
Trees

Module 3
V1

V3

V4

V5

V6

V2

Contents

❑ Trees

 Properties

 Pendant vertex

 Distance and centers

 Rooted and binary tree

 Counting trees

 Spanning trees

What is a Tree ?

❑ A tree is a connected graph, without any
circuits

❑ It implies that a tree has to be a simple graph,
as self loops & parallel edges form circuits

❑ A single vertex can also be considered as a
tree

❑ Eg :

 A tree with 1 vertex

 A tree with 2 vertices

 A tree with 3 vertices

V1 V1

V2

V1

V2 V3

Examples

x








❑ Trees can be used to represent & manipulate

real life instances like

 The genealogy of a family

 A river with its tributaries & sub tributaries

 Sorting of mail according to zip code

❑ Minimally connected

 A graph G is said to be minimally connected if
removal of any one edge from G, leaves it

disconnected

Properties of trees

1) A tree is a connected graph & circuit-less

2) There is exactly one path between every pair

of vertices of a tree

3) A tree with n vertices will have (n-1) edges

4) A tree is a minimally connected graph

5) A tree will have at least 2 pendant vertices

6) A tree can have only 1 or 2 centers

❑ Theorem 14: There is one and only one path between
every pair of vertices in a tree, T

❑ Proof:

❑ Since T is a connected graph, there must exist at least
one path between every pair of vertices in T

❑ Now, suppose that between two vertices, say vi & vj,
there exists two district paths

❑ Then union of there two paths will result in a circuit;
But since T is a tree, it cannot contain any circuits

❑ Hence there could be no 2 distinct paths between any
pair of vertices in T

❑ Hence the theorem

❑ Theorem 15: If, in a graph G, there is one & only one
path between every pair of vertices, G is a tree

❑ Proof:

❑ Since there is at least one path between every pair of
vertices in G, we can say that G is connected

❑ Now, if the graph has a circuit in it, there must be two
vertices vi & vj such that there exists two distinct paths
between vi & vj

❑ But since there is only one path between every pair of
vertices, G cannot contain any circuit

❑ Since G is connected & contains no circuit, we can
say that G is a tree

❑ Theorem 16: A tree with n vertices has n-1 edges

❑ Proof: By induction we prove that the theorem is true

❑ For n=1

 No. of edges = n-1= 1-1= 0

 Which is true as we can see in the figure

❑ For n=2
 No. of edges = n-1 = 2-1=1

 Which is also true

❑ For n=3

 No. of edges = n-1 = 3-1=2

 true

❑ Now we assume that the theorem is true for all trees with no.
of vertices up to (n-1)

V1

V1

V2

V1

V2 V3

❑ We need to prove that the theorem holds for a
tree with n vertices

❑ Consider a tree with n vertices; Remove an
edge ek from the tree; Let vi & vj be the end
vertices of ek

❑ Removal of ek will disconnect the graph into 2
components say T1 and T2 each of which is
again a tree

❑ Let the component T1 contain n1 vertices; then
no. of edges in T1= (n1-1)

❑ Let the component T2 contain n2 vertices; then no.
of edges in T2 = (n2-1)

❑ Since n1 and n2 < n, the theorem holds, as per
our assumption

❑ Also n1+n2 = n (total no. of vertices in the graph)

❑ Now, add back the deleted edge ek so that the
graph again becomes connected

❑ The resulting no. of edges in the graph is given by
(n1-1)+(n2-1)+1 = n1+n2-1-1+1 = n-1

❑ Hence a tree with n vertices will have (n-1) edges

❑ Theorem 17: Any connected graph with n vertices
and (n-1) edges is a tree

❑ Proof:

❑ The minimum no. of edges required to make a
connected graph with n vertices is (n-1)

❑ In such a graph, removal of any 1 edge leaves the
graph disconnected

❑ If the graph had a circuit, there would be at least one
edge, removal of which do not make the graph
disconnected. But there is no such edge at all. Hence
the graph is circuit-less

❑ Since the graph is connected & circuit-less, it is a tree

❑ Theorem 18: A graph is a tree if and only if it is
minimally connected

❑ Proof:

❑ Suppose the graph is minimally connected

❑ A minimally connected graph, cannot contain any
circuits because if it contained a circuit, then there
must be at least one edge removal of which do not
make the disconnected

❑ But all the edges of the graph are such that, removal
of any edge, leaves the graph disconnected

❑ Hence the graph has no circuits & it is connected. So
it must be a tree

❑ Conversely: Let the graph be a tree

❑ Since it is a tree, it is connected & circuit-less

❑ And also there is only & only one path b/w

every pair of vertices

❑ Removal of any edge from a path leaves the

graph disconnected, hence we can say that

the graph which is a tree, is always minimally

connected

❑ Theorem 19: A graph G with n vertices & (n-1) edges & no circuits

is connected

❑ Proof:

❑ Suppose there exists a graph with n vertices, n-1 edges & no

circuits, but it is disconnected

❑ Then G may contain 2 or more circuit-less components

❑ Now our disconnected graph G has total n vertices & n-1 edges

❑ Now add an edge ek between vertex vi from one component &

vertex vj from another component

❑ Adding of this edge will not create circuit as vi &vj were from

different components & there wasn't any path between them

❑ Now, our graph must contain n vertices & n edges, which is not

possible for a tree. Hence the graph G must be connected

❑ Theorem 20: In any tree, there must be at least 2
pendant vertices

❑ Proof:

❑ A tree with n vertices will have (n-1) edges

❑ As each edge contributes 2, to the total degree of
the graph, total degree of the tree is 2(n-1) = 2n-2

❑ Which shows all n vertices may take degree 2
each, except 2. Two of the vertices will get only
degree1 each

❑ Hence there will be at least 2 pendant vertices for
any tree

Examples

4
8

2

5

2

An application of trees

❑ Problem: Given a sequence of integers, no two of
which are the same, find the largest monotonically
increasing subsequence in it

❑ Solution: Suppose if the given sequence is
4,1,13,7,0,2,8,11,3

❑ Represent it by a tree where each sequence
number in the sequence is a descendant vertex of
a root vertex

❑ Now, the path from the start vertex to a particular
vertex, v gives the monotonically increasing
subsequence ending in v

7 213 814 11 30

713 8 11 7 213 8 11 3 8 11 2 8 11 3 38 11 11

8 11 11

11

8 11

11

8 11 3

11

11 8 11 3

11

11

❑ For the given sequence, the length of the

largest such subsequence is four

❑ And there are 4 different subsequence, each

of length four

❑ They are (4,7,8,11) , (1,7,8,11) , (1,2,8,11) &

(0,2,8,11)

❑ Such trees are called data trees by computer

programmers

❑ Q. Find the largest monotonically increasing

subsequence of the given sequence 5, 0, 1, 7,

6, 8, 2, 9, 4, 3

Path length

❑ Length of a path: Length of the path between any two
vertices of a graph is simply the no. of edges included in the
path

❑ Shortest path: If more than one path is present between any
2 vertices, then the path with the minimum no. of edges is the
shortest path.

❑ Distance: Distance between any 2 vertices, vi & vj is
represented as d(vi&vj) and is given by the length of the
shortest path between them

❑ In a normal connected graph, to find the distance b/w any 2
vertices, we have to enumerate all available paths & pick the
one with the shortest length.

❑ However in a tree, there is only path b/w every pair of
vertices; so distance between any 2 vertices is just the length
of the path b/w them

Example: distance b/w two vertices

❑ Eg: In graph G, available paths between v5&v2 are
 v5 e6 v1 e1 v2

 v5 e5 v4 e7 v2

 v5 e6 v1 e8 v1 e1 v2

 v5 e5 v4 e3 v3 e2 v2

 v5 e5 v4 e4 v1 e1 v2

 v5 e5 v4 e4 v1 e8 v1 e1 v2

 v5 e6 v1 e4 v4 e7 v2

 v5 e6 v1 e4 v4 e3 v3 e2 v2

❑ Two shortest paths are available between v5&v2

❑ Each contain two edges

❑ Hence d(v5,v2) = 2

V1 V2

V3V4

e1

e2

e3

e4

e5

e6

V5
e7

e8

Metric

❑ A function f(x,y) of two variables is called a

metric if it satisfies the following 3 conditions

1) Non-negativity: f(x,y)>=0

f(x,y)=0 iff x=y

2) Symmetry: f(x,y)= f(y,x)

3) Triangle inequality: f(x,y)<= f(x,z)+ f(z,y) for any
z

❑ Theorem 21: The distance between the vertices of a connected
graph is a metric

❑ Proof:

❑ Checking the conditions of a metric for the distance between any 2
vertices of a connected graph

❑ Non negativity: Distance b/w any 2 vertices is never negative.
Distance from one vertex to itself is zero (simple graph)

❑ Symmetry: Distance from one vertex to another vertex will be the
same in the reverse direction (undirected graph)

❑ Triangle inequality: Since distance b/w any 2 vertices d(vi&vj) is the
shortest path between them, there cannot be any shorter path that
goes through some vertex vk such that d(vi&vj) <= d(vi&vk)+ d(vk&vj)

❑ Hence distance between the vertices of a connected graph is a
metric

Eccentricity of a vertex

❑ Eccentricity E(v) of a vertex v in a graph G is

the distance from v to the farthest available

vertex in G

❑ E(v) = max d(v&vi) ∀ vertex vi of G

❑ Eg:

 E(v1)=4

 E(v2)=3

 E(v3)=2

3 2

2 3

4

3

4

4

V1

e7

e8

V4V8 e10

e11

V2 V3

V5V6

e2

e3

e5

e9

e6

e1

V7

e4

Center of a tree

❑ The vertex with the minimum eccentricity is

considered as the center of the tree

❑ Some trees may have 2 centers - bi-centered

❑ Every tree will have either one or two centers

V1 V2

V3

V4 V5

3

2

V6

3

4

4

3

V1 V2

V3

V4 V5

4

3

V6

3

4

5

4

V7 5

T1 T2

Radius of a tree

❑ The eccentricity of the center of the tree is

regarded as the radius of the tree

 In tree T1, radius is 2

 In tree T2, radius is 3

V1 V2

V3

V4 V5

3

2

V6

3

4

4

3

V1 V2

V3

V4 V5

4

3

V6

3

4

5

4

V7 5

T1 T2

Diameter of a tree

❑ The length of the longest path in the tree is the diameter

of the tree

❑ It is not necessary that the diameter be twice its radius

 In tree T1, diameter is 4 (radius is 2)

 In tree T2, diameter is 5 (radius is 3)

V1 V2

V3

V4 V5

3

2

V6

3

4

4

3

V1 V2

V3

V4 V5

4

3

V6

3

4

5

4

V7 5

T1 T2

❑ Theorem 22: Every tree has either one or two centers

❑ Proof:

❑ Consider a tree with n vertices where n>2

❑ A tree must have 2 or more pendant vertices

❑ Delete all pendant vertices from T. The resulting graph
is still a tree, say T’. Deletion of the pendant vertices, will
reduce the eccentricities of all remaining vertices by
one. Hence the center of the graph will remain the
same. From T' again remove all pendant vertices, to
obtain another tree T''. Again T" has the same vertex as
its center

❑ Containing this process will finally end up with a single
vertex or a single edge (2 vertices)

❑ Single vertex implies that the tree had 1 center

which is the one finally left

❑ Single edge implies that the tree had 2 centers

which are the end vertices of the edge left

❑ Hence any tree can have only 1 or 2 centers

❑ Corollary: If a tree has 2 centers, then both of

them must be adjacent

Examples

T1 T2

1 vertex is left,

which is the center

of the tree

1 edge is left,

end vertices of

which are the

centers of the tree

Rooted trees

❑ A tree in which one vertex (called the root) is

distinguished from all others is called a rooted

tree

❑ In a rooted tree, the root vertex is usually

marked within a ∆

❑ Eg: All possible rooted trees with four vertices

Binary trees

❑ They are a special class of rooted trees where the root vertex is of

degree 2 & all remaining vertices are of degree either 1 or 3

❑ Type of vertices in a binary tree:

◼ Root vertex: The only vertex with degree 2

◼ Pendant vertices: The vertices that are of degree 1

◼ Internal vertices: The vertices that are of degree 3 (Non-

pendant vertices)

Levels of a binary tree

❑ In a binary tree, a vertex vi is said to be at level Li
if vi is at a distance of Li from the root

❑ The root is assumed to be at level 0

❑ Hence at level 0, there could be only 1 vertex
 at level 1, at most 21 = 2 vertices (either 0 or 2)

 at level 2, at most 22 = 4 vertices & so on

 at level k, at most 2k vertices

❑ Hence maximum no. of vertices possible in a k-
level binary tree is therefore

❑ Vmax = 20 + 21 + 22 +…… + 2k

❑ Vmin = 1 + 2 + 2 +…… + 2 (k times)= 2k+1

Examples

❑ Here k=3

❑ Vmax =20 + 21 + 22 + 23 =1+2+4+8 =15 vertices

❑ Vmin = 2*3+1= 7 vertices

Level 0

Level 1

Level 2

Level 3

Level 0

Level 1

Level 2

Level 3

1

2

4

8

Total 15 vertices

1

2

2

2

Total 7 vertices

Height of a binary tree

❑ No. of levels possible in an ‘n vertex’ binary
tree

❑ Lmin = ⌈log2(n+1)-1⌉

❑ This is obtained when all levels are filled with
maximum possible vertices (tightly packed)

❑ Lmax =

❑ This is obtained when the farthest vertex is
made as far as possible from the root; all
levels contain just 2 vertices (loosely packed)

Example

❑ Consider a binary tree with n=11

 Lmin = ⌈log2(n+1)-1⌉ = ⌈log2(12)-1⌉ = 3

 Lmax =
𝑛−1

2
= 5

Level 0

Level 1

Level 2

Level 3

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5
Min level binary

tree for n=11
Max level binary

tree for n=11

Application of binary trees

❑ Search procedures:

 Each vertex is a test (yes/no)

 Outcome of the test decides to choose one of the

two vertices at the next level

 The process continues until we reach a pendant

vertex, where we get the final output

 If the height of the tree is made as small as
possible, we could reduce the number of tests

 Eg: binary search

Path length of a binary tree

❑ Path length of a tree is defined as the sum of the path
lengths of the pendant vertices from the root OR

❑ Sum of the levels of all pendant vertices

❑ It is an important factor as it is related to the execution
time of an algorithm

❑ P = Σ Li ∀ pendant vertex Vi

❑ P = 3+3+3+3+2+2 = 16 Level 0

Level 1

Level 2

Level 3

3 3 33

22

❑ Obtain the path length of the binary tree given
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

5 5

4

3

2

1

Weighted Path Length

❑ All pendant vertices are associated with a positive
real number, called weight w

❑ Path length of each pendant vertex is multiplied
by the corresponding weight to obtain weighted
path length of the pendant vertex

❑ Hence weighted path length of the binary tree is
the sum of the weighted path lengths of the
pendant vertices

❑ Pw = Σ wi Li ∀ pendant vertex Vi

❑ In applications, we would be required to build
binary trees with minimum weighted path length

❑ Pw =Σ wi Li = 3x2+3x5+3x3+3x1+2x7+2x5 = 57

Level 0

Level 1

Level 2

Level 3

3 3 33

22

2 5 13

57

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

5 5

4

3

2

12

5

0

1

1

❑ Problem: Consider a coke machine that accepts
coins. Suppose the machine lets only 4 types of
coins to go through the slot, say pennies, nickels,
dimes & quarters. The machine performs a
sequence of tests to identify the coin. Probability
of a coin being a penny, nickel, dime & a quarter
are 0.05, 0.15, 0.5 & 0.30 respectively. For each
type of coin, 1 test is done. Suppose all 4 tests
take the same amount of time. The result of each
test is yes or no. Then in what order must the
tests be done, so as to minimize the overall coin
determination time.

Solution

❑ Construct a binary tree with 4 pendant vertices, with

their corresponding weight, as w1=0.05, w2= 0.15, w3=

0.5, w4 =0.3, such that the weighted path length is the

minimum

Possible binary trees

❑ If ‘t’ is the time taken for each test, then

weighted path lengths are
 Σ wi Li = 1x0.5+2x0.3+3x0.05+3x0.15=1.7t

 Σ wi Li = 2x0.5+2x0.3+2x0.05+2x0.15= 2t

Level 0

Level 1

Level 2

Level 3

dime not dime

quarter not quarter

penny not penny

nickel

0.5

0.3

0.05 0.15

Σ wi Li = 1.7

quarter

Level 0

Level 1

Level 2

dime/penny nickel/quarter

dimepenny nickel

0.5 0.30.05 0.15

Σ wi Li = 2

Possible binary trees

 Σ wi Li = 1x0.05+2x0.3+3x0.5+3x0.15=2.6t

 Σ wi Li = 1x0.15+2x0.3+3x0.5+3x0.05=2.4t

❑ Hence the first binary tree would be our solution

Level 0

Level 1

Level 2

Level 3

dime not dime

quarter not quarter

penny not penny

nickel
0.5

0.3

0.05

0.15

Σ wi Li = 2.6

Level 0

Level 1

Level 2

Level 3

dime not dime

quarter not quarter

nickel not nickel

penny

0.5

0.3

0.05

0.15

Σ wi Li = 2.4

❑ Theorem 23: The number of vertices 'n' in a binary
tree is always odd

❑ Proof: In a binary tree, only the root node has
even degree

❑ In an 'n' vertex binary tree, remaining (n-1)
vertices are of odd degree

❑ The no. of odd degree vertices in any graph is
even

❑ Therefore the quantity (n-1) must always be even

❑ Then n is odd

❑ Theorem 24: In a binary tree with n vertices, the number of pendant

vertices, p =
𝑛+1

2

❑ Proof:

❑ In a binary tree, no. of root vertex = 1 & the degree of root vertex is 2

❑ Let p denote the no. of pendant vertices degree of each pendant vertex is 1

❑ No. of internal vertices = n-p-1 & the degree of each internal vertex is 3

❑ We know that the sum of the degrees of all vertices in a graph is twice the
no. of edges

❑ In a binary tree with n vertices, the no. of edges = n-1; hence we may get

❑ 2x1 + 1xp + 3x(n-p-1) = 2(n-1)

❑ 2+p+3n-3p-3 = 2n-2

❑ 2-3+2 +3n-2n = 3p-p

❑ 1+n = 2p → p =
𝑛+1

2

❑ Theorem 25: The maximum possible level or height of
a binary tree with n vertices is given by
 Lmin = ⌈log2(n+1)-1⌉

 Lmax =
𝑛−1

2

❑ Proof:

❑ At level 0, we have 1 vertex

❑ At level 1, we have 2 vertices

❑ At level 2, we have 3 vertices

❑ Maximum no. of vertices in a k-level binary tree is

❑ Vmax = 20 + 21 + 22 +…… + 2k

❑ That means, n<= 20 + 21 + 22 +…… + 2k

❑ Sum of a GP =
𝑎𝑟𝑛+1−1

𝑟−1

❑ Hence r=2, a=1

❑ then n <=
2𝑘+1−1

2−1

❑ n <= 2𝑘+1 -1

❑ n+1 <= 2𝑘+1

❑ log2(n+1)<= (k+1)log22

❑ log2(n+1)<= k+1

❑ log2(n+1) -1 <= k

❑ K >= log2(n+1) -1
❑ Hence Lmin = ⌈log2(n+1)-1⌉

❑ Now, to construct a binary tree with n vertices such that the
farthest vertex is as far as possible from the root, we must
have exactly 2 vertices at each level except at level 0

❑ If k is the max level, then
 At level 0, no. of vertex =1 (only the root vertex)

 At level 1, no. of vertices = 2

 At level 2, no. of vertices = 2

 At level k, no. of vertices = 2

❑ Then total no. of vertices = 1+2+2+2+.....(k times) = n

1+2k = n

k =
𝑛−1

2

❑ Hence Lmax =
𝑛−1

2

Sum up

❑ Binary trees are rooted trees

❑ Root vertex has degree 2, all internal vertices are of degree 3 & all pendant
vertices are of degree 1

❑ The total no. of vertices, n in a binary tree is always odd.

❑ The no. of internal vertices in a binary tree is (n-p-1)

❑ The no. of pendant vertices, p =
𝑛+1

2

❑ Max no. of vertices possible for a k-level binary tree is

❑ Vmax = 20 + 21 + 22 +…… + 2k

❑ The max possible level for a n vertex binary tree is

❑ min Lmax = ⌈log2(n+1)-1⌉

❑ max Lmax =
𝑛−1

2
❑ Path length of a binary tree P = Σ Li ∀ pendant vertex Vi

❑ Weighted path length, Pw = Σ wi Li ∀ pendant vertex Vi

Counting trees

❑ The total number of trees that one can

construct with a given number of vertices

❑ The count is different for labeled and

unlabeled trees

Labeled trees

❑ A tree in which each vertex is assigned a unique

label

❑ According to Cayley's theorem, the no. of different

labeled trees possible with n vertices is nn-2

❑ Eg: no. of labeled trees possible for n=3 is 33-2 = 3

A

B C

A

B C

A

B C

Problem

❑ Draw all labelled trees for n=4

Unlabeled trees

❑ A tree in which there is no distinction between the
vertices by their name. However vertices differ in
their degree

❑ Eg: Count all unlabeled trees for n=3

❑ There is only 1 tree possible with n=3

❑

❑ Through we can draw and

❑ It is all the same, since unlabeled

Problem

❑ Count all unlabeled trees for n=4

❑ Solution:

Problem

❑ Count all unlabeled trees for n=5

Application of counting trees

❑ In 1857, Arthur Cayley discovered trees while

he was trying to count the structural isomers of

saturated hydrocarbons

❑ He used a connected graph to represent

hydrocarbon molecules

Saturated hydrocarbons

❑ They contain carbon & hydrocarbon atoms

❑ General formula is CkH2k+2

❑ Carbon atoms have valency 4 & hydrogen atoms
have valency 1

❑ Since their chemical structure assembles that of a
tree, properties of trees are used to study them
further

❑ These hydrocarbons can be represented as
labeled trees, where carbon & hydrogen atoms
are denoted as vertices & the bonding between
them is shown as edges

❑ Since in CkH2k+2

 No. of C atoms= k &

 No. of H atoms= 2k+2

 Total no. of vertices in the tree = k+2k+2 = 3k+2

❑ Since in CkH2k+2

 degree of each C atom = 4

 degree of each H atom = 1

 Total degree of the graph = 4k+2k+2=6k+2

 Hence, no. of edges =
6𝑘+2

2
= 3k+1

Problem

❑ How many structural isomers are there for Butane
(C4H10)?

❑ Graph theoretic problem: How many different
unlabeled trees are possible with n = 4 ?

❑ Solution: we have omitted the hydrogen atom
vertices, because hydrogen atom vertices are
pendant vertices, they go with carbon atoms only
one way. Hence they make no contribution to
isomerism.

❑ As a result the tree contains only C atoms. So we
can use unlabeled trees, as there is no distinction
between C atom vertices

❑ Possible unlabeled trees for n=4 are:

❑ Hence 2 isomers are possible for butane:

H
H
H

H
H
H

H

H

H

H

n Butane

C

iso Butane

C

C

C

H H H H H H

H H H

H

Problem

❑ Find out the structural isomers of pentane

Cayley’s theorem

❑ Theorem 26: The number of labelled trees with 'n'
vertices (n>=2) is nn-2

❑ Proof:

❑ Suppose we have a tree with n uniquely labeled
vertices

❑ Number all vertices with numbers from 1 to n

❑ Find the pendant vertex with the least number. Let it
be P1. Let a1 be the vertex adjacent to p1

❑ Delete vertex p1 along with the incident edge from the
tree

❑ Start a prufer sequence; add a1 to the prufer
sequence (a1)

❑ From the remaining tree with (n-1) vertices, find the
pendant vertex with the least number. Let it be p2. Let
a2 be the vertex adjacent to p2

❑ Delete vertex p2 along with the incident edge from the
tree

❑ Add a2 to the prufer sequence (a1, a2,)

❑ Continue the process until only 2 vertices are left in
the tree

❑ Now the prufer sequence (a1, a2, …, an-2)uniquely
defines the tree

❑ Thus with n vertices, we can get nn-2 different labeled
trees

Example

❑ Consider the uniquely labelled tree given

❑ Number the vertices

❑ The pendant vertex with least number is H; hence p1=vertex H

 a1=vertex D(2) (adjacent to p1)

 Prufer seq = (2)

 Delete H

❑ Next pendant vertex with least number p2= I

 a2=vertex D(2) (adjacent to I)

 Prufer seq = (2, 2)

 Delete I

❑ Next pendant vertex is p3= D

 a1=vertex C(4) (adjacent to D)

 Prufer seq = (2, 2, 4)

 Delete C

A

B

C

D

E

H
I

G

F

1
2

3

4

5

6

7

89

Example

❑ Next is p4= C

 a4=vertex B(5) (adjacent to C)

 Prufer seq = (2, 2, 4, 5)

 Delete C

❑ Next is p5= E

 a5=vertex B(5) (adjacent to E)

 Prufer seq = (2, 2, 4, 5, 5)

 Delete E

❑ Next is p6= G

 a6=vertex F(7) (adjacent to G)

 Prufer seq = (2, 2, 4, 5, 5, 7)

 Delete G

❑ Next is p7= F

 a7=vertex B(5) (adjacent to F)

 Prufer seq = (2, 2, 4, 5, 5, 7, 5)

 Delete F

A

B

C

E
G

F

4

5

6

7

89

❑ Now the sequence is unique for the labelled

tree

❑ Since the sequence contains 7 elements, and

n=9, we can get nn-2 =97 such unique

sequences

Spanning trees

❑ A tree T is said to be a spanning a tree of a

connected graph G if

 T is a subgraph of G and

 T contains all vertices of G

V2 V3

V5V6

d

h

f

c

b

a

V1

e
j

i

V4

g

: G

V2 V3

V5V6

h

f

c

a

V1

i

V4

: T

❑ Since the spanning tree depicts the skeleton of
the graph G, T is also known as the
skeleton/scaffolding of G

❑ Since spanning trees are the largest trees among
all possible trees of G, it is also known as maximal
tree subgraph or maximal tree of G

❑ Note:

❑ Spanning are always referred with respect to
some connected graph

❑ For a given connected graph there can be many
spanning trees

Different SPTs of a graph

❑ m
V2 V3

V5V6

d

h

f

c

b

a

V1

e
j

i

V4

g

: G

V2 V3

V5V6

h

f

c

b

V1

i

V4

: SPT 1

V2 V3

V5V6

h
g

c

b

V1

j

V4

: SPT 3

V2 V3

V5V6

hge

a

V1

i

V4

: SPT 2

Spanning forest

❑ In a disconnected graph, a spanning tree can be found

for each connected component, together which is known

as a spanning forest

❑ Hence a disconnect graph with k components will have

a spanning forest with k spanning trees

V2
V3

V4V1

b

c

d

a e f

: G

V9

V8

j

g

i

V6

V5

h

V7

V2
V3

V4V1

b

ca

: F

V9

V8

j

i

V6V5

h

V7

Finding the spanning tree

❑ For a given connected graph G,

1) If G has no circuits, G itself is the SPT

2) If G has a circuit, remove one edge from the

circuit such that G still remains connected

3) Repeat step 2 until G is circuit-less

4) The remaining graph is a SPT

Branch & Chord

❑ W.r.t a given SPT, an edge of the graph G that is a
part of the SPT is called a branch of the tree

❑ An edge of G that is not included in the SPT is
called a chord of the graph G

❑ Hence, branches + chords = Edge set of G

❑ If T is the spanning tree of H and 𝑇 be the
complement of T in G then T U 𝑇 = G

❑ Note:
 A graph may have many spanning trees

 Branches and Chords are defined wrt one SPT

 An edge that is a branch of one SPT may be a chord for
another SPT of the same graph

❑ For the SPT chosen,

 Branches={a,c,f,h,i}

 Chords={b,d,e,g,j}

V2 V3

V5V6

h

f

c

a

V1

i

V4

: SPT

V2 V3

V5V6

b

V1

e
j

V4

g

: 𝑺𝑷𝑻

d

V2 V3

V5V6

d

h

f

c

b

a

V1

e
j

i

V4

g

: G

Different SPTs of a graph

V2 V3

V5V6

d

h

f

c

b

a

V1

e
j

i

V4

g

: G

V2 V3

V5V6

h

f

c

b

V1

i

V4

: SPT 1
B={b,c,f,h,i}

C={a,d,e,g,j}
V2 V3

V5V6

hge

a

V1

i

V4

: SPT 2
B={a,e,g,h,i}

C={b,c,d,f,j}

V2 V3

V5V6

h
g

c

b

V1

j

V4

: SPT 3
B={b,c,g,h,j}

C={a,d,e,f,i}

❑ Theorem 27: Every connected graph G has at least
one spanning tree

❑ Proof:

❑ If the connected graph G has no circuits, then it is its
own spanning tree

❑ If it has a cycle/circuit, delete one edge from the cycle
such that the graph still remains connected

❑ Repeat the above step until there are no more cycles
in the graph

❑ The final graph will hence contain all vertices of the
graph and no cycles

❑ Hence it is a SPT

❑ Theorem 28: Any SPT of a connected graph
with n vertices and e edges has (n-1) tree
branches and (e-n+1) chords

❑ Proof:

❑ The connected graph has n vertices and e
edges

❑ Any SPT of the graph will contain n vertices
and (n-1) edges

❑ The remaining edges of the graph are chords,
i.e. e-(n-1)= e-n+1

Rank & Nullity

❑ For a graph with n vertices, e edges and k
components

 Rank, r = n-k

 Nullity, 𝜇 = e-n+k

❑ If the graph is connected, then k=1; hence

 Rank, r = n-1

 Nullity, 𝜇 = e-n+1

❑ Note:

 r = no. of branches in a SPT of the graph

 𝜇 = no. of chords in the graph wrt the SPT

Examples

❑ Rank r = n-1 = 6-1 = 5

❑ Nullity, 𝜇 = e-n+1 = 10-6+1 = 5

V2 V3

V5V6

d

h

f

c

b

a

V1

e
j

i

V4

g

: G

V2 V3

V5V6

h

f

c

a

V1

i

V4

: SPT

B={a,c,f,h,i}

C={b,d,e,g,j}

Applications

❑ Real life problem: An electric network contains

e elements and n nodes. What is the minimum

no. of elements that must be removed so as to

make the network circuit-less?

❑ Graph theoretic problem: Represent the

network as a connected graph. Let the edges

represent the elements and vertices the

nodes. How many edges need to be removed

so as make the graph circuit-less?

❑ Solution:

 No. of branches in the SPT = n-1

 No. of chords = e-n+1

 Hence removal of e-n+1 elements can make the
network circuit-less

❑ Real life problem: Consider a farm consisting

of 6 walled plots of land and these plots are

filled with water, then how many walls need to

be broken so as to drain out the water?

❑ Graph theoretic problem: Represent the farm

as connected graph with the walls as edges

and corners as vertices. How many edges

need to be removed so as make the graph

circuit-less?

❑ Since n=10 & e=15,

❑ No. of branches= n-1=9

❑ No. of chords = e-n+1 =6

V2

V3

V5

V6

V1

V4

V7

V8

d

h

f

c

b

a

e
j i

g

k
l

m

no
V9

V10

❑ Hence, removing 6 chords can make the graph

a tree; then water can flow out easily

V2

V3

V5

V6

V1

V4

V7

V8

d

h

f

c

b

a

e
j i

g

k
l

m

no
V9

V10

V2

V3

V5

V6

V1

V4

V7

V8

h

f

j i

g

k
l

m

no
V9

V10

Properties of spanning trees

❑ A connected graph G may have any number of spanning
trees

❑ The no. of vertices in any spanning tree is n; these are the
vertices of the graph G

❑ The no. of edges in any spanning tree is n-1; these are some
of the edges of the graph G

❑ The edges of a SPT are known as its branches

❑ The edges of the graph not included in a SPT are known as
chords of the graph wrt the SPT

❑ Every SPT will contain (n-1) branches; but the set of (n-1)
branches will be different for different SPTs

❑ Every SPT will leave (e-n+1) chords in the graph; the set of
chords will be different for different SPTs

❑ Theorem 29: A connected graph is a tree iff adding an
edge between any two vertices in G creates exactly
one circuit

❑ Proof: suppose that the connected graph G is a tree

❑ Add an edge between any two vertices of the tree say
vi & vj

❑ Since vi & vj are vertices of the tree, an edge between
them creates a circuit, as there was already a path
between vi & vj in the tree

❑ Since there could be only one path between every
pair of vertices in a tree, adding an edge can create
only one circuit

❑ Conversely: suppose that adding an edge

between any two vertices of G creates exactly

one circuit

❑ That means there was only path between

every pair of vertices in G

❑ Which in turn implies that G was a tree

Finding all SPTs

❑ From a given SPT of a graph, we can find the
other SPTs of the same graph by the
procedure of elementary tree transformation or
cyclic interchange

1) Start with a given SPT

2) Add a chord to the SPT so that a fundamental
circuit is formed

3) Remove 1 branch from the circuit so formed.
This will break the circuit and generate a new
SPT

4) Repeat steps 2 & 3 until all SPTs are obtained

Example

c

d

f

V2 V3

V5V6

hc

a

V1

i

V4

b j

h

g

i

e

a

V2 V3

V5V6

d

h

f

c

b

a

V1 e

j

i

V4
g

: G

V2 V3

V5V6

V1 V4h

d
a i

b

V2 V3

V5V6

d
a

V1

i

V4

b

V2 V3

V5V6

d
a

V1 V4

jb

g

V2 V3

V5V6

d

V1 V4

j

Distance b/w two SPTs

❑ Distance b/w two SPTs of a graph is the no. of

branches in which they differ

❑ Distance b/w SPT1 & SPT2 = 3

f

V2 V3

V5V6

hc

a

V1

i

V4

jb

V2 V3

V5V6

d
a

V1

i

V4

: SPT1

: SPT2

V2 V3

V5V6

d

h

f

c

b

a

V1
e

j

i

V4
g

: G

❑ Hence distance b/w two SPTi & SPTj is given by

 d(SPTi , SPTj)= ½ N(SPTi ⊕ SPTj)

 Where N gives the no. of edges

 Here, N(SPT1 ⊕ SPT2) = 6

 d(SPT1,SPT2)=6/2=3

V2 V3

V5V6

d

h

f

c

b

a

V1
e

j

i

V4
g

: G

f

V2 V3

V5V6

hc

a

V1

i

V4

jb

V2 V3

V5V6

d
a

V1

i

V4

: SPT1

: SPT2

Maximum distance b/w two SPTs

❑ Two SPTs are at maximum distance, when

they are edge disjoint; i.e they have no edge in

common

❑ Since maximum no. of edges in a SPT is (n-1),

the maximum distance possible b/w any 2

SPTs trees of a graph = n-1

❑ But if there aren’t enough chords left, the

maximum distance possible b/w any 2 SPTs

get limited to the no. of chords available

❑ For n vertices and e edges in G,
 If e=2(n-1) (exactly n-1 chords available)

◼ d(SPTi , SPTj)= n-1 = r

 If e> 2(n-1) (more chords left)
◼ d(SPTi, SPTj)= n-1 = r

 If e<2(n-1) (not enough chords)
◼ d(SPTi , SPTj)= e-n+1 = 𝜇

❑ Hence we can conclude
 if e >= 2(n-1) → d(SPTi , SPTj) = r

 if e < 2(n-1) → d(SPTi , SPTj) = 𝜇

❑ More precisely,
 d(SPTi , SPTj) = min(r, 𝜇)

Example : when r =

❑ Here n=6 & e=10; r = 5 & 𝛍 = 5

❑ Hence d(SPT1,SPT2)= 5

V2 V3

V5V6

d

h

f

c

b

a

V1
e

j

i

V4
g

: G

f

V2 V3

V5V6

hc

a

V1

i

V4

jb

V2 V3

V5V6

d

V1 V4

: SPT1

: SPT2ge

when r >

❑ Here n=6 & e=7; r = 5 & 𝛍 = 2

❑ d(SPT1,SPT2)= 2

V2
V3

V4V5

b

d

f

c

a
V1

e

: G

V6

g

V2 V3

V4V5

d

f

c

a
V1

: SPT 1

V6

g

V2 V3

V4V5

b

f

a
V1

e

: SPT 2

V6

g

when r <

❑ Here n=6 & e=14; r = 5 & 𝛍 = 9

❑ d(SPT1,SPT2)= 5

V2

V3

V5

V6

d

h

f

c

b

a

V1 e j

i
V4

g

: G

k

n

m

l

V2

V3

V5

V6
f

b

V1

i
V4

k

l

V2

V5

V6

hc

a

V1
j

V4

m

❑ Hence maximum distance b/w any two SPTs of

a graph is either

 n-1 (rank,r) or

 e-n+1 (nullity, 𝜇)

❑ max d(SPTi , SPTj)= min(r, 𝜇)

Whichever is smaller

Problem

❑ Find the max distance b/w the SPTs of the

graph G

V2 V3

V4V5

a

b

e

c
d

: G

Tree graph

❑ All SPTs of a graph are represented as

vertices of a tree

❑ The cyclic interchange from one SPT to

another is represented as an edge between

them

Example

V2 V3

V5V6

d

h

f

c

b

a

V1
e

j

i

V4
g

: G

Central spanning tree

❑ The SPT of a graph which has minimum

distance with all other spanning trees of the

same graph

❑ Same concept as center of a tree

❑ Theorem 30: The distance between the spanning trees
of a graph is a metric

❑ Proof:

❑ Distance b/w any two spanning trees is always positive
or zero

 d(SPTi , SPTj) >= 0

 d(SPTi , SPTj) = 0 if i=j

❑ The number of branches by which SPTi differs from SPTj

is the same as that SPTj differs from SPTi

 d(SPTi , SPTj) = d(SPTj , SPTi)

❑ Triangular inequality

 d(SPTi , SPTj) <= d(SPTi , SPTk) + d(SPTk , SPTj)

❑ Theorem 31: Starting from any one SPT,

we can obtain every other SPT of G by

successive cyclic interchanges

❑ Proof:

Shortest Spanning trees

❑ In the context of weighted graphs, where a
numerical value (weight) is associated with each
edge of the graph

❑ The shortest SPT of the graph is the one with
minimum sum of weights

❑ Similar to lightest Ham circuit (travelling salesman
problem)

❑ Also known as

 Shortest distance SPT

 Minimal SPT

Application

❑ Real life problem: Suppose if we need to
construct roads to connect ‘n’ cities. Which are
the cities that need to directly connected by
roads so that construction cost can be
minimized?

❑ Graph theoretic problem: Draw a complete
graph with ‘n’ vertices. On each edge note
down the construction cost. Find the minimum
SPT of the graph. The branches of which
represents the roads that are to be constructed

Finding the min SPT

❑ Many algorithms are available to find the

minimum SPT of weighted graphs

 Kruskal’s algorithm

 Prim’s algorithm

Kruskal’s algorithm

1) List all edges of the graph in the increasing

order of their weights

2) Choose the edge with the smallest weight to

be the first branch of the SPT

3) Choose the next smallest-weight edge such

that it doesn’t make a circuit with the

preciously selected edges

4) Continue the process until (n-1) edges have

been chosen

Example

❑ Edge listing: V2 V3

V5
V6 d

hf c

baV1

e

i

V4

g

: G

1 6

2

1 4

3 5 4

1

wt edge

1 a

1 h

1 e

2 c

3 f

4 d

4 i

5 g

6 b

V2 V3

V5
V6 d

h c

aV1

e V4

: mSPT

1

2

1 4

1













f3

Weight of the mSPT=9

Prim’s algorithm

1) Draw ‘n’ isolated vertices and label them as v1,
v2, v3, …vn

2) Tabulate the weights of the edges in an nxn
matrix

3) Set the weights of non existent edges as ∞

4) Start from vertex v1 and find its nearest neighbor
(edge with minimum distance). Nearest neighbor
is found by choosing the one which has least
value in row1 , say vi. Draw the edge b/w v1 and
vi in the null graph. Consider the edge as a
subgraph

5) Now find the nearest neighbor of the

subgraph. It is found by choosing the one

with least value in rows 1 & i, say v j. Add this

edge to the subgraph.

6) Repeat step 3 until (n-1) edges have been

chosen

Example

V1 V2 V3 V4 V5 V6

V1 - 1 ∞ ∞ ∞ 3

V2 1 - 6 ∞ 1 5

V3 ∞ 6 - 2 4 ∞

V4 ∞ ∞ 2 - 4 ∞

V5 ∞ 1 4 4 - 1

V6 3 5 ∞ ∞ 1 -

V2 V3

V5
V6 d

hf c

baV1

e

i

V4

g

: G

1 6

2

1 4

3 5 4

1

V2 V3

V5
V6

i
h c

aV1

e V4

: mSPT

1

2

1

4

1
f3



 

 

















Weight of the mSPT= 1+1+1+4+2=9

Problem

❑ Find the mSPT for the given graph using

 Kruskal’s

 Prim’s
V2

V3

V5

V6 d

h

e c

b
a

V1

f

i

V4

g

: G

56

2

5

6

3

1

4

5

j
6

Fundamental circuit

❑ W.r.t a given SPT, the circuit formed in the

SPT by adding a chord is referred to as a

Fundamental circuit

❑ Since each chord can generate 1 circuit, the

no. of fundamental circuits possible for a graph

is given by the no. of chords in the graph

Example

V2

V3
d

f

c

b

a

V1

e

V4

: G

V2

V3

c

b

a

V1

V4

: spt 1

V2

V3
d

f

bV1

V4

: spt 2

B={a,b,c}

C={d,e,f}

B={b,d,f}

C={a,c,e}

V2

V3

c

b

a

V1

V4

: FC 1
(adding chord d)

d

V2

V3

c

b

a

V1

V4

: FC 2
(adding chord e)

e

V2

V3

c

b

a

V1

V4

: FC 3
(adding chord f)

f

V2

V3

a

b

f

V1

V4

: FC 1
(adding chord a)

d

V2

V3

c

b

d

V1

V4

: FC 2
(adding chord c)

f

V2

V3
d

b

e
V1

V4

: FC 3
(adding chord e)

f

Sum up

❑ A connected graph will have many SPTs

❑ For each SPT, some of the (n-1) edges form the
branches and remaining e-n+1 edges form the chords

❑ A fundamental circuit is always mentioned wrt a SPT

❑ A fundamental circuit contains 1 chord along with
all/some branches of the SPT

❑ Each chord produces one fundamental circuit

❑ Hence no. of fundamental circuits possible for a SPT
is given by the no. of chords

❑ A circuit that contains 2 chords is not a fundamental
circuit

A connected graph

SPT 1 SPT 2 SPT k…

b1, b2, …….., bi

c1, c2, ……….., cj

+

FC 1 FC 2 FC j

+ +

i=n-1

j=e-n+1

j=e-n+1

= = =

End of module 3

Graph connectivity &

Planar graphs

Module 4
V1

V3

V4

V5

V6

V2

Contents

❑ Graph connectivity

 Cut-sets & cut-vertices

 Fundamental circuits

 Edge connectivity

 Vertex connectivity

❑ Planar graphs

 Different representation of planar graphs

 Euler’s theorem

 Geometric dual

 Combinatorial dual

Cut-sets

❑ In a connected graph G, a cut-set is a set of edges
removal of which leaves the graph disconnected,
provided removal of no proper subset of the set
disconnects G

❑ A cut-set cuts the graph into two components such
that no path exists between the two

❑ It is the minimal set of edges removal of which
reduces the rank of the graph by one

❑ A cut-set is also known as
 Minimal cut-set

 Proper cut-set

 Co-cycle

Example

❑ In graph G, {a,d} is a cut-set; cs1= {a,d}

❑ Hence G-cs1 = 2 sub-graphs of G, g1 & g2

❑ In graph G, n=6, k=1→rank = n – k = 5

❑ After removing the cut-set, n=6,k=2 → rank = n – k = 4

❑ Hence removal of a cut-set reduces the rank of the graph by one

V2

V3V5 V6

d

f

c

ba

V1

e

V4

g

: G

V2

V3V5 V6

f

c

b

V1

e

V4

g

: g2

{v1}

{ }

{v2,v3,v4,v5,v6}

{b,c,e,f,g}

: g1

: G

❑ In graph G, {a,e,c} is another cut-set

❑ cs2= {a,e,c}

❑ Hence G-cs2 = 2 sub-graphs of G, g1 & g2

V2

V3V5 V6

d

f

c

ba

V1

e

V4

g

: G

{v1,v4}

{d}

{v2,v3,v5,v6}

{b,f,g}

: g1

V2

V3V5 V6

d

f

b

V1

V4

g

: g2

: G

List all cut-sets

❑ cs1= {a,d}

❑ cs2= {a,b,f}

❑ cs3= {b,c}

❑ cs4= {d,e,c}

❑ cs5= {a,e,c}

❑ cs6= {a,f,c}

❑ cs7= {b,f,d}

❑ cs8= {b,e,d}

❑ cs9= {g}

V2

V3V5 V6

d

f

c

ba

V1

e

V4

g

: G

Wrong cut-sets

❑ Is {a,f,b,g} a cut-set of G ?

❑ No, coz removal of {a,f,b,g} cuts the graph into three

❑ Also the proper subset (a,f,b} of {a,f,b,g} is itself a cut-set

❑ Subset of a cut-set cannot be a cut-set

f

ba

V2

V3V5 V6

d c

V1

e

V4

g

: G

Wrong cut-sets

❑ Is {b,c,g} a cut-set of G ?

❑ No, coz it cuts the graph into three

❑ Moreover, subset {b,c} itself is a cut-set

c

b

g
f

a

V2

V3V5 V6

d

V1

e

V4
: G

Wrong cut-sets

❑ Is {a,f} a cut-set of G ?

❑ No, coz removal of {a,f} does not cut the graph

into two

f

a

V2

V3V5 V6

d c

b

V1

e

V4

g

: G

Right cut-sets

❑ Is {e,f} a cut-set of G?

❑ Yes, coz {e,f} cuts the graph into two & none of

the proper subsets of {e,f} is a cut-set

f

e c

b

g

a

V2

V3V5 V6

d

V1

V4
: G

Cut-set in a tree

❑ Since removal of any edge in a tree breaks the

tree into two, every edge of a tree is a cut-set

❑ Cut-sets→ {a} {b} {c} {d} {e}

V2

V3

V5 V6

V1

V4c

b

e

a

d

Fundamental cut-set

❑ W.r.t a given SPT, a cut-set of the graph is

said to be fundamental, if it contains exactly

one branch of the SPT along with some/all of

the chords

❑ Since each branch can generate 1 cut-set, the

no. of fundamental cut-sets possible for a

graph is given by the no. of branches in the

spanning tree

Example

V2

V3
d

f

c

b

a

V1

e

V4

: G

V2

V3

c

b

a

V1

V4

: spt 1

V2

V3
d

f

bV1

V4

: spt 2

B={a,b,c}

C={d,e,f}

B={b,d,f}

C={a,c,e}

V2

V3

c

b

a

V1

V4

:FCS1{a,e,d}
(using branch a)

d

e

f
V2

V3

c

b

a

V1

V4

:FCS2{b,f,e,d}
(using branch b)

d

e
f

V2

V3

c

b

a

V1

V4

:FCS3{c,e,d}
(using branch c)

d

e

f
V2

V3

a

b

f
V1

V4

:FCS1{b,e,a}
(using branch b)

d

ce

V2

V3

a

b

f
V1

V4

:FCS2{a,f,e,c}
(using branch f)

d

ce

V2

V3

a

b

f
V1

V4

:FCS3{c,e,d}
(using branch d)

d

ce

Sum up

❑ A connected graph will have many SPTs

❑ For each SPT, some of the (n-1) edges form the
branches and remaining e-n+1 edges form the chords

❑ A fundamental cut-set is always mentioned w.r.t a
SPT

❑ A fundamental cut-set contains 1 branch along with
all/some chords of the SPT

❑ Each branch produces one fundamental cut-set

❑ Hence no. of fundamental cut-sets possible for a
graph is given by the no. of branches in its SPT

❑ A cut-set that contains 2 branches is not a
fundamental cut-set

❑ Theorem 32: Every cut-set in a connected graph G must contain at
least one branch of every spanning tree of G

❑ Proof: Let G be a connected graph and S be a cut-set of G

❑ Assume that we have a SPT T that does not have any of its
branches in S

❑ Then removing S from G does not remove any of the branches from
G

❑ Since the spanning tree remains completely in the graph and any
SPT shall contain all the vertices of the graph, removal of S still
leaves the graph connected

❑ But it is not possible. Removal of any cut-set must leave the graph
disconnected

❑ Hence our assumption cannot be true

❑ There can be no SPT without any of its branches in any cut-set of G

❑ Hence the theorem

Note

❑ Every cut-set must contain at least one branch of every SPT

❑ However if there are k SPTs, it is not necessary that every cut-set must

contain k elements; an edge may be common to many SPTs

❑ If a cut-set has a single edge then that edge has to be a branch in all the

SPTs

{ }

{ }

{ }
{ }

{ }

{ }

{ }
{ }

{…………}

Cut-set 1

Cut-set 2

…..

Cut-set i

SPT 1

SPT 2

SPT 3

SPT k

….

❑ Theorem 33: In a connected graph G, any minimal set of
edges containing at least one branch of every SPT of G is a
cut-set

❑ Proof: In a connected graph G, let Q be a minimal set of
edges containing at least one branch of every SPT of G

❑ Remove Q from G. The remaining graph will not contain any
of the SPTs. That means now the graph is disconnected

❑ Also, since Q is the minimal set of edges containing branches
from all SPTs, returning any one edge to G-Q will create at
least one SPT thereby making the graph connected as well

❑ Then we can say that Q is the minimal set of edges removal
of which disconnects G, which is indeed the definition of a
cut-set

❑ Hence Q is a cut-set

❑ Theorem 34: Every circuit has an even no. of edges in
common with any cut-set

❑ Proof: Consider a cut-set S in graph G. let the removal of S
partition the vertices of G into two disjoint subsets V1 and V2.

❑ Consider a circuit 𝜌 in G(before the removal of S). If all the
vertices of𝜌 lies entirely within V1 or entirely within V2, then S
will have no edge in common with 𝜌 i.e, zero no. of edges in
common (even)

❑ Whereas if some of the vertices of 𝜌 lies in V1 and some in
V2, then in order to traverse the circuit we need to go back
and forth between V1 and V2 and finally need to reach back at
the starting point

❑ Hence the no. of edges we traverse be tween V1 and V2 must
be even. And these edges could be only from S. Therefore
no. of edges common to S and 𝜌 is even

❑ Theorem 35: The ringsum of any two cut-sets in a graph is either a third
cut-set or an edge disjoint union of cut-sets

❑ Proof: Let S1 be a cut-set of the graph that partitions the vertex set V into
V1 and V2

❑ Let S2 be another cut-set of the graph that partitions the V into V3 and V4

❑ Clearly, V1 U V2 = V and V 1 ∩ V2 = ∅

V3 U V4 = V and V3 ∩ V4 = ∅

❑ Now consider the subset(V1 ∩ V4) U (V2 ∩ V3) as V5 which is in fact V2 ⊕
V3; similarly consider subset(V1 ∩ V3) U (V2 ∩ V4) as V6 which is same as
V2 ⊕ V3

❑ Now S1 ⊕ S2 seem to contain only those edges between V5 and V6. Also
there are no other edges between V5 & V6 which implies V5 U V6 = V and
V5 ∩ V6 = ∅

❑ Then S1 ⊕ S2 is a cut-set of G if V5 and V6 each remain connected after
the removal of S1 ⊕ S2 ; otherwise S1 ⊕ S2 is the union of cut-sets

Example

❑ Eg 1: cut-sets S1= {d,e,f} & S2={f,i,h}

S1 ⊕ S2 = (S1 U S2) - (S1 ∩ S2)

= {d,e,f,i,h} – { f }

= {d,e,i,h}

→ again a cut-set

❑ Eg 2: cut-sets S1= {a,b} & S2={b,c,e,f}

S1 ⊕ S2 = {a,c,e,f}

→ again another cut-set

❑ Eg 3: cut-sets S1= {d,e,i,h} & S2={f,i,j,}

S1 ⊕ S2 = {d,e,f,h,j}

→ union of two cut-sets {d,e,f} and {h,j}

V2 V4

V5V3

d

h

f

c

b

a

V1 e

j

i V6

: G

❑ Theorem 36: W.r.t a given SPT T, a chord ci that determines a fundamental
circuit 𝜌 occurs in every fundamental cut-set associated with the branches
in 𝜌 and in no other

❑ Proof: T is the given SPT

❑ Let 𝜌 be the fundamental circuit determined by the chord ci

❑ 𝜌 in = {ci , b1, b2, …, bk }

❑ Let S1 be the fundamental cut-set associated with branch b1

❑ S1={b1,c1, c2, ….cq}

❑ Since the number of edges common to 𝜌 and S1 must be even, ci must be
in S1

❑ The same is true for fundamental cut-sets made by branches b2,b3,…bk

❑ On the other hand suppose that ci occurs in some fundamental cut-set Sk+1
made by a branch other than b1,b2,….bk. Since none of the branches is in
Sk+1, there is only 1 edge - ci - common to Sk+1 and the fundamental circuit
𝜌 which is not possible

❑ Hence the theorem

❑ Theorem 37: With respect to a given spanning tree T, a branch bi that
determined a fundamental cut-set S is contained in every fundamental
circuit associated with the chord in S, and in no others

❑ Proof: T is the given spanning tree

❑ Let S be the fundamental cut-set determined by the branch bi

S = {bi, C1, C2, …….Cq}

❑ Let 𝝆1 be the fundamental circuit determined by the chord C1

❑ 𝝆1 = {C1, b1, b2 …..bK}

❑ Since the no. of edges must be S and 𝝆1 must be even, bi must be in 𝝆1.

❑ The same is true for the fundamental circuits made by chords C2, C3 … Cq

❑ On the other hand, suppose that bi occurs in some fundamental circuit 𝝆q+1
made by a chord other than C1,C2, ….. Cq. Since none of the chords C1, C2,
….. Cq is in 𝝆q+1 , there is only 1 edge bi common to a circuit 𝝆q+1 & cut-set
S, which is not possible

❑ Hence the theorem

Cut-vertices

❑ In a connected graph G, a cut-vertex is a set of

vertices removal of which leaves the graph

disconnected, provided removal of no proper

subset of the set disconnects G

❑ A cut-vertex cuts the graph into two or more

components, such that no path exists between

the components

Example

❑ In graph G, {V3} is a cut-vertex; cv1= {V3}

❑ Hence G-cv1 = 2 sub-graphs of G, g1 & g2

V2

V3V5 V6
d

f

c

ba

V1

e

V4

g

: GV7

h

i

: G

{v6}

{ }

{v1,v2,v4,v5,v7}

{a,d,e,f,h,i}

V2

V5 V6
d

f

a

V1

e

V4

V7

h

i

: g1 : g2

Cut-vertex in a tree

❑ Since removal of any vertex other than the

pendant vertices breaks the tree, every vertex

of a tree is a cut-vertex

❑ Cut-vertices→ {V2} {V3} {V4}
V2

V3

V5 V6

V1

V4c

b

e

a

d

Edge connectivity (Ec)

❑ Minimum no. of edges removal of which

disconnects the graph or reduces the rank of

the graph by one

❑ It is given by the size of the smallest cut-set

Example

❑ Cut-sets are

 {a,d}

 {a,b}

 {a,c}

 {b,c}

 {b,d}

 {c,d}

 {e}

❑ Smallest cut-set is {e} → contains one element

❑ Hence edge connectivity Ec of graph G is 1

c

b

e

a

V2

V3 V5

d

V1

V4
: G

Problem

❑ Find the edge connectivity Ec of the graph

given
V2 V3

V5V6

d

h

f

c

b

a

V1
e

j

i

V4
g

: G

Edge connectivity of a tree

❑ Since a tree can be broken by the removal of a

single edge, edge connectivity of a tree is

always 1

❑ Cut-sets of the tree are

❑ {a} , {b} , {c} , {d} , {e}

❑ Hence Ec is 1

V2

V3

V5 V6

V1

V4c

e

a

d

b

Vertex connectivity (Vc)

❑ Minimum no. of vertices removal of which

disconnects the graph

❑ It is given by the size of the smallest cut-vertex

Example

❑ Cut-vertices are

 {V3}

 {V1 ,V4}

 {V2 ,V4 }

❑ Smallest cut-vertex
is {V3} → contains
one element

❑ Hence vertex
connectivity Vc of
graph G is 1

V2

V3V5 V6
d

f

c

ba

V1

e

V4

g

: GV7

h

i

Problem

❑ Find the vertex connectivity Vc of the graph

given
V2 V3

V5V6

d

h

f

c

b

a

V1
e

j

i

V4
g

: G

Vertex connectivity of a tree

❑ Since a tree can be broken by the removal of a

single non-pendant vertex, vertex connectivity

of a tree is always 1

❑ Cut-vertices of the tree are

❑ {V2} , {V3} , {V4}

❑ Hence Vc is 1

V2

V3

V5 V6

V1

V4c

e

a

d

b

Separable graph

❑ A connected graph is said to be separable if its

vertex connectivity is one

❑ If removal of a single vertex disconnects the

graph, then it is separable

❑ The vertex, removal of which disconnects the

graph is called an articulation point or cut-

vertex or cut-node

❑ In such a graph, there would be a subgraph g

such that g & 𝑔 have only 1 vertex in common

Example

❑ Smallest cut-vertex is {V3}; contains 1 element

❑ Hence G is a separable graph

❑ V3 is the articulation point

❑ Removal of V3 disconnects the graph

a

V2

d

V1

V4

: G

g

f

V5

V6

V7

c

b

V3

e

h

Example

❑ Smallest cut-vertex is {V2,V5}; contains 2

elements

❑ Hence G is a non-separable graph

V2 V3

V5
V6 d

hf c

baV1

e V4

: G

❑ Theorem 38: A vertex V in a connected graph G is a cut–
vertex iff these exists two vertices x & y in G such that every
path between x & y passes through V

❑ Proof : Let V be a cut-vertex of graph G

❑ Then removal of V from G must disconnect the graph into two
components, such that the components are not empty. Each
component must contain at least an isolated vertex

❑ Let x be a vertex from first component & y from the other
component

❑ If there exists a path between x & y, other than through vertex
V, then removal of V will not disconnect the graph. But since
V is a cut-vertex, removal of V must disconnect the graph

❑ So there can be no path between x & y other than through V

❑ Conversely: If x & y are two vertices of G such that all
paths between x & y are through vertex V

❑ Then removal of V from G makes x & y not reachable
from each other as all paths between x & y have been
broken

❑ Since no path exists between x & y, then x & y must
be lying in different components, which implies that
the graph has been disconnected by the removal of V

❑ Any vertex V, removal of which disconnects a graph is
a cut vertex. Hence here, V is a cut-vertex

❑ Hence the theorem

❑ Theorem 39: The edge connectivity of a graph
cannot exceed the degree of the vertex with the
smallest degree in G

❑ Proof: Let Vi be the vertex with the smallest
degree.

❑ Let d(Vi) represent the degree of Vi

❑ Vertex Vi can be separated from the graph by
removing all the d(Vi) edges incident on it

❑ Hence d(Vi) is the edge connectivity of the graph

❑ Hence the theorem

❑ Theorem 40: The vertex connectivity of any graph G can
never exceed the edge connectivity of G

❑ Proof: Let α denote the edge connectivity of G

❑ Then, there must exist a cut–set with α edges. Let it be S.

❑ S partitions the vertex set of the graph into two. Let they be
V1 & V2

❑ By removing at most α vertices from V1 (or V2) on which the α
edges were incident, we can bring the same effect on the
graph i.e, we can disconnect the graph in the same way how
S disconnected the graph. However if any other edges were
incident on these vertices, they too would get deleted

❑ However the vertex connectivity would be α itself

K-connected graph

❑ A graph whose vertex connectivity is K

❑ Every pair of vertices in a k-connected graph is

joined by at least k non-intersecting paths

Properties of cut-sets

❑ Cut-set → set of edges removal of which disconnects the
graph

❑ Edge connectivity → no. of edges in the smallest cut-set

❑ Cut-set in tree → every edge of a tree is a cut-set

❑ Edge connectivity of any tree → is always 1

❑ Fundamental cut-set → a cut-set that contains exactly one
branch of the spt

❑ Number of fundamental cut-sets → no. of branches in the spt

❑ Fundamental circuit → a circuit that contains exactly one
chord

❑ Number of fundamental circuits → no. of chords in the graph

❑ Every cut-set will contain at least one branch of every spt

Properties of cut-vertices

❑ Cut-vertex → set of vertices removal of which disconnects the
graph

❑ Vertex connectivity → no. of vertices in the smallest cut-
vertex

❑ Cut-vertex in tree → Every vertex (other than pendant vertex)
in a tree is a cut-vertex

❑ Vertex connectivity of any tree → always 1

❑ Separable graph→ graph whose vertex connectivity is 1

❑ Edge connectivity → cannot exceed the smallest degree

❑ The vertex connectivity → cannot exceed edge connectivity

❑ A graph is K-connected → vertex connectivity is K

Combinatorial representation of Graphs

❑ Any graph exists as an abstract object irrespective
of its size and shape in drawing

❑ Such a combinatorial/abstract representation of a
graph is given by

❑ G = (V, E, )

❑ Where V = {V1, V2, ….Vn} is the set of n vertices

E = {e1, e2, ….ee} is the set of e edges

 = E → V

❑  is the mapping from set E to set V

❑  defines the relationship between the sets V & E

Example

❑ V = {V1, V2, V3,V4, V5}

❑ E = {a,b,c,d,e,f,g}

❑  = a → (V1,V5)

b → (V1, V2)

c →(V1, V4)

d → (V5, V4)

e → (V2, V4)

f → (V2, V3)

g →(V4, V3)

❑ Here a → (V1, V5) implies that object a from set E is mapped
onto the unordered pair (V1,V5) of objects from set V

Geometric representation of Graphs

❑ An abstract/combinatorial graph can be

geometrically represented in many ways

without altering the definition of the graph

❑ Geometric representation of the abstract graph

on the previous slide

V1 V2

V4V5

b

e

d

a

g

f

V3c : G

Examples

❑ G’ and G’’ are also

geometric

representations of

the same abstract

definition

❑ It can be seen that

G, G’ & G’’ are all

isomorphic to each

other

❑ m
V1 V2

V4V5

b

e

d

a g
fV3

c : G’

V1
V2

V4

V5

b

e

d

a

g
fV3

c : G’’

Planar & non-planar graphs

❑ A graph G is said to be planar if there exists some

geometric representation of G which can be drawn on a

plane without none of its edges intersecting

❑ A graph that cannot be drawn on a plane without edges

crossing over is called a non planar graph

❑ G is planar and H is non-planar

V5

V4 V3

bd

V2

c

:G

V1

e a

h

j

f g V5

V4 V3

bd

V2

c

:H

V1

e a

h

ji

f g

Problem

❑ Is the given graph G a planar graph?

❑ Yes, coz it can be re-drawn without none of its

edges intersecting

V2

V3
d

f

c

b

a

V1

e

V4

: G

V2

V3d

f

c

b

a

V1

e

V4

: G’

Embedding

❑ A drawing of a geometric representation of a

graph on any surface without edges

intersecting is called an embedding

❑ Only planar graphs can have embeddings

❑ Such an embedding of a planar graph G on a

plane is called plane representation of G

Example

❑ G is a planar graph, but it is not an embedding as
some of its edges crosses over others

❑ Where as G’ is an embedding

❑ Note: for a graph to be planar, there must at least one
geometric representation that is an embedding i.e, we
must be able to draw the graph without its edges
intersecting

V2

V3
d

f

c

b

a

V1

e

V4

: G

V2

V3d

f

c

b

a

V1

e

V4

: G’

Example

❑ The graph G is non-planar as we are not able

draw an embedding

V5

V4 V3

bd

V2

c

:G

V1

e a

h

ji

f g V5

V4 V3

bd

V2

c

V1

e a

h

ji

f g V5

V4 V3

bd

V2

c

V1

e a

h

j

i

f g

Kuratowski’s 2 non-planar graphs

❑ The Polish mathematician Kasimir Kuratowski

❑ Non-planar property of the 2 graphs

 Complete graph with 5 vertices (K5)

 Bi-partite graph with 6 vertices (K3,3)

Complete graph with 5 vertices (K5)

❑ Theorem 43: The complete graph with 5 vertices (K5) is non planar

❑ Proof: Let the 5 vertices of the graph be V1, V2, V3, V4 and V5

❑ Since it is a complete graph, every vertex needs to be connected to

every other vertex by an edge

❑ There must be a circuit going from V1 to V2 to V3 to V4 to V5 and

back to V1; that is a pentagon that divides the region into 2 - inside

& outside of the pentagon

V5

V4 V3

bd

V2

c

:G

V1

e a

❑ Now we need V1 to be connected to V3 & V4.

V1 can be connected to V3 along an edge

inside the pentagon. Similarly V1 can be

connected to V4 also, inside the pentagon

V5

V4 V3

bd

V2

c

:G

V1

e a

f g

❑ Next we need V2 to be connected to V4 & V5

❑ Drawing an edge inside the pentagon is not

possible as it will intersect the previously drawn

edges. So let as draw these 2 edges along the

outside region

V5

V4 V3

bd

V2

c
:G

V1

e a

f g

h

i

❑ Now V1, V2, & V4 have degrees 4 each. V3 & V5 have

degrees 3 each. So the remaining edge to be drawn is

between V3 & V5. We cannot draw this edge inside or

outside, without intersecting previous edges

❑ Hence this graph cannot be embedded in a plane

❑ So it is non-planar

V5

V4 V3

bd

V2

c

:G

V1

e a

f g

h

i

Bi-partite graph with 6 vertices (K3,3)

❑ Theorem 44: Kuratowski’s 2nd graph is non-planar

❑ Proof: The graph is bi-partite graph with 6 vertices

❑ Here the vertex set V is divided into two V’ & V’’

❑ Every vertex in V’ is connected to every vertex in

V’’ by an edge

❑ V’={V1,V2,V3} & V’’={V4,V5,V6}

❑ E = {a,b,c,d,e,f,g,h,i} V2 V3

V5
V6

V1

V4

: G

b

c
e

a

g

fd

h
i

❑ From vertex V1, draw
edges towards V4, V5 &
V6. Now V1 has degree
3

❑ From vertex V2, draw
an edge toward V4

❑ From V3 draw an edge
towards V4

❑ Again at V2, draw edge
towards V5 & V6 using
curved lines so as to
avoid intersecting

❑ Also from V3 to V5

V2

V3

V5
V6

V1

V4

: G

b

c

e

a
f

d

h
i

❑ Now 1 more edge is

required between V3

& V6. We cannot

draw the edge

without intersecting

previous edges

❑ Hence the proof

V2

V3

V5
V6

V1

V4

: G

b

c

e

a
f

d

h
i

Properties common to Kuratowski’s 2 graphs

1) Both are regular graphs

 K5 is a regular graph with degree 4 each

 K3,3 is a regular graph with degree 3 each

2) Both are non planar

3) Removal of one edge or one vertex makes both
of them planar

4) Both are the smallest non planar graphs

 K5 is the non planar graph with smallest no. of
vertices (5 vertices)

 K3,3 is the non planar graph with smallest number of
edges (9 edges)

Embedding of a planar graph without curved

lines

❑ It may appear that in order to draw a planar

graph without its edges intersecting, we need

to use curved lines as some edges; but this is

not true

❑ Fary proved that every planar graph can be

drawn using straight lines and of course,

without edges intersecting

Region or face

❑ The plane representation of a graph (embedding)
divides the plane into regions. A region is
characterized by the set of edges forming its boundary

❑ Hence non-planar graphs cannot have regions
defined, as they have their edges intersecting

❑ And planar graphs which are not an embedding too
cannot have regions defined

❑ Thus region is a property, specific to the geometric
representation of a graph and not to the abstract
representation

❑ Regions are also known as faces, windows or meshes

Examples: planar graphs

Region 1

Region 2

V5

V4 V3

bd

V2

c

: G

V1

e a
V2

V3d

f

c

b

a

V1

e

V4

: H

Reg 1

Reg 2

Reg 3

Reg 4

V5

V4 V3

bd

V2

c

: J

V1

e a

f g

h

i

Reg 1

Reg 2

Reg 3

Reg 4

Example: non-planar

❑ Since the faces do not have proper

boundaries, regions cannot be defined for non-

planar graphs

V5

V4 V3

bd

V2

c

:H

V1

e a

h

ji

f g
Reg 1

Reg 2 Reg 3

Reg 4

Example: planar but not an embedding

❑ Though planar, G is not an embedding; hence cannot

have regions defined

❑ G’ is an embedding of the same planar graph G; hence

4 regions can be identified

V2

V3d

f

c

b

a

V1

e

V4

: G’

Reg 1

Reg 2

Reg 3

Reg 4

V2

V3
d

f

c

b

a

V1

e

V4

: G

Region 1

Region 2

Infinite Region

❑ The portion of the plane lying outside a graph

embedded in a plane is called the infinite region

❑ Also known as unbounded, outer or exterior

region

❑ Like other regions, infinite region is also

characterized by a set of edges

❑ A planar graph can be embedded in a plane in

different ways. By changing the embedding of a

planar graph, we can change the infinite region

❑ G & G’ are different planar embeddings of the same graph. The

infinite region boundary is different for both

V2

V3c

f

b

a

d

V1

e

V4

: G

Reg 1

Reg 2

Reg 3

Infinite

region

V2

V3
c

f

b

ad

V1

e
V4

: G’
Reg 3

Infinite

region

Regions of graph G are

Region 1 = {a,d,e}

Region 2 = {e,b,c}

Region 3 = {a,b,f}

Infinite region = {c,d,f}

Regions of graph G’ are

Region 1 = {c,d,f}

Region 2 = {a,b,f}

Region 3 = {e,c,b}

Infinite region = {a,e,d}

Embedding on a Sphere

❑ To eliminate the distribution between finite &

infinite regions, a planar graph can be

embedded on the surface of a sphere

❑ It is done by stereographic projection of a

sphere on a plane

SP

NP

P

P’

❑ Theorem 45: A graph can be embedded on the surface of a sphere
if and only if it can be embedded on a plane

❑ Proof: Place the sphere on the plane and note the point of contact
as SP (south pole)

❑ From the point SP, draw a straight line perpendicular to the plane.
The point where this line meets the circumference of the sphere is
noted as NP

❑ For any point P on the plane, there is a corresponding point p’ on
the sphere and vice versa

❑ To obtain P’, draw a straight line from P to meet NP. Point where
this line intersects the circumference of the sphere is the point p’

❑ Thus we can say that there is a one-to-one correspondence
between the points on the sphere and the finite points on the plane

❑ Points at infinity corresponds to NP

❑ Hence the theorem

❑ Theorem 46: A planar graph may be embedded
in a plane such that any specific region can be
made the infinite region

❑ Proof: A planar graph embedded in the surface of
a sphere divides the surface into different regions.

❑ Each region on the sphere is finite, the infinite
region has been mapped on to the point NP

❑ Now, it is clear that by suitably rotating the
sphere, we can make any specific region to be the
infinite region on the plane

❑ Hence the theorem

Number of Regions in a planar graph

❑ In all the possible embeddings of a planar

graph, the no. of regions in the graph would be

the same

❑ It is known as Euler’s formula

❑ It is given by f = e-n+2

 f→ no. of regions/faces

 e→ no. of edges

 n→ no. of vertices

Euler’s formula

❑ Theorem 47: A connected planar graph with n vertices and
e edges has e-n+2 regions

❑ Proof: Assume a simple graph. Though a self loop or a
parallel edge does not affect the formula, as increasing an
edge equally increases the no. of regions

❑ Similarly let us not consider those edges that do not form
the boundary of any region. Such edges also do not affect
the formula, as each such edge increases n by 1, ‘e-n’
remains unaltered

❑ Assume the planar embedding of the graph to be
containing all straight lines as edges

❑ Now, the graph looks like a net of polygons

❑ Calculating total no. of edges

❑ Let k3= no. of triangles

k4= no. of quadrilaterals

k5= no. of pentagons

..

kr= no. of r-sided polygons

❑ Hence total no. of edges in the entire net of polygon
would be

❑ 3k3 + 4k4 + 5k5 ……..+ rkr + p = 2*e

❑ Where e is the total no. of edges in the polyhedron

❑ As each edge would be counted twice, we take 2e

Equation 1

❑ Calculating total no. of faces

❑ Total no. of faces/regions would be

❑ k3 + k4 + k5 ……..+ kr + 1 = f

❑ The outer region/infinite region is also to be

counted along with all interior regions; hence

the ‘1’

❑ f is the total no. of regions/faces

Equation 2

❑ Sum of all interior angles of the polyhedron:

❑ Sum of all interior angles of a p–sided polygon is (p-2)𝜋

❑ Taking the sum of interior angles for each polygon inside the
polyhedron,

❑ k3(3-2)𝜋 + k4(4-2) 𝜋 + k5(5-2) 𝜋 + ….. + kr(r-2) 𝜋

❑ Sum of all exterior angles of the polyhedron:

❑ Sum of all exterior angles of a p–sided polygon is (p+2)𝜋

❑ Total angle sum of the polyhedron:

❑ At each vertex we have an angle of 360
o

❑ Since we have ‘n’ vertices,

❑ Total angle sum = n * 360
o
= n * 2 𝜋 = 2 𝜋 n

Equation 3

Equation 4

Equation 5

❑ Sum of interior angles + sum of exterior angles = total angle

sum of polyhedron

❑ k3(3-2) 𝜋 + k4(4-2) 𝜋 + ….. + kr(r-2) 𝜋 + (p+2) 𝜋 = 2 𝜋 n

❑ 𝜋(3k3 +4k4+ … +rkr) – 2k3𝜋 – 2k4𝜋 – …. – kr𝜋 + (p+2) 𝜋 = 2𝜋n

❑ From eq 1, we have 3k3 + 4k4 + …..+ rkr = 2e – p

❑ 𝜋 (2e – p) – 2 𝜋(k3 +k4+ ………… + kr) + (p+2) 𝜋 = 2 𝜋 n

❑ From eq 2, we have k3 + k4 + k5 ……..+ kr + 1 = f

Equation 3 Equation 4 Equation 5+ =

❑ 𝜋 (2e – p) – 2 𝜋(f – 1) + (p+2) 𝜋 = 2𝜋n

❑ 2e – p – 2f +2+p+2 = 2n

❑ 2e – 2f +4 = 2n

❑ e-f+2 = n

❑ f = e-n+2

Note:

In any simple connected planar graph,

e ≥ 3/2 f and e ≤ 3n-6

Recalling Kuratowski’s two graphs

❑ 1) Complete graph with 5 vertices (K5)

❑ n = 5; e = 10; 3n – 6 = 9

❑ According to the above result for a planar graph, e ≤
3n-6

❑ Here 10 ≤ 9 

❑ Therefore K5 is non-planar

❑ f = e-n+2= 10-5+2 = 7; 3/2 *f = 21/2 = 10.5

❑ According to the above result for a planar graph, e ≥
3/2 f

❑ Here 10 ≥ 10.5 

❑ Therefore K5 is non-planar

❑ 2) Bipartite graph with 6 vertices (K3,3)

❑ n = 6; e = 9; 3n – 6 = 12

❑ According to the above result for a planar graph, e ≤ 3n-6

❑ Here 9 ≤ 12 

❑ But K3,3 is non-planar

❑ f = e-n+2 = 9 – 6 +2 = 5; 3/2 f = 3/2 * 5 = 7.5

❑ According to the above result for a planar graph, e ≥ 3/2 f

❑ Again 9 ≥ 7.5 

❑ But K3,3 is non-planar

❑ Hence we conclude that e ≤ 3n-6 is only a sufficient
condition, not necessary for a graph to be planar

Detection of Planarity

❑ In order to check whether a given graph is

planar or not the following steps of Elementary

reduction can be used

Elementary Reduction

❑ Step 1: Of the graph is disconnected, we need to
check whether each component is planar. If all
components are planar, then the disconnected
graph is said to be planar

❑ If the graph is a separable graph, we need to
check whether each block is planar. It all blocks
are planar, then the separable graph is planar

❑ Now, let our graph G = {G1, G2, ……….. Gk}

❑ Where each Gi is a non-separable block of G

❑ Test each Gi for planarity

❑ Step 2 : Remove all self loops as self loops does not affect planarity

❑ Step 3 : Similarly remove all parallel edges as they too do not have
anything to do with planarity

❑ Step 4 : Merge edges in series, by ignoring their common vertex

❑ Step 5 : Repeat step 3 and 4 repeatedly until no more edges can be
deleted.

❑ Step 6 : Now the resulting graph may contain

i. A single edge

ii. A complete graph with 4 vertices

iii. A non separate graph with n ≥ 5 & e ≥ 7

❑ If it is (i) or (ii) then our graph is planar; no need of further
clarification

❑ But if it is (iii) continue to step 7

❑ Step 7: Check whether e ≤3n–6 for the resultant
graph

❑ If the condition is not satisfied, then our graph is
planar. But if not, may or may not be planar. So
we need to check further

❑ Step 8: Check whether the resultant graph contain
either of Kuratowski’s graphs or their
homeomorphic graphs

❑ If our graph contains K5, K3,3 or graphs
homeomorphic to K5 and K3,3 , then our graph is
certainly non-planar

Homeomorphic graphs

❑ Two graphs are said to be homeomorphic if

one can be obtained from the other by creating

edges in series or by merging edges in series

Problem

❑ Check whether the given graph is planar by

the method of elementary reduction

V2

V3

V5
V6

V1

V4

: G

V7

Kuratowski’s theorem

❑ Theorem 48: A necessary & sufficient condition for a graph G
to be planar is that G does not contain either of Kuratowski’s
two graphs or any graph homeomorphic to them

❑ Proof: We know that Kuratowski’s 2 graphs are no-planar and
they cannot be embedded in a plane

❑ So if any graph contains any of the above graphs as
subgraphs, then surely the main graph too could not be
embedded in a plane. So the main graph is also non-planar

❑ If the given graph contains subgraphs that are homeomorphic
to any of the Kuratowski’s graph, then the given graph is also
non-planar coz any graph homeomorphic to K5 and K3,3 is
also non-planar

Geometric dual of a planar graph

❑ In order to obtain the geometric dual of a planar
graph
1) Start with a plane representation of the planar graph

(planar embedding)

2) Name the regions or faces are F1, F2, F3…… Fe-n+2

3) Place a point Pi in each face Fi

4) For each edge of G, draw a line crossing the edge
connecting the two faces on either sides; For an
edge lying entirely in a region, draw a self loop at
the point that passes through the edge

5) Name the new graph as G* which forms the dual of
G

Example

❑ Let G be the plane representation of a graph

V2
V3

V5

V1

V4 : G

b

d

c

e

a

h
f

g

i

Name the

regions
F2

F3

F5
F1

F4

F6

Point Pi on

each face Fi

For each edge of

G, draw a

crossing edge

connecting faces

Draw the

planar

embedding

: G*

Properties of duals G & G*

❑ A self loop in G yields a pendant edge in G*

❑ A pendent edge in G yields a self loop in G*

❑ Edges in series in G becomes parallel edges in G*

❑ Parallel edges in G becomes edges in series in G*

❑ Number of edges forming the boundary of a face

Fi in G becomes the degree of the vertex Pi in G*

❑ Degree of a vertex Vi in G becomes the number of

edges forming the boundary of the face Fi in G*

❑ Since G is planar, G* is also planar

❑ If n, e, f, r & 𝜇 denotes the no. of vertices, no.

of edges, no. of faces, rank & nullity of G & n*,

e*, f*, r*& 𝜇 * denotes the corresponding

quantities in G*

❑ There is a one-to-one correspondence

between the edges of G & G*. Every edge of G

intersects the corresponding edge of G*.

However, number of vertices may change

All duals of G

❑ A planar graph G may have different planar

embeddings. For each planar embedding, we

can obtain a corresponding geometric dual

❑ A planar graph G will have a unique dual if &

only if it has a unique planar embedding

❑ If G & G’ are isomorphic, then their

corresponding duals G* & G’* may not be

isomorphic

Self dual Graphs

❑ If a planar graph G is isomorphic to its own

dual, it is called a self dual graph

❑ Example

V2

V3d

f

c

b

a

V1

e

V4

: G

V2

V3d

f

c

b

a

V1

e

V4

F2

F3
F1

F4

: G*

Dual of a Subgraph

❑ Let G* be the dual of G

❑ Let ‘a’ be an edge in G & a*, the corresponding
edge in G*

❑ To find the dual of G-a; that is the dual of the
graph G after deleting the edge ‘a’ i.e, (G-a)*

❑ This can be directly obtained from G*

❑ If ‘a’ was a boundary of 2 regions in G, then by
deleting a* from G*, we can obtain (G-a)* ;
deleting the edge will require to fuse the end
vertices

❑ Else if ‘a’ was a not any boundary in G, then a*

would be a self loop in G*. Then deleting the

self loop yields (G-a)*

❑ G – q

Example

V2

V3d

f

c

b

a

V1

e

V4

: G

d*

f*c*

b*

a* e*

F2

F3
F1

F4

: G*

V2

V3d

f

c

b

a

V1

V4

: G – e

d*

f*c*

b*

a* e*

F2

F3
F1

F4

: (G–e)*

: G*–e*

Dual of a homeomorphic graph

❑ Let G* be the dual of G

❑ Let ‘a’ be an edge in G & a* be its corresponding edge
in G*

❑ Suppose we create a new vertex in G by introducing a
vertex of degree 2 on edge a. This will create a new
edge as well. Let it be b. Now the dual of G+b will
contain a new edge b* which appears as an edge
parallel to a*

❑ Similarly merging 2 edges in series will simply
eliminate one of the corresponding parallel edges in
G*

❑ Thus dual of a homeomorphic graph of G can be
obtained from G*

Combinatorial Dual

❑ G* is said to be combinatorial dual of G if there

is a one to one correspondence between the

edges of G & G* such that if g is any subgraph

of G & h is the corresponding subgraph of G*

then

❑ Rank (G*-h) = rank (G*) – nullity (g)

❑ Theorem 49: A necessary and sufficient condition for
two planar graphs G1 & G2 to be duals of each other is
that, there is a one-to-one correspondence between
the edges of G1 & G2 such that a set of edges in G1
forms a circuit if & only if the corresponding set in G2
forms a cut-set

❑ Proof: Since every edge of G will be intersected by
exactly one edge of G*, there must ne a one to one
correspondence between the edges of G1 & G2

❑ Now, consider a planar representation of G & its dual
G*. Let 𝜌 be an arbitrary circuit in G. 𝜌 will form will
form some simple closed curve in G, dividing the
plane into 2 areas, one inside 𝜌 & the other outside 𝜌

❑ Now the vertices of G* can be viewed as two

non empty disjoint subsets, those vertices that

represent regions inside 𝜌 & those that

represents regions outside 𝜌 and this partition

is brought by the set of edges in 𝜌*. Hence 𝜌*

is a cut-set in G*

❑ Similarly every cut-set S* in G* will have a

unique circuit S in G

❑ Conversely: Suppose there are two planar graphs G & G’
such that there is one to one correspondence between their
edges and also one to one correspondence between the cut-
sets of G & the circuits of G’ and vice versa

❑ Let G* be a dual of G

❑ Then there is a one to one correspondence between the cut-
sets of G & the circuits of G’ & also between the cut-sets of G
& the circuits of G*

❑ Therefore there is a one to one correspondence between the
circuits of G’ & G* implying that G’ & G* are 2-isomorphic.
Then G’ must be a dual of G

❑ (Based on the theorem: Two graphs are 2- isomorphic if &
only if they have circuit correspondence)

❑ Theorem 50: A graph has a dual if and only if it is
planar

❑ Proof: Let us prove that a non planar graph does not
have a dual

❑ Let G be a non-planar graph. Then according to
Kuratowski’s theorem, G contains either K5 or K3,3 or
a graph homeomorphic to them

❑ Any graph can have a dual only if every subgraph of
that graph & every graph homeomorphic to that graph
has a dual

❑ From the above 2 statements, we can say that if K5
and K3,3 cannot have a dual then none of the non-
planar graphs can have a dual

❑ To prove that K3,3 do not have a dual, assume

the contradiction that K3,3 has a dual D

❑ Since K3,3 has 9 edges, so must be D

❑ All cut-sets in K3,3 must have corresponding

circuits in D & vice versa

❑ Since K3,3 do not have any cut-set containing

2 edges, D cannot have any circuit containing

2 edges. That means D cannot contain any

parallel edges

❑ Since every circuit in K3,3 is of length 4 or 6, D
cannot have any cut set with less than 4 edges,
which implies every vertex in D has degree of at
least 4

❑ Since D has no parallel edges & every vertex has
degree of minimum 4, D must contain at least 5
vertices, each of degree 4 or D may contain more
than 5 vertices with larger degrees

❑ D must then at least contain
5∗4

2
= 10 edges,

contradicting to the fact that D has only 9 edges

❑ So there can be no such D. Hence K3,3 cannot
have a dual

❑ Similarly we can prove that K5 do not have a dual

❑ Assume the contradiction that K5 has a dual, H

❑ Since K5 has 10 edges, H must also have 10
edges

❑ All cut-sets in K5 must have corresponding circuits
in H vice versa

❑ Since K5 do not have any cut-set with 2 edges, it
cannot have a circuit with 2 edges. That means H
has no parallel edges

❑ Since every cut-set in K5 contains 4 or 6 edges, H
can have circuits of length 4 or 6 only

❑ Consider a circuit of length 6 (hexagon) in H.
Now, we cannot add the remaining 4 edges,
without creating parallel edges or circuits of length
three

❑ So in order to add the remaining 4 edges without
violating the rules (parallel edge & circuits of
length 3) we assume H to have 7 vertices, with
degree at least 3

❑ Then H must have
7∗ 3

2
=11 edges, contradicting

that H has 10 edges

❑ So there can be no such dual for K5

End of module 4

