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What is a Tree ?

❑ A tree is a connected graph, without any 
circuits

❑ It implies that a tree has to be a simple graph, 
as self loops & parallel edges form circuits

❑ A single vertex can also be considered as a 
tree

❑ Eg : 

 A tree with 1 vertex 

 A tree with 2 vertices

 A tree with 3 vertices
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❑ Trees can be used to represent & manipulate 

real life instances like

 The genealogy of a family

 A river with its tributaries & sub tributaries

 Sorting of mail according to zip code

❑ Minimally connected

 A graph G is said to be minimally connected if 
removal of any one edge from G, leaves it 

disconnected



Properties of trees

1) A tree is a connected graph & circuit-less

2) There is exactly one path between every pair 

of vertices of a tree

3) A tree with n vertices will have (n-1) edges

4) A tree is a minimally connected graph

5) A tree will have at least 2 pendant vertices

6) A tree can have only 1 or 2 centers



❑ Theorem 14: There is one and only one path between 
every pair of vertices in a tree, T

❑ Proof:

❑ Since T is a connected graph, there must exist at least 
one path between every pair of vertices in T

❑ Now, suppose that between two vertices, say vi & vj, 
there exists two district paths

❑ Then union of there two paths will result in a circuit; 
But since T is a tree, it cannot contain any circuits

❑ Hence there could be no 2 distinct paths between any 
pair of vertices in T

❑ Hence the theorem



❑ Theorem 15: If, in a graph G, there is one & only one 
path between every pair of vertices, G is a tree

❑ Proof:

❑ Since there is at least one path between every pair of 
vertices in G, we can say that G is connected

❑ Now, if the graph has a circuit in it, there must be two 
vertices vi & vj such that there exists two distinct paths 
between vi & vj

❑ But  since there is only one path between every pair of 
vertices, G cannot contain any circuit

❑ Since G is connected & contains no circuit, we can 
say that G is a tree



❑ Theorem 16: A tree with n vertices has n-1 edges

❑ Proof: By induction we prove that the theorem is true 

❑ For n=1

 No. of edges = n-1= 1-1= 0

 Which is true as we can see in the figure

❑ For n=2
 No. of edges = n-1 = 2-1=1

 Which is also true

❑ For n=3

 No. of edges = n-1 = 3-1=2

 true

❑ Now we assume that the theorem is true for all trees with no. 
of vertices up to (n-1) 

V1

V1

V2

V1

V2 V3



❑ We need to prove that the theorem holds for a 
tree with n vertices

❑ Consider a tree with n vertices; Remove an 
edge ek from the tree; Let vi & vj be the end 
vertices of ek

❑ Removal of ek will disconnect the graph into 2 
components say T1 and T2 each of which is 
again a tree

❑ Let the component T1 contain n1 vertices; then 
no. of edges in T1= (n1-1)



❑ Let the component T2 contain n2 vertices; then no. 
of edges in T2 = (n2-1)

❑ Since  n1 and n2 < n, the theorem holds, as per 
our assumption

❑ Also n1+n2 = n ( total no. of vertices in the graph )

❑ Now, add back the deleted edge ek so that the 
graph again becomes connected

❑ The resulting no. of edges in the graph is given by 
(n1-1)+(n2-1)+1 = n1+n2-1-1+1 = n-1

❑ Hence a tree with n vertices will have (n-1) edges



❑ Theorem 17: Any connected graph with n vertices 
and (n-1) edges is a tree

❑ Proof:

❑ The minimum no. of edges required to make a 
connected graph with n vertices is (n-1)  

❑ In such a graph, removal of any 1 edge leaves the 
graph disconnected

❑ If the graph had a circuit, there would be at least one 
edge, removal of which do not make the graph 
disconnected. But there is no such edge at all. Hence 
the graph is circuit-less

❑ Since the graph is connected & circuit-less, it is a tree 



❑ Theorem 18: A graph is a tree if and only if it is 
minimally connected

❑ Proof:

❑ Suppose the graph is minimally connected

❑ A minimally connected graph, cannot contain any 
circuits because if it contained a circuit, then there 
must be at least one edge removal of which do not 
make the disconnected

❑ But all the edges of the graph are such that, removal 
of any edge, leaves the graph disconnected

❑ Hence the graph has no circuits & it is connected. So 
it must be a tree



❑ Conversely: Let the graph be a tree

❑ Since it is a tree, it is connected & circuit-less

❑ And also there is only & only one path b/w 

every pair of vertices

❑ Removal of any edge from a path leaves the 

graph disconnected, hence we can say that 

the graph which is a tree, is always minimally 

connected



❑ Theorem 19: A graph G with n vertices & (n-1) edges & no circuits 

is connected

❑ Proof:

❑ Suppose there exists a graph with n vertices, n-1 edges & no 

circuits, but it is disconnected

❑ Then G may contain 2 or more circuit-less components

❑ Now our disconnected graph G has total n vertices & n-1 edges

❑ Now add an edge ek between vertex vi from one component & 

vertex vj from another component

❑ Adding of this edge will not create circuit as vi &vj were from 

different components & there wasn't any path between them

❑ Now, our graph must contain n vertices & n edges, which is not 

possible for a tree. Hence the graph G must be connected



❑ Theorem 20: In any tree, there must be at least 2 
pendant vertices

❑ Proof:

❑ A tree with n vertices will have (n-1) edges

❑ As each edge contributes 2, to the total degree of 
the graph, total degree of the tree is 2(n-1) = 2n-2

❑ Which shows all n vertices may take degree 2 
each, except 2. Two of the vertices will get only 
degree1 each

❑ Hence there will be at least 2 pendant vertices for 
any tree
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An application of trees

❑ Problem: Given a sequence of integers, no two of 
which are the same, find the largest monotonically 
increasing subsequence in it

❑ Solution: Suppose if the given sequence is 
4,1,13,7,0,2,8,11,3

❑ Represent it by a tree where each sequence 
number in the sequence is a descendant vertex of 
a root vertex

❑ Now, the path from the start vertex to a particular 
vertex, v gives the monotonically increasing 
subsequence ending in v



7 213 814 11 30

713 8 11 7 213 8 11 3 8 11 2 8 11 3 38 11 11

8 11 11

11

8 11

11

8 11 3

11

11 8 11 3

11

11



❑ For the given sequence, the length of the 

largest such subsequence is four

❑ And there are 4 different subsequence, each 

of length four

❑ They are (4,7,8,11) , ( 1,7,8,11) , (1,2,8,11)  & 

( 0,2,8,11)

❑ Such trees are called data trees by computer 

programmers



❑ Q. Find the largest monotonically increasing 

subsequence of the given sequence  5, 0, 1, 7, 

6, 8, 2, 9, 4, 3 



Path length

❑ Length of a path: Length of the path between any two 
vertices of a graph is simply the no. of edges included in the 
path

❑ Shortest path: If more than one path is present between any 
2 vertices, then the path with the minimum no. of edges is the 
shortest path.

❑ Distance: Distance between any 2 vertices, vi & vj is 
represented as d(vi&vj) and is given by the length of the 
shortest path between them

❑ In a normal connected graph, to find the distance b/w any 2 
vertices, we have to enumerate all available paths & pick the 
one with the shortest length.

❑ However in a tree, there is only path b/w every pair of 
vertices; so distance between any 2 vertices is just the length 
of the path b/w them



Example: distance b/w two vertices 

❑ Eg: In graph G, available paths between v5&v2 are 
 v5 e6 v1 e1 v2

 v5 e5 v4 e7 v2

 v5 e6 v1 e8 v1 e1 v2

 v5 e5 v4 e3 v3 e2 v2

 v5 e5 v4 e4 v1 e1 v2

 v5 e5 v4 e4 v1 e8 v1 e1 v2

 v5 e6 v1 e4 v4 e7 v2

 v5 e6 v1 e4 v4 e3 v3 e2 v2

❑ Two shortest paths are available between v5&v2

❑ Each contain two edges

❑ Hence d(v5,v2) = 2
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Metric

❑ A function f(x,y) of two variables is called a 

metric if it satisfies the following 3 conditions

1) Non-negativity: f(x,y)>=0    

f(x,y)=0 iff x=y

2) Symmetry: f(x,y)= f(y,x)

3) Triangle inequality: f(x,y)<= f(x,z)+ f(z,y) for any 
z



❑ Theorem 21: The distance between the vertices of a connected 
graph is a metric 

❑ Proof:

❑ Checking the conditions of a metric for the distance between any 2 
vertices of a connected graph

❑ Non negativity: Distance b/w any 2 vertices is never negative. 
Distance from one vertex to itself is zero (simple graph)

❑ Symmetry: Distance from one vertex to another vertex will be the 
same in the reverse direction (undirected graph)

❑ Triangle inequality: Since distance b/w any 2 vertices d(vi&vj) is the 
shortest path between them, there cannot be any shorter path that 
goes through some vertex vk such that d(vi&vj) <= d(vi&vk)+ d(vk&vj)

❑ Hence distance between the vertices of a connected graph is a 
metric



Eccentricity of a vertex

❑ Eccentricity E(v) of a vertex v in a graph G is 

the distance from v to the farthest available 

vertex in G

❑ E(v) = max d(v&vi) ∀ vertex vi  of G

❑ Eg: 

 E(v1)=4

 E(v2)=3

 E(v3)=2
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Center of a tree

❑ The vertex with the minimum eccentricity is 

considered as the center of the tree 

❑ Some trees may have 2 centers - bi-centered

❑ Every tree will have either one or two centers
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Radius of a tree

❑ The eccentricity of the center of the tree is 

regarded as the radius of the tree

 In tree T1, radius is 2

 In tree T2, radius is 3
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Diameter of a tree

❑ The length of the longest path in the tree is the diameter 

of the tree

❑ It is not necessary that the diameter be twice its radius

 In tree T1, diameter is 4 (radius is 2)

 In tree T2, diameter is 5 (radius is 3)

V1 V2

V3

V4 V5

3

2

V6

3

4

4

3

V1 V2

V3

V4 V5

4

3

V6

3

4

5

4

V7 5

T1 T2



❑ Theorem 22: Every tree has either one or two centers

❑ Proof:

❑ Consider a tree with n vertices where n>2 

❑ A tree must have 2 or more pendant vertices

❑ Delete all pendant vertices from T. The resulting graph 
is still a tree, say T’. Deletion of the pendant vertices, will 
reduce the eccentricities of all remaining vertices by 
one. Hence the center of the graph will remain the 
same. From T' again remove all pendant vertices, to 
obtain another tree T''. Again T" has the same vertex as 
its center

❑ Containing this process will finally end up with a single 
vertex or a single edge (2 vertices)



❑ Single vertex implies that the tree had 1 center 

which is the one finally left

❑ Single edge implies that the tree had 2 centers 

which are the end vertices of the edge left

❑ Hence any tree can have only 1 or 2 centers

❑ Corollary: If a tree has 2 centers, then both of 

them must be adjacent



Examples

T1 T2

1 vertex is left,

which is the center 

of the tree

1 edge is left,

end vertices of 

which are the 

centers of the tree



Rooted trees

❑ A tree in which one vertex (called the root) is 

distinguished from all others is called a rooted 

tree

❑ In a rooted tree, the root vertex is usually 

marked within a ∆

❑ Eg: All possible rooted trees with four vertices



Binary trees

❑ They are a special class of rooted trees where the root vertex is of 

degree 2 & all remaining vertices are of degree either 1 or 3

❑ Type of vertices in a binary tree:

◼ Root vertex: The only vertex with degree 2

◼ Pendant vertices: The vertices that are of degree 1

◼ Internal vertices: The vertices that are of degree 3 (Non-

pendant vertices)



Levels of a binary tree

❑ In a binary tree, a vertex vi is said to be at level Li
if vi is at a distance of Li from the root

❑ The root is assumed to be at level 0

❑ Hence at level 0, there could be only 1 vertex
 at level 1, at most 21 = 2 vertices (either 0 or 2)

 at level 2, at most 22 = 4 vertices & so on 

 at level k, at most 2k vertices

❑ Hence maximum no. of vertices possible in a k-
level binary tree is therefore

❑ Vmax = 20 + 21 + 22 +…… + 2k

❑ Vmin = 1 + 2 + 2 +…… + 2 (k times)= 2k+1



Examples 

❑ Here k=3

❑ Vmax =20 + 21 + 22 + 23 =1+2+4+8 =15 vertices

❑ Vmin = 2*3+1= 7 vertices
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Height of a binary tree

❑ No. of levels possible in an ‘n vertex’ binary 
tree

❑ Lmin = ⌈log2(n+1)-1⌉

❑ This is obtained when all levels are filled with 
maximum possible vertices (tightly packed)

❑ Lmax = 

❑ This is obtained when the farthest vertex is 
made as far as possible from the root; all 
levels contain just 2 vertices (loosely packed)



Example 

❑ Consider a binary tree with n=11 

 Lmin = ⌈log2(n+1)-1⌉ = ⌈log2(12)-1⌉ = 3

 Lmax = 
𝑛−1

2
= 5
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Level 4

Level 5
Min level binary 

tree for n=11
Max level binary 

tree for n=11



Application of binary trees 

❑ Search procedures:

 Each vertex is a test (yes/no)

 Outcome of the test decides to choose one of the 

two vertices at the next level

 The process continues until we reach a pendant 

vertex, where we get the final output

 If the height of the tree is made as small as 
possible, we could reduce the number of tests

 Eg: binary search



Path length of a binary tree

❑ Path length of a tree is defined as the sum of the path 
lengths of the pendant vertices from the root   OR

❑ Sum of the levels of all pendant vertices 

❑ It is an important factor as it is related to the execution 
time of an algorithm

❑ P = Σ Li ∀ pendant vertex Vi 

❑ P = 3+3+3+3+2+2 = 16 Level 0

Level 1

Level 2

Level 3

3 3 33

22



❑ Obtain the path length of the binary tree given
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Weighted Path Length

❑ All pendant vertices are associated with a positive 
real number, called weight w

❑ Path length of each pendant vertex is multiplied 
by the corresponding weight to obtain weighted 
path length of the pendant vertex

❑ Hence weighted path length of the binary tree is 
the sum of the weighted path lengths of the 
pendant vertices

❑ Pw = Σ wi Li ∀ pendant vertex Vi 

❑ In applications, we would be required to build 
binary trees with minimum weighted path length



❑ Pw =Σ wi Li = 3x2+3x5+3x3+3x1+2x7+2x5 = 57
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❑ Problem: Consider a coke machine that accepts 
coins. Suppose the machine lets only 4 types of 
coins to go through the slot, say pennies, nickels, 
dimes & quarters. The machine performs a 
sequence of tests to identify the coin. Probability 
of a coin being a penny, nickel, dime & a quarter 
are 0.05, 0.15, 0.5 & 0.30 respectively. For each 
type of coin, 1 test is done. Suppose all 4 tests 
take the same amount of time. The result of each 
test is yes or no. Then in what order must the 
tests be done, so as to minimize the overall coin 
determination time.



Solution

❑ Construct a binary tree with 4 pendant vertices, with 

their corresponding weight, as w1=0.05, w2= 0.15, w3= 

0.5, w4 =0.3, such that the weighted path length is the 

minimum



Possible binary trees

❑ If ‘t’ is the time taken for each test, then 

weighted path lengths are 
 Σ wi Li = 1x0.5+2x0.3+3x0.05+3x0.15=1.7t

 Σ wi Li = 2x0.5+2x0.3+2x0.05+2x0.15= 2t

Level 0

Level 1

Level 2

Level 3

dime not dime

quarter not quarter

penny not penny

nickel

0.5

0.3

0.05 0.15

Σ wi Li = 1.7

quarter

Level 0

Level 1

Level 2

dime/penny nickel/quarter

dimepenny nickel

0.5 0.30.05 0.15

Σ wi Li = 2



Possible binary trees

 Σ wi Li = 1x0.05+2x0.3+3x0.5+3x0.15=2.6t

 Σ wi Li = 1x0.15+2x0.3+3x0.5+3x0.05=2.4t

❑ Hence the first binary tree would be our solution

Level 0

Level 1

Level 2

Level 3

dime not dime

quarter not quarter

penny not penny

nickel
0.5

0.3

0.05

0.15

Σ wi Li = 2.6

Level 0

Level 1

Level 2

Level 3

dime not dime

quarter not quarter

nickel not nickel

penny

0.5

0.3

0.05

0.15

Σ wi Li = 2.4



❑ Theorem 23: The number of vertices 'n' in a binary 
tree is always odd

❑ Proof: In a binary tree, only the root node has 
even degree

❑ In an 'n' vertex binary tree, remaining (n-1) 
vertices are of odd degree

❑ The no. of odd degree vertices in any graph is 
even

❑ Therefore the quantity (n-1) must always be even 

❑ Then n is odd



❑ Theorem 24: In a binary tree with n vertices, the number of pendant 

vertices, p = 
𝑛+1

2

❑ Proof:

❑ In a binary tree, no. of root vertex = 1 & the degree of root vertex is 2

❑ Let p denote the no. of pendant vertices degree of each pendant vertex is 1

❑ No. of internal vertices = n-p-1 & the degree of each internal vertex is 3

❑ We know that the sum of the degrees of all vertices in a graph is twice the 
no. of edges

❑ In a binary tree with n vertices, the no. of edges = n-1; hence we may get

❑ 2x1  + 1xp + 3x(n-p-1) = 2(n-1)

❑ 2+p+3n-3p-3 = 2n-2

❑ 2-3+2 +3n-2n = 3p-p

❑ 1+n = 2p → p = 
𝑛+1

2



❑ Theorem 25: The maximum possible level or height of 
a binary tree with n vertices is given by
 Lmin = ⌈log2(n+1)-1⌉

 Lmax = 
𝑛−1

2

❑ Proof:

❑ At level 0, we have 1 vertex

❑ At level 1, we have 2 vertices

❑ At level 2, we have 3 vertices

❑ Maximum no. of vertices in a k-level binary tree is 

❑ Vmax = 20 + 21 + 22 +…… + 2k

❑ That means, n<= 20 + 21 + 22 +…… + 2k



❑ Sum of a GP = 
𝑎𝑟𝑛+1−1

𝑟−1

❑ Hence r=2, a=1

❑ then            n <= 
2𝑘+1−1

2−1

❑ n <= 2𝑘+1 -1

❑ n+1 <= 2𝑘+1

❑ log2(n+1)<= (k+1)log22

❑ log2(n+1)<= k+1

❑ log2(n+1) -1 <= k

❑ K >= log2(n+1) -1 
❑ Hence Lmin = ⌈log2(n+1)-1⌉



❑ Now, to construct a binary tree with n vertices such that the 
farthest vertex is as far as possible from the root, we must 
have exactly 2 vertices at each level except at level 0

❑ If k is the max level, then
 At level 0, no. of vertex =1  (only the root vertex)

 At level 1, no. of vertices = 2

 At level 2, no. of vertices = 2

 At level k, no. of vertices = 2

❑ Then total no. of vertices = 1+2+2+2+.....(k times) = n

1+2k = n

k = 
𝑛−1

2

❑ Hence Lmax = 
𝑛−1

2



Sum up

❑ Binary trees are rooted trees

❑ Root vertex has degree 2, all internal vertices are of degree 3 & all pendant 
vertices are of degree 1

❑ The total no. of vertices, n in a binary tree is always odd.

❑ The no. of internal vertices in a binary tree is (n-p-1)

❑ The no. of pendant vertices, p = 
𝑛+1

2

❑ Max no. of vertices possible for a k-level binary tree is 

❑ Vmax = 20 + 21 + 22 +…… + 2k

❑ The max possible level for a n vertex binary tree is 

❑ min Lmax = ⌈log2(n+1)-1⌉

❑ max Lmax = 
𝑛−1

2
❑ Path length of a binary tree P = Σ Li ∀ pendant vertex Vi 

❑ Weighted path length, Pw = Σ wi Li ∀ pendant vertex Vi 



Counting trees 

❑ The total number of trees that one can 

construct with a given number of vertices

❑ The count is different for labeled and 

unlabeled trees



Labeled trees

❑ A tree in which each vertex is assigned a unique 

label

❑ According to Cayley's theorem, the no. of different 

labeled trees possible with n vertices is nn-2

❑ Eg: no. of labeled trees possible for n=3 is 33-2 = 3 

A

B C

A

B C

A

B C



Problem

❑ Draw all labelled trees for n=4



Unlabeled trees

❑ A tree in which there is no distinction between the 
vertices by their name. However vertices differ in 
their degree

❑ Eg: Count all unlabeled trees for n=3

❑ There is only 1 tree possible with n=3

❑

❑ Through we can draw                and

❑ It is all the same, since unlabeled



Problem 

❑ Count all unlabeled trees for n=4 

❑ Solution:



Problem 

❑ Count all unlabeled trees for n=5 



Application of counting trees

❑ In 1857, Arthur Cayley discovered trees while 

he was trying to count the structural isomers of 

saturated hydrocarbons

❑ He used a connected graph to represent 

hydrocarbon molecules



Saturated hydrocarbons

❑ They contain carbon & hydrocarbon atoms

❑ General formula is    CkH2k+2

❑ Carbon atoms have valency 4 & hydrogen atoms 
have valency 1

❑ Since their chemical structure assembles that of a 
tree, properties of trees are used to study them 
further

❑ These hydrocarbons can be represented as 
labeled trees, where carbon & hydrogen atoms 
are denoted as vertices & the bonding between 
them is shown as edges



❑ Since in CkH2k+2

 No. of C atoms= k &

 No. of H atoms= 2k+2

 Total no. of vertices in the tree = k+2k+2 = 3k+2

❑ Since in CkH2k+2

 degree of each C atom = 4

 degree of each H atom = 1

 Total degree of the graph  = 4k+2k+2=6k+2

 Hence, no. of edges =  
6𝑘+2

2
= 3k+1



Problem

❑ How many structural isomers are there for Butane 
(C4H10)?

❑ Graph theoretic problem: How many different 
unlabeled trees are possible with n = 4 ?

❑ Solution: we have omitted the hydrogen atom 
vertices, because hydrogen atom vertices are 
pendant vertices, they go with carbon atoms only 
one way. Hence they make no contribution to 
isomerism.

❑ As a result the tree contains only C atoms. So we 
can use unlabeled trees, as there is no distinction 
between C atom vertices



❑ Possible unlabeled trees for n=4 are:

❑ Hence 2 isomers are possible for butane:

H
H
H

H
H
H

H

H

H

H

n Butane

C

iso Butane

C

C

C

H H H H H H

H H H

H



Problem 

❑ Find out the structural isomers of pentane 



Cayley’s theorem

❑ Theorem 26: The number of labelled trees with 'n' 
vertices (n>=2) is nn-2

❑ Proof:

❑ Suppose we have a tree with n uniquely labeled 
vertices 

❑ Number all vertices with numbers from 1 to n

❑ Find the pendant vertex with the least number. Let it 
be P1. Let a1 be the vertex adjacent to p1

❑ Delete vertex p1 along with the incident edge from the 
tree

❑ Start a prufer sequence; add a1 to the prufer
sequence (a1)



❑ From the remaining tree with (n-1) vertices, find the 
pendant vertex with the least number. Let it be p2. Let 
a2 be the vertex adjacent to p2

❑ Delete vertex p2 along with the incident edge from the 
tree

❑ Add a2 to the prufer sequence (a1, a2,  )

❑ Continue the process until only 2 vertices are left in 
the tree

❑ Now the prufer sequence (a1, a2, …, an-2)uniquely 
defines the tree

❑ Thus with n vertices, we can get nn-2 different labeled 
trees



Example 

❑ Consider the uniquely labelled tree given

❑ Number the vertices

❑ The pendant vertex with least number is H; hence p1=vertex H

 a1=vertex D(2) (adjacent to p1)

 Prufer seq = (2)

 Delete H

❑ Next pendant vertex with least number p2= I

 a2=vertex D(2) (adjacent to I)

 Prufer seq = (2, 2)

 Delete I

❑ Next pendant vertex is p3= D

 a1=vertex C(4) (adjacent to D)

 Prufer seq = (2, 2, 4)

 Delete C
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3

4

5

6

7

89



Example 

❑ Next is p4= C

 a4=vertex B(5) (adjacent to C)

 Prufer seq = (2, 2, 4, 5)

 Delete C

❑ Next is p5= E

 a5=vertex B(5) (adjacent to E)

 Prufer seq = (2, 2, 4, 5, 5)

 Delete E

❑ Next is p6= G

 a6=vertex F(7) (adjacent to G)

 Prufer seq = (2, 2, 4, 5, 5, 7)

 Delete G

❑ Next is p7= F

 a7=vertex B(5) (adjacent to F)

 Prufer seq = (2, 2, 4, 5, 5, 7, 5)

 Delete F

A

B

C

E
G

F

4

5

6

7

89



❑ Now the sequence is unique for the labelled 

tree

❑ Since the sequence contains 7 elements, and 

n=9, we can get nn-2 =97 such unique 

sequences



Spanning trees

❑ A tree T is said to be a spanning a tree of a 

connected graph G if 

 T is a subgraph of G and 

 T contains all vertices of G
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❑ Since the spanning tree depicts the skeleton of 
the graph G, T is also known as the 
skeleton/scaffolding of G

❑ Since spanning trees are the largest trees among 
all possible trees of G, it is also known as maximal 
tree subgraph or maximal tree of G

❑ Note: 

❑ Spanning are always referred with respect to 
some connected graph

❑ For a given connected graph there can be many 
spanning trees



Different SPTs of a graph

❑ m
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Spanning forest

❑ In a disconnected graph, a spanning tree can be found 

for each connected component, together which is known 

as a spanning forest

❑ Hence a disconnect graph with k components will have 

a spanning forest with k spanning trees
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Finding the spanning tree

❑ For a given connected graph G, 

1) If G has no circuits, G itself is the SPT

2) If G has a circuit, remove one edge from the 

circuit such that G still remains connected

3) Repeat step 2 until G is circuit-less

4) The remaining graph is a SPT



Branch & Chord

❑ W.r.t a given SPT, an edge of the graph G that is a 
part of the SPT is called a branch of the tree

❑ An edge of G that is not included in the SPT is 
called a chord of the graph G

❑ Hence, branches + chords = Edge set of G

❑ If T is the spanning tree of H and 𝑇 be the 
complement of T in G then T U 𝑇 = G

❑ Note:
 A graph may have many spanning trees

 Branches and Chords are defined wrt one SPT

 An edge that is a branch of one SPT may be a chord for 
another SPT of the same graph



❑ For the SPT chosen, 

 Branches={a,c,f,h,i}

 Chords={b,d,e,g,j}
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Different SPTs of a graph
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❑ Theorem 27: Every connected graph G has at least 
one spanning tree

❑ Proof:

❑ If the connected graph G has no circuits, then it is its 
own spanning tree

❑ If it has a cycle/circuit, delete one edge from the cycle 
such that the graph still remains connected

❑ Repeat the above step until there are no more cycles 
in the graph

❑ The final graph will hence contain all vertices of the 
graph and no cycles

❑ Hence it is a SPT



❑ Theorem 28: Any SPT of a connected graph 
with n vertices and e edges has (n-1) tree 
branches and (e-n+1) chords 

❑ Proof:

❑ The connected graph has n vertices and e 
edges

❑ Any SPT of the graph will contain n vertices 
and (n-1) edges

❑ The remaining edges of the graph are chords, 
i.e. e-(n-1)= e-n+1



Rank & Nullity

❑ For a graph with n vertices, e edges and k 
components

 Rank, r = n-k

 Nullity, 𝜇 = e-n+k

❑ If the graph is connected, then k=1; hence

 Rank, r = n-1

 Nullity, 𝜇 = e-n+1

❑ Note:

 r = no. of branches in a SPT of the graph

 𝜇 = no. of chords in the graph wrt the SPT



Examples 

❑ Rank r = n-1 = 6-1 = 5

❑ Nullity, 𝜇 = e-n+1 = 10-6+1 = 5
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Applications

❑ Real life problem: An electric network contains 

e elements and n nodes. What is the minimum 

no. of elements that must be removed so as to 

make the network circuit-less?

❑ Graph theoretic problem: Represent the 

network as a connected graph. Let the edges 

represent the elements and vertices the 

nodes. How many edges need to be removed 

so as make the graph circuit-less?



❑ Solution: 

 No. of branches in the SPT = n-1

 No. of chords = e-n+1

 Hence removal of e-n+1 elements can make the 
network circuit-less



❑ Real life problem: Consider a farm consisting 

of 6 walled plots of land and these plots are 

filled with water, then how many walls need to 

be broken so as to drain out the water?

❑ Graph theoretic problem: Represent the farm 

as connected graph with the walls as edges 

and corners as vertices. How many edges 

need to be removed so as make the graph 

circuit-less?



❑ Since n=10 & e=15,

❑ No. of branches= n-1=9

❑ No. of chords = e-n+1 =6
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❑ Hence, removing 6 chords can make the graph 

a tree; then water can flow out easily
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Properties of spanning trees

❑ A connected graph G may have any number of spanning 
trees

❑ The no. of vertices in any spanning tree is n; these are the 
vertices of the graph G

❑ The no. of edges in any spanning tree is n-1; these are some 
of the edges of the graph G

❑ The edges of a SPT are known as its branches

❑ The edges of the graph not included in a SPT are known as 
chords of the graph wrt the SPT

❑ Every SPT will contain (n-1) branches; but the set of (n-1) 
branches will be different for different SPTs

❑ Every SPT will leave (e-n+1) chords in the graph; the set of 
chords will be different for different SPTs



❑ Theorem 29: A connected graph is a tree iff adding an 
edge between any two vertices in G creates exactly 
one circuit

❑ Proof: suppose that the connected graph G is a tree

❑ Add an edge between any two vertices of the tree say 
vi & vj

❑ Since vi & vj are vertices of the tree, an edge between 
them creates a circuit, as there was already a path 
between vi & vj in the tree

❑ Since there could be only one path between every 
pair of vertices in a tree, adding an edge can create 
only one circuit



❑ Conversely: suppose that adding an edge 

between any two vertices of G creates exactly 

one circuit

❑ That means there was only path between 

every pair of vertices in G

❑ Which in turn implies that G was a tree



Finding all SPTs

❑ From a given SPT of a graph, we can find the 
other SPTs of the same graph by the 
procedure of elementary tree transformation or 
cyclic interchange

1) Start with a given SPT

2) Add a chord to the SPT so that a fundamental 
circuit is formed

3) Remove 1 branch from the circuit so formed. 
This will break the circuit and generate a new 
SPT

4) Repeat steps 2 & 3 until all SPTs are obtained
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Distance b/w two SPTs

❑ Distance b/w two SPTs of a graph is the no. of 

branches in which they differ

❑ Distance b/w SPT1 & SPT2 = 3
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❑ Hence distance b/w two SPTi & SPTj is given by

 d(SPTi , SPTj)= ½ N(SPTi ⊕ SPTj)

 Where N gives the no. of edges

 Here, N(SPT1 ⊕ SPT2) = 6

 d(SPT1,SPT2)=6/2=3
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Maximum distance b/w two SPTs

❑ Two SPTs are at maximum distance, when 

they are edge disjoint; i.e they have no edge in 

common

❑ Since maximum no. of edges in a SPT is (n-1), 

the maximum distance possible b/w any 2 

SPTs trees of a graph = n-1 

❑ But if there aren’t enough chords left, the 

maximum distance possible b/w any 2 SPTs 

get limited to the no. of chords available



❑ For n vertices and e edges in G, 
 If e=2(n-1) (exactly n-1 chords available)

◼ d(SPTi , SPTj)= n-1 = r

 If e> 2(n-1) (more chords left)
◼ d(SPTi, SPTj)= n-1 = r

 If e<2(n-1) (not enough chords)
◼ d(SPTi , SPTj)= e-n+1 = 𝜇

❑ Hence we can conclude
 if e >= 2(n-1) → d(SPTi , SPTj) = r 

 if e  <  2(n-1) → d(SPTi , SPTj) = 𝜇

❑ More precisely,
 d(SPTi , SPTj) = min(r, 𝜇)



Example : when r =

❑ Here n=6 & e=10;  r = 5 & 𝛍 = 5

❑ Hence d(SPT1,SPT2)=  5
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when r >

❑ Here n=6 & e=7; r = 5 & 𝛍 = 2

❑ d(SPT1,SPT2)= 2
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when r <

❑ Here n=6 & e=14; r = 5 & 𝛍 = 9

❑ d(SPT1,SPT2)= 5 
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❑ Hence maximum distance b/w any two SPTs of 

a graph is either

 n-1 (rank,r)  or

 e-n+1 (nullity, 𝜇)

❑ max d(SPTi , SPTj)= min(r, 𝜇)

Whichever is smaller



Problem 

❑ Find the max distance b/w the SPTs of the 

graph G
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Tree graph

❑ All SPTs of a graph are represented as 

vertices of a tree

❑ The cyclic interchange from one SPT to 

another is represented as an edge between 

them



Example 
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Central spanning tree

❑ The SPT of a graph which has minimum 

distance with all other spanning trees of the 

same graph

❑ Same concept as center of a tree



❑ Theorem 30: The distance between the  spanning trees 
of a graph is a metric

❑ Proof: 

❑ Distance b/w any two spanning trees is always positive 
or zero

 d(SPTi , SPTj) >= 0

 d(SPTi , SPTj) = 0 if i=j

❑ The number of branches by which SPTi differs from SPTj

is the same as that SPTj differs from SPTi

 d(SPTi , SPTj) = d(SPTj , SPTi) 

❑ Triangular inequality

 d(SPTi , SPTj) <= d(SPTi , SPTk) + d(SPTk , SPTj) 



❑ Theorem 31: Starting from any one SPT, 

we can obtain every other SPT of G by 

successive cyclic interchanges

❑ Proof: 



Shortest Spanning trees

❑ In the context of weighted graphs, where a 
numerical value (weight) is associated with each 
edge of the graph 

❑ The shortest SPT of the graph is the one with 
minimum sum of weights

❑ Similar to lightest Ham circuit (travelling salesman 
problem)

❑ Also known as 

 Shortest distance SPT

 Minimal SPT



Application 

❑ Real life problem: Suppose if we need to 
construct roads to connect ‘n’ cities. Which are 
the cities that need to directly connected by 
roads so that construction cost can be 
minimized?

❑ Graph theoretic problem: Draw a complete 
graph with ‘n’ vertices. On each edge note 
down the construction cost. Find the minimum 
SPT of the graph. The branches of which 
represents the roads that are to be constructed



Finding the min SPT

❑ Many algorithms are available to find the 

minimum SPT of weighted graphs

 Kruskal’s algorithm

 Prim’s algorithm



Kruskal’s algorithm 

1) List all edges of the graph in the increasing 

order of their weights

2) Choose the edge with the smallest weight to 

be the first branch of the SPT

3) Choose the next smallest-weight edge such 

that it doesn’t make a circuit with the 

preciously selected edges

4) Continue the process until (n-1) edges have 

been chosen



Example 
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Prim’s algorithm

1) Draw ‘n’ isolated vertices and label them as v1, 
v2, v3, …vn

2) Tabulate the weights of the edges in an nxn
matrix

3) Set the weights of non existent edges as ∞

4) Start from vertex v1 and find its nearest neighbor 
(edge with minimum distance). Nearest neighbor 
is found by choosing the one which has least 
value in row1 , say vi. Draw the edge b/w v1 and 
vi in the null graph. Consider the edge as a 
subgraph



5) Now find the nearest neighbor of the 

subgraph. It is found by choosing the one 

with least value in rows 1 & i, say v j. Add this 

edge to the subgraph.

6) Repeat step 3 until (n-1) edges have been 

chosen



Example 
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Problem 

❑ Find the mSPT for the given graph using

 Kruskal’s

 Prim’s
V2

V3

V5

V6 d

h

e c

b
a

V1

f

i

V4

g

: G

56

2

5

6

3

1

4

5

j
6



Fundamental circuit

❑ W.r.t a given SPT, the circuit formed in the 

SPT by adding a chord is referred to as a 

Fundamental circuit

❑ Since each chord can generate 1 circuit, the 

no. of fundamental circuits possible for a graph 

is given by the no. of chords in the graph
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Sum up

❑ A connected graph will have many SPTs

❑ For each SPT, some of the (n-1) edges form the 
branches and remaining e-n+1 edges form the chords

❑ A fundamental circuit is always mentioned wrt a SPT

❑ A fundamental circuit contains 1 chord along with 
all/some branches of the SPT

❑ Each chord produces one fundamental circuit 

❑ Hence no. of fundamental circuits possible for a SPT 
is given by the no. of chords

❑ A circuit that contains 2 chords is not a fundamental 
circuit



A connected graph
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End of module 3
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Planar graphs
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Contents

❑ Graph connectivity

 Cut-sets & cut-vertices

 Fundamental circuits

 Edge connectivity

 Vertex connectivity

❑ Planar graphs

 Different representation of planar graphs

 Euler’s theorem

 Geometric dual

 Combinatorial dual



Cut-sets 

❑ In a connected graph G, a cut-set is a set of edges 
removal of which leaves the graph disconnected, 
provided removal of no proper subset of the set 
disconnects G

❑ A cut-set cuts the graph into two components such 
that no path exists between the two

❑ It is the minimal set of edges removal of which 
reduces the rank of the graph by one

❑ A cut-set is also known as
 Minimal cut-set

 Proper cut-set

 Co-cycle



Example 

❑ In graph G, {a,d} is a cut-set; cs1= {a,d}

❑ Hence G-cs1 = 2 sub-graphs of G, g1 & g2

❑ In graph G, n=6, k=1→rank = n – k = 5 

❑ After removing the cut-set, n=6,k=2 → rank = n – k = 4

❑ Hence removal of a cut-set reduces the rank of the graph by one 
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❑ In graph G, {a,e,c} is another cut-set

❑ cs2= {a,e,c}

❑ Hence G-cs2 = 2 sub-graphs of G, g1 & g2
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List all cut-sets

❑ cs1= {a,d}

❑ cs2= {a,b,f}

❑ cs3= {b,c}

❑ cs4= {d,e,c}

❑ cs5= {a,e,c}

❑ cs6= {a,f,c}

❑ cs7= {b,f,d}

❑ cs8= {b,e,d}

❑ cs9= {g}
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Wrong cut-sets

❑ Is {a,f,b,g} a cut-set of G ?

❑ No, coz removal of {a,f,b,g} cuts the graph into three

❑ Also the proper subset (a,f,b} of {a,f,b,g} is itself a cut-set 

❑ Subset of a cut-set cannot be a cut-set
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Wrong cut-sets

❑ Is {b,c,g} a cut-set of G ?

❑ No, coz it cuts the graph into three 

❑ Moreover, subset {b,c} itself is a cut-set 
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Wrong cut-sets

❑ Is {a,f} a cut-set of G ?

❑ No, coz removal of {a,f} does not cut the graph 

into two 
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Right cut-sets

❑ Is {e,f} a cut-set of G?

❑ Yes, coz {e,f} cuts the graph into two & none of 

the proper subsets of {e,f} is a cut-set
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Cut-set in a tree

❑ Since removal of any edge in a tree breaks the 

tree into two, every edge of a tree is a cut-set

❑ Cut-sets→ {a} {b} {c} {d} {e}
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Fundamental cut-set

❑ W.r.t a given SPT, a cut-set of the graph is 

said to be fundamental, if it contains exactly 

one branch of the SPT along with some/all of 

the chords

❑ Since each branch can generate 1 cut-set, the 

no. of fundamental cut-sets possible for a 

graph is given by the no. of branches in the 

spanning tree



Example 
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Sum up

❑ A connected graph will have many SPTs

❑ For each SPT, some of the (n-1) edges form the 
branches and remaining e-n+1 edges form the chords

❑ A fundamental cut-set is always mentioned w.r.t a 
SPT

❑ A fundamental cut-set contains 1 branch along with 
all/some chords of the SPT

❑ Each branch produces one fundamental cut-set

❑ Hence no. of fundamental cut-sets possible for a 
graph is given by the no. of branches in its SPT

❑ A cut-set that contains 2 branches is not a 
fundamental cut-set



❑ Theorem 32: Every cut-set in a connected graph G must contain at 
least one branch of every spanning tree of G

❑ Proof: Let G be a connected graph and S be a cut-set of G

❑ Assume that we have a SPT T that does not have any of its 
branches in S

❑ Then removing S from G does not remove any of the branches from 
G

❑ Since the spanning tree remains completely in the graph and any 
SPT shall contain all the vertices of the graph, removal of S still 
leaves the graph connected

❑ But it is not possible. Removal of any cut-set must leave the graph 
disconnected

❑ Hence our assumption cannot be true

❑ There can be no SPT without any of its branches in any cut-set of G

❑ Hence the theorem



Note 

❑ Every cut-set must contain at least one branch of every SPT

❑ However if there are k SPTs, it is not necessary that every cut-set must 

contain k elements; an edge may be common to many SPTs

❑ If a cut-set has a single edge then that edge has to be a branch in all the 

SPTs

{     }

{         }

{             }
{         }

{         }

{         }

{         }
{                }

{…………}

Cut-set 1

Cut-set 2

…..

Cut-set i

SPT 1

SPT 2

SPT 3

SPT k

….



❑ Theorem 33: In a connected graph G, any minimal set of 
edges containing at least one branch of every SPT of G is a 
cut-set

❑ Proof: In a connected graph G, let Q be a minimal set of 
edges containing at least one branch of every SPT of G

❑ Remove Q from G. The remaining graph will not contain any 
of the SPTs. That means now the graph is disconnected

❑ Also, since Q is the minimal set of edges containing branches 
from all SPTs, returning any one edge to G-Q will create at 
least one SPT thereby making the graph connected as well

❑ Then we can say that Q is the minimal set of edges removal 
of which disconnects G, which is indeed the definition of  a 
cut-set

❑ Hence Q is a cut-set



❑ Theorem 34: Every circuit has an even no. of edges in 
common with any cut-set

❑ Proof: Consider a cut-set S in graph G. let the removal of S 
partition the vertices of G into two disjoint subsets V1 and V2.

❑ Consider a circuit 𝜌 in G(before the removal of S). If all the 
vertices of𝜌 lies entirely within V1 or entirely within V2, then S 
will have no edge in common with 𝜌 i.e, zero no. of edges in 
common (even)

❑ Whereas if some of the vertices of 𝜌 lies in V1 and some in 
V2, then in order to traverse the circuit we need to go back 
and forth between V1 and V2 and finally need to reach back at 
the starting point

❑ Hence the no. of edges we traverse be tween V1 and V2 must 
be even. And these edges could be only from S. Therefore 
no. of edges common to S and 𝜌 is even



❑ Theorem 35: The ringsum of any two cut-sets in a graph is either a third 
cut-set or an edge disjoint union of cut-sets

❑ Proof: Let S1 be a cut-set of the  graph that partitions the vertex set V into 
V1 and V2

❑ Let S2 be another cut-set of the graph that partitions the V into V3 and V4

❑ Clearly, V1 U V2 = V       and          V 1 ∩ V2 = ∅

V3 U V4 = V       and          V3 ∩ V4 = ∅

❑ Now consider the subset(V1 ∩ V4) U (V2 ∩ V3) as V5 which is in fact V2 ⊕ 
V3; similarly consider subset(V1 ∩ V3) U (V2 ∩ V4) as V6 which is same as 
V2 ⊕ V3

❑ Now S1 ⊕  S2 seem to contain only those edges between V5 and V6. Also 
there are no other edges between V5 & V6 which implies V5 U V6 = V and 
V5 ∩ V6 = ∅

❑ Then S1 ⊕  S2 is a cut-set of G if V5 and V6 each remain connected after 
the removal of S1 ⊕  S2 ; otherwise S1 ⊕  S2 is the union of cut-sets



Example 

❑ Eg 1: cut-sets S1= {d,e,f} & S2={f,i,h}

S1 ⊕  S2 = (S1 U S2) - (S1 ∩ S2) 

= {d,e,f,i,h} – { f } 

= {d,e,i,h} 

→ again a cut-set

❑ Eg 2: cut-sets S1= {a,b} & S2={b,c,e,f}

S1 ⊕  S2 = {a,c,e,f} 

→ again another cut-set

❑ Eg 3: cut-sets S1= {d,e,i,h} & S2={f,i,j,}

S1 ⊕  S2 = {d,e,f,h,j} 

→ union of two cut-sets {d,e,f} and {h,j}
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❑ Theorem 36: W.r.t a given SPT T, a chord ci that determines a fundamental 
circuit 𝜌 occurs in every fundamental cut-set associated with the branches 
in 𝜌 and in no other 

❑ Proof: T is the given SPT 

❑ Let 𝜌 be the fundamental circuit determined by the chord ci 

❑ 𝜌 in = {ci  , b1, b2, …, bk }

❑ Let S1 be the fundamental cut-set associated with branch b1

❑ S1={b1,c1, c2, ….cq}

❑ Since the number of edges common to 𝜌 and S1 must be even, ci must be 
in S1

❑ The same is true for fundamental cut-sets made by branches b2,b3,…bk

❑ On the other hand suppose that ci occurs in some fundamental cut-set Sk+1
made by a branch other than b1,b2,….bk. Since none of the branches is in 
Sk+1, there is only 1 edge - ci - common to Sk+1 and the fundamental circuit 
𝜌 which is not possible

❑ Hence the theorem



❑ Theorem 37: With respect to a given spanning tree T, a branch bi that 
determined a fundamental cut-set S is contained in every fundamental 
circuit associated with the chord in S, and in no others

❑ Proof: T is the given spanning tree

❑ Let S be the fundamental cut-set determined by the branch bi

S = {bi, C1, C2, …….Cq}

❑ Let 𝝆1 be the fundamental circuit determined by the chord C1 

❑ 𝝆1 = {C1, b1, b2 …..bK}

❑ Since the no. of edges must be S and 𝝆1 must be even, bi must be in 𝝆1.

❑ The same is true for the fundamental circuits made by chords C2, C3 … Cq

❑ On the other hand, suppose that bi occurs in some fundamental circuit 𝝆q+1 
made by a chord other than C1,C2, ….. Cq. Since none of the chords C1, C2, 
….. Cq is in 𝝆q+1 , there is only 1 edge bi common to a circuit 𝝆q+1 & cut-set 
S, which is not possible

❑ Hence the theorem



Cut-vertices   

❑ In a connected graph G, a cut-vertex is a set of 

vertices removal of which leaves the graph 

disconnected, provided removal of no proper 

subset of the set disconnects G

❑ A cut-vertex cuts the graph into two or more 

components, such that no path exists between 

the components



Example 

❑ In graph G, {V3} is a cut-vertex; cv1= {V3}

❑ Hence G-cv1 = 2 sub-graphs of G, g1 & g2
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Cut-vertex in a tree

❑ Since removal of any vertex other than the 

pendant vertices breaks the tree, every vertex 

of a tree is a cut-vertex

❑ Cut-vertices→ {V2} {V3} {V4}
V2
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V4c

b

e

a

d



Edge connectivity (Ec)

❑ Minimum no. of edges removal of which 

disconnects the graph or reduces the rank of 

the graph by one

❑ It is given by the size of the smallest cut-set



Example 

❑ Cut-sets are 

 {a,d} 

 {a,b}

 {a,c}

 {b,c}

 {b,d}

 {c,d}

 {e}

❑ Smallest cut-set is {e} → contains one element

❑ Hence edge connectivity Ec of graph G is 1
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Problem 

❑ Find the edge connectivity Ec of the graph 

given 
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Edge connectivity of a tree

❑ Since a tree can be broken by the removal of a 

single edge, edge connectivity of a tree is 

always 1

❑ Cut-sets of the tree are 

❑ {a} , {b} , {c} , {d} , {e}

❑ Hence Ec is 1
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Vertex connectivity (Vc)

❑ Minimum no. of vertices removal of which 

disconnects the graph 

❑ It is given by the size of the smallest cut-vertex



Example 

❑ Cut-vertices are 

 {V3} 

 {V1 ,V4} 

 {V2 ,V4 }

❑ Smallest cut-vertex 
is {V3} → contains 
one element

❑ Hence vertex 
connectivity Vc of 
graph G is 1
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Problem 

❑ Find the vertex connectivity Vc of the graph 

given 
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Vertex connectivity of a tree

❑ Since a tree can be broken by the removal of a 

single non-pendant vertex, vertex connectivity 

of a tree is always 1

❑ Cut-vertices of the tree are 

❑ {V2} , {V3} , {V4} 

❑ Hence Vc is 1
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Separable graph 

❑ A connected graph is said to be separable if its 

vertex connectivity is one

❑ If removal of a single vertex disconnects the 

graph, then it is separable

❑ The vertex, removal of which disconnects the 

graph is called an articulation point or cut-

vertex or cut-node

❑ In such a graph, there would be a subgraph g 

such that g & 𝑔 have only 1 vertex in common



Example 

❑ Smallest cut-vertex is {V3}; contains 1 element

❑ Hence G is a separable graph

❑ V3 is the articulation point

❑ Removal of V3 disconnects the graph
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Example 

❑ Smallest cut-vertex is {V2,V5}; contains 2 

elements

❑ Hence G is a non-separable graph
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❑ Theorem 38: A vertex V in a connected graph G is a cut–
vertex iff these exists two vertices x & y in G such that every 
path between x & y passes through V

❑ Proof : Let V be a cut-vertex of graph G

❑ Then removal of V from G must disconnect the graph into two 
components, such that the components are not empty. Each 
component must contain at least an isolated vertex

❑ Let x be a vertex from first component & y from the other 
component

❑ If there exists a path between x & y, other than through vertex 
V, then removal of V will not disconnect the graph. But since 
V is a cut-vertex, removal of V must disconnect the graph

❑ So there can be no path between x & y other than through V



❑ Conversely: If x & y are two vertices of G such that all 
paths between x & y are through vertex V

❑ Then removal of V from G makes x & y not reachable 
from each other as all paths between x & y have been 
broken

❑ Since no path exists between x & y, then x & y must 
be lying in different components, which implies that 
the graph has been disconnected by the removal of V

❑ Any vertex V, removal of which disconnects a graph is 
a cut vertex. Hence here, V is a cut-vertex

❑ Hence the theorem



❑ Theorem 39: The edge connectivity of a graph 
cannot exceed the degree of the vertex with the 
smallest degree in G

❑ Proof: Let Vi be the vertex with the smallest 
degree.

❑ Let d(Vi) represent the degree of Vi 

❑ Vertex Vi can be separated from the graph by 
removing all the d(Vi) edges incident on it

❑ Hence d(Vi) is the edge connectivity of the graph

❑ Hence the theorem



❑ Theorem 40: The vertex connectivity of any graph G can 
never exceed the edge connectivity of G

❑ Proof: Let α denote the edge connectivity of G

❑ Then, there must exist a cut–set with α edges. Let it be S.  

❑ S partitions the vertex set of the graph into two. Let they be 
V1 & V2

❑ By removing at most α vertices from V1 (or V2) on which the α 
edges were incident, we can bring the same effect on the 
graph i.e, we can disconnect the graph in the same way how 
S disconnected the graph. However if any other edges were 
incident on these vertices, they too would get deleted

❑ However the vertex connectivity would be α itself



K-connected graph

❑ A graph whose vertex connectivity is K

❑ Every pair of vertices in a k-connected graph is 

joined by at least k non-intersecting paths



Properties of cut-sets

❑ Cut-set → set of edges removal of which disconnects the 
graph

❑ Edge connectivity → no. of edges in the smallest cut-set

❑ Cut-set in tree → every edge of a tree is a cut-set

❑ Edge connectivity of any tree → is always 1

❑ Fundamental cut-set → a cut-set that contains exactly one 
branch of the spt

❑ Number of fundamental cut-sets → no. of branches in the spt

❑ Fundamental circuit → a circuit that contains exactly one 
chord

❑ Number of fundamental circuits → no. of chords in the graph 

❑ Every cut-set will contain at least one branch of every spt



Properties of cut-vertices

❑ Cut-vertex → set of vertices removal of which disconnects the 
graph

❑ Vertex connectivity → no. of vertices in the smallest cut-
vertex

❑ Cut-vertex in tree → Every vertex (other than pendant vertex) 
in a tree is a cut-vertex

❑ Vertex connectivity of any tree → always 1

❑ Separable graph→ graph whose vertex connectivity is 1

❑ Edge connectivity → cannot exceed the smallest degree 

❑ The vertex connectivity → cannot exceed edge connectivity

❑ A graph is K-connected → vertex connectivity is K



Combinatorial representation of Graphs

❑ Any graph exists as an abstract object irrespective 
of its size and shape in drawing

❑ Such a combinatorial/abstract representation of a 
graph is given by

❑ G = (V, E, )

❑ Where V = {V1, V2, ….Vn} is the set of n vertices

E = {e1, e2, ….ee} is the set of e edges

 = E → V

❑  is the mapping from set E to set V

❑  defines the relationship between the sets V & E 



Example 

❑ V = {V1, V2, V3,V4, V5}

❑ E = {a,b,c,d,e,f,g}

❑  = a → (V1,V5)

b → (V1, V2)

c →(V1, V4)

d → (V5, V4)

e → (V2, V4)

f → (V2, V3)

g →(V4, V3)

❑ Here a → (V1, V5) implies that object a from set E is mapped 
onto the unordered pair (V1,V5) of objects from set V



Geometric representation of Graphs

❑ An abstract/combinatorial graph can be 

geometrically represented in many ways 

without altering the definition of the graph

❑ Geometric representation of the abstract graph 

on the previous slide
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Examples

❑ G’ and G’’ are also 

geometric 

representations of 

the same abstract 

definition  

❑ It can be seen that 

G, G’ & G’’ are all 

isomorphic to each 

other

❑ m
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Planar & non-planar graphs

❑ A graph G is said to be planar if there exists some 

geometric representation of G which can be drawn on a 

plane without none of its edges intersecting

❑ A graph that cannot be drawn on a plane without edges 

crossing over is called a non planar graph

❑ G is planar and H is non-planar
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Problem

❑ Is the given graph G a planar graph?

❑ Yes, coz it can be re-drawn without none of its 

edges intersecting
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Embedding

❑ A drawing of a geometric representation of a 

graph on any surface without edges 

intersecting is called an embedding

❑ Only planar graphs can have embeddings

❑ Such an embedding of a planar graph G on a 

plane is called plane representation of G



Example 

❑ G is a planar graph, but it is not an embedding as 
some of its edges crosses over others 

❑ Where as G’ is an embedding

❑ Note: for a graph to be planar, there must at least one 
geometric representation that is an embedding  i.e, we 
must be able to draw the graph without its edges 
intersecting
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Example 

❑ The graph G is non-planar as we are not able 

draw an embedding
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Kuratowski’s 2 non-planar graphs

❑ The Polish mathematician Kasimir Kuratowski

❑ Non-planar property of the 2 graphs

 Complete graph with 5 vertices (K5)

 Bi-partite graph with 6 vertices (K3,3)



Complete graph with 5 vertices (K5)

❑ Theorem 43: The complete graph with 5 vertices (K5) is non planar

❑ Proof: Let the 5 vertices of the graph be V1, V2, V3, V4 and V5

❑ Since it is a complete graph, every vertex needs to be connected to 

every other vertex by an edge

❑ There must be a circuit going from V1 to V2 to V3 to V4 to V5 and 

back to V1; that is a pentagon that divides the region into 2 - inside 

& outside of the pentagon

V5

V4 V3

bd

V2

c

:G

V1

e a



❑ Now we need V1 to be connected to V3 & V4. 

V1 can be connected to V3 along an edge 

inside the pentagon. Similarly V1 can be 

connected to V4 also, inside the pentagon

V5

V4 V3

bd

V2

c

:G

V1

e a

f g



❑ Next we need V2 to be connected to V4 & V5

❑ Drawing an edge inside the pentagon is not 

possible as it will intersect the previously drawn 

edges. So let as draw these 2 edges along the 

outside region

V5

V4 V3

bd

V2

c
:G

V1

e a

f g

h

i



❑ Now V1, V2, & V4 have degrees 4 each. V3 & V5 have 

degrees 3 each. So the remaining edge to be drawn is 

between V3 & V5. We cannot draw this edge inside or 

outside, without intersecting previous edges

❑ Hence this graph cannot be embedded in a plane

❑ So it is non-planar

V5

V4 V3

bd

V2

c

:G

V1

e a

f g

h

i



Bi-partite graph with 6 vertices (K3,3)

❑ Theorem 44: Kuratowski’s 2nd graph is non-planar

❑ Proof: The graph is bi-partite graph with 6 vertices

❑ Here the vertex set V is divided into two V’ & V’’

❑ Every vertex in V’ is connected to every vertex in 

V’’ by an edge

❑ V’={V1,V2,V3} & V’’={V4,V5,V6}

❑ E = {a,b,c,d,e,f,g,h,i} V2 V3

V5
V6

V1

V4

: G

b

c
e

a

g

fd

h
i



❑ From vertex V1, draw 
edges towards V4, V5 & 
V6. Now  V1 has degree 
3

❑ From vertex V2, draw 
an edge toward V4

❑ From V3 draw an edge 
towards V4

❑ Again at V2, draw edge 
towards V5 & V6 using 
curved lines so as to 
avoid intersecting

❑ Also from V3 to V5

V2

V3

V5
V6

V1

V4

: G

b

c

e

a
f

d

h
i



❑ Now 1 more edge is 

required between V3

& V6. We cannot 

draw the edge 

without intersecting 

previous edges

❑ Hence the proof

V2

V3

V5
V6

V1

V4

: G

b

c

e

a
f

d

h
i



Properties common to Kuratowski’s 2 graphs

1) Both are regular graphs

 K5  is a regular graph with degree 4 each

 K3,3 is a regular graph with degree 3 each

2) Both are non planar

3) Removal of one edge or one vertex makes both 
of them planar

4) Both are the smallest non planar graphs

 K5  is the non planar graph with smallest no. of 
vertices (5 vertices)

 K3,3 is the non planar graph with smallest number of 
edges (9 edges)



Embedding of a planar graph without curved 

lines

❑ It may appear that in order to draw a planar 

graph without its edges intersecting, we need 

to use curved lines as some edges; but this is 

not true

❑ Fary proved that every planar graph can be 

drawn using straight lines and of course, 

without edges intersecting



Region or face

❑ The plane representation of a graph (embedding) 
divides the plane into regions. A region is 
characterized by the set of edges forming its boundary

❑ Hence non-planar graphs cannot have regions 
defined, as they have their edges intersecting

❑ And planar graphs which are not an embedding too 
cannot have regions defined

❑ Thus region is a property, specific to the geometric 
representation of a graph and not to the abstract 
representation

❑ Regions are also known as faces, windows or meshes



Examples: planar graphs

Region 1

Region 2
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Example: non-planar

❑ Since the faces do not have proper 

boundaries, regions cannot be defined for non-

planar graphs

V5

V4 V3

bd

V2

c

:H

V1

e a

h

ji

f g
Reg 1

Reg 2 Reg 3

Reg 4



Example: planar but not an embedding

❑ Though planar, G is not an embedding; hence cannot 

have regions defined

❑ G’ is an embedding of the same planar graph G; hence 

4 regions can be identified

V2

V3d

f

c

b

a

V1

e

V4

: G’

Reg 1

Reg 2

Reg 3

Reg 4

V2

V3
d

f

c

b

a

V1

e

V4

: G
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Region 2



Infinite Region

❑ The portion of the plane lying outside a graph 

embedded in a plane is called the infinite region

❑ Also known as unbounded, outer or exterior 

region

❑ Like other regions, infinite region is also 

characterized by a set of edges

❑ A planar graph can be embedded in a plane in 

different ways. By changing the embedding of a 

planar graph, we can change the infinite region



❑ G & G’ are different planar embeddings of the same graph. The 

infinite region boundary is different for both

V2

V3c

f

b

a

d

V1

e

V4

: G

Reg 1

Reg 2

Reg 3

Infinite 

region

V2

V3
c

f

b

ad

V1

e
V4

: G’
Reg 3

Infinite 

region

Regions of graph G are 

Region 1 = {a,d,e}

Region 2 = {e,b,c}

Region 3 = {a,b,f}

Infinite region = {c,d,f}

Regions of graph G’ are 

Region 1 = {c,d,f}

Region 2 = {a,b,f}

Region 3 = {e,c,b}

Infinite region = {a,e,d}



Embedding on a Sphere

❑ To eliminate the distribution between finite & 

infinite regions, a planar graph can be 

embedded on the surface of a sphere

❑ It is done by stereographic projection of a 

sphere on a plane

SP

NP

P

P’



❑ Theorem 45: A graph can be embedded on the surface of a sphere 
if and only if it can be embedded on a plane

❑ Proof: Place the sphere on the plane and note the point of contact 
as SP (south pole)

❑ From the point SP, draw a straight line perpendicular to the plane. 
The point where this line meets the circumference of the sphere is 
noted as NP

❑ For any point P on the plane, there is a corresponding point p’ on 
the sphere and vice versa

❑ To obtain P’, draw a straight line from P to meet NP. Point where 
this line intersects the circumference of the sphere is the point p’

❑ Thus we can say that there is a one-to-one correspondence 
between the points on the sphere and the finite points on the plane

❑ Points at infinity corresponds to NP

❑ Hence the theorem



❑ Theorem 46: A planar graph may be embedded 
in a plane such that any specific region can be 
made the infinite region  

❑ Proof: A planar graph embedded in the surface of 
a sphere divides the surface into different regions.

❑ Each region on the sphere is finite, the infinite 
region has been mapped on to the point NP

❑ Now, it is clear that by suitably rotating the 
sphere, we can make any specific region to be the 
infinite region on the plane

❑ Hence the theorem



Number of Regions in a planar graph

❑ In all the possible embeddings of a planar 

graph, the no. of regions in the graph would be 

the same

❑ It is known as Euler’s formula

❑ It is given by f = e-n+2

 f→ no. of regions/faces

 e→ no. of edges

 n→ no. of vertices



Euler’s formula

❑ Theorem 47: A connected planar graph with n vertices and 
e edges has e-n+2 regions

❑ Proof: Assume a simple graph. Though a self loop or a 
parallel edge does not affect the formula, as increasing an 
edge equally increases the no. of regions

❑ Similarly let us not consider those edges that do not form 
the boundary of any region. Such edges also do not affect 
the formula, as each such edge increases n by 1, ‘e-n’ 
remains unaltered

❑ Assume the planar embedding of the graph to be 
containing all straight lines as edges

❑ Now, the graph looks like a net of polygons



❑ Calculating total no. of edges

❑ Let k3= no. of triangles

k4= no. of quadrilaterals

k5= no. of pentagons

..

kr= no. of r-sided polygons

❑ Hence total no. of edges in the entire net of polygon 
would be

❑ 3k3 + 4k4 + 5k5 ……..+ rkr + p = 2*e   

❑ Where e is the total no. of edges in the polyhedron

❑ As each edge would be counted twice, we take 2e

Equation 1



❑ Calculating total no. of faces

❑ Total no. of faces/regions would be

❑ k3 + k4 + k5 ……..+ kr + 1 = f    

❑ The outer region/infinite region is also to be 

counted along with all interior regions; hence 

the ‘1’

❑ f is the total no. of regions/faces

Equation 2



❑ Sum of all interior angles of the polyhedron:

❑ Sum of all interior angles of a p–sided polygon is (p-2)𝜋

❑ Taking the sum of interior angles for each polygon inside the 
polyhedron,

❑ k3(3-2)𝜋 + k4(4-2) 𝜋 + k5(5-2) 𝜋 + ….. + kr(r-2) 𝜋

❑ Sum of all exterior angles of the polyhedron:

❑ Sum of all exterior angles of a p–sided polygon is (p+2)𝜋

❑ Total angle sum of the polyhedron:

❑ At each vertex we have an angle of 360
o

❑ Since we have ‘n’ vertices,

❑ Total angle sum  = n * 360
o
= n * 2 𝜋 = 2 𝜋 n

Equation 3

Equation 4

Equation 5



❑ Sum of interior angles + sum of exterior angles = total angle 

sum of polyhedron

❑ k3(3-2) 𝜋 + k4(4-2) 𝜋 + ….. + kr(r-2) 𝜋 + (p+2) 𝜋 = 2 𝜋 n

❑ 𝜋(3k3 +4k4+ … +rkr) – 2k3𝜋 – 2k4𝜋 – …. – kr𝜋 + (p+2) 𝜋 = 2𝜋n

❑ From eq 1, we have 3k3 + 4k4 + …..+ rkr = 2e – p 

❑ 𝜋 (2e – p) – 2 𝜋(k3 +k4+ ………… + kr) + (p+2) 𝜋 = 2 𝜋 n

❑ From eq 2, we have k3 + k4 + k5 ……..+ kr + 1 = f    

Equation 3 Equation 4 Equation 5+ =



❑ 𝜋 (2e – p) – 2 𝜋(f – 1) + (p+2) 𝜋 = 2𝜋n

❑ 2e – p – 2f +2+p+2 = 2n

❑ 2e – 2f +4 = 2n

❑ e-f+2 = n

❑ f = e-n+2

Note:

In any simple connected planar graph, 

e ≥ 3/2 f and e ≤ 3n-6



Recalling Kuratowski’s two graphs

❑ 1) Complete graph with 5 vertices (K5)

❑ n = 5; e = 10; 3n – 6 = 9

❑ According to the above result for a planar graph, e ≤
3n-6

❑ Here 10 ≤ 9 

❑ Therefore K5 is non-planar

❑ f = e-n+2= 10-5+2 = 7; 3/2 *f = 21/2 = 10.5

❑ According to the above result for a planar graph, e ≥
3/2 f

❑ Here 10 ≥ 10.5 

❑ Therefore K5 is non-planar



❑ 2) Bipartite graph with 6 vertices (K3,3)

❑ n = 6; e = 9; 3n – 6 = 12

❑ According to the above result for a planar graph, e ≤ 3n-6

❑ Here 9 ≤ 12 

❑ But K3,3 is non-planar

❑ f = e-n+2 = 9 – 6 +2 = 5; 3/2 f = 3/2 * 5 = 7.5

❑ According to the above result for a planar graph, e ≥ 3/2 f

❑ Again 9 ≥ 7.5 

❑ But K3,3 is non-planar

❑ Hence we conclude that e ≤ 3n-6 is only a sufficient 
condition, not necessary for a graph to be planar



Detection of Planarity

❑ In order to check whether a given graph is 

planar or not the following steps of Elementary 

reduction can be used



Elementary Reduction

❑ Step 1: Of the graph is disconnected, we need to 
check whether each component is planar. If all 
components are planar, then the disconnected 
graph is said to be planar

❑ If the graph is a separable graph, we need to 
check whether each block is planar. It all blocks 
are planar, then the separable graph is planar

❑ Now, let our graph G = {G1, G2, ……….. Gk}

❑ Where each Gi is a non-separable block of G

❑ Test each Gi for planarity



❑ Step 2 : Remove all self loops as self loops does not affect planarity

❑ Step 3 : Similarly remove all parallel edges as they too do not have 
anything to do with planarity

❑ Step 4 : Merge edges in series, by ignoring their common vertex

❑ Step 5 : Repeat step 3 and 4 repeatedly until no more edges can be 
deleted.

❑ Step 6 : Now the resulting graph may contain

i. A single edge

ii. A complete graph with 4 vertices

iii. A non separate graph with n ≥ 5 & e ≥ 7

❑ If it is (i) or (ii) then our graph is planar; no need of further 
clarification

❑ But if it is (iii) continue to step 7



❑ Step 7: Check whether e ≤3n–6 for the resultant 
graph

❑ If the condition is not satisfied, then our graph is 
planar. But if not, may or may not be planar. So 
we need to check further

❑ Step 8: Check whether the resultant graph contain 
either of Kuratowski’s graphs or their 
homeomorphic graphs

❑ If our graph contains K5, K3,3 or graphs 
homeomorphic to K5 and K3,3 , then our graph is 
certainly non-planar



Homeomorphic graphs

❑ Two graphs are said to be homeomorphic if 

one can be obtained from the other by creating 

edges in series or by merging edges in series



Problem 

❑ Check whether the given graph is planar by 

the method of elementary reduction

V2

V3

V5
V6

V1

V4

: G

V7



Kuratowski’s theorem

❑ Theorem 48: A necessary & sufficient condition for a graph G 
to be planar is that G does not contain either of Kuratowski’s 
two graphs or any graph homeomorphic to them

❑ Proof: We know that Kuratowski’s 2 graphs are no-planar and 
they cannot be embedded in a plane

❑ So if any graph contains any of the above graphs as 
subgraphs, then surely the main  graph too could not be 
embedded in a plane. So the main graph is also non-planar

❑ If the given graph contains subgraphs that are homeomorphic 
to any of the Kuratowski’s graph, then the given graph is also 
non-planar coz any graph homeomorphic to K5 and K3,3 is 
also non-planar



Geometric dual of a planar graph

❑ In order to obtain the geometric dual of a planar 
graph
1) Start with a plane representation of the planar graph 

(planar embedding)

2) Name the regions or faces are F1, F2, F3…… Fe-n+2

3) Place a point Pi in each face Fi

4) For each edge of G, draw a line crossing the edge 
connecting the two faces on either sides; For an 
edge lying entirely in a region, draw a self loop at 
the point that passes through the edge

5) Name the new graph as G* which forms the dual of 
G



Example 

❑ Let G be the plane representation of a graph

V2
V3

V5

V1

V4 : G

b

d

c

e

a

h
f

g

i

Name the 

regions
F2

F3

F5
F1

F4

F6

Point Pi on 

each face Fi

For each edge of 

G, draw a 

crossing edge 

connecting faces

Draw the 

planar 

embedding

: G*



Properties of duals G & G*

❑ A self loop in G yields a pendant edge in G*

❑ A pendent edge in G yields a self loop in G*

❑ Edges in series in G becomes parallel edges in G*

❑ Parallel edges in G becomes edges in series in G*

❑ Number of edges forming the boundary of a face 

Fi in G becomes the degree of the vertex Pi in G*

❑ Degree of a vertex Vi in G becomes the number of 

edges forming the boundary of the face Fi in G*



❑ Since G is planar, G* is also planar

❑ If n, e, f, r & 𝜇 denotes the no. of vertices, no. 

of edges, no. of faces, rank & nullity of G & n*, 

e*, f*, r*& 𝜇 * denotes the corresponding 

quantities in G*

❑ There is a one-to-one correspondence 

between the edges of G & G*. Every edge of G 

intersects the corresponding edge of G*. 

However, number of vertices may change



All duals of G

❑ A planar graph G may have different planar 

embeddings. For each planar embedding, we 

can obtain a corresponding geometric dual

❑ A planar graph G will have a unique dual if & 

only if it has a unique planar embedding

❑ If G & G’ are isomorphic, then their 

corresponding duals G* & G’* may not be 

isomorphic



Self dual Graphs

❑ If a planar graph G is isomorphic to its own 

dual, it is called a self dual graph

❑ Example 
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Dual of a Subgraph

❑ Let G* be the dual of G

❑ Let ‘a’ be an edge in G & a*, the corresponding 
edge in G*

❑ To find the dual of G-a; that is the dual of the 
graph G after deleting the edge ‘a’ i.e, (G-a)*

❑ This can be directly obtained from G*

❑ If ‘a’ was a boundary of 2 regions in G, then by  
deleting a* from G*, we can obtain (G-a)* ; 
deleting the edge will require to fuse the end 
vertices



❑ Else if ‘a’ was a not any boundary in G, then a* 

would be a self loop in G*. Then deleting the 

self loop yields (G-a)*

❑ G – q  



Example 
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Dual of a homeomorphic graph

❑ Let G* be the dual of G

❑ Let ‘a’ be an edge in G & a* be its corresponding edge 
in G*

❑ Suppose we create a new vertex in G by introducing a 
vertex of degree 2 on edge a. This will create a new 
edge as well. Let it be b. Now the dual of G+b will 
contain a new edge b* which appears as an edge 
parallel to a*

❑ Similarly merging 2 edges in series will simply 
eliminate one of the corresponding parallel edges in 
G*

❑ Thus dual of a homeomorphic graph of G can be 
obtained from G*



Combinatorial Dual

❑ G* is said to be combinatorial dual of G if there 

is a one to one correspondence between the 

edges of G & G* such that if g is any subgraph 

of G & h is the corresponding subgraph of G* 

then

❑ Rank (G*-h) = rank (G*) – nullity (g)



❑ Theorem 49: A necessary and sufficient condition for 
two planar graphs G1 & G2 to be duals of each other is 
that, there is a one-to-one correspondence between 
the edges of G1 & G2 such that a set of edges in G1
forms a circuit if & only if the corresponding set in G2
forms a cut-set

❑ Proof: Since every edge of G will be intersected by 
exactly one edge of G*, there must ne a one to one 
correspondence between the edges of G1 & G2

❑ Now, consider a planar representation of G & its dual 
G*. Let 𝜌 be an arbitrary circuit in G. 𝜌 will form will 
form some simple closed curve in G, dividing the 
plane into 2 areas, one inside 𝜌 & the other outside 𝜌



❑ Now the vertices of G* can be viewed as two 

non empty disjoint subsets, those vertices that 

represent regions inside 𝜌 & those that 

represents regions outside 𝜌 and this partition 

is brought by the set of edges in 𝜌*. Hence 𝜌* 

is a cut-set in G*

❑ Similarly every cut-set S* in G* will have a 

unique circuit S in G



❑ Conversely: Suppose there are two planar graphs G & G’ 
such that there is one to one correspondence between their 
edges and also one to one correspondence between the cut-
sets of G & the circuits of G’ and vice versa

❑ Let G* be a dual of G

❑ Then there is a one to one correspondence between the cut-
sets of G & the circuits of G’ & also between the cut-sets of G 
& the circuits of G*

❑ Therefore there is a one to one correspondence between the 
circuits of G’ & G* implying that G’ & G* are 2-isomorphic. 
Then G’ must be a dual of G 

❑ (Based on the theorem: Two graphs are 2- isomorphic if & 
only if they have circuit correspondence)



❑ Theorem 50: A graph has a dual if and only if it is 
planar

❑ Proof: Let us prove that a non planar graph does not 
have a dual

❑ Let G be a non-planar graph. Then according to 
Kuratowski’s  theorem, G contains either K5 or K3,3 or 
a graph homeomorphic to them

❑ Any graph can have a dual only if every subgraph of 
that graph & every graph homeomorphic to that graph 
has a dual

❑ From the above 2 statements, we can say that if K5 
and K3,3 cannot have a dual then none of the non-
planar graphs can have a dual



❑ To prove that K3,3 do not have a dual, assume 

the contradiction that K3,3 has a dual D

❑ Since K3,3  has 9 edges, so must be D

❑ All cut-sets in K3,3  must have corresponding 

circuits in D & vice versa

❑ Since K3,3  do not have any cut-set containing 

2 edges, D cannot have any circuit containing 

2 edges. That means D cannot contain any 

parallel edges



❑ Since every circuit in K3,3  is of length 4 or 6, D 
cannot have any cut set with less than 4 edges, 
which implies every vertex in D has degree of at 
least 4

❑ Since D has no parallel edges & every vertex has 
degree of minimum 4, D must contain at least 5 
vertices, each of degree 4 or D may contain more 
than 5 vertices with larger degrees

❑ D must then at least contain 
5∗4

2
= 10 edges, 

contradicting to the fact that D has only 9 edges

❑ So there can be no such D. Hence K3,3 cannot 
have a dual



❑ Similarly we can prove that K5 do not have a dual

❑ Assume the contradiction that K5 has a dual, H

❑ Since K5 has 10 edges, H must also have 10 
edges

❑ All cut-sets in K5 must have corresponding circuits 
in H  vice versa

❑ Since K5 do not have any cut-set with 2 edges, it 
cannot have a circuit with 2 edges. That means H 
has no parallel edges

❑ Since every cut-set in K5 contains 4 or 6 edges, H 
can have circuits of length 4 or 6 only



❑ Consider a circuit of length 6 (hexagon) in H. 
Now, we cannot add the remaining 4 edges, 
without creating parallel edges or circuits of length 
three

❑ So in order to add the remaining 4 edges without 
violating the rules (parallel edge & circuits of 
length 3) we assume H to have 7 vertices, with 
degree at least 3

❑ Then H must have 
7∗ 3

2
=11 edges, contradicting 

that H has 10 edges

❑ So there can be no such dual for K5



End of module 4


