEM SOFTWARE

 It consist of many programs that support the operation of a

computer

 It helps the user to concentrate in the application program

without worrying about how the computers work internally

 System softwares are

ASSEMBLER

 A computer will not understand any program written in a

language, other than its machine language. The programs

written in other languages must be translated into the

machine language. Such translation is performed with the

help of software. A program which translates an assembly

language program into a machine language program is called

an assembler. If an assembler which runs on a computer and

produces the machine codes for the same computer then it is

called self assembler or resident assembler. If an assembler

that runs on a computer and produces the machine codes for

other computer then it is called Cross Assembler

COMPILER

 It is a program which translates a high level language

program into a machine language program. A compiler is

more intelligent than an assembler. It checks all kinds of

limits, ranges, errors etc. But its program run time is more

and occupies a larger part of the memory. It has slow speed.

Because a compiler goes through the entire program and

then translates the entire program into machine codes. If a

compiler runs on a computer and produces the machine

codes for the same computer then it is known as a self

compiler or resident compiler. On the other hand, if a

compiler runs on a computer and produces the machine

codes for other computer then it is known as a cross

compiler.

LINKERS

 In high level languages, some built in header files

or libraries are stored. These libraries are

predefined and these contain basic functions

which are essential for executing the program.

These functions are linked to the libraries by a

program called Linker. If linker does not find a

library of a function then it informs to compiler

and then compiler generates an error. The

compiler automatically invokes the linker as the

last step in compiling a program.

LOADER

 Loader is a program that loads machine codes of a program

into the system memory. In Computing, a loader is the part

of an Operating System that is responsible for loading

programs. It is one of the essential stages in the process of

starting a program. Because it places programs into memory

and prepares them for execution. Loading a program involves

reading the contents of executable file into memory. Once

loading is complete, the operating system starts the program

by passing control to the loaded program code. All operating

systems that support program loading have loaders. In many

operating systems the loader is permanently resident in

memory.

COMPARISON MUP & MUC

MICROPROCESSOR MICROCONTROLLER

184 ICET

Recent trends in Embedded

systems

 With the fast developments in semiconductor industry and

VLSI technology ,one can find tremendous changes in the

embedded system design in terms of processor speed , power

,communication interfaces including network capabilities and

software developments like operating systems and

programming languages etc

 Processor speed and Power

 Communication interfaces

 Operating systems

 Programming Langauage

Challenges in Embedded Systems

1. Amount and type of hardware needed.

Optimizing various hardware elements for a particular

design.

2. Taking into account the design metrics

Design metrics examples –power dissipation, physical size,

number of gates and engineering, prototype development

and manufacturing costs.

3. Optimizing the Power Dissipation.

Clock Rate Reduction and Operating Voltage Reduction

4. Disable use of certain structural units of the processor to

reduce power dissipation the processor to reduce power

dissipation.

Control of power requirement, for example, by screen

auto‐brightness control

 5. Process Deadlines

 6. Flexibility and Upgradeability

 7. Reliability

 8. Testing, Verification and Validation

Real‐time embedded systems

 An embedded system which gives the required output in a

specified time or which strictly follows the time dead lines

for completion of a task is known as a Real time system.

 i.e a Real Time system , in addition to functional

correctness, also satisfies the time constraints .

There are two types of Real time systems.(i) Soft real time

system and (ii) Hard

Soft Real Real time system

 A Real time system in which ,the violation of time

constraints will cause only the degraded quality, but the

system can continue to operate is known as a Soft real time

system.

 In soft real‐time systems, the design focus is to offer a

guaranteed bandwidth to each real‐time task and to

distribute the resources to the tasks.

 Ex: A Microwave Oven , washing machine ,TV remote

etc.

Hard Real‐Time system

 A Real time system in which ,the violation of time

constraints will cause critica failure and loss of life or

property damage or catastrophe is known as a Hard Real

time system.

 These systems usually interact directly with physical

hardware instead of through a human being

 Ex: Deadline in a missile control embedded system ,

Delayed alarm during a Gas leakage , car airbag control

system , A delayed response in pacemakers ,Failure in

RADAR functioning

Embedded Product Development

Life Cycle (EDLC)

 EDLC is Embedded Product Development Life Cycle

 It is an Analysis – Design – Implementation based

problem solving approach for embedded systems

development.

 There are three phases to Product development

EDLC

Need for EDLC

 EDLC is essential for understanding the scope and

complexity of the work involved in embedded systems

development

 It can be used in any developing any embedded product

 EDLC defines the interaction and activities among various

groups of a product development phase.

 Example:‐project management, system design

Objectives of EDLC

 1. Ensure that high quality products are delivered to

user

 2. Risk minimization defect prevention in product

development through project management

 3. Maximize the productivity

Different Phases of EDLC:

 Need

 The need may come from an individual or from the public

or from a company.

 Conceptualization

 Defines the scope of concept, performs cost benefit

analysis and feasibility study and repare project management

and risk management plans.

 Analysis

 The product is defined in detail with respect to the inputs,

processes, outputs, and interfaces at a functional level

 Design

 The design phase identifies application environment and

creates an overall architecture for the product.

 Development and Testing

 Development phase transforms the design into a

realizable product.

 Deployment

 Deployment is the process of launching the first fully

functional model of the product

 in the market.

 Support

 The support phase deals with the operational and

maintenance of the product in the production environment.

 Upgrades

 Deals with the development of upgrades (new versions)

for the product which is already present in the market.

 Retirement/Disposal

 The retirement/disposal of the product is a gradual

process

WATER FALL MODEL

Embedded Tool Chain System

 Editor:

 An editor is a software application used for editing plain

text.

 Preprocessor:

 Preprocessor directives are lines included i n the code of

programs that are not program statements but directives for

the preprocessor

 Assembler

 Assembler creates object code by translating mnemonics into

machine language.

 Compiler

 A compiler is a computer program (or set of programs) that

translates text written in a high level language into object

code

 Linker:

 A linker is a program that takes one or more objects

generated by compilers and assemblers and combine them

into a single executable program

 Debuggers:

 These tools are used for targeting, validating (error

checking and correction) and performance monitoring.

 Loader

 A Loader is an operating system utility that copies programs

from a storage device to main memory, where they can be

executed

 Profilers

 Profilers are used to find out what parts of the code have

been executed and how much time was spent in each part.

 Test Coverage tool

 A coverage tool can tell you what part of your code has

been exercised by a test run or an interactive session.

 This helps you to identify dead code missing tests

MODULE 5

8051

DIFEERENCE BETWEEN MICROPROCESSORS AND MICROCONTROLLERS

 Microprocessors contain no RAM, no ROM and no I/O ports on the chip itself. We have to add RAM,

ROM I/O ports and timers externally to the microprocessors to make them functional.

 A microcontroller has a CPU in addition to a fixed amount of RAM ROM , I/O ports, and a timer all

on a single chip.In other words, the processor , the RAM, ROM, I/O ports, and timer are all embedded

together on one chip. The fixed amount of on-chip ROM, Ram, and number of I/O ports in microcontrollers

makes them ideal for many applications in which cost and space are critical

 The speed of operation of microcontrollers are higher than microprocessors

 Microcontrollers have much more bit handling instructions than microprocessors.

 The memories of microcontrollers are not expandable.

ARCHITECTURE OF 8051

The 8051 architecture consists of these specific features

 Eight bit CPU with registers A (the accumulator) and B

 Sixteen bit program counter (PC) and data pointer(DPTR)

 Eight bit program status word(PSW)

 Eight bit stack pointer(SP)

 Internal ROM of 4K bytes

 Internal RAM of 128 Bytes

 Four register banks each containing eight registers

 Sixteen bytes which may be addressed at the bit level

 Eighty bytes of general purpose data memory

 Thirty- two input/output pins arranged as four 8-bit ports: P0-P3

 Two 16-bit timer/counters: T0 and T1

 Full duplex serial data receiver/transmitter: SBUF

 Control Registers: TCON, SCON, PCON,IP AND IE

 Two external and three internal interrupt sources

 Oscillator and clock circuits

Program

Counter and Data Pointer

 The 8051 contains two 16-bit registers, the program counter (PC) and the data pointer (DPTR).Each is

used to hold the address of a byte in memory.

Program instruction bytes are fetched from locations in memory that are addressed by the PC. The PC

is automatically incremented after every instruction byte is fetched. The PC is the only register that does not

have an internal address.

 The DPTR register is made up of two 8-bit registers, named DPH and DPL, which are used to furnish

memory addresses for internal and external code access and external data access. DPTR can be specified by

its 16-bit name or by each individual byte name, DPH and DPL.DPTR does not have a single internal

address, DPH and DPL are each assigned an address.

A and B Registers

 The 8051 contains 34 working registers. Two of these registers A and B hold results of many instructions,

particularly math and logical operations. The A (accumulator) register is the most versatile of the two CPU

registers and is used for many operations, including addition, subtraction, multiplication and division, and

Boolean bit manipulations. The A register is also used for all data transfers between the 8051 and any

external memory. The B register is used with the A register for multiplication and division operations and

also for storing data.

The 8051 Oscillator and Clock

The heart of the 8051 is the circuitry that generates the clock pulses by which all internal operations are

synchronized. Pins XTAL1 and XTAL2 are provided for connecting a resonant network to form an oscillator.

Typically a quartz crystal and capacitors are employed. Crystal frequency is the basic internal clock

frequency of the microcontroller. Typically the maximum and minimum frequencies of 8051 are 1 megahertz

and 16 megahertz. Minimum frequencies imply that some internal memories are dynamic and must always

operate above a minimum frequency or data will be lost.

The time to execute any particular instruction is found by multiplying C by 12 and dividing the product by

the crystal frequency.

 ,where C is the number of cycles

The Stack and the Stack Pointer

 The stack is a section of RAM used by the CPU to store information temporarily. The 8-bit stack pointer

(SP) register is used by the 8051 to hold an internal RAM address that is called the top of the stack. The

address held in the SP register is the location in internal RAM where the last byte of data was stored by a

stack operation.

 When data is to be placed on the stack the SP increments before storing data on the stack so that the stack

grows up as data is stored. As data is retrieved from the stack, the byte is read from the stack and then the SP

decrements to point to the next available byte of stored data. ‘ PUSH ’ is the instruction used to place data on

the

stack and ‘ POP ’ is the instruction used to retrieve data from the stack.

Stack Operation

Internal Memory

 8051 have ROM for program code bytes and RAM for variable data that can be altered as the program

runs. The 8051 has internal RAM and ROM memory for these functions. Additional memory can be added

externally using suitable sources.

Internal RAM

 The 128 byte internal RAM is organized into three distinct areas.

 1. Thirty two bytes from address 00H to 1FH that makes up 32 working registers organized as four banks

 of eight registers each. The four register banks are numbered 0 to 3 and are made up of eight registers

 named R0 to R7.Each register can be addressed by name (when its bank is selected) or by its RAM

 address. Thus R0 of bank 3 is R0 if bank 3 is selected or addresses 18H whether bank 3 is selected or

 not. Bank 0 is selected on reset.

 2. A bit addressable area of 16 bytes occupies RAM byte address 20H to 2FH forming a total of 128

 addressable bits. An addressable bit may be specified by its bit address of 00H to 7FH or 8 bits may

 form any byte address from 20H to 2FH. For example bit address 4FH is also bit 7 of byte address

 29H.

 3. A general purpose RAM area above the bit area from 30H to 7FH , addressable as bytes.

Flag and The Program Status Word(PSW)

 The 8051 has four math flags that respond automatically to the outcomes of math operations and three

general purpose user flags that can be set to 1 or cleared to 0 by the programmer. The math flags include

carry (C) , Auxiliary Carry (AC), Overflow (OV), and Parity(P).User flags are named F0, RS0, and RS1.All

the flags can be set and cleared by the programmer at will. The math flag however are also affected by math

operations.

CY, the carry flag – This flag is set whenever there is a carry out from the d7 bit.This flag bit is affected

after an 8-bit addition or subtraction.

AC, the auxiliary carry flag – If there is a carry from D3 to D4 during an ADD or SUB operation this bit is

set, otherwise it is cleared.

P, the parity flag – The parity flag reflects the number of 1s in the A (accumulator) register only. If the A

register contains an odd number of 1s then P=1 and P=0 if A has an even number of ones.

OV, the overflow flag – This flag is set whenever the result of a signed operation is too large, causing the

high-order bit to overflow into the sign bit.

 The PSW contains the math flags, user program flag F0 and the register select bit that identify which of

the four general purpose register bank is currently in use by the program.

 7 6 5 4 3 2 1 0

 CY AC F0 RS1 RS0 OV - P

 THE PROGRAM STATUS WORD (PSW)

 Bit Symbol Function

 7 CY Carry flag

 6 AC Auxiliary carry flag

 5 F0 User flag 0

 4 RS1 Register bank select bit 1

 3 RS0 Register bank select bit 0

 2 OV Overflow flag

 1 - Reserved for future use

 0 P Parity flag

RS1 RS0
 0 0 Select register bank 0

 0 1 Select register bank 1

 1 0 Select register bank 2

 1 1 Select register bank 3

I/O Ports in 8051

The four ports P0,P1,P2 and P3 each use 8 pins, making them 8-bit ports. All the ports on RESET are

configured as output , ready to be used as output port.

Port 0

Port 0 occupies a total of 8 pins (pins 32-39).It can be used for input or output. Upon reset port 0 is

configured as output port. In order to make it an input port the port must be programmed by writing 1 to all

the bits.Port 0 is also designated as AD0-AD7, allowing it to be used for both address and data.The 8051

multiplexes address and data through port 0 to save pins.ALE indicates if P0 has address or data.When ALE

=0 it provides data D0-D7, but when ALE=1 it has address A0-A7

Port1

Port 1 occupies a total of 8 pins(pins 1 through8).It can be used as input or output.Upon reset port 1 is

configured as an output port. To make port 1 an input port it must programmed as such by writing 1 to all its

bits.

Port 2

Port 2 occupies a total of 8 pins(pins 21 through 28).It can be used as input or output.To make port 2 an input

port it must be programmed as such by writing 1 to all its bits.Port 2 must be used along with port 0 to

provide the 16 bit address for the external memory.Port 2 is also designated as A8-A15 indicating its dual

function.While P0 provides the lower 8 bits via A0-A7 it is the job of P2 to provide bits A8-A15 of the

address.

Port 3

Port 3 occupies a total of 8 pins pins 10 through 17.It can be used as input or output.Although port 3 is

configured as an output port upon reset this is not the way it is most commonly used.Port 3 has the additional

function of providing some extremely important signals such as interrupts.

P3 Bit Function Pin

P3.0 RxD 10

P3.1 TxD 11

P3.2 INT0 12

P3.3 INT1 13

P3.4 T0 14

P3.5 T1 15

P3.6 WR 16

P3.7 RD 17

P3.0 and P3.1 are used for the RxD and TxD serial communication signals. Bits P3,2 and P3.3 are set aside

for external interrupts. Bits P3.4 and P3,5 are used for counters 0 and 1. Finally , P3.6 and P3.7 are used to

provide The WR and RD signals of external memory.

Special Function Registers (SFRs)

 Special Function Registers uses addresses from 80H to FFH. They are addressed much like internal RAM.

Some SFRs are also bit addressable. Not all of the addresses from 80H to FFH are used for SFRs and

attempting to use an address that is not defined or empty results in unpredictable results.

Interrupt Enable (IE) Register

 7 6 5 4 3 2 1 0

 EA ---- ET2 ES ET1 EX1 ET0 EX0

(7) EA- Enable interrupt bit. Cleared to 0 by program to disable all interrupts. Set to 1 to permit individual

interrupts to be enabled by their enable bits.

(6) ---- Not implemented

(5) ET2 - Reserved for future use.

(4) ES - Enable serial port interrupt. Set to 1 by program to enable serial port interrupt; cleared to 0 to

disable serial port interrupt.

(3) ET1 - Enable Timer 1 overflow interrupt. Set to 1 by program to enable Timer 1 overflow interrupt;

cleared to 0 to disable Timer 1 overflow interrupt.

(2) EX1- Enable external interrupt 1.Set to 1 by program to enable INT1 interrupt.; cleared to 0 to disable

INT1 interrupt.

(1) ET0 - Enable Timer 0 overflow interrupt. Set to 1 by program to enable Timer 0 overflow interrupt;

cleared to 0 to disable Timer 0 overflow interrupt.

(0) EX0 - Enable external interrupt 0.Set to 1 by program to enable INT0 interrupt.; cleared to 0 to disable

INT0 interrupt.

Interrupt Priority (IP) Register

 7 6 5 4 3 2 1 0

 ---- ---- PT2 PS PT1 PX1 PT0 PX0

(7) ---- Not implemented

(6) ---- Not implemented

(5) PT2 - Reserved for future use.

(4) PS - Priority of serial port interrupt.

(3) PT1 - Priority of timer 1 overflow interrupt.

(2) PX1 - Priority of external interrupt 1(1) PT0 - Priority of timer 0 over flow interrupt.

(0) PX0 - Priority of External interrupt 0. Priority may be 1 (highest) or 0 (lowest)

Timers and Counters in 8051

The 8051 has two timers/counters.; timer 0 and timer 1. They can be used either as timers to generate a time

delay or as counters to count events happening outside the microcontroller. Both timer 0 and timer 1 are 16

bit wide.Since the 8051 has an 8-bit architecture, each 16-bit timer is accessed as two separate registers of

low byte and high byte.

Timer 0 Registers

The 16 bit register of timer 0 is accessed as low byte and high byte.The low byte register is called TL0 (timer

0

low byte) and the high byte register is referred to as TH0 (Timer 0 high byte.)

 TH0 TL0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Timer 1 Registers

Timer 1 is also 16 bits and its 16 bit register is split into two bytes referred to as TL1(timer 1 low byte) and

TH1(timer I high byte).

 TH1 TL1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

All timer/counter action is controlled by bit states in the timer mode control register (TMOd) ,the

timer/counter control register(TCON) and certain program instructions.

Timer Mode Control (TMOD) Register

 7 6 5 4 3 2 1 0

 Gate C/T M1 M0 Gate C/T M1 M0

(7) , (3) Gate – Gating control when set.The hardware way of starting and stopping the timer by an external

source is achieved by mating Gate = 1.When gate = 0 meaning that no external hardware is needed to start

and stop the timers.The start and stop of the timer are controlled by way of software by the TR (timer start)

bits TR) and TR1.

(6), (2) C/T – Set to 1 by program to make timer 1/0 act as a counter by counting pulses from external input

pins P 3.5(T1) or P 3.4 (T0).Cleared to 0 by program to make timer ct as a timer by counting internal

frequency.

(5), (1) M1 – Timer/Counter operating mode select bit 1.Set /cleared by program to select mode

(4), (0) M0 – Timer/Counter operating mode select bit 0.Set /cleared by program to select mode

M1 M0 Mode

0 0 0

0 1 1

1 0 2

1 1 3

The Timer Control (TCON) Register

 7 6 5 4 3 2 1 0

 TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

(7) TF1 - Timer 1 overflow flag.Set when timer 1 overflows.

(6) TR1 – Timer 1 run control bit. Set/ cleared by software to turn timer/counter 1 on/off

(5) TF0 – Timer o overflow flag. Set when timer 0 overflows.

(4) TR0 - Timer 1 run control bit. Set/ cleared by software to turn timer/counter 1 on/off

(3) IE1 – External interrupt 1 edge flag.Set to 1 when a high to low edge signal is received on port 3 pin 3.3

(2) IT1 – External interrupt 1 signal type control bit.Set to 1 by program to enable external interrupt 1 to be

 triggered by a falling edge signal. Set to 0 to enable a low level signal on external interrupt 1 to

generate

 an interrupt.

(1) IE0 - External interrupt 0 edge flag.Set to 1 when a high to low edge signal is received on port 3 pin 3.3

(0) IT1 – External interrupt 0 signal type control bit.Set to 1 by program to enable external interrupt 1 to be

 triggered by a falling edge signal. Set to 0 to enable a low level signal on external interrupt 1 to

generate

 an interrupt.

IE0 and IE1 are used by the 8051 to keep track of the edge triggered interrupts only.In other words if the IT0

and It1 are 0 meaning that the hardwar interrupts are low level triggered , IE0 and IE1 are not used at all. The

IE0 and IE1 are used by the 8051 to latch the high to low edge transition on the INT0 and INT1 pins.

SBUF Register

SBUF is an 8-bit register used for serial communication in the 8051.For a byte of data to be transferred via

the TxD line it must be placed in the SBUF register.Similarly SBUF holds the byte of data when it is

received by the 8051’s RxD line.SBUF can be accessed like any other registers in the 8051.The moment a

byte is written into SBUF it is framed with the start and stop bits and transferred serially via the TxD

pin.When the bits are received serially via RXD the 8051 deframes it by eliminating the stop and start bits

and then placing in the SBUF.

SCON (serial control) Register.

The SCON register is an 8-bit register.

 7 6 5 4 3 2 1 0

 SM0 SM1 SM2 REN TB8 RB8 T1 R1

(7, 6) SM0, SM1

SM0 and SM1 are D7 andD6 of the SCON register respectively.These two bits determine the different modes

of serial communication

SM0 SM1 Mode

0 0 Serial Mode 0

0 1 Serial Mode 1

1 0 Serial Mode 2

1 1 Serial Mode 3

Of the 4 serial modes normally mode 1 is used. In mode 1 there is 8-bit data ,1 stop bit and one start bit.

(5) SM2

SM2 is the D5 of the SCON register. SM2 is the multiprocessor communication bit.Set/cleared by the

program to enable multiprocessor communication in modes 2 and 3.

(4) REN

 The REN (receive enable) bit is D4 of the SCON register.When the REN bit is high ,it allows the 8051 to

receive data on the RxD pin of the 8051.If we want the 8051 to both transfer and receive data,REN must be

set to 1.By making REN=0,the receiver is disabled.This bit can be used to block any serial data reception and

is an extremely important bit in the SCON register.

(3) TB8

Transmitted bit 8.Set/cleared by program in modes 2 and 3.

(2) RB8

Received bit 8. Bit 8 of received data in modes 2 and 3

(1, 0) TI ,RI (Serial data interrupts)

 TI (transmit interrupt) is bit D1 of the SCON register.This is an extremely important flag in the SCON

register.When the 8051 finishes the transfer of the 8-bit character it raises the TI flag to indicate that it is

ready to transfer another byte.The TI flag is raised at the beginning of the stop bit.

 RI (receive interrupt) is the D0 bit of the SCON register.This is also an important flag bit in the SCON

register.When the 8051 receives data serially via RxD it, the data is placed in the SBUF register.Then it

raises the RI flag to indicate that a byte has been received and should be picked up before it is lost.RI is

raised half way through the stop bit.

Power mode control (PCON) Register

 7 6 5 4 3 2 1 0

 SMOD ----- ----- ----- GF1 GF0 PD IDL

(7) SMOD – Serial baud rate modify bit.Set to 1 by program to double baud rate using timer 1.Cleared to 0 to

use timer 1 baud rate.

(6,5,4) --- Not implemented

(3) GF1 – General purpose user flag bit 1

(2) GF0 – General purpose user flag bit 0

(1) PD – Power down bit.

(0) IDL – Idle mode bit.

Instruction Syntax of 8051

 An Assembly instruction consists of four fields.

[label:] mnemonic [operands] [; comment]

The label field allows the program to refer to a line of code by name. The label field cannot exceed a certain

number of characters. Any label referring to an instruction must be followed by a colon symbol.

The assembly language mnemonic (instruction) and operands fields together perform the real work of the

program and accomplish the tasks for which the program was written. In assembly language program such as

ADD A, B

8051 Instruction Set

 The instruction sets in 8051 are classified as

1. Data transfer instructions

2. Jump and Call instructions

3. Single bit instructions

4. Logic instructions

5. Arithmetic instructions

Data transfer instructions

 The data transfer instructions may be divided into the following three main types

1. MOV destination, source

2. PUSH source or POP destination

3. XCH destination, source

MOV

 A data MOV does not alter the contents of the data source address. A copy of the data is made from the

source and moved to the destination address. The contents of the destination address are replaced by the

source address contents.

Eg:- MOV 56H, A ; save content of A in RAM location 56H

 MOV A, R0 ; copy the contents of R0 into A

 MOV R0, 40H ; save content of RAM location 40H in R0.

An X is added to the MOV mnemonics to serve as a reminder that the data move is external to the

8051.MOVX can be used only with register indirect addressing mode.

Eg:- MOVX A, @R1 ; copy the contents of the external address in R1 to A

 MOVX @R0, A ; copy data from A to the 8-bit address in R0

The letter C is added to the MOV mnemonics to highlight the use of the opcodes for moving data from the

source address to the code ROM to the A register in 8051

Eg:- MOVC A, @A+DPTR ; copy the code byte found at the ROM address formed by adding A and

the

 DPTR to A

PUSH and POP

 PUSH opcode copies data from the source address to the stack. Stack pointer (SP) is incremented by 1

before the data is copied to the internal RAM location contained in SP.

Eg:- PUSH R3 ; push R3 of bank 0 onto stack

 POP opcode copies data from the stack to the destination address. SP is decremented by 1 after data is

copied from the stack RAM address to the direct destination.

Eg:- POP R4 ; pop the stack top into R4 of bank 0

XCH

 XCH instruction moves data in two directions; from source to destination and from destination to source.

XCH instruction exchanges the contents of destination and source.

Eg:- XCH A,R7 ; exchange byte between register A and register R7

 XCH A, 0F0H ; exchange byte between register A and register B

XCHD exchanges lower nibbles of destination and source.While using XCHD the upper nibble of destination

and source do not change.

Eg:- XCHD A, @R1 ; exchange lower nibbles in, A and address in R1

Jump and Call instructions

Conditional Jump Instructions

DJNZ

 The syntax is “DJNZ reg , label” . In this instruction the register is decremented ; if it is not zero, it jumps to

the target address referred to by the label. In this instruction both the register decrement and the decision to

jump are combined into a single instruction.

Eg:- MOV R2, #09H

 AGAIN: ADD A, #03H

 DJNZ R2, AGAIN ; Decrement R2 by 1 and jump to “AGAIN” if R@ is not zero

JZ (jump if A = 0)

 In this instruction the content of register A is checked.If it is zero it jumps to the target address.

Eg:- MOV A, R0

 JZ OVER

 MOV A, R1 ; jump if A = 0

 OVER: MOV A,R2

JNC (jump if no carry, jump if CY = 0)

 In executing “JNC label” the processor looks at the carry flag to see if it is raised (CY = 1). If it is not the

CPU starts to fetch and execute instructions from the address of the label. If CY = 1it will not jump but will

execute the next instruction below JNC.

 ADD A, #79H

 JNC LOOP ; jump if CY = 0

 INC R5

 LOOP: ADD A, #0F5H

JC (jump if carry, jump if CY = 1)

 In the JC instruction if CY = 1 it jumps to the target address

 ADD A, #79H

 JC LOOP ; jump if CY = 1

 INC R5

 LOOP: ADD A, #0F5H

8051 Conditional Jump Instructions

Instruction Action

JZ Jump if A = 0

JNZ Jump if A not equal to 0

DJNZ Decrement and jump if A not equal to zero

CJNE A, byte Compare and jump if A not equal to byte

CJNE reg, #data Compare and jump if byte not equal to #data

JC Jump if CY = 1

JNC Jump if CY = 0

JB Jump if bit = 1

JNB Jump if bit = 1

JBC Jump if bit = 1 and clear bit

Unconditional Jump Instructions

LJMP (long jump)

 LJMP is an unconditional long jump.It is a 3-byte instruction in which the first byte is the opcode and the

second and third byte represent the 16-bit address of the target location.The 2-byte target address allows a

jump to any memory location from 0000 to FFFFH.

SJMP (short jump)

 In this 2-byte instruction the first byte is the opcode and the second byte is the relative address of the target

location. The relative address range is from 00 to FFH.

CALL Instructions

 Call instructions are always used to call subroutines. In the 8051 there are two instructions for call:

LCALL (long call) and ACALL (absolute call).

LCALL (long call)

 It is a 3-byte instruction in which the first byte is the opcode and the second and third byte represent the

address of the target subroutine. Therefore LCALL can be used to call subroutines located anywhere within

64Kbyte address space of the 8051.

ACALL (absolute call)

 ACALL is a 2-byte instruction in contrast to LCALL which is 3 bytes.Since ACALL is a 2-byte instruction

the target address of the subroutine must be within 2K bytes address.

Single bit instructions

 Instructions that are used for single bit operations are called single bit instructions.

SETB bit

 Set the bit ie, bit = 1

Eg:- SETB P1.0 ; Bit 0 of port 1 is set to high

CLR bit

Clear the bit ie, bit = =0

Eg:- CLR P1.0 ; Bit 0 of port 1 is cleared

CPL bit

 Complement the bit

Eg:- CPL P1.3 ; complement bit 3 of port 1

 Other single bit instructions are JB. JNB, JBC etc.

 Logic instructions

 ANL

 The syntax is ANL destination , source

This instruction will perform a logical AND on the two operands and place the result in the destination. The

destination is normally the accumulator. The source operand can be a register, in memory or immediate. The

ANL instruction has no effect on any of the flags.

Eg:- MOV A, #35H

 ANL A, #0FH ; A= A AND 0FH = 05H

ORL

 The syntax is ORL destination , source

This instruction will perform a logical OR on the two operands and place the result in the destination. The

destination is normally the accumulator. The source operand can be a register, in memory or immediate. The

ORL instruction has no effect on any of the flags.

Eg:- MOV A, #04H

 ORL A, #68H ; A= 6CH

XRL

 The syntax is XRL destination , source

This instruction will perform a logical OR on the two operands and place the result in the destination. The

destination is normally the accumulator. The source operand can be a register, in memory or immediate. The

XRL instruction has no effect on any of the flags.

Eg:- MOV A, #54H

 XRL A, #78H ; A= 2CH

CPL A (complement accumulator)

 This instruction complements the contents of register A. The complement action changes the 0s to 1s and

the 1s to 0s.

Eg:- MOV a, #55H

 CPL A now ; A = AAH 0101 0101 (55H) becomes 1010 1010 (AAH)

CJNE

 The syntax is CJNE destination , source

The CJNE instruction compares two operands and jumps if they are not equal.In addition it changes the carry

flag to indicate if the destination operand is larger or smaller. If destination > source then CY = 0. If

destination < source then CY = 1.In CJNE the destination operand can be in the accumulator or in one of the

Rn registers. The source operand can be a register, in memory or immediate.

Eg:- MOV A ,# 55H

 CJNE A,#99H, HERE ; jump to ‘HERE’ because 55H and 99H are not equal

RR (Rotate right A)

 The syntax is RR A. In rotate right the 8 bits of the accumulator are rotated right one bit and bit D0 exits

from the least significant bit and enters into D7 (most significant bit).

Eg:- MOV A, #36H ; A = 0011 0110

 RR A ; A = 0001 1011

RL (Rotate left A)

The syntax is RR A. In rotate left the 8 bits of the accumulator are rotated left one bit and bit D7 exits from

the MSB and enters into D0.

Eg:- MOV A, #72H ; A = 0111 0010

 RL A ; A = 1110 0100

RRC (Rotate right through carry)

 The syntax is RRC A. In RRC A the LSB is moved to CY and CY is moved to the MSB.

Eg:- CLR C

 MOV A, #26H ; A = 0010 0110

 RRC A ; A = 0001 0011 CY = 0

 RRC A ; A = 0000 1001 CY = 1

RLC (Rotate left through carry)

 The syntax is RLC A. In RLC A the MSB is moved to the carry flag and CY (carry flag) is moved to the

LSB.

Eg:- SETB C

 MOV A, #15H ; A = 0001 0101

 RLC A ; A = 0010 1011 CY = 0

 RLC A ; A = 0101 0110 CY = 0

SWAP

 It works only on the accumulator. It swaps the lower nibble and the higher nibble.

Eg:- MOV A, #72H

 SWAP A ; A = 27H

Arithmetic instructions

 ADD

 In the 8051 in order to add numbers together the accumulator register ,A must be involved.The form of the

ADD instruction is

ADD A, source ; A = A + source

The destination operand is always in register A while the source operand can be a register, immediate data or

in memory. The instruction could change any of the AF, CF or PF bits of the flag register, depending on the

operands involved.

Eg:- MOV A, #0F5H

 ADD a, #0BH ; A = F5 + 0B = 00

ADDC

 The instruction ADDC is used when adding two 16-bit data operands where there is propogation of carry

from the lower byte to the higher byte. The syntax is ADDC a, source.

Eg:- MOV A,#0E7H

 ADD A,#8DH ; A = 8DH + E7H = 74H CY = 1

 MOV A, #3CH

 ADDC A, #3BH ; add with the carry , A = 3BH+3CH+1 = 78H

DA (decimal adjust for addition)

 Adding two BCD numbers must give a BCD number. The DA instruction in the 8051 is provided to correct

the problem associated with BCD addition.The mnemonic “DA” has its only operand the accumulator A. The

DA instruction will add 6 to the lower nibble or higher nibble if needed, otherwise it will leave the result

alone.The works only after an ADD instruction.

Eg:- MOV A, #47H

 MOV B, #25H

 ADD A, B ; A = 6CH

 DA A ; adjust for BCD addition (A = 72H) ;

SUBB (subtract with borrow)

 The syntax is SUBB A, source ; A = A - source

 8051 executes the SUBB instruction for unsigned numbers as follows.

1. Take the 2’s complement of the subtrahend (source operand)

2. Add it to the minuend. (accumulator)

3. Invert the carry

If after the execution of SUBB the CY = 0 the result is positive, if the CY = 1 the result is negative and the

destination has the 2’s complement of the result.

Eg:- MOV A, #4CH

 SUBB A, #6EH ; A = 4C – 6E

MUL

The syntax is MUL AB. MUL is used for byte by byte multiplication. One of the operands must be in

register A, and the second operand must be in register B. After multiplication the result is in the A and B

registers. ; the lower byte is in A and the upper byte is in B.

Eg:- MOV A, #25H

 MOV B, #65H

 MUL AB ; 25H * 65H = E99H where B = 0EH and A = 99H

DIV

 DIV instruction is used for byte over byte division. The syntax is DIV AB ; Divide A by B. The numerator

 must be in register A and the denominator must be in B.After the DIV instruction is performed the quotient

is in

 A and the remainder is in B.The instruction always makes CY = 0 and OV = 0 if the denominator is not

zero.If

 the denominator is 0 OV = 1 indicates an error and CY = 0.

 Eg:- MOV A, #95H

 MOV B, #10H

 DIV AB ; now A = 09H (quotient) and B= 05H (remainder)

8051 Addressing Modes.

The CPU can access data in various ways.The data could be in a register ,or in memory or be provided as an

immediate value.These various ways of accessing data are called addressing modes.The 8051 provides a total

of five addressing modes. They are

1. Immediate addressing mode

2. Register addressing mode

3. Direct addressing mode

4. Register indirect addressing mode

5. Indexed addressing mode

Immediate addressing mode

 In this addressing mode the source operand is a constant. In immediate addressing mode as the name

implies the operand comes immediately after the opcode. Notice that the immediate data must be preceded by

the pound sign, “ # ” .This addressing mode can be used to load information into any of the registers,

including the DPTR register.

Eg:- MOV A, #25H ; load 25H into A

 MOV B, #40H ; load 40H into B

 MOV DPTR, #4521H ; load 4512H into DPTR

 MOV R4, #62H ; load 62H into R4

Register addressing mode

 Register addressing mode involves the use of registers to hold the data to be manipulated. It should be

noted that the source and destination registers must match in size. In other words , coding “ MOV DPTR , A”

will give an error, since the source is an 8- bit register and the destination is a 16-bit register. Also notice that

we can move data between the accumulator and Rn(for n = 0 to 7) but movement of data between Rn

registers is not allowed.

Eg:- MOV A, R0 ; copy the contents of R0 into A

 MOV R2, A ; copy the contents A into R2

 MOV R6, A ; copy the contents A into R6

 ADD A, R7 ; add the contents of R7 to contents of A

Direct addressing mode

 In direct addressing mode , the data is in a RAM memory location whose address is known and this

address is

 given as a part of the instruction. The “ # “ sign distinguishes between the immediate and direct addressing

modes. Another major use of direct addressing mode is the stack. In 8051 only direct addressing mode is

allowed for pushing onto the stack. Direct addressing mode must be used for the POP instruction as well.

There for an instruction such as ‘PUSH A’ is invalid. Pushing the accumulator onto the stack is coded as

‘PUSH 0E0H’ where 0E0 is the address of register A. The SFRs can be accessed by their names or by their

addresses.

Eg:- MOV R0, 40H ; save content of RAM location 40H in R0.

 MOV 56H, A ; save content of A in RAM location 56H

 PUSH R3 ; push R3 of bank 0 onto stack

 POP R4 ; pop the stack top into R4 of bank 0

 MOV B, # 25H ; is the same as

 MOV 0F0H, # 25H ; which means load 25H into B

Register indirect addressing mode

 In the register indirect addressing mode a register is used as a pointer to the data.If the data is inside the

CPU only registers R0 and R1 are used for this purpose.In other words R2- R7 cannot be used to hold the

address of an operand located in RAM when using this addressing mode.When R0 and R1 are used they must

be preceded by the “@” sign.One of the advantage of register indirect addressing mode is that looping can

be done by using this addressing mode.Looping is not possible in direct addressing mode.This the main

difference between the direct and register indirect addressing modes.

Eg:- Mov A, @R0 ; move contents of RAM location whose address is held by R0 into A

 MOV @R1, B ; move contents of B into RAM location whose address is held by R1

KEIL C

The use of C language to program microcontrollers is becoming too common. And most of the time its not easy to buld

an application in assembly which instead you can make easily in C. So its important that you know C language for

microcontroller which is commonly known as Embedded C. As we are going to use Keil C51 Compiler, hence we also

call it Keil C.

Some keywords associated with Keil C programming are

data/idata

Description: The variable will be stored in internal data memory of controller

bdata

Description: The variable will be stored in bit addressable memory of controller.

xdata

Description: The variable will be stored in external RAM memory of controller

Code

Description: This keyword is used to store a constant variable in code memory

pdata

Description: This keyword will store the variable in paged data memory

at

Description: This keyword is used to store a variable on a defined location in ram

sbit

Description: This keyword is used to define a special bit from SFR (special function register) memory.

Sfr

Description: sfr is used to define an 8-bit special function register from sfr memory.

using

Description: This keyword is used to define register bank for a function. User can specify register bank 0 to 3

interrupt

Description: This keyword will tells the compiler that function described is an interrupt service routine. C51 compiler

supports interrupt functions for 32 interrupts (0-31).

Memory Models

There are three kind of memory models available for the user:

Small

All variables in internal data memory.

Compact

Variables in one page, maximum 256 variables (limited due to addressing scheme, memory accessed indirectly using r0

and r1 registers);

Large

All variables in external ram. variables are accessed using DPTR.

Pointers in Keil C

Pointers in keil C is are similar to that of standard C and can perform all the operations that are available in standard C.

In addition, keil C extends the operatability of pointers to match with the 8051 Controller architecture. Keil C provides
two different types of pointers:

 Generic Pointers

 Memory-Specific Pointers

Example program

Generate a square wave of 2 KHz frequency at pin P1.0 of 8051 using timer 0

#include <reg51.h> // include 8051 register file

sbit pin = P1^0; // decleare a variable type sbit for P1.0

main()

{

 P1 = 0x00; // clear port

 TMOD = 0x09; // initialize timer 0 as 16 bit timer

loop:TL0 = 0x1A; // load valur 15535 = 3CAFh so after

 TH0 = 0xFF; // 50000 counts timer 0 will be overflow

 pin = 1; // send high logic to P1.0

 TR0 = 1; // start timer

 while(TF0 == 0) {} // Delay

 TL0 = 0x1A; // again reload count

 TH0 = 0xFF;

 pin = 0; // now send 0 to P1.0

 while(TF0 == 0) {} // Delay

 goto loop; // continue with the loop

}

Buzzer interface with 8051 microcontroller

Buzzer is a electronic device that converts the electronic signal into buzzing noise, that is applied to it. It can

be used as electronic bell or as quiz buzzer in many applications around us. Here, i world like to discuss the

interfacing of a small buzzer with 8051 microcontroller and how different projects can be constructed.

Buzzer Interfacing:

This project shows the interface with AT89S52 microcontroller to a buzzer. When a push button is pressed,

the buzzer will get ON and OFF (number of times set in the code) and then stops.

Circuit Diagram:

The port P1 of the microcontroller is connected to buzzer. This type of connection is possible, if the

current requirements of the buzzer is not more than 20mA. The output is in current source mode so that

buzzer will turn ON when the output of the port is logic LOW. Switch is connected to port P3 which remains

at logic HIGH by pull up resistor.

 Code:

#include "REG52.h"

#define buz P1

sbit SW=P3^0;

long int i;

void main()

{

while(1)

{

if (SW==0)

{

for(i=0;i<=90000;i++);

if(SW==0)

{

while(SW==0);

buz=0x01; // ON Buzzer

for(i=0;i<4500;i++); // Delay

buz=0x00; // OFF Buzzer

for(i=0;i<4500;i++); // Delay

} }

} }

According to the code: The buzzer is interfaced to Port P1 of the microcontroller and simple ON/OFF

program is written as an example using delay in between them. For half period, buzzer gets ON automatically

and for next half period, buzzer gets OFF automatically as described in the code. One can also use the switch

concept to control the ON/OFF operation of buzzer. Here, switch is connected to Port P3.0 pin

and Debouncing concept is applied.

EE309
Microprocessor and
Embedded Systems

Embedded Programming in C, data type and time delay in C, I/O port
programming

ICET EEE

24-11-2017ARUN XAVIER, VAST

2

Module
VI

• 8051- assembly language programming, data

types and directives, Time delay and I/O port
programming, Embedded Programming in C,
data type and time delay in C, I/O port
programming, Timer / counter programming, serial
port programming, Interfacing –LCD, Stepper
motor, ADC and DAC.

ICET EEE

WHY PROGRAM 8051 INC

ICET EEE

Compilers produce hex files that is downloaded to ROM of
microcontroller

The size of hex file is the main concern

Microcontrollers have limited on-chip ROM

Code space for 8051 is limited to 64K bytes

C programming is less time consuming, but has larger hex file
size

The reasons for writing programs inC

It is easier and less time consuming to write in C than

Assembly

C is easier to modify and update

You can use code available in function libraries

C code is portable to other microcontroller with little of no
modification

3

DATA TYPES

ICET EEE

A good understanding of C data types for 8051
can help programmers to create smaller hexfiles

Unsigned char

Signed char

Unsigned int

Signed int

Sbit (single bit)

Bit and sfr

4

DATA TYPES -Unsigned char

ICET EEE

The character data type is the most natural

choice

8051 is an 8-bit microcontroller

Unsigned char is an 8-bit data type in the range
of 0 – 255 (00 –FFH)

One of the most widely used data types for the

8051

Counter value

ASCII characters

C compilers use the signed char as the default if we
do not put the keyword unsigned

5

6 DATA TYPES -Unsigned char

• Write an 8051 C
program to send hex
values for ASCII
characters of
• 0, 1, 2, 3, 4, 5, A, B, C,
and D to port P1.

• Solution:
• #include
<reg51.h>

• void main(void)

• {

• unsigned char

mynum[]=“01234

5ABCD”;

• unsigned

char z; for

(z=0;z<=10;z+

ICET EEE

Write an 8051 C program to send

values 00 – FF to port P1

Solution:
#include <reg51.h>

void main(void)

{

unsigned char z;

for (z=0;z<=255;z++)

P1=z;

}

DATA TYPES -Signed char

ICET EEE

The signed char is an8-bit data type

Use the MSB D7 to represent – or+

Give us values from –128 to +127

We should stick with the unsigned char unless the
data needs to be represented as signed numbers

Temperature

Voltage

7

8 DATA TYPES -Signed char

ICET EEE

Write an 8051 C program to send values of –4 to +4 to port P1.

Solution:
//Singed numbers

#include <reg51.h>

void main(void)

{

char mynum[]={+1,-1,+2,-2,+3,-3,+4,-4};

unsigned char z;

for (z=0;z<=8;z++)

P1=mynum[z];

}

DATA TYPES -Unsigned &
Signed int

The unsigned int is a 16-bit datatype
Takes a value in the range of 0 to 65535 (0000 –FFFFH)

Define 16-bit variables such as memoryaddresses

Set counter values of more than256

Since registers and memory accesses are in 8-bit chunks, the
misuse of int variables will result in a larger hex file

Signed int is a 16-bit data type
Use the MSB D15 to represent – or +

We have 15 bits for the magnitude of the number from –32768
to +32767

ICET EEE

9

DATA TYPES -SingleBit(Sbit)

ICET EEE

Widely used in 8081 C data type specifically to
access single-bit addressable registers

It allows access to thesingle bit of SFR registers

SFR are widely used & also the bit-addressable ports
of P0-P3

10

DATA TYPES -Bit and sfr

ICET EEE

The bit data type allows access to single bits of bit-
addressable memory spaces of RAM 20 – 2FH

To access the byte-size SFR registers, we use the sfr
data type

11

TIMEDELAY

ICET EEE

There are two ways to create a time delay in 8051 C

Using the 8051 timer

Using a simple for loop be mindful of three factors that

can affect the accuracy of the delay

8051 design

The number of machine cycle

The number of clock periods per machine cycle

Crystal Frequency connected to the X1 – X2 input pins

Compiler Choice

C compiler converts the C statements and functions to
Assembly language instructions

Different compilers produce differentcode

12

TIMEDELAY

ICET EEE

13
Write an 8051 C program to toggle bits of P1 continuously forever

with some delay.

Solution:
//Toggle P1 forever with some delay in between

//“on” and “off”

#include <reg51.h>

void main(void)

{

unsigned int x;

for (;;) //repeat forever

{

p1=0x55;

for (x=0;x<40000;x++); //delay size

//unknown

p1=0xAA;

for (x=0;x<40000;x++);

}

}

TIMEDELAY

ICET EEE

14

Write an 8051 C program to toggle bits of P1 ports continuously with

a 250 ms.
Solution:
#include <reg51.h>

void MSDelay(unsigned int);

void main(void)

{

while (1) //repeat forever

{

p1=0x55;

MSDelay(250);

p1=0xAA;

MSDelay(250);

}

}

void MSDelay(unsigned int itime)

{

unsigned int i,j;

for (i=0;i<itime;i++)

for (j=0;j<1275;j++);

}

I/O
PROGRAMMING

ICET EEE

15

Here we control the I/O ports of 8051 with C
programming

We can control by both byte & bit I/O programming

Byte Size I/O→

P0-P3 are byte accessible

Bit addressable I/O→

P0-P3 are alsobit-addressable;

we can access a single bit of P0-P3, without disturbing
the rest of theports

uses sbit data type to access the single bit

Px^y – is the format we uses, here x for the P0-P3 & y for
the bit 0-7of thatport

I/O
PROGRAMMING

Byte SizeI/O

ICET EEE

16

LEDs are connected to bits P1 and P2. Write an 8051 C program that shows

the count from 0 to FFH (0000 0000 to 1111 1111 in binary) on the LEDs.

Solution:
#include <reg51.h>

#define LED P2;

void main(void)

{

P1=00; //clear P1

LED=0; //clear P2

for (;;) //repeat forever

{

P1++; //increment P1

LED++; //increment P2

}

}

17

I/O
PROGRAMMING

Byte SizeI/O

ICET EEE

Write an 8051 C program to get a byte of data form P0. If it is less than 100,

send it to P1; otherwise, send it to P2.

Solution:
#include <reg51.h>

void main(void)

{

unsigned char mybyte;

//make P0 input portP0=0xFF;

while (1)

{

mybyte=P0; //get a byte from P0

if (mybyte<100)

P1=mybyte; //send it to P1

else

P2=mybyte; //send it to P2

}

}

I/O
PROGRAMMING

Bit-addressable I/O

ICET EEE

18

Write an 8051 C program to toggle only bit P2.4 continuously without

disturbing the rest of the bits of P2.

Solution:
//Toggling an individual bit

#include <reg51.h>

sbit mybit=P2^4;

void main(void)

{

while (1)

{

mybit=1; //turn on P2.4

mybit=0; //turn off P2.4

}

}

PROGRAMMING
TIMERS

The 8051 has two timers/counters, they can be used
either as

Timers to generate a time delay

Event counters to count events happening outside
the microcontroller

Both Timer 0 and Timer 1 are 16 bits wide

Since 8051 has an 8-bit architecture, each 16- bits
timer is accessed as two separate registers of low
byte and high byte

3

ICET EEE

PROGRAMMING
TIMERS -

Timer 0 & 1 Registers
4

Accessed as low byte and high byte

The low byte register is called TL0/TL1

The high byte register is called TH0/TH1

Accessed like any other register
MOV TL0,#4FH

MOV R5,TH0

ICET EEE

h
tt

p
s:

//
ar

u
n

xe
ee

.b
lo

gs
p

o
t.

in

PROGRAMMING
TIMERS

TMOD Register

ICET EEE

Both timers 0 and 1 use the same register, called TMOD (timer
mode), to set the various timer operation modes

TMOD is a 8-bit register

The lower 4 bits are for Timer 0

The upper 4 bits are for Timer 1

In each case,

The lower 2 bits are used to set the timer mode

The upper 2 bits to specify the operation

5

h
tt

p
s:

//
ar

u
n

xe
ee

.b
lo

gs
p

o
t.

in

24-Nov-17
ARUN XAVIER VAST

7:27AM

6

PROGRAMMING
TIMERS

TMOD Register

ICET EEE

COUNTER
PROGRAMMING

Timers can also be used as counters counting events
happening outside the 8051

When it is used as a counter, it is a pulse outside of the
8051 that increments the TH, TL registers

TMOD and TH, TL registers are the same as for the timer
discussed previously

Programming the timer in the last section also applies
to programming it as a counter

Except the source of the frequency

7

ICET EEE

COUNTER
PROGRAMMING

C/T Bit in TMOD RegisterThe C/T bit in the TMOD registers decides the source
of the clock for the timer

When C/T = 1, the timer is used as a counter and
gets its pulses from outside the 8051

The counter counts up as pulses are fed from pins 14 and
15, these pins are called T0 (timer 0 input) and T1 (timer
1 input)

8

ICET EEE

TMOD &
TCON9

The timers are started by using instructions to set timer
start bits TR0 and TR1, which are called timer run
control bits.

They can be cleared by Clearing these bits.

When a timer counts to its maximum value, it sets a flag TF0
or TF1. At this point, it is necessary to know more about the
bits TF and TR for timers 0 and 1.

While TMOD controls the timer modes, another register
called the TCON controls the timer / counter operations.

The lower four hits of TCON cater to interrupt
functions, but the upper four bits are for timer
operations .

ICET EEE

COUNTER
PROGRAMMING

TCON RegisterTCON (timer control) register is an 8-bitregister

10

TF - Timer Overflow Flag
TR - Timer Run Control bit

ICET EEE

TCON register is a bit-addressableregister

11
COUNTER PROGRAMMING
TCON Register

ICET EEE

Calculating Delay

To speed up the 8051, many recent versions of the
8051 have reduced the number of clocks per
machine cycle from 12 to four, or even one

The frequency for the timer is always 1/12th the
frequency of the crystal attached to the 8051,
regardless of the 8051 version

12

ICET EEE

BASICS OF SERIAL
COMMUNICATIONComputers transfer data in two ways:

Parallel

Often 8 or more lines (wire conductors) are used to transfer
data to a device that is only a few feet away

Serial

To transfer to a device located many meters away,
the serial method is used

The data is sent one bit at a time

13

ICET EEE

BASICS OF SERIAL
COMMUNICATION

At the transmitting end, the byte of data
must be converted to serial bits using
parallel-in-serial-out shift register

At the receiving end, there is a serial-in-
parallel-out shift register to receive the
serial data and pack them into byte

When the distance is short, the digital
signal can be transferred as it is on a simple
wire and requires no modulation

If data is to be transferred on the
telephone line, it must be converted from
0s and 1s to audio tones

ICET EEE

14

Serial data communication uses two methods

Synchronous method transfers a block of data at a time

Asynchronous method transfers a single byte at a time

There are special IC chips made by many
manufacturers for serial communications

UART (universal asynchronous Receiver
transmitter)

USART (universal synchronous-asynchronous
Receiver-transmitter)

BASICS OF SERIAL
COMMUNICATION

ICET EEE

15

Half- and Full-
Duplex

Transmission

ICET EEE

If data can be transmitted and received, it is a duplex
transmission

If data transmitted one way a time, it is referred to as half
duplex

If data can go both ways at a time, it is full duplex

16

Start and Stop
Bits

ICET EEE

17

A protocol is a set of rules agreed by both the sender and
receiver on

How the data is packed

How many bits constitute a character

When the data begins and ends

Asynchronous serial data communication is widely used for
character-oriented transmissions

Each character is placed in between start and stop bits,
this is called framing

Block-oriented data transfers use the synchronous method

The start bit is always one bit, but the stop bit can be one or
two bits

Start and Stop Bits

The start bit is always a 0 (low) and the stop bit(s) is 1 (high)

18

ICET EEE

Start and Stop
Bits

ICET EEE

Due to the extended ASCII characters, 8-bit ASCII
data is common

In older systems, ASCII characters were 7-bit

In modern PCs the use of one stop bit is
standard

In older systems, due to the slowness of the
receiving mechanical device, two stop bits were
used to give the device sufficient time to organize
itself before transmission of the next byte

19

Data Transfer
Rate

ICET EEE

The rate of data transfer in serial data
communication is stated in bps (bits per
second)

Another widely used terminology for bps is baud rate

It is modem terminology and is defined as the
number of signal changes per second

As far as the conductor wire is concerned, the baud
rate and bps are the same, and we use the terms
interchangeably

20

SBUF
Register

ICET EEE

SBUF is an 8-bit register used for serial
communication

For a byte data to be transferred via the TxD line, it
must be placed in the SBUF register

The moment a byte is written into SBUF, it is framed with
the start and stop bits and transferred serially via the TxD
line

SBUF holds the byte of data when it is received by 8051
RxD line

When the bits are received serially via RxD, the 8051 de-
frames it by eliminating the stop and start bits, making a
byte out of the data received, and then placing it in SBUF

21

SCON Register

SCON is an 8-bit register used to program the start bit, stop bit, and
data bits of data framing, among other things

22

ICET EEE

SCON
Register

ICET EEE

SM0, SM1

They determine the framing of data by specifying the number of
bits per character, and the start and stop bits

SM2

This enables the multiprocessing capability of the 8051

REN (receive enable)

It is a bit-adressable register

When it is high, it allows 8051 to receive data on RxD pin

If low, the receiver is disable

23

TI (transmit interrupt)

When 8051 finishes the transfer of 8-bit character

It raises TI flag to indicate that it is ready to transfer another
byte

TI bit is raised at the beginning of the stop bit

RI (receive interrupt)

When 8051 receives data serially via RxD, it gets rid of the start
and stop bits and places the byte in SBUF register

It raises the RI flag bit to indicate that a byte has been received
and should be picked up before it is lost

RI is raised halfway through the stop bit

SCON
Register

ICET EEE

24

Programming Serial Data Transmitting

ICET EEE

In programming the 8051 to transfer character bytes serially

1. TMOD register is loaded with the value 20H, indicating the use of
timer 1 in mode 2 (8-bit auto-reload) to set baud rate

2. The TH1 is loaded with one of the values to set baud rate for serial
data transfer

3. The SCON register is loaded with the value 50H, indicating serial
mode 1, where an 8-bit data is framed with start and stop bits

4. TR1 is set to 1 to start timer 1

5. TI is cleared by CLR TI instruction

6. The character byte to be transferred serially is written into SBUF
register

7. The TI flag bit is monitored with the use of instruction JNB TI, xx to
see if the character has been transferred completely

8. To transfer the next byte, go to step 5

25

Programming Serial
Data Transmitting

ICET EEE

26

Write a program for the 8051 to transfer letter “A” serially at 4800

baud, continuously.

Solution:
MOV TMOD,#20H

MOV TH1,#-6

MOV SCON,#50H

SETB TR1

AGAIN: MOV SBUF,#”A”

HERE: JNB TI,HERE

CLR TI

SJMP AGAIN

;timer 1,mode 2(auto reload)

;4800 baud rate

;8-bit, 1 stop, REN enabled

;start timer 1

;letter “A” to transfer

;wait for the last bit

;clear TI for next char

;keep sending A

Programming Serial Data Receiving

ICET EEE

In programming the 8051 to receive character bytes serially

1. TMOD register is loaded with the value 20H, indicating the use of
timer 1 in mode 2 (8-bit auto-reload) to set baud rate

2. TH1 is loaded to set baud rate

3. The SCON register is loaded with the value 50H, indicating serial
mode 1, where an 8-bit data is framed with start and stop bits

4. TR1 is set to 1 to start timer 1

5. RI is cleared by CLR RI instruction

6. The RI flag bit is monitored with the use of instruction JNB RI, xx
to see if an entire character has been received yet

7. When RI is raised, SBUF has the byte, its contents are moved
into a safe place

8. To receive the next character, go to step 5

27

Programming Serial
Data Receiving

ICET EEE

28

Write a program for the 8051 to receive bytes of data serially, and put them in P1, set

the baud rate at 4800, 8-bit data, and 1 stop bit

Solution:
MOV TMOD,#20H

MOV TH1,#-6

MOV SCON,#50H

SETB TR1

HERE: JNB RI,HERE

MOV A,SBUF

MOV P1,A

CLR RI

SJMP HERE

;timer 1,mode 2(auto reload)

;4800 baud rate

;8-bit, 1 stop, REN enabled

;start timer 1

;wait for char to come in

;saving incoming byte in A

;send to port 1

;get ready to receive next byte

;keep getting data

RS232 Standards

ICET EEE

An interfacing standard RS232 was set by the
Electronics Industries Association (EIA) in 1960

29

https://arunxeee.blogspot.in

RS232
Standards

2
4

-N
o

v-17
7:2

7
A

M
A

R
U

N
 X

A
V

IE
R

 V
A

S
T

30

ICET EEE

https://arunxeee.blogspot.in/

RS232 Standards
Since not all pins are used in PC cables, IBM introduced the
DB-9 version of the serial I/O standard

31

ICET EEE

8051 CONNECTION TO
RS232

ICET EEE

We need a line driver (voltage converter) toconvert the
R232’s signals to TTL voltage levels that will be acceptable to
8051’s TxD and RxD pins

32

ICET EEE

