
1

Module 3

Bottom Up Parsing

A bottom-up parse starts with the string of terminals itself and builds from the leaves upward,

working backwards to the start symbol by applying the productions in reverse. Along the

way, a bottom-up parser searches for substrings of the working string that match the right

side of some production. When it finds such a substring, it reduces it, i.e., substitutes the left

side non-terminal for the matching right side. The goal is to reduce all the way up to the start

symbol and report a successful parse.

Shift - Reduce Parsing

Shift reduce parsing attempts to construct a parse tree for an input string beginning at the

leaves (bottom) and working up towards the root (top). This can be considered as the process

of “reducing” a string w to the start symbol of a grammar. At each reduction step parser

searches for substrings of the working string that match the right side of some production.

When it finds such a substring, it reduces it, i.e., substitutes the left side non-terminal for the

matching right side. The goal is to reduce all the way up to the start symbol and report a

successful parse.

In Shift-reduce parsing a stack holds grammar symbols and an input buffer holds the rest of

the string to be parsed. As we shall see, the handle always appears at the top of the stack just

before it is identified as the handle. We use $ to mark the bottom of the stack and also the

right end of the input. Initially, the stack is empty, and the string w is on the input, as follows:

 STACK INPUT

 $ w $

During a left-to-right scan of the input string, the parser shifts zero or more input symbols

onto the stack, until it is ready to reduce a string β of grammar symbols on top of the stack. It

Bottom Up Parsing: Shift Reduce Parsing-Operator Precedence Parsing

LR Parsing – Constructing SLR parsing tables, Constructing canonical LR

parsing tables and Constructing LALR parsing tables.

2

then reduces β to the head of the appropriate production. The parser repeats this cycle until it

has detected an error or until the stack contains the start symbol and the input is empty as

follows:

STACK INPUT

 $ S $

Upon entering this configuration, the parser halts and announces successful completion of

parsing.

There are actually four possible actions a shift-reduce parser can make:

 (1) shift (2) reduce (3) accept and (4) error.

1. Shift: The next input symbol is shifted onto the top of the stack.

2. Reduce: The parser knows the right end of the string to be reduced must be at the top of

the stack. It must then locate the left end of the string within the stack and decide with what

nonterminal to replace the string.

3. Accept: Announce successful completion of parsing.

4. Error: Discover a syntax error has occurred and calls an error recovery routine.

Example:

Following figure steps through the actions a shift-reduce parser might take in parsing the

input string id1 *id2 according to the expression grammar.

E E + T | T

T T * F | F

F (E) | id

3

Operator Precedence Parsing

Bottom-up parsers for a large class of context-free grammars can be easily developed using

operator grammars.

In an operator grammar, no production rule can have:

–  at the right side (no production).

– two adjacent non-terminals at the right side.

This property enables the implementation of efficient operator-precedence parsers.

Ex:

 EAB EEOE EE+E |

 Aa Eid E*E |

 Bb O+|*|/ E/E | id

not operator grammar not operator grammar operator

grammar

4

Precedence Relations

In operator-precedence parsing, we define three precedence relations between certain

pairs of terminals as follows:

Relation Meaning

a <· b a yields precedence to b (b has higher precedence than a)

a =· b a has the same precedence as b

a ·> b a takes precedence over b (b has lower precedence than a)

• The intention of the precedence relations is to find the handle of a right sentential form,

 <. with marking the left end,

 =· appearing in the interior of the handle, and

 .> marking the right end.

In our input string $a1a2...an$, we insert the precedence relation between the pairs of

terminals.

Example: Consider the string id + id * id and the grammar is: E E+E | E-E | E*E | E/E | (E)

| -E | id

 The corresponding precedence relations is:

 id + * $

Id ·> ·> ·>

+ <· ·> <· ·>

* <· ·> ·> ·>

$ <· <· <· ·>

5

Then the string with the precedence relations inserted is:

$ <. id .> + <. id .> * <. id .> $

<. is inserted between the leftmost $ and id since <. is the entry in row $ and column id.

The handle can be found by the following rules:

1. Scan the string from left end until the first .> is encountered.

2. Then scan backwards (to the left) over any =· until a <. is encountered.

3. The handle contains everything to left of the first .> and to the right of the <. is

encountered.

In the above example:

$ <
.
 id

.
> + <

.
 id

.
> * <

.
 id

.
> $ E  id $ id + id * id $

$ <
.
 + <

.
 id

.
> * <

.
 id

.
> $ E  id $ E + id * id $

$ <
.
 + <

.
 * <

.
 id

.
> $ E  id $ E + E * id $

$ <
.
 + <

.
 *

.
> $ E  E*E $ E + E * E $

$ <
.
 +

.
> $ E  E+E $ E + E $

$ $ $ E $

Operator Precedence Parsing Algorithm

Input: An input string w and a table of precedence relations.

Output: If w is well formed, a skeletal parse tree otherwise an error indication

Initialize: The stack contains $ and input buffer the string w$.

6

Algorithm:

set ip to point to the first symbol of w$;

repeat forever

 if ($ is on top of the stack and ip points to $) then

 return

 else

 {

 let a be the topmost terminal symbol on the stack

 let b be the symbol pointed to by ip;

 if (a <. b or a =· b) then

 { /* SHIFT */

 push b onto the stack;

 advance ip to the next input symbol;

 }

 else if (a .> b) then /* REDUCE */

 {

 repeat

 pop stack

 until (the top of stack terminal is related by <. to the terminal most

 recently popped)

 }

 else error();

 }

Operator Precedence Parsing Algorithm – Example

7

Operator Precedence Grammar Advantages and Disadvantages:

• Advantages:

– simple

– powerful enough for expressions in programming languages

• Disadvantages:

– It cannot handle the unary minus (the lexical analyzer should handle the

unary minus).

– Small class of grammars.

– Difficult to decide which language is recognized by the grammar.

Construction of precedence relation

8

9

Example:

10

Error Recovery in Operator-Precedence Parsing

11

Error Cases:

1. No relation holds between the terminal on the top of stack and the next

input symbol.

2. A handle is found (reduction step), but there is no production with this

handle as a right side.

Error Recovery:

1. Each empty entry is filled with a pointer to an error routine.

2. Decides the popped handle “looks like” which right hand side. And tries to

recover from that situation.

Ex:

LR Parsers

• Efficient Bottom up parser

• LR(k):

– L: Left to Right scanning of input

– R: Right most derivation in reverse

– k: number of input symbols of lookahead that are used in making parsing

decisions

– If k is not mentioned, LR(1) parser

12

• Requirements of LR parser:

– Input Buffer

– Stack

– Parsing Table

– LR Parsing Program

• Stack

– Parsing program uses a stack to store string of the form

s0X1s1X2s2X3…Xmsm where sm is on the top

– Xi is a grammar symbol and Si is the state

– Each state symbol summarizes the information contained in the stack below it

– Combination of state symbol on stack top and current input symbol are used to

index the parsing table and determine the shift reduce parsing decision

• Parsing Table:

– Consist of 2 parts

• 1. parsing action function action

• 2. goto function goto

• Parsing Program works as follows:

13

– It determines sm, the state currently on top of stack and ai the current input

symbol

– It consults parsing action table entry for action[sm,ai] which can have 4

values:

 1. Shift s, where s is a state

 2. Reduce by a grammar production Ab

 3. Accept

 4. Error

– The function goto takes a state and grammar symbol as arguments and

produces a state.

• A configuration of LR parser is a pair whose first component is stack contents and

second component is remaining input:

 (s0 X1 s1 X2 . . .Xmsm, ai ai+1 . . . an $)

• The next move of the parser is determined by reading ai, the current input symbol and

sm, state on stack top and then consulting parsing action table entry action[sm,ai].

• The configuration resulting after each of four types of moves are as follows:

14

LR Parsing Algorithm

15

Example:

16

17

Construction of LR Parsing Table

• 3 techniques for constructing LR parsing table for a grammar:

– 1. Simple LR (SLR)

– 2. Canonical LR

– 3. LookAhead LR(LALR)

• Simple LR (SLR)

– Easy to implement

– Least powerful

• Canonical LR

– Most powerful

– Most expensive

• LALR

– Intermediate in power and cost between other 2

Constructing SLR Parsing Tables – LR(0) Item

• LR parser using SLR parsing table is called an SLR parser.

• A grammar for which an SLR parser can be constructed is an SLR grammar.

• An LR(0) item (item) of a grammar G is a production of G with a dot at the some

position of the right side.

• Ex: A  aBb Possible LR(0) Items: A  .aBb

 (four different possibility) A  a.Bb

 A  aB.b

 A  aBb.

• A production rule of the form A   yields only one item A  .

• Intuitively, an item shows how much of a production we have seen till the current

point in the parsing procedure.

• A collection of sets of LR(0) items (the canonical LR(0) collection) is the basis for

constructing SLR parsers.

18

• To construct the of canonical LR(0) collection for a grammar we define:

• Augmented grammar

• Two functions: closure and goto.

Augmented Grammar:

• G’ is the augmented grammar of G with a new production rule S’S where S’ is the

new starting symbol.

 i.e G  {S’  S} where S is the start state of G.

• The start state of G’ = S’.

• This is done to signal to the parser when the parsing should stop to announce

acceptance of input.

Kernel and Non-Kernel items:

• Kernel items include the set of items that do not have the dot at leftmost end.

• S’ .S is an exception and is considered to be a kernel item.

• Non-kernel items are the items which have the dot at leftmost end.

• Sets of items are formed by taking the closure of a set of kernel items.

The Closure Operation

• If I is a set of LR(0) items for a grammar G, then closure(I) is the set of LR(0)

items constructed from I by the two rules:

1. Initially, every LR(0) item in I is added to closure(I).

2. If A  .B is in closure(I) and B is a production rule of G; then B.
will be in the closure(I).

 We will apply this rule until no more new LR(0) items can be added to closure(I).

Computation of Closure

function closure (I)

begin

 J := I;

 repeat

 for each item A  .B in J and each production

 B of G such that B. is not in J do

 add B. to J

19

 until no more items can be added to J

 return J

end

 The Closure Operation -- Example

Goto Operation

• If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal),

then goto(I,X) is defined as follows:

– If A  .X in I then every item in closure({A  X.}) will be in

goto(I,X).

– If I is the set of items that are valid for some viable prefix , then goto(I,X) is

the set of items that are valid for the viable prefix X.

Example:

I ={ E’  E., E  E.+T}

 goto(I,+) = { E  E+.T

 T .T*F

 T .F

 F .(E)

 F .id }

20

Construction of Canonical LR(0) Collection

• To create the SLR parsing tables for a grammar G, we will create the canonical LR(0)

collection of the grammar G’.

• Algorithm:

Procedure items(G’)

begin

C := { closure({S’.S}) }

repeat for each set of items I in C and each grammar symbol X

if goto(I,X) is not empty and not in C

add goto(I,X) to C

until no more set of LR(0) items can be added to C.

end

 goto function is a DFA on the sets in C.

The Canonical LR(0) Collection – Example

21

Transition Diagram (DFA) of Goto Function

Constructing SLR Parsing Table

1. Construct the canonical collection of sets of LR(0) items for G’. C{I0,...,In}

2. State i is constructed from Ii . The parsing actions for state i are determined as

follows:

• If a is a terminal, A.a in Ii and goto(Ii,a)=Ij then action[i,a] is shift j.

• If A. is in Ii , then action[i,a] is reduce A for all a in FOLLOW(A)

where AS’.

• If S’S. is in Ii , then action[i,$] is accept.

• If any conflicting actions generated by these rules, the grammar is not SLR(1).

3. Create the parsing goto table

• for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j

22

4. All entries not defined by (2) and (3) are errors.

5. Initial state of the parser is the one construcetd from the sets of items containing

[S’.S]

Parsing Tables of Expression Grammar

Shift/Reduce and Reduce/Reduce conflicts

• If a state does not know whether it will make a shift operation or reduction for a

terminal, we say that there is a shift/reduce conflict.

• If a state does not know whether it will make a reduction operation using the

production rule i or j for a terminal, we say that there is a reduce/reduce conflict.

• If the SLR parsing table of a grammar G has a conflict, we say that that grammar is

not SLR grammar.

Constructing Canonical LR(1) Parsing Tables

• In SLR method, the state i makes a reduction by A when the current token is a:

– if the A. in the Ii and a is FOLLOW(A)

– In some situations, when state i appears on stack top, the viable prefix  on

the stack is such that A cannot be followed by a in right sentential form.

• Thus the reduction by A would be invalid on input a.

23

• Because of that we go for : Canonical LR Parser

– In this, it is possible to carry more information in the state that will allow us to

avoid some of these invalid reductions

• To avoid some of invalid reductions, the states need to carry more information.

• Extra information is put into a state by including a terminal symbol as a second

component in an item.

• A LR(1) item is:

 A  .,a where a is the look-head of the LR(1) item

 (a is a terminal or end-marker.)

• Such an object is called LR(1) item.

– 1 refers to the length of the second component

– The lookahead has no effect in an item of the form [A  .,a], where  is

not .

– But an item of the form [A  .,a] calls for a reduction by A   only if the

next input symbol is a.

• When  (in the LR(1) item A  .,a) is not empty, the look-head does not have

any affect.

• When  is empty (A  .,a), we do the reduction by A only if the next input

symbol is a (not for any terminal in FOLLOW(A)).

Canonical Collection of Sets of LR(1) Items

• The construction of the canonical collection of the sets of LR(1) items are similar to

the construction of the canonical collection of the sets of LR(0) items, except that

closure and goto operations work a little bit different.

 closure(I) is: (where I is a set of LR(1) items)

– every LR(1) item in I is in closure(I)

– if A.B,a in closure(I) and B is a production rule of G; then

B.,b will be in the closure(I) for each terminal b in FIRST(a) .

 goto operation

• If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal),

then goto(I,X) is defined as follows:

24

– If A  .X,a in I then every item in closure({A  X.,a}) will be in

goto(I,X).

 Construction of The Canonical LR(1) Collection

 Algorithm: (Exactly same for LR(0))

C is { closure({S’.S,$}) }

repeat the followings until no more set of LR(1) items can be added to C.

for each I in C and each grammar symbol X

if goto(I,X) is not empty and not in C

add goto(I,X) to C

Construction of LR(1) Parsing Tables

1. Construct the canonical collection of sets of LR(1) items for G’. C{I0,...,In}

2. Create the parsing action table as follows

• If a is a terminal, A.a,b in Ii and goto(Ii,a)=Ij then action[i,a] is shift j.

• If A.,a is in Ii , then action[i,a] is reduce A where AS’.

• If S’S.,$ is in Ii , then action[i,$] is accept.

• If any conflicting actions generated by these rules, the grammar is not LR(1).

3. Create the parsing goto table

• for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j

4. All entries not defined by (2) and (3) are errors.

5. Initial state of the parser contains S’.S,$

Constructing LALR Parsing Table

 LALR stands for Lookahead LR.

 LALR parsers are often used in practice because LALR parsing tables are smaller

than LR(1) parsing tables.

 The number of states in SLR and LALR parsing tables for a grammar G are equal.

 But LALR parsers recognize more grammars than SLR parsers.

 yacc creates a LALR parser for the given grammar.

25

 A state of LALR parser will be again a set of LR(1) items.

Creating LALR Parsing Tables

Canonical LR(1) Parser  LALR Parser

 shrink # of states

• This shrink process may introduce a reduce/reduce conflict in the resulting LALR

parser (so the grammar is NOT LALR)

• But, this shrik process does not produce a shift/reduce conflict.

The Core of A Set of LR(1) Items

• The core of a set of LR(1) items is the set of its first component.

Ex: S  L.=R,$  S  L.=R Core

 R  L.,$ R  L.

• We will find the states (sets of LR(1) items) in a canonical LR(1) parser with same

cores. Then we will merge them as a single state.

 I1:L  id.,= A new state: I12: L  id.,=

  L  id.,$

 I2:L  id.,$ have same core, merge them

• We will do this for all states of a canonical LR(1) parser to get the states of the LALR

parser.

• In fact, the number of the states of the LALR parser for a grammar will be equal to

the number of states of the SLR parser for that grammar.

Creation of LALR Parsing Tables

1. Construct C={I0, I1,..,In}, the collection of sets of LR(1) items

2. For each core present; find all sets having that same core; replace those sets having

same cores with a single set which is their union. C={I0,...,In}  C’={J1,...,Jm}

 where m  n

26

3. Create the parsing tables (action and goto tables) same as the construction of the

parsing tables of LR(1) parser.

1. Note that: If J=I1  ...  Ik since I1,...,Ik have same cores

  cores of goto(I1,X),...,goto(Ik, X) must be same.

2. So, goto(J,X)=K where K is the union of all sets of items having same cores as goto(I1,X).

1. If no conflict is introduced, the grammar is LALR(1) grammar. (We may only

introduce reduce/reduce conflicts; we cannot introduce a shift/reduce conflict)

Error Recovery in LR Parsing

• An LR parser will detect an error when it consults the parsing action table and finds

an error entry. All empty entries in the action table are error entries.

• Errors are never detected by consulting the goto table.

• An LR parser will announce error as soon as there is no valid continuation for the

scanned portion of the input.

• A canonical LR parser (LR(1) parser) will never make even a single reduction before

announcing an error.

• The SLR and LALR parsers may make several reductions before announcing an error.

• But, all LR parsers (LR(1), LALR and SLR parsers) will never shift an erroneous

input symbol onto the stack.

 Panic Mode Error Recovery in LR Parsing

• Scan down the stack until a state s with a goto on a particular nonterminal A is found.

(Get rid of everything from the stack before this state s).

• Discard zero or more input symbols until a symbol a is found that can legitimately

follow A.

– The symbol a is simply in FOLLOW(A), but this may not work for all

situations.

– The parser stacks the nonterminal A and the state goto[s,A], and it resumes

the normal parsing

 Phrase-Level Error Recovery in LR Parsing

• Each empty entry in the action table is marked with a specific error routine.

• An error routine reflects the error that the user most likely will make in that case.

27

• An error routine inserts the symbols into the stack or the input (or it deletes the

symbols from the stack and the input, or it can do both insertion and deletion).

– missing operand

– unbalanced right parenthesis

YACC

• Parser Generator

• YACC – Yet Another Compiler Compiler

• Uses LALR parsing

• YACC generates C Code for syntax analyzer or parser

• YACC uses grammar rules that allow it to analyze tokens from Lex and create a

syntax tree

How YACC Works?

• Compiled as:

yacc translate.y

cc y.tab.c –ly

 where ly is the library that contains LR parsing program

28

A yacc source program has 3 parts:

declarations

%%

translation rules

%%

supporting c routines

Declaration Part:

– 2 optional sections

– In first section, we put ordinary C declarations delimited by %{ and %}. Here

we place declarations of any temporaries used by the translation rules or

procedures of 2nd and 3rd sections

– In second section, declarations of grammar tokens are present

Translation Rules part:

– Each rule consist of a grammar production and associated semantic action

– The production

• Yacc semantic action is a sequence of C statements.

• Ex:

 expr : expr ‘+’ expr {$$ = $1 + $3;}

 | expr ‘*’ expr {$$ = $1 * $3;}

 ;

• $$ refers to the attribute value associated with the nonterminal on left

• $i refers to the value associated with the ith grammar symbol on the right

29

• In a YACC production,

– a quoted single character ‘c’ is taken to be the terminal symbol c

– unquoted strings of letters and digits not declared to be tokens are taken to be

non terminals

Supporting C routines part:

– yylex() is must

– If necessary, error recovery routines can be added

YACC Specification of a simple desk calculator

Grammar:

30

