
Programming in C Lab Manual EST 102 

 

 

Department of CSE, ICET                                                                                                                                                           

                                        ILAHIA COLLEGE OF 

ENGINEERING AND TECHNOLOGY 

                    Mulavoor P.O, Muvattupuzha-686673 

(Approved by AICTE, New Delhi and Affiliated to APJ Abdul Kalam              

Technological University, Thiruvananthapuram) 

 

 

 

 

                 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

 

 

                                                          LAB MANUAL 

 

                                                                    ON 

 

                                              PROGRAMMING IN C-EST102 

 

 



Programming in C Lab Manual EST 102 

 

 

Department of CSE, ICET                                                                                                                                                           

VISION OF THE DEPARTMENT: 

            To mold learners as excellent technocrats in the field of Computer Science and Engineering 

through quality education, lifelong learning, research and development with human values. 

MISSION OF THE DEPARTMENT: 

1. To impart quality education through theory and practical sessions, value added courses and 

timely update of knowledge. 

2. Focus on innovation in research with recent trends by inculcating industry institute Interaction. 

3. Promote learners in Innovation and Entrepreneurship activities, placement and higher studies. 

4. To thrive socially committed professionals with human values and ethics 

 

PROGRAM EDUCATIONAL OBJECTIVES (PEO’s): 

1. Establish the graduates to solve the real-world challenges through use of Computer knowledge and 
skills.  

2. Graduates will have the ability to foster wide range of multi-disciplinary projects for the welfare 
of humankind. 

3. Make the graduates as good professionals by shaping their hard and soft skills. 

PROGRAM SPECIFIC OUTCOMES: 

 

PSO1: - Our Students will accomplish the skill of entrepreneurship by providing easy and feasible 
solutions for the advanced technology requirements with the aid of proper priority planning, strategic 
thinking and issue forecasting. 

PSO2: - Proficiency in multiple skill sets which enable the learners to excel in diverse platforms in 
industries. 

PROGRAM OUTCOMES (POs): 

Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, 

and an engineering specialization to the solution of complex engineering problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering 

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and 

engineering sciences. 

3. Design/development of solutions: Design solutions for complex engineering problems and design 

system components or processes that meet the specified needs with appropriate consideration for the 

public health and safety, and the cultural, societal, and environmental considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and research methods 

including design of experiments, analysis and interpretation of data, and synthesis of the information to 

provide valid conclusion 



Programming in C Lab Manual EST 102 

 

 

Department of CSE, ICET                                                                                                                                                           

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities with an 

understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, 

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional 

engineering practice. 

7. Environment and sustainability: Understand the impact of the professional engineering solutions in 

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable 

development. 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of 

the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse 

teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the engineering 

community and with society at large, such as, being able to comprehend and write effective reports and 

design documentation, make effective presentations, and give and receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the engineering 

and management principles and apply these to one’s own work, as a member and leader in a team, to 

manage projects and in multidisciplinary environments. 

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in 

independent and life-long learning in the broadest context of technological change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Programming in C Lab Manual EST 102 

 

 

Department of CSE, ICET                                                                                                                                                           

SYLLABUS  

Programming in C (Common to all disciplines) 

Module 1  

Basics of Computer Hardware and Software  

Basics of Computer Architecture: processor, Memory, Input& Output devices Application Software & 
System software: Compilers, interpreters, High level and low-level languages Introduction to structured 
approach to programming, Flow chart Algorithms, Pseudo code (bubble sort, linear search - algorithms 
and pseudocode) 

Module 2 

Program Basics 

Basic structure of C program: Character set, Tokens, Identifiers in C, Variables and Data Types, Constants, 
Console IO Operations, printf and scanf Operators and Expressions: Expressions and Arithmetic 
Operators, Relational and Logical Operators, Conditional operator, size of operator, Assignment operators 
and Bitwise Operators. Operators Precedence Control Flow Statements: If Statement, Switch Statement, 
Unconditional Branching using goto statement, While Loop, Do While Loop, For Loop, Break and 
Continue statements. (Simple programs covering control flow) 

Module 3 

Arrays and strings 

Arrays Declaration and Initialization, 1-Dimensional Array, 2-Dimensional Array String processing: In 
built String handling functions (strlen, strcpy, strcat and strcmp, puts, gets) Linear search program, bubble 
sort program, simple programs covering arrays and strings. 

Module 4 

Working with functions 

Introduction to modular programming, writing functions, formal parameters, actual parameters Pass by 
Value, Recursion, Arrays as Function Parameters structure, union, Storage Classes, Scope and life time 
of variables, simple programs using functions 

Module 5 

Pointers and Files 

Basics of Pointer: declaring pointers, accessing data though pointers, NULL pointer, array access using 
pointers, pass by reference effect File Operations: open, close, read, write, append Sequential access and 
random access to files: In built file handling functions (rewind (), fseek(), ftell(), feof(), fread(), fwrite()), 
simple programs covering pointers and files. 

 

 

 

 

 



Programming in C Lab Manual EST 102 

 

 

Department of CSE, ICET                                                                                                                                                           

C PROGRAMMING LAB (Practical part of EST 102, Programming in C) 

 

LIST OF LAB EXPERIMENTS: 

1.Familiarization of Hardware Components of a Computer 

2. Familiarization of Linux environment – How to do Programming in C with Linux 

3.Familiarization of console I/O and operators in C 

i) Display “Hello World” 

ii) Read two numbers, add them and display their sum 

iii) Read the radius of a circle, calculate its area and display it 

v)Evaluate the arithmetic expression ((a -b / c * d + e) * (f +g)) and display its solution. Read 

the values of the variables from the user through console. 

4.Read 3 integer values and find the largest among them. 

5.Read a Natural Number and check whether the number is prime or not 

6.Read a Natural Number and check whether the number is Armstrong or not 

7.Read n integers, store them in an array and find their sum and average 

8.Read n integers, store them in an array and search for an element in the array using an algorithm for   

    Linear Search. 

9.Read n integers, store them in an array and sort the elements in the array using Bubble Sort 

    Algorithm. 

 
 10.Read a string (word), store it in an array and check whether it is a palindrome word or not. 

 11.Read two strings (each one ending with a $ symbol), store them in 

      arrays and concatenate them without using library functions. 

 12.Read a string (ending with a $ symbol), store it in an array and count the number of vowels, 

      consonants and spaces in it. 

 13.Read two input each representing the distances between two points in the Euclidean space, 

       store these in structure variables and add the two distance values. 

 14.Using structure, read and print data of n employees (Name, Employee Id and Salary) 

 15.Declare a union containing 5 string variables (Name, House Name, City Name, State and Pin 

      code) each with a length of C_SIZE (user defined constant). Then, read and display the address of a 



Programming in C Lab Manual EST 102 

 

 

Department of CSE, ICET                                                                                                                                                           

       person using a variable of the union. 

 16.Find the factorial of a given Natural Number n using recursive and non-recursive functions 

 17.Read a string (word), store it in an array and obtain its reverse by using a user defined function. 

 18.Write a menu driven program for performing matrix addition, multiplication and finding the 

       transpose. Use functions to (i) read a matrix, (ii) find the sum of two matrices, (iii) find the product 

       of two matrices, (i) find the transpose of a matrix and (v) display a matrix. 

 19.Do the following using pointers 

i) add two numbers 

ii) swap two numbers using a user defined function 

20.Input and Print the elements of an array using pointers 

21.Compute sum of the elements stored in an array using pointers and user defined function. 

22.Create a file and perform the following 

            i) Write data to the file 

            ii) Read the data in a given file & display the file content on console 

            iii) append new data and display on console 

23.Open a text input file and count number of characters, words and lines in it; and store the results 

      in an output file. 

 

 

 

 

 

 

 

 

 

 

 

 



Programming in C Lab Manual EST 102 

 

 

Department of CSE, ICET                                                                                                                                                           

COURSE OBJECTIVE:  

To understand the fundamental concept of programming and use it in problem solving. 

COURSE OUTCOMES:  

After the completion of the course the student will be able to 

 

CO-PO Mapping Matrices 

 

 

 

EST 102 .1 Analyse a computational problem and develop an algorithm/flowchart to find its 

solution 

EST 102 .2 Develop readable* C programs with branching and looping statements, which uses 
Arithmetic, Logical, Relational or Bitwise operators. 

EST 102 .3 Write readable C programs with arrays, structure or union for storing the data to be 
processed 

EST 102 .4 Divide a given computational problem into a number of modules and develop a 
readable multi-function C program by using recursion if required, to find the 
solution to the computational problem 

EST 102 .5 Write readable C programs which use pointers for array processing and parameter 
passing 

EST 102 .6 Develop readable C programs with files for reading input and storing output 

PO 

CO 

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 

EST102 

.1 
3 2 2 1 - 1 - - - 1 2 2 - - 

C100.2 3 2 2 1 1 - - - - 1 - 2 2 2 

C100.3 3 2 2 2 1 - - - - 1 - 2 2 2 

C100.4 3 2 2 2 1 - - - - 1 2 2 2 2 

C100.5 3 1 - - 1 - - - - 1 - 2 2 2 

C100.6 3 1 - - 1 - - -  1 - 2 2 2 



       Programming in C                     Lab Manual EST 102  

 

 

             
              

      INDEX        
             

   

Sl.No. 
  

Content 
   Page  

 

         

        

No. 
  

          

 

 

           

  1  Familiarization of Hardware Components of a Computer  2   

  2  Familiarization of Linux environment    7   

  3  Introduction to C    9   

  4  Experiments    23   

     4.1 Familiarization of console I/O and operators in C  23   

     4.2 Read 3 integer values and finds the largest among them.  24   

     4.3 Check whether the number is prime or not    24   

     4.4 Check whether the number is Armstrong or not    24   

     4.5 Find the sum and average of numbers in an array  25   

     4.6 Search an element in the array using Linear Search  25   

     4.7 Sort the elements in the array using Bubble Sort  26   

     4.8 Check whether the given string is palindrome or not.  26   

     4.9 Concatenate two strings without using library functions  27   

     4.10 Count the number of vowels, consonants and spaces in a  string  27   

     4.11 Find the distances between two points in the Euclidean space  28   

     4.12 Print employee details using structure    29   

     4.13 Display the address of a person using union.    29   

     4.14 Find the factorial of a given Natural Number    30   

     4.15 Reverse of a string    31   

     4.16 Matrix addition, multiplication and transpose.    31   

     4.17 Add and swap two numbers using Pointer    34   

     4.18 Print the elements of an array using pointers    34   

     4.19 Sum of the elements in an array using pointers and functions.  35   

     4.20 File operations    36   

     4.21 Count the number of characters, words and lines in a file  37   

  5  Reference    38   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 1



Programming in C Lab Manual EST 102 
 

 

LIST OF LAB EXPERIMENTS 
 

1. Familiarization of Hardware Components of a Computer 
 

Computer hardware refers to the physical parts or components of a computer such as the 

monitor, mouse, keyboard, computer data storage, hard drive disk (HDD), system unit 

(graphic cards, sound cards, memory, motherboard and chips), etc. all of which are 

physical objects that can be touched. 
 

The main hardware components are listed below:- 
 

● Microprocessor 
 

● Motherboard 
 

● RAM 
 

● Hard Disk Drive 
 

● Optical disc drive [CD / DVD Drive] 
 

● Keyboard 
 

● Mouse 
 

● Monitor 
 

● Computer case and SMPS 
 

● Computer Speaker 
 

● Uninterrupted power supply (UPS) 
 

Microprocessor 
 

A microprocessor is an electronic component that is used by a computer to do its work. It 

is a central processing unit on a single integrated circuit chip containing millions of very 

small components including transistors, resistors, and diodes that work together. 
 

 

 

 

 

 

 

 

 

 

 

 

 

A microprocessor incorporates most or all of the functions of a central processing unit 

(CPU) on a single integrated circuit (IC). 
 

Motherboard 
 

A motherboard is the central or primary printed circuit board (PCB) making up a complex 

electronic system, such as a modern computer. It is also known as a main board, 

 

 

 

 

 

 

Department of CSE, ICET                 2



Programming in C Lab Manual EST 102 
 

 

baseboard, system board, planar board, or, on Apple computers, logic board, and is 

sometimes abbreviated casually as mobo. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAM 
 

Random access memory (usually known by its acronym, RAM) is a type of computer data 

storage. Today it takes the form of integrated circuits that allow the stored data to be 

accessed in any order, i.e. at random. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Hard Disk Drive 
 

A hard disk drive (HDD), commonly referred to as a hard drive, hard disk, or fixed disk 

drive, is a non-volatile storage device which stores digitally encoded data on rapidly 

rotating platters with magnetic surfaces. Strictly speaking, "drive" refers to a device 

distinct from its medium, such as a tape drive and its tape, or a floppy disk drive and its 

floppy disk. Early HDDs had removable media; however, an HDD today is typically a 

sealed unit. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 3



Programming in C Lab Manual EST 102 
 

 

Optical disc drive [CD / DVD Drive] 
 

An optical disc drive (ODD) is a disk drive that uses laser light or electromagnetic waves 

near the light spectrum as part of the process of reading and writing data. It is a 

computer's peripheral device that stores data on optical discs. Some drives can only read 

from discs, but commonly drives are both readers and recorders. Recorders are 

sometimes called burners or writers. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keyboard 
 

A keyboard is an arrangement of buttons, or keys. A keyboard typically has characters 

engraved or printed on the keys; in most cases, each press of a key corresponds to a 

single written symbol. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Mouse 
 

A mouse (plural mice, mouse devices, or mouses) is a pointing device that functions by 

detecting two-dimensional motion relative to its supporting surface. Physically, a mouse 

consists of a small case, held under one of the user's hands, with one or more buttons. 
 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 4



Programming in C Lab Manual EST 102 
 

 

 

 

 

Monitor 
 

A monitor is a piece of computer hardware that displays the video and graphics 

information generated by a connected computer through the computer's video card. 
 

 

 

 

 

 

 

 

 

 

 

Computer case and SMPS 
 

A computer case is the enclosure that contains the main components of a computer. Cases 

are usually constructed from steel, aluminum, or plastic, although other materials such as 

wood, plexiglas or fans have also been used in case designs. Cases can come in many 

different sizes, or form factors. 
 

A switched-mode power supply, switching-mode power supply or SMPS, is an electronic 

power supply unit (PSU) that incorporates a switching regulator. While a linear regulator 

maintains the desired output voltage by dissipating excess power in a "pass" power 

transistor, the SMPS rapidly switches a power transistor between saturation (full on) and 

cutoff (completely off) with a variable duty cycle whose average is the desired output voltage. 
 

 

 

 

 

 

 

 

 

 

Computer Speaker 
 

Computer speakers, or multimedia speakers, are external speakers, commonly equipped with 

a low-power internal amplifier. The standard audio connection is 3.5mm (1/8 inch) stereo 

jacks plug often colour-coded lime green (following the PC 99 standard) for computer sound 

cards. 
 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 5



Programming in C Lab Manual EST 102 
 

 

 

 

 

Uninterrupted power supply (UPS) 
 

An uninterruptible power supply (UPS), also known as a continuous power supply (CPS) or a 

battery backup is a device which maintains a continuous supply of electric power to 

connected equipment by supplying power from a separate source when utility power is not 

available. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Small UPS systems provide power for a few minutes; enough to power down the computer in 

an orderly manner, while larger systems have enough battery for several hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 6



Programming in C Lab Manual EST 102 
 

 

 

 

2. Familiarization of Linux environment – How to do Programming in C with Linux 
 

 

Student can login into the system using the username and password then take the terminal, 

for getting command terminal, search for terminal or use shortcut key Ctrl+Alt+t. In terminal 

each student can login into the lab server using ssh command. 

ssh login name@server IP address  then press the enter key 

 

Type password then press the enter key 

 

After login ‘vi’ editor is used for doing programs. 

 

vi program name.c 

 

Press insert key to type the program 

 

For saving the program, press Esc key then type  :wq 

 

For compile the program using cc command: cc program name.c 

 

After successful compilation take the output of the program using 

./a.out command. 

 

LINUX COMMANDS 

 

1. ls :- used to list the files and directories under the  current directory. 
 

Syntax:-  ls press enter key 
 

2. rm:-  used to remove a particular file. 
 

Syntax:-  rm < file name> 
 

3. mkdir:- used to create a directory. 
 

Syntax:-  mkdir <directory name> 
 

4. cd:- used to change the directory. 
 

Syntax:-  cd  <directory name> 
 

5. cd .. :-used to leave from a particular directory. 
 

Syntax:-  cd .. press enter key 
 

6. rmdir:-  used to remove an empty directory. 
 

Syntax:-  rmdir <empty directory name> 
 

 

 

 

 

 

Department of CSE, ICET 7



Programming in C Lab Manual EST 102 
 

 

7. cp :-  used copy a file to another file. 
 

Syntax:-  cp <source file name> <destination file name> 
 

8. mv:-  used to moves files or directories from one place to another. 
 

Syntax:-  mv  <source file name> <destination file name> 
 

9. man:- used to displays the whole manual of the command. 
 

Syntax: man <command name> 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 8



Programming in C Lab Manual EST 102 
 

 

3. Introduction to C 
 

C is a general-purpose, high-level language that was originally developed by Dennis M. 

Ritchie to develop the UNIX operating system at Bell Labs. The UNIX operating system, 

the C compiler, and essentially all UNIX applications programs have been written in C. 

The C has now become a widely used professional language for various reasons. 

 

● Easy to learn 
 

● Structured language 
 

● It produces efficient programs 
 

● It can handle low-level activities 
 

● It can be compiled on a variety of computer platforms 
 

Facts about C 

 

C was invented to write an operating system called UNIX. C is a successor of B 

language which was introduced around 1970. The language was formalized in 1988 by 

the American National Standard Institute (ANSI). The UNIX OS was totally written in C by 

1973. Today C is the most widely used and popular System Programming Language. Most 

of the state-of-the-art software have been implemented using C. Today's most popular 

Linux OS and RBDMS MySQL have been written in C. 

 

Why to use C? 

 

C was initially used for system development work, in particular the programs that 

make-up the operating system. C was adopted as a system development language because 

it produces code that runs nearly as fast as code written in assembly language. Some 

examples of the use of C might be: 

 

● Operating Systems 
 

● Language Compilers 
 

● Assemblers 
 

● Text Editors 
 

● Print Spoolers 
 

● Network Drivers 
 

● Modern Programs 

 

 

 

 

 

Department of CSE, ICET 9



Programming in C Lab Manual EST 102 
 

 

● Databases 
 

● Language Interpreters 
 

● Utilities 
 

The largest measure of C's success seems to be based on purely practical 

considerations: 

 

1. The portability of the compiler 
 
2. The standard library concept 
 
3. A powerful and varied repertoire of operators 
 
4. An elegant syntax 
 
5. Ready access to the hardware when needed 
 
6. And the ease with which applications can be optimized by hand-coding 

isolated procedures 

 

Structure of a C program 
 

Documentation Section 
 

Link Section /Include header file section 
 

Definition Section 
 

Global declaration section 
 

Main() function section 
 

{ 
 

Declaration part 
 

Executable part 
 

} 
 

Subprogram section 
 

Function 1 
 

Function 2 
 

… 

 

Function n 
 

(User defined functions) 
 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 10



Programming in C Lab Manual EST 102 
 

 

Documentation Section:- 

 

Documentation section consists of a set of comment lines giving the name of the program, 
 

the author and other details. 
 

Link section:- 

 

Link section provides instructions to the compiler to link functions from the system 

library. 
 

Definition Section:- 

 

Definition section defines all symbolic constants. 
 

Global Declaration:- 

 

This section declares some variables that are used in more than one function. This 

section also declares all the user defined functions. Main() function section:- 

 

 

Every C program must contain a main() function. This section contains two parts, 

declaration and executable parts. Declaration part declares all the variables used in the 

executable part. There is at least one statement in the executable part. Executable part 

contains the statements following the declaration of the variables. 
 

Subprogram section:- 

 

This section contains all the user defined functions that are called in the main() function. 

All sections, except the main () function and link section may be absent when they are not 

required. 

 

Character set of C language 
 

 

The character set in C Language can be grouped into the following categories. 
 

 

1.Letters 
 

2.Digits 
 

3.Special characters 
 

4.White Spaces 
 

 

 

 

 

 

 

 

Department of CSE, ICET 11



Programming in C Lab Manual EST 102 
 

 

White Spaces are ignored by the compiler until they are a part of string constant. White 

Space may be used to separate words, but are strictly prohibited while using between 

characters of keywords or identifiers. 

 

C Character set table 

 

The characters in C are grouped in to 4 
 

1. Letters(A-Z, a-z) 

 
2. Digits (0-9) 

 
3. Special Characters 

 
4. White spaces(used to separate words) 

 

Special Characters 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Escape sequences 
 

1.BlankSpace(\b) 
 

2.HorizontalTab(\t) 
 

3.CarriageReturn(\r) 
 

4.NewLine(\n) 
 

5. Form Feed (\f) 
 

6. Vertical Tab (\v) 
 

 

 

 

 

 

 

 

 

Department of CSE, ICET 12



Programming in C Lab Manual EST 102 
 

 

Keywords and Identifiers 
 

 

Every word in C language is a keyword or an identifier. Keywords are reserved words that 

have standard, predefined meanings in C. All keywords must be written in lowercase. 

Keywords in C language cannot be used as a variable name. They are specifically used by 

the compiler for its own purpose and they serve as building blocks of a c program. 
 

The following are the 32 Keywords of C language. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identifier refers to the name of user-defined variables, array and functions. A variable 

should be essentially a sequence of letters and or digits and the variable name should 

begin with a character. 

 

 

Both uppercase and lowercase letters are permitted. The underscore character is also 

permitted in identifiers. The underscore (_) symbol can be used as an identifier. 
 

Some examples of identifiers are: tax_rate, _temp, place etc. 
 

Data Types 

 

Data types are used to store various types of data that is processed by program. The 

definition of a variable will assign storage for the variable and define the type of data 

that will be held in the location. 

 

C has different data types for different types of data and can be broadly classified as: 
 

 

 

 

 

Department of CSE, ICET 13



Programming in C Lab Manual EST 102 
 

 

1. Primary data types 
 
2. Secondary data types 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primary data types available in c are  

Data Type Description Memory Requirements 

int integer quantity 2 bytes or 1 word 

float floating point number 1 word(4 bytes) 

char single character 1 byte 

double double precision number 2 words(8 bytes) 

Integer Data Type:-   
 

Integer data types are used to define integer numbers. Integers are whole numbers with a 

range of values supported by a particular machine. Generally an integer occupies 2 bytes 

memory space and its value range limited to -32768 to +32767 (that is, -215 to +215-1). 
 

A signed integer use one bit for storing sign and rest 15 bits for number. To control the 

range of numbers and storage space, C has three classes of integer storage namely short 

int, int and long int. All three data types have signed and unsigned forms. 
 

A short int requires half the amount of storage than normal integer. Unlike signed 

integer, unsigned integers are always positive and use all the bits for the magnitude of 

the number. Therefore the range of an unsigned integer will be from 0 to 65535. The long 

integers are used to declare a longer range of values and it occupies 4 bytes of storage 

space. 
 

Syntax: int <variable name>; 
 

Examples are: 
 

int num1; 
 

short int num2; 
 

long int num3; 
 

 

 

 

 

Department of CSE, ICET 14



Programming in C Lab Manual EST 102 
 

 

Character Type: 
 

Character type variable can hold a single character. As there are singed and unsigned int 

(either short or long), in the same way there are signed and unsigned chars; both occupy 1 

byte each, but having different ranges. Unsigned characters have values between 0 and 

255, signed characters have values from –128 to 127. 

 

Syntax: char <variable name>; 
 

char ch = ‘a’; 

 

Floating Point and Double Types: 
 

The float data type is used to store fractional numbers (real numbers) with 6 digits of 

precision. Floating point numbers are denoted by the keyword float. When the accuracy of 

the floating point number is insufficient, we can use the double to define the number. The 

double is same as float but with longer precision and takes double space (8 bytes) than 

float. To extend the precision further long double can be used which occupies 10 bytes of 

memory space. 

 

Syntax: float <variable name>; like 
 

float num1; 

 

double num2; 
 

long double num3; 

 

Example: 9.125, 3.1254 
 

 

 

 

 

 

Void Type: 
 

The void type has no values therefore it cannot be declared as a variable. The void data 

type is usually used with function to specify its type. Like in our first C program we 

declared “main()” as void type because it does not return any value. The concept of 

returning values will be discussed in detail in the C function hub. 

 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 15



Programming in C Lab Manual EST 102 
 

 

Data Types in C, Size & Range of Data Types 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constants 
 

A constant is a number, character, or a character string that can be used as a value in a 

program. Use constants to represent floating-point, integer, enumeration, or character 

values that cannot be modified. Constants are fixed values that do not change during the 

execution of a program. C has 4 basic types of constants. 
 

Integer constant 
 

Integer constants are a sequence of digits. It can be written in 3 different 

number systems 

 

(i) Decimal Integer Constant: 
 
 

● 0 to 9 

 

● E.g: 49, 58, -62, … (40000 cannot come bcoz it is > 32767) 
 

(ii) Octal Integer Constant: 
 

● 0 to 7 

 

● Add “0” before the value. 
 

● Eg.: 045, 056, 067 

 

(iii) Hexadecimal Integer: 
 

● 0 to 9 and A to F 

 

● Add 0x before the value 

 

● E.g: 0x42, 0x56, 0x67 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 16



Programming in C Lab Manual EST 102 
 

 

Floating point constants 
 

 

Floating point constants are a sequence of digits, followed by a decimal point, followed by a 

sequence of digits, and optionally followed by an exponent. Ex: +867.9, -26.9876, 654.0 .In 

exponential form, the real constant is represented as two parts. The part lying before the ‘e’ 

is the ‘mantissa’, and the one following ‘e’ is the ‘exponent’. For example, the value 237.95 

may be written as 23795E2 in exponential notation. E2 means multiply by 102. 

 

 

 

Character constants 
 

 

Character constants are a single character surrounded by single quotes (`''), or a number-

-the ordinal value of the corresponding character (usually its ASCII value). Within quotes, 

the single character may be represented by a letter or by "escape sequences. Example of 

character constants are ‘3’,’c’. Since each character constant represents an integer value, 

it is also possible to perform arithmetic operations on character constants. 
 

String constants 
 

String constants are a sequence of character constants surrounded by double quotes (`"'). 

The character may be letters, numbers, special characters and blank space. Examples are 

“hello”,”65”. Each string constant always ends with a special character ‘\0’. The compiler 

automatically places a null character (\0) at the end of every string constant. 
 

Variables 
 

A variable is a value that can change any time. It is a memory location used to store a 

data value. A variable name should be carefully chosen by the programmer so that its use 

is reflected in a useful way in the entire program. Variable names are case sensitive. 

Example of variable names are, 

 

Sun 
 

number 
 

Salary 
 

Emp_name 
 

average1 
 

 

Any variable declared in a program should confirm to the following 
 

 

 

 

 

Department of CSE, ICET 17



Programming in C Lab Manual EST 102 
 

 

1. They must always begin with a letter, although some systems 

permit underscore as 
 
first character. 

 
2. The length of a variable must not be more than 8 characters. 
 
3. White space is not allowed 
 
4. A variable should not be a Keyword 
 
5. It should not contain any special characters. 
 

 

Variable declaration 
 

 

The declaration of variables should be done in the declaration part of the program. These 

variables must be declared before they are used in the program. The declaration provides 

two things: 

 

1) Compiler obtains the variable name 
 

2) It tells the compiler, the data type of the variable being 

declared and helps in allocating memory. 
 

3) The syntax of declaring a variable is as follows 

data_type variable_name; 

 

Here data_type must be a valid data type and variable_name is an identifier. 
 

 

Some declarations are 
 

 

int tax; 
 

 

float tax_rate,count; 
 

 

Arrays 
 

 

An array is a series of elements of the same type placed in contiguous memory locations 

that can be individually referenced by adding an index to a unique identifier.That means 

that, for example, we can store 5 values of type int in an array without having to declare 5 

different variables, each one with a different identifier. Instead of that, using an array we 

 

 

 

 

 

Department of CSE, ICET 18



Programming in C Lab Manual EST 102 
 

 

can store 5 different values of the same type, int is an example of a unique identifier. For 

example, an array to contain 5 integer values of type int called temp could be represented 

like this: 

 

temp 
 

 

 

 

 

 

 

 

Where each blank panel represents an element of the array of type integer values. These 

elements are numbered from 0 to 4 since in arrays the first index is always 0, 

independently of its length. 

 

Declaring Arrays 
 

An array is declared by specifying its data type, name and the number of elements the 

array holds between square brackets immediately following the array name. 
 

Here is the syntax: 
 

data_type array_name[size]; 
 

 

 

For example, to declare an integer array which contains 100 elements we can do as 

follows: 
 

int a[100]; 
 

There are some rules on array declaration. The data type can be any valid C data types 

including structure and union. The array name has to follow the rule of variable and the 

size of array has to be a positive constant integer. 
 

Array elements can be accessed via indexes array_name[index]. Indexes of array starts 

from 0 not 1 so the highest elements of an array is array_name[size-1]. 
 

Initializing Arrays 
 

It is like a variable, an array can be initialized. To initialize an array, provide initializing 

values which are enclosed within curly braces in the declaration and placed following an 

equals sign after the array name. Here is an example of initializing an integer array. 
 

int a[3]={1,2,3}; 
 

 

 

 

 

 

 

 

Department of CSE, ICET 19



Programming in C Lab Manual EST 102 
 

 

Array and Pointer 

 

Each array element occupies consecutive memory locations and array name is a 

pointer that points to the first element. Beside accessing array via index we can use 

pointer to manipulate array. This program helps you visualize the memory address each 

array elements and how to access array element using pointer. 
 

Multidimensional Arrays 
 

An array with more than one index value is called a multidimensional array. All the 

array above is called single-dimensional array. To declare a multidimensional array you 

can do follow syntax 
 

datatype arrayname[size][size][size] 
 

 

 

The number of square brackets specifies the dimension of the array. For example to 

declare two dimensions integer array we can do as follows: 
 

int matrix[3][3]; 
 

 

 

Statements in C 
 

The statements of a C program control the flow of program execution. In C, as in 

other programming languages, several kinds of statements are available to perform loops, 

to select other statements to be executed, and to transfer control. C statements consist of 

tokens, expressions, and other statements. A statement that forms a component of 

another statement is called the "body" of the enclosing statement. 

 

Frequently the statement body is a "compound statement." A compound statement 

consists of other statements that can include keywords. The compound statement is 

delimited by braces ({ }). All other C statements end with a semicolon (;). The semicolon is 

a statement terminator. 

 

The expression statement contains a C expression that can contain the arithmetic 

or logical operators introduced in Expressions and Assignments. The null statement is an 

empty statement. Any C statement can begin with an identifying label consisting of a 

name and a colon. 

 

 

 

 

 

 

Department of CSE, ICET 20



     Programming in C Lab Manual EST 102  
         

  C Operator Precedence and Associativity      

        

  Operator  Description  Associativity  
          

        

  ()  Parentheses (function call) (see Note 1)  left-to-right  

  []  Brackets (array subscript)      

  .  Member selection via object name      

  ->  Member selection via pointer      

  ++ --  Postfix increment/decrement (see Note 2)      
         

  ++ --  Prefix increment/decrement  right-to-left  

  +  -  Unary plus/minus      

  ! ~  Logical negation/bitwise complement      

  (type)  Cast (change type)      

  *  Dereference      

  &  Address      

  sizeof  Determine size in bytes      
        

  *  /  %  Multiplication/division/modulus  left-to-right  
         

  + -  Addition/subtraction  left-to-right  
         

  << >>  Bitwise shift left, Bitwise shift right  left-to-right  
         

  < <=  Relational less than/less than or equal to  left-to-right  

  > >=  Relational greater than/greater than or equal to      
         

  == !=  Relational is equal to/is not equal to  left-to-right  
        

  &  Bitwise AND  left-to-right  
        

  ^  Bitwise exclusive OR  left-to-right  
        

  |  Bitwise inclusive OR  left-to-right  
        

  &&  Logical AND  left-to-right  
        

  ||  Logical OR  left-to-right  
        
  

?: 
 

Ternary conditional 
 

right-to-left 
 

    

        

  =  Assignment  right-to-left  

  += -=  Addition/subtraction assignment      

  *= /=  Multiplication/division assignment      

  %=  &=  Modulus/bitwise AND assignment      

           
 

 

 

 

 

 

Department of CSE, ICET 21



    Programming in C Lab Manual EST 102   
         

         

 ^= |= Bitwise exclusive/inclusive OR assignment     

 <<= >>= Bitwise shift left/right assignment     
 

 

 

 

 

 

, Comma (separate expressions) left-to-right 
  

 

 

Note 1: 
 

Parentheses are also used to group sub-expressions to force a different precedence; such 

parenthetical expressions can be nested and are then evaluated from inner to outer. 
 

Note 2: 
 

Postfix increment/decrement have high precedence, but the actual increment or decrement 

of the operand is delayed (to be accomplished sometime before the statement completes 

execution). So in the statement y = x * z++; the current value of z is used to evaluate the 

expression (i.e., z++ evaluates to z) and z only incremented after all else is done. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 22



Programming in C Lab Manual EST 102 
 

 

4. Experiments 
 

4.1 Familiarization of console I/O and operators in C 
 

i) Display “Hello World” 
 

ii) Read two numbers add them and display their sum 
 

iii) Read the radius of a circle, calculate its area and display it 
 

iv) Evaluate the arithmetic expression ((a -b / c * d + e) * (f +g)) and display its 
solution. Read the values of the variables from the user through console. 
 
i) ALGORITHM 

 

1. Start 
 

2. Print hello world 
 

3. Stop 
 
ii) ALGORITHM 

 
1. Start 

 
2. Read a,b 

 
3. sum=a+b 

 
4. Print sum 

 
5. Stop 

 
iii) ALGORITHM 

 
1. Start 

 
2. Read r 

 
3. area=3.14*r*r 

 
4. Print area 

 
5. Stop 

 
iv) ALGORITHM 

 
1. Start 

 

 

 

 

 

Department of CSE, ICET 23



Programming in C Lab Manual EST 102 
 

 

2. Read a,b,c,d,e,f,g 
 

3. s=((a -b / c * d + e) * (f +g)) 
 

4. Print s 
 

5. Stop 
 

4.2 Read 3 integer values and find the largest among them. 
 

ALGORITHM 
 

1. Start 
 

2. Read a,b,c 
 

3. if(a > b && a>c) then print a is largest else goto step 4 
 

4. if(b > a && b>c ) then print b is largest else print c is largest 
 

5. Stop 
 

 

4.3 Read a Natural Number and check whether the number is prime or not 
 

 

ALGORITHM 
 

 

1. Start 
 

2. Read num 
 

3. Set flag=0, i = 2 
 

4. If (num  num/2) then goto step 4.1 else goto 
 

4.1   if( num % 2 == 0) then set flag=1 else goto step 4.2 
 

4.2   i=i+1, goto step 4 
 

5. if (flag ==0) then print num is prime else print num is not prime 
 

6. Stop 
 

 

4.4 Read a Natural Number and check whether the number is Armstrong or not 
 

ALGORITHM 
 

 

1. Start 
 

2. sum = 0 
 

3. Read n 
 

 

 

 

 

Department of CSE, ICET 24



Programming in C Lab Manual EST 102 
 

 

4. temp=n 
 
5. If (temp != 0) then goto step 6 else goto step 9 
 
6. t = temp%10 
 
7. sum = sum+t*t*t 
 
8. temp = temp/10 goto step 5 
 
9. if(n == sum) then print it is an armstrong no else print it is not an 

armstrong no 
 
10. Stop 
 

 

4.5 Read n integers store them in an array and find their sum and average 
 

ALGORITHM 
 

 

1. Start 
 

2. Read the limit n 
 

3. sum =0,i=0 
 

4. if(i<n) then goto step 5 else goto step 8 
 

5. Read the number A[i] 
 

6. sum = sum + A[i] 
 

7. i=i+1, then goto step 4 
 

8. avg = sum / n 
 

9. Print sum, avg 
 

10.Stop 
 

 

4.6 Read n integers, store them in an array and search for an element in the array 

using an algorithm for Linear Search 
 

ALGORITHM 
 

START 
1. Start 

 
2. Read the limit n 

 
3. Read the number to be search num 

 
4. i=0 

 
5. if(i<n) then goto step 6 else goto step 8 

 

 

 

 

 

 

Department of CSE, ICET 25



Programming in C Lab Manual EST 102 
 

 

6. Read the number A[i] 
 

7. i=i+1, then goto step 5 
 

8. i=0 
 

9. if(i<n) then goto step 10 else goto step 11 
 

10. if(A[i]==num) then print number is present and goto step 

11, else i=i+1 and goto step 9 
 

10. Stop 
 

4.7 Read n integers, store them in an array and sort the elements in the array using 

Bubble Sort 
 

ALGORITHM 
 

1. Start 
 

2. Read the limit of array to n 
 

3. i=0 
 

4. if(i<n) then goto step 5 else goto step 7 
 

5. Read the number A[i] 
 

6. i=i+1, then goto step 4 
 

7. i=0 
 

8. if(i < n) then goto step 9 else goto step 10 

8.1. j=0 
 

8.2 if (j< n-i-1)goto step 11 else goto step 9 
 

8.3 if(a[j] > a[j+1])then goto step 8.4 else goto step 
 

8.4 temp=a[j] 
 

8.5 a[j]=a[j+1] 
 

8.6 a[j+1]=temp 
 

8.7 j=j+1,goto step 8.2 
 

9. i=i+1,goto step 8 
 

10. Print the sorted array 
 

11. Stop 
 

4.8 Read a string (word), store it in an array and check whether it is a 

palindrome word or not. 
 

ALGORITHM 
 

1. start 
 

 

 

 

 

Department of CSE, ICET 26



Programming in C Lab Manual EST 102 
 

 

2. Read the string to str 
 

3. Find length of str.to n. 
 

4. flag=0 
 

5. l=0 
 

6. h=n-1 
 

7. if(l<=n/2) then goto step 8 else goto step 10 
 

8. If (str[l] !=str[h]) then flag=1and goto step 10 else goto step 9 
 

9. l=l+1 and h=h-1,goto step 7 
 

10. if(flag==1) then print string is not a palindrome else print string is 

a palindrome 
 

11. Stop 
 

4.9 Read two strings (each one ending with a $ symbol), store them in arrays and 

concatenate them without using library functions. 

 

 

ALGORITHM 
 

1. Start 
 

2. Read two strings to a and b 
 

3. Find length of a to n 
 

4. i=0,j=n-1 
 

5. (if b[i]!= ‘\0’) then a[j]=b[i] else goto step 7 
 

6. i=i+1,j=j+1 then goto step 5 
 

7. a[j]=’\0’ 
 

8. Print a 
 

9. Stop 
 

 

4.10 Read a string (ending with a $ symbol), store it in an array and count the 

number of vowels, consonants and spaces in it. 
 

ALGORITHM 
 

1. Start 
 

2. Read the string to str 
 

3. vowels=0,Consonant=0,space=0,i=0 
 

4. if(str[i]!=’\0’) then goto step 5 else goto step 9 
 

 

 

 

 

Department of CSE, ICET 27



Programming in C Lab Manual EST 102 
 

 

5. if (str[i] == 'a' ||str[i] == 'e' || str[i] == 'i' || str[i] == 'o' || str[i] == 

'u' || str[i] == 'A' || str[i] == 'E' || str[i] == 'I' || str[i] == 'O' 

||str[i] == 'U') then vowels=vowels+1 else goto step 6 
 

6. if ((str[i] >= 'a' && str[i] <= 'z') || (str[i] >= 'A' && str[i] <= 'Z')) then 

consonant =consonant+1 else goto step 7 
 

7. if (str[i] == ' ') then space=space +1 and goto step 8 
 

8. i=1+1,goto step 4 
 

9. Print vowels,Consonant,space 
 

10.Stop 
 

4.11 Read two input each representing the distances between two points in the 

Euclidean space, store these in structure variables and add the two distance values. 
 

Note: 
 

In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" 

straight-line distance between two points in Euclidean space. With this 

distance, Euclidean space becomes a metric space. The associated norm is 

called the Euclidean norm. 
 

1. Take the coordinates of two points you want to find the distance 

between. Call one point Point 1 (x1,y1) and make the other Point 

2 (x2,y2). 
 

2. Know the distance formula. ... 
 

3. Find the horizontal and vertical distance between the points 
 

4. Square both values 
 

5. Add the squared values together 
 

6. Take the square root of the equation. 
 

 

ALGORITHM 
 

 

1. Start 
 

2. Read x1,x2,y1,y2 using structure 
 

3. s=  ((x2-x1)*(x2-x1))+((y2-y1)*(y2-y1)) 
 

4. distance = square root (s) 
 

5. Print distance 
 

6. Stop 
 

 

 

 

Department of CSE, ICET 28



Programming in C Lab Manual EST 102 
 

 

4.12 Using structure, read and print data of n employees (Name, Employee Id and 

Salary) 
 

ALGORITHM 
 

1. Start 
 

2. Declare a structure employee with a variable emp and structure 

members name, e_id and salary 
 

3. read name, e_id and salary using structure variable emp. 
 

4. print  name, e_id and salary using structure variable emp. 
 

5. stop 
 

 

4.13 Declare a union containing 5 string variables (Name, House Name, City Name, 

State and Pin code) each with a length of C_SIZE (user defined constant). Then, 

read and display the address of a person using a variable of the union. 
 

ALGORITHM 
 

1. Start 
 

2. Define a variable C_SIZE with a constant value. 
 

3. Declare a structure union with a variable emp and union members 

Name, House_Name, City_Name, State and Pin code 

4. Read name using union variable emp 
 

5. Print name using union variable emp 
 

6. Read  House_Name, using union variable emp 
 

7. Print House_Name, using union variable emp 
 

8. Read City_Name using union  variable emp. 
 

9. Print  City_Name using union  variable emp. 
 

10.Read State using union  variable emp. 
 

11.Print  state  using union  variable emp. 
 

12.Read pin_code using union  variable emp. 
 

13.Print  pin_code  using union  variable emp. 
 

14.Stop 
 

 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 29



Programming in C Lab Manual EST 102 
 

 

4.14 Find the factorial of a given Natural Number n using recursive and non 

recursive functions 
 

i) Non recursive 

ALGORITHM of main() 

1. Start 
 

2. Read n 
 

3. Call the function fact(n) 
 

4. Stop 
 

 

1. Start 
 

2. z=1 
 

3. If (x != 0) then goto step 2.3 else goto step 2.5 
 

4. z= z*x 
 

5. x=x-1, go to step 2.2 
 

6. Print z 
 

7. Read the number to n 
 

8. Call the function fact(n) 
 

9. Stop 
 

ii) Recursive 

ALGORITHM for main() 
 

1. Start 
 

2. Read n 
 

3. Call the function fact(n) 
 

4. Print Factorial f 
 

5. Stop 
 

 

1. Start 
 

2. If (x==1) then return 1 else goto step 3 
 

3. f=x*fact(x-1) 
 

4. Return f 
 

5. Stop 
 

 

 

 

 

 

 

Department of CSE, ICET 30



Programming in C Lab Manual EST 102 
 

 

4.15 Read a string (word), store it in an array and obtain its reverse by using a user 

defined function. 
 

ALGORITHM of main() 
 

1. Start 
 

2. Call the function reverse() 
 

5. Stop 
 

 

1. Start 
 

2. Read a word to str 
 

3. Find length of str to n. 
 

4. n=n-1 
 

5. if(n>=0)then Print str[n] else goto step 4 
 

6. Stop 
 

4.16 Write a menu driven program for performing matrix addition, multiplication 

and finding the transpose. Use functions to (i) read a matrix, (ii) find the sum of two 

matrices, (iii) find the product of two matrices, (iv) find the transpose of a matrix 

and (v) display a matrix. 
 

ALGORITHM of main() 
 

1. Start 
 

2. Declare 2 matrices a,b and their rows and columns(m1, n1, m2, n2) and a choice 

variable op 
 

3. Read m1, n1 
 

4. Call the function readmatrix(a,m1,n1) 
 

5. Read m2, n2 
 

6. Call the function readmatrix(b,m2,n2) 
 

7. To print Matrix a, call the function displaymatrix(a,m1,n1); 
 

8. To print Matrix b, call the function displaymatrix(b,m2,n2); 
 

9. Read op // 1.add  2.multiply  3.transpose 4.exit 
 

10.if(op==1) then goto step 11 else goto step 12 
 

11.if(m1==m2 && n1==n2) then call the function addmatrix(a,b,m1,n1) else 

print matrix addition is not possible go to step 15 

12.if(op==2) then goto step 13 else goto step 14 
 

 

 

 

 

Department of CSE, ICET 31



 Programming in C Lab Manual EST 102  
     

      

 

13.if(n1==m2) then call the function multmatrix(a,b,m1,n1,n2), else print “matrix 

multiplication is not possible” , go to step 15 
 

14.if(op==3) then call the function transpose(a,m1,n1) else print invalid choice. 
 

15.Stop 
 

 

ALGORITHM of read_matrix(matrix[10][10],int row,int col) 
 

1. Start 
 

2. i=0,j=0 
 

4. if(i<row)then goto step 5 else goto step 9 
 

5. j=0 
 

6. if(j<col) then read a[i][j],goto step 7 else goto step 8 
 

7. j=j+1,goto step 6 
 

8. i=i+1,goto step 4 
 

9. Stop 
 

 

1. Start 
 

2. i=0,j=0 
 

4. if(i<m)then goto step 5 else goto step 11 
 

5. j=0 
 

6. if(j<n) then print a[i][j],goto step 7 else goto step 9 
 

7. Print a space 
 

8. j=j+1,goto step 6 
 

9. Print a new line 
 

10. i=i+1,goto step 4 
 

11. Stop 
 

 

1. Start 
 

2. Declare a matrix c 
 

3. i=0,j=0 
 

4. if(i<m)then goto step 5 else goto step 9 
 

5. j=0 
 

6. if(j<n) then calculate c[i][j]=a[i][j]+b[i][j],goto step 7 else goto step 8 
 

 

 

 

 

Department of CSE, ICET 32



Programming in C Lab Manual EST 102 
 

 

7. j=j+1,goto step 6 
 

8. i=i+1,goto step 4 
 

9. Call the function displaymatrix(c,m,n); 
 

10.Stop 
 

 

1. Start 
 

2. Declare a matrix c 
 

3. i=0,j=0 
 

4. if(i<m)then goto step 5 else goto step 9 
 

5. j=0 
 

6. if(j<n) then c[j][i]=a[i][j] ,goto step 7 else goto step 8 
 

7. j=j+1,goto step 6 
 

8. i=i+1,goto step 4 
 

9. Call the function displaymatrix(c,n,m); 
 

10. Stop 
 

ALGORITHM of multmatrix(int a[][100],int b[][100],int m1,int n1,int n2) 
 

1. Start 
 

2. Declare a matrix c 
 

3. i=0,j=0 
 

4. if(i<m1)then goto step 5 else goto step 12 
 

5. j=0 
 

6. if(j<n2) then c[j][i]=0 ,goto step 7 else goto step 8 
 

7. k=0 
 

8. if(k<n1) then c[i][j]=c[i][j]+ a[i][k] * b[k][j],goto step 9 else goto 

step 10 
 

9. k=k+1,goto step 8 
 

10.j=j+1,goto step 6 
 

11.i=i+1,goto step 4 
 

12. Call the function 

displaymatrix(c,m1,n2) 13.Stop 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 33



Programming in C Lab Manual EST 102 
 

 

4.17 Do the following using pointers i) add two numbers ii) swap two numbers using 

a user defined function. 
 

i) Add two numbers 
 
ALGORITHM 
 

1. Start 
 

2. Initialize two integer pointers p,q. 
 

3. Read a,b 
 

4. Reference the pointers to variables using '&' operator.//p=&a,q=&b 
 

5. Now, add the values, using * operator//sum=*p+*q 
 

6. Print the sum. 
 

7. Stop 
 
ii) Swap two numbers 
 

ALGORITHM 
 

1. Start 
 

2. Initialize two integer pointers p,q. 
 

3. Read a,b 
 

4. Reference the pointers to variables using '&' operator.//p=&a,q=&b 
 

5. Now, interchange the values, using * operator//t=*p,*p=*q,*q=t 

Print the swapped values using * operator.//Print *p,*q 
 

6. Stop 
 

 

4.18 Input and Print the elements of an array using 

pointers ALGORITHM 
 

1. Start 
 

2. Read size of the array to n 
 

3. Initialize one integer pointer *ptr 
 

4. i=0 
 

5. ptr=&a[0] 
 

6. if(i<n) then goto step 7 else goto step 10 
 

7. Read a number to ptr 
 

8. ptr=ptr+1 
 

9. i=i+1,goto step 6 
 

 

 

 

 

Department of CSE, ICET 34



Programming in C Lab Manual EST 102 
 

 

10. i=0 
 

11. ptr=&a[0] 
 

12. if(i<n) then goto step 13 else goto step 16 
 

13. Print  a number using pointer ptr 
 

14. ptr=ptr+1 
 

15. i=i+1,goto step 12 
 

16. Stop 
 

4.19 Compute sum of the elements stored in an array using pointers and user 

defined functions. 
 

ALGORITHM for main() 
 

1. Start 
 

2. Read size of the array to n 
 

3. Initialize one integer pointer *ptr 
 

4. i=0 
 

5. ptr=&a[0] 
 

6. if(i<n) then goto step 7 else goto step 10 
 

7. Read a number to ptr 
 

8. ptr=ptr+1 
 

9. i=i+1,goto step 6 
 

10.Call the function sum(&a,n) 
 

11.Stop 
 

ALGORITHM for function sum(int *ptr, int n) 
 

1. Start 
 

2. i=0,s=0 
 

3. if(i<n) then goto step 4 else goto step 7 
 

4. s=s+*ptr 
 

5. ptr=ptr+1 
 

6. i=i+1,goto step 3 
 

7. Print s 
 

8. Stop 
 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 35



Programming in C Lab Manual EST 102 
 

 

4.20 Create a file and perform the following 
 

i) Write data to the file 
 
ii) Read the data in a given file & display the file content on console 
 
iii) Append new data and display on console 
 

 

i) Write data to the file 
 

1. Start 
 

2. Create a file pointer *fp 
 

3. Open   a   new   file   in   write   mode   using   file   pointer   fp 
 

//fp=fopen(“a.txt”,”w”) 
 

4. if(fp==NULL) then print Error opening file else goto step 5 
 

5. Read ch 
 

6. if (ch!='EOF') then goto step 7 else goto step 8 
 

7. Write ch to file a.txt,goto step 5 
 

8. Close the file 
 

9. Stop 
 
ii) Read the data in a given file & display the file content on console 
 

 
1. Start 

 
2. Create a file pointer *fp 

 
3. Open  an  existing  file  in  read  mode  using  file  pointer  fp 

 
//fp=fopen(“a.txt”,”r”) 

 
4. if(fp==NULL) then print Error opening file else goto step 5 

 
5. Read the content from file a.txt//ch=getc(fp) 

 
6. if (ch!='EOF') then goto step 7 else goto step 8 

 
7. Print the content from the file a.txt, goto step 5  //putchar(ch); 

 
8. Close the file 

 
9. Stop 

 
iii) Append new data and display on console 
 

1. Start 
 

2. Create a file pointer *fp 
 

 

 

 

 

 

 

Department of CSE, ICET 36



Programming in C Lab Manual EST 102 
 

 

3. Open an existing file in append mode using file pointer fp 

//fp=fopen(“a.txt”,”a+”) //a+ : append data in a file and update 

it, which means it can write at the end and also is able to read 

the file 
 

4. if(fp==NULL) then print Error opening file else goto step 5 
 

5. Read the content to be append to ch 
 

6. if (ch!='EOF') then goto step 7 else goto step 8 
 

7. Write ch to the end of the file a.txt,goto step 5 
 

8. Close the file 
 

9. Stop 
 

 

4.21 Open a text input file and count the number of characters, words and lines in 

it; and store the results in an output file. 
 

1. Start 
 

2. Create a file pointer *fp 
 

3. c=o,w=0,l=0 
 

4. Open  an  existing  file  in  read  mode  using  file  pointer  fp 
 

//fp=fopen(“a.txt”,”r”) 
 

5. if(fp==NULL) then print Error opening file else goto step 5 
 

6. Read the content from file a.txt to ch//ch=getc(fp) 
 

7. if (ch!='EOF') then goto step 7 else goto step 10 
 

8. if(ch==’\n’) then l=l+1 else goto step 9 
 

9. if(ch==’ ’) then w=w+1 else c=c+1,goto step 6 
 

10. Print c,w,l 
 

11. Close the file 
 

12. Stop 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 37



Programming in C Lab Manual EST 102 
 

 

5. REFERENCES 
 

 

 

 

4.1 (i) Display Hello World 
 

PROGRAM 
 

#include<stdio.h>  

main() 
{ 
printf("Hello World!!");  

} 
 

OUTPUT 
 

Hello World!! 
 

(ii)Add Two Numbers 
 

PROGRAM 
 

#include<stdio.h>  

main() 
{  
int a,b,c;  

printf("Enter First Number:"); 
scanf("%d",&a);  

printf("Enter Second Number:"); 
scanf("%d",&b);  

c=a+b; 
printf("Sum of above numbers is:%d",c);  

} 
 

OUTPUT 
 

Enter First Number:34 
Enter Second Number:56  

Sum of above numbers is:90 
 

(iii) Area Of Circle 
 

PROGRAM 
 

#include<stdio.h>  

# define PI 3.14 
main() 
{ 
 

 

 

 

Department of CSE, ICET 38



Programming in C Lab Manual EST 102 
 

 

float  r,Area;  

printf("Enter the radius:"); 
scanf("%f",&r);  

Area=PI*r*r; 
printf("Area of Circle:%f",Area);  

} 
 

OUTPUT 
 

Enter the radius:3  

Area of Circle:28.260000 
 

(iv)Evaluate Arithmetic Expression 
 

#include<stdio.h> 
main()  

{ 
int a,b,c,d,e,f,g,Ans;  

printf("Enter 7 values for the variables:");  

scanf("%d%d%d%d%d%d%d",&a,&b,&c,&d,&e,&f,&g); 
Ans=((a-b/c*d+e)*(f+g));  

printf("Solutin=%d",Ans); 
}  
OUTPUT  

Enter 7 values for the variables:1 2 3 4 5 6 7 
Solutin=78 
 

4. 2 Find the Largest of Three Numbers 
 

PROGRAM 
 

#include<stdio.h> 
main() 
{  
int  n1, n2, n3; 
printf("Enter three different numbers: "); 
scanf("%d%d%d", &n1, &n2, &n3); 
if (n1 >= n2 && n1 >= n3) 
printf("%d is the largest number.", n1);  

if (n2 >= n1 && n2 >= n3) 
printf("%d is the largest number.", n2); 

else 
 

printf("%d is the largest number.", n3); 
} 
 

OUTPUT 
 

Enter three different numbers: 
 

 

 

 

 

Department of CSE, ICET 39



Programming in C Lab Manual EST 102 
 

 

34  

3 
78  

78 is the largest number. 
 

4.3 PRIME OR NOT 
 

PROGRAM 
 

#include <stdio.h>  

main() 
{  

int n, i, flag = 0;  

printf("Enter a positive integer: "); 
scanf("%d", &n); 
for (i = 2; i <= n / 2; ++i)  

{ 
if (n % i == 0)  

{  

flag = 1; 
break;  

} 
}  

if (n == 1)  

{ 
printf("1 is neither prime nor composite."); 

} 
else 
{  

if (flag == 0)  

printf("%d is a prime number.", n);  

else 
printf("%d is not a prime number.", n); 

} 
 

 

OUTPUT 
 

Enter a positive integer: 7  

34 is  a prime number. 
./a.out 
Enter a positive integer: 78 
 

78 is not a prime number. 
 

4.4 AMSTRONG OR NOT 
 

#include <stdio.h>  

main() 
 

 

 

 

 

Department of CSE, ICET 40



Programming in C Lab Manual EST 102 
 

 

{  
int num, S, remainder, result = 0; 
printf("Enter a three-digit integer: ");  

scanf("%d", &num); 
S = num;  

while (S != 0) 
{  

remainder = S % 10;  

result += remainder * remainder * remainder; 
S /= 10;  

} 
if (result == num)  

printf("%d is an Armstrong number.", 
num); else 
printf("%d is not an Armstrong number.", num); 

 

} 
OUTPUT  

Enter a three-digit integer: 153  

153 is an Armstrong number. 
./a.out  

Enter a three-digit integer: 346 
346 is not an Armstrong number. 
 

4.5 ARRAY SUM AND AVERAGE  

#include <stdio.h> 
int main() 

{ 
int n, i;  

float num[100], sum = 0.0, avg;  

printf("Enter the numbers of elements: ");  

scanf("%d", &n); 
while (n > 100 || n < 1) 
{  

printf("Error! number should in range of (1 to 100).\n"); 
printf("Enter the number again: "); 
scanf("%d", &n); 

} 
for (i = 0; i < n; ++i) {  

printf("%d. Enter number: ", i + 1); 
scanf("%f", &num[i]); 
sum += num[i];  

} 
avg = sum / n;  

printf("Sum=%.2f\n",sum); 
printf("Average = %.2f", avg); 
return 0;  

} 
 

 

 

 

 

Department of CSE, ICET 41



Programming in C Lab Manual EST 102 
 

 

OUTPUT  

Enter the numbers of elements: 5 
1. Enter number: 1 
2. Enter number: 2 
3. Enter number: 3 
4. Enter number: 4  
5. Enter number: 
5 Sum=15.00 
Average = 3.00 
 

4.6 LINEAR SEARCH 
 

PROGRAM 
 

#include<stdio.h> 
main()  

{ 
int array[100], search, c, n;  

printf("Enter number of elements in 
array\n"); scanf("%d", &n); 

 

printf("Enter %d integer(s)\n", n); 
 

for (c = 0; c < n; c++)  

scanf("%d", &array[c]); 
 

printf("Enter a number to search\n"); 
scanf("%d", &search); 

 

for (c = 0; c < n; c++)  

{  

if (array[c] == search) 
{  

printf("%d is present at location %d.\n", search, 
c+1); break; 
} 
} 
if (c == n) 
printf("%d isn't present in the array.\n", search);  

} 
OUTPUT 
Enter number of elements in array  

6 
Enter 6 integer(s)  

23 
4 
56  

7 
 

 

 

 

 

Department of CSE, ICET 42



Programming in C Lab Manual EST 102 
 

 

8  

12 
Enter a number to search  

7 
7 is present at location 4. 
 

4.7 BUBBLE SORT 
 

PROGRAM 
 

#include <stdio.h> 
main()  

{  
int a[25],n; 
int i,j,t; 
printf("enter the size of array");  

scanf("%d",&n); 
printf("enter the elements are");  

for(i=0;i<n;i++)  

{ 
scanf("%d",&a[i]);  

} 
for(i=0;i<n-1;i++)  

{  
for(j=0;j<n-i-1;j++) 
{ 

if(a[j]>a[j+1]) 
{ 

t=a[j];  

a[j]=a[j+1];  

a[j+1]=t;  

} 
} 

} 
 

printf("sorted array is:"); 
for(i=0;i<n;i++) 
{ 

printf("%d\t",a[i]);  

} 
} 
OUTPUT 
 

enter the size of array5 
enter the elements are  

34 
2 
780  

33 
 

 

 

 

 

Department of CSE, ICET 43



     Programming in C Lab Manual EST 102  
         

 45        

 sorted array is:2 33 34 45 780    
 

 

4.8 PALINDROME OR NOT 
 

PROGRAM 
 

#include <stdio.h>  

#include <string.h> 
 

main() 
{  

char string1[20];  

int i, length; 
int flag = 0; 

 

printf("Enter a string:"); 
scanf("%s", string1); 

 

length = strlen(string1); 
 

for(i=0;i < length ;i++) 
{  

if(string1[i] != string1[length-i-1]){  

flag = 1; 
break; 

} 
} 

 

if (flag) {  

printf("%s is not a palindrome", string1);  

} 
else { 
printf("%s is a palindrome", string1);  

} 
 

} 
OUTPUT 
Enter a string:malayalam  

malayalam is a palindrome 
./a.out 
Enter a string:great  

great is not a palindrome 
 

4.9 STRING CONCATENATION WITHOUT USING LIBRARY FUNCTION 
#include<stdio.h> 
main()  

{ 
 

 

 

 

 

Department of CSE, ICET 44



Programming in C Lab Manual EST 102 
 

 

char Str1[100], Str2[100];  

int i, j; 
 

printf("\n Please Enter the First String :(end with 
$!!)"); gets(Str1); 

 

printf("\n Please Enter the Second String :(end with 
$!!)"); gets(Str2);  

for (i = 0; Str1[i]!='$'; i++); 
 

for (j = 0; Str2[j]!='$'; j++, i++) 
{  

Str1[i] = Str2[j];  

} 
Str1[i] = '\0'; 

printf("\n String after the Concatenate = %s", Str1);  

} 
 

OUTPUT  

Please Enter the First String :(end with $!!)best$ 
 

Please Enter the Second String :(end with $!!)wishes$ 
 

String after the Concatenate = bestwishes 
 

4.10 COUNT VOWELS AND CONSONANTS 
 

PROGRAM 
 

#include <stdio.h>  

main()  

{ 
char line[150]; 
int vowels, consonant, space,i;  

vowels = consonant = space = 0; 
printf("Enter line of string:(end with $)"); 
gets(line); 
for (i = 0; line[i] != '$'; ++i) 
{ 

 

if (line[i] == 'a' || line[i] == 'e' || line[i] == 'i' || 
line[i] == 'o' || line[i] == 'u' || line[i] == 'A' || 
line[i] == 'E' || line[i] == 'I' || line[i] == 'O' || 
line[i] == 'U') 

{  

++vowels; 
} 
else if ((line[i] >= 'a' && line[i] <= 'z') || (line[i] >= 'A' && line[i] <= 'Z'))  

{ 
 

 

 

 

 

Department of CSE, ICET 45



Programming in C Lab Manual EST 102 
 

 

++consonant;  

} 
else if (line[i] == ' ')  

{ 
++space;  

} 
}  

printf("Vowels: %d", vowels);  

printf("\nConsonants: %d", consonant); 
printf("\nWhite spaces: %d", space); 

 

}  
OUTPUT  

Enter line of string:(end with $)india is my country$ 
Vowels: 6 
Consonants: 10  

White spaces: 3 
 

4.11 DISTANCE BETWEEN TWO POINTS  

#include <stdio.h> 
#include <math.h> 
 

int main() {  

float x1, y1, x2, y2, gdistance;  

printf("Input x1: "); 
scanf("%f", &x1); 
printf("Input y1: "); 
scanf("%f", &y1); 

printf("Input x2: ");  

scanf("%f", &x2);  

printf("Input y2: ");  

scanf("%f", &y2); 
gdistance = ((x2-x1)*(x2-x1))+((y2-y1)*(y2-y1)); 
printf("Distance between the said points: %.4f", sqrt(gdistance));  

printf("\n"); 
return 0; 
} 
OUTPUT 
Input x1: 3  

Input y1: 6 
Input x2: -2 
Input y2: 4 
 

Distance between the said points: 5.3852 
 

 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 46



Programming in C Lab Manual EST 102 
 

 

4.12 DATA OF EMPLOYEE USING STRUCTURE 
 

 

PROGRAM 
 

#include <stdio.h> 
 

 

struct employee 
{  
char name[30]; 
int empId;  

float salary;  

}; 
 

main()  

{ 
 

struct employee emp; 
 

printf("\nEnter details :\n");  

printf("Name ?:"); gets(emp.name); 
printf("ID ?:"); scanf("%d",&emp.empId);  

printf("Salary ?:"); scanf("%f",&emp.salary); 
 

 

printf("\nEntered detail is:\n-------------------"); 
printf("\nName: %s" ,emp.name); printf("\nId: 
%d" ,emp.empId); printf("\nSalary: 
%f\n",emp.salary); 

 

} 
OUTPUT 
Enter details :  

Name ?:Amrutha 
ID ?:349 
Salary ?:23000 
 

Entered detail is:  

------------------- 
Name: Amrutha 
Id: 349 
 

Salary: 23000.000000 
 

 

 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 47



Programming in C Lab Manual EST 102 
 

 

4.13 UNION 
 

PROGRAM 
 

#include <stdio.h>  

#include <string.h> 
#define C_SIZE 50  

union Address  

{ 
char name[C_SIZE];  

char hname[C_SIZE]; 
char cityname[C_SIZE];  

char state[C_SIZE];  

char pin[C_SIZE]; 
}; 
 

int main() 
{  
union Address record1; 

 

printf("Enter name:");  

scanf("%s",record1.name); 
getchar();  

printf("Enter house name:");  

scanf("%s",record1.hname); 
getchar(); 
printf("Enter city name:"); 
scanf("%s",record1.cityname); 
getchar();  

printf("Enter state name:");  

scanf("%s",record1.state);  

getchar(); 
printf("Enter pin:"); 
scanf("%s",record1.pin);  

printf("Union record1 values ....\n"); 
printf(" Name : %s \n", record1.name); 
printf(" House Name : %s \n", record1.hname); 
printf(" City Name : %s \n", record1.cityname); 
printf(" State name : %s \n", record1.state);  

printf(" Pin : %s \n", record1.pin); 
} 
OUTPUT 
 

Note: it is noted that the program will print only Pin because the union 
will hold only one value at a time . 
 

 

 

 

 

 

 

 

 

 

Department of CSE, ICET 48



Programming in C Lab Manual EST 102 
 

 

4.14 FACTORIAL OF A NUMBER USING RECURSIVE AND 
NON-RECURSIVE FUNCTIONS 
 

PROGRAM 
 

#include <stdio.h> 
long int factnr(int n)  

{ int i;  

long int f=1; 
for(i=1;i<=n;i++)  

f=f*i; 
return f;  

}  
long int factr(int n) 
{ 
if(n==0) return 1;  

else 
return (n*factr(n-1));  

}  
int main() 
{int n;  

system("clear"); 
printf("Enter the number \n");  

scanf("%d",&n);  

printf("Factorial using non recursive function %d !=%ld\n",n,factnr(n)); 
printf("Factorial using recursive function %d !=%ld\n",n,factr(n)); 
} 
 

4.15 REVERSE A STRING USING FUNCTION 
 

PROGRAM 
 

#include <stdio.h> 
#include <string.h>  

void reversestr(char str[])  

{ int i,n; char c; 

n=strlen(str); 

for(i=0;i<n/2;i++) 

{ c=str[i]; 
str[i]=str[n-1-
i]; str[n-1-i]=c;  

} 
}  
int main() 
{ 
char str[100];  

system("clear"); 
 

 

 

 

 

Department of CSE, ICET 49



Programming in C Lab Manual EST 102 
 

 

printf("Enter the string \n");  

scanf("%[^\n]",str); 
reversestr(str);  

printf("Reversed string is=%s\n",str); 
}  
OUTPUT 
Enter the string  

smart  

Reversed string is=trams 
 

4.16 MATRIX ADDITION, MULTIPLICATION AND TRANSPOSE 
 

PROGRAM 
 

#include <stdio.h> 
#include <stdlib.h>  

void readmatrix(int a[][100],int m,int n) 
{  
int i,j;  

printf("enter the elements row by row\n"); 
for(i=0;i<m;i++)  

for(j=0;j<n;j++) 
scanf("%d",&a[i][j]);  

}  
void displaymatrix(int a[][100],int m,int n) 
{ 
int i,j; 
for(i=0;i<m;i++) 
{  

for(j=0;j<n;j++)  

printf("%5d",a[i][j]);  

printf("\n"); 
} 
}  
void addmatrix(int a[][100],int b[][100],int m,int n) 
{ 
int i,j,c[100][100]; 
for(i=0;i<m;i++) 
for(j=0;j<n;j++)  

c[i][j]=a[i][j]+b[i][j]; 
printf("Sum of matrix...\n"); 
displaymatrix(c,m,n); 

 

} 
void transpose(int a[][100],int m,int n)  

{ 
int i,j,c[100][100]; 
for(i=0;i<m;i++)  

for(j=0;j<n;j++) 
 

 

 

 

 

Department of CSE, ICET 50



Programming in C Lab Manual EST 102 
 

 

c[j][i]=a[i][j]; 
 

displaymatrix(c,n,m);  

} 
void multmatrix(int a[][100],int b[][100],int m1,int n1,int n2)  

{ 
int c[100][100],i,j,k;  

for (i = 0; i < m1; i++) {  

for (j = 0; j < n2; j++) { 
c[i][j] = 0;  

for (k = 0; k < n1; k++) 
c[i][j] += a[i][k] * b[k][j];  

}  

} 
printf("Product of matrix...\n"); 
displaymatrix(c,m1,n2);  

} 
int main()  

{ int a[100][100],b[100][100],m1,n1,m2,n2,op; 
system("clear"); 

 

printf("Enter the size of the matrix A row,column\n"); 
scanf("%d%d",&m1,&n1);  

printf("Enter Matrix A\n"); 
readmatrix(a,m1,n1); 

 

printf("Enter the size of the matrix B row 
column\n"); scanf("%d%d",&m2,&n2); 

 

printf("Enter Matrix B\n"); 
readmatrix(b,m2,n2); 
system("clear"); 
printf("Matrix A..\n"); 
displaymatrix(a,m1,n1); 
printf("Matrix B..\n"); 
displaymatrix(b,m2,n2); 
while(1) 
{  

printf("\n************************************\n"); 
printf("1.add 2.multiply 3.transpose 4.exit \n"); 
printf("Enter the option.....:"); scanf("%d",&op); 

 

switch(op) 
{ 
case 1: if(m1==m2 && n1==n2)  

addmatrix(a,b,m1,n1); 
else  

printf("Incompatable matrix...cannot add..\n"); 
break; 

case 2: if(n1==m2)  

multmatrix(a,b,m1,n1,n2); 
 

 

 

 

 

Department of CSE, ICET 51



Programming in C Lab Manual EST 102 
 

 

else  

printf("Incompatable matrix...cannot mutliply..\n"); 
break;  

case 3: printf("Transpose of A..\n"); 
transpose(a,m1,n1);  

printf("Transpose of B..\n"); 
transpose(b,m2,n2);  

break;  

case 4: exit(0); 
}  

} 
} 
 

OUTPUT 
 

Enter the size of the matrix A row,column  

3 3 
Enter Matrix A  

enter the elements row by row  

1 2 3 
1 2 3  

1 2 3 
Enter the size of the matrix B row column  

3  

3 
Enter Matrix B 
enter the elements row by row 
1 2 3 
1 2 3  

1 2 3  

Matrix A..  
1 2 3
1 2 3
1 2 3

Matrix B..  
1 2 3
1 2 3
1 2 3

 

************************************ 
1.add 2.multiply  3.transpose 4.exit 
Enter the option.....:1 
Sum of matrix... 

2 4 6 
2 4 6 
2 4 6 

 

************************************ 
 

 

 

 

 

Department of CSE, ICET 52



Programming in C Lab Manual EST 102 
 

 

1.add 2.multiply 3.transpose 4.exit 
Enter the option.....:2 
Product of matrix... 
6 12 18  

6 12 18  

6 12 18  

************************************ 
1.add 2.multiply 3.transpose 4.exit 
Enter the option.....:3 
Transpose of A..  

1 1 1  

2 2 2  

3 3 3  

Transpose of B..  

1 1 1  

2 2 2  

3 3 3  

************************************ 
1.add 2.multiply 3.transpose 4.exit  

Enter the option.....:4 
 

 

 

 

 

 

 

 

4.17 POINTERS  

(i) ADD TWO NUMBERS 
 

PROGRAM 
 

#include <stdio.h>  

int main() 
{ 
int first, second, *p, *q, sum; 
printf("Enter two integers to add\n"); 
scanf("%d%d", &first, &second);  

p = &first; 
q = &second; 
sum = *p + *q; 

 

printf("Sum of the numbers = %d\n", sum); 
} 

 

OUTPUT 
Enter two integers to add  

34 
 

 

 

 

 

Department of CSE, ICET 53



Programming in C Lab Manual EST 102 
 

 

9  

Sum of the numbers = 43 
 

(ii)SWAP TWO NUMBERS 
 

PROGRAM 
 

#include <stdio.h>  

void swap(int *xp, int *yp) 
{  
int temp = *xp; 
*xp = *yp;  

*yp = temp;  

} 
int main() 
{  
int x, y; 
printf("Enter Value of x ");  

scanf("%d", &x);  

printf("\nEnter Value of y "); 
scanf("%d", &y);  

swap(&x, &y);  

printf("\nAfter Swapping: x = %d, y = %d", x, y); 
return 0;  

} 
OUTPUT 
Enter Value of x 45 
 

Enter Value of y 7 
 

After Swapping: x = 7, y = 45 
 

 

4.18 INPUT AND PRINT ARRAY USING POINTERS 
 

PROGRAM 
 

#include <stdio.h> 
int main()  

{ 
int arr[100]; 
int n, i;  

int * ptr = arr; 
printf("Enter size of array: ");  

scanf("%d", &n); 
 

printf("Enter elements in array:\n");  

for (i = 0; i < n; i++) 
 

 

 

 

 

Department of CSE, ICET 54



Programming in C Lab Manual EST 102 
 

 

{scanf("%d", (ptr + i));  

} 
 

printf("Array elements: \n"); 
for (i = 0; i < n; i++)  

{printf("%d\n", *(ptr + i)); 
}  

} 
 

OUTPUT  

Enter size of array: 5 
Enter elements in array:  

23  

4 
5 
7  

9 
Array elements:  

23  

4 
5  

7 
9 
 

4.19 COMPUTE SUM OF ARRAY USING POINTERS AND FUNCTIONS 
PROGRAM 
 

#include <stdio.h> 
#include <stdlib.h>  

int arraysum(int *ptr,int n)  

{  
int sum=0,i; 
for (i = 0; i < n; i++) 
{sum=sum+ *(ptr + i);  

} 
return sum; 
} 
int main() 
{  
int arr[]={4,5,6,7,8,9,10,1,2,3}; 
int  sum; 
sum=arraysum(arr,10); 

 

printf("Array elements sum=:%d \n",sum); 
}  
OUTPUT 
Array elements sum=:55 
 

 

 

 

 

 

 

Department of CSE, ICET 55



Programming in C Lab Manual EST 102 
 

 

4.20 FILE OPERATIONS  

(i)Write Data to file 
 

PROGRAM 
 

#include <stdio.h> 
#include <stdlib.h>  

int main()  

{ 
FILE *fp;  

fp=fopen("a.txt","w"); 
if (fp==NULL)  

{  

printf("error opening file..\n"); 
exit(1); 
}  

else 
{  

fprintf(fp,"%s","Welcome\n");  

fprintf(fp,"%s","to file handling in C\n"); 
}  

printf("File Created...named a.txt"); 
fclose(fp);  

}  
OUTPUT 
File Created...named a.txt 
 

(ii) Read data from file and print content on console 
 

PROGRAM  

#include <stdio.h>  

#include <stdlib.h> 
int main() 
{  
FILE *fp; 
char t[100]; 
fp=fopen("a.txt","r"); 
if(fp==NULL) 
{  

printf("Error opening source file.."); 
exit(1); 
} 

 

printf("Content of File a.txt\n...................\n"); 
while(fscanf(fp,"%s",t)==1)  

{ 
printf("%s\n",t); 
}  
fclose(fp); 
 

 

 

 

 

Department of CSE, ICET 56



Programming in C Lab Manual EST 102 
 

 

} 
 

OUTPUT 
 

Content of File a.txt  

................... 
Welcome  

to  

file 
handling  

in 
C 
 

 

 

 

(iii) Append a file and display content on console 
 

PROGRAM  

#include <stdio.h>  

#include <stdlib.h> 
int main()  

{ 
FILE *fp;  

char t[100];  

fp=fopen("a.txt","a"); 
if(fp==NULL) 
{ 
printf("Error opening source file.."); 
exit(1);  

}  

printf("Enter the contents to append.................\n");  

while(1) 
{ 
fgets(t,sizeof(t),stdin);  

if(strcmp(t,"end\n")==0) break; 
fputs(t,fp); 
} 
fclose(fp); 
fp=fopen("a.txt","r"); 
 

printf("File contents after appending...\n"); 
printf("********************************\n"); 
while(fgets(t,sizeof(t),fp)!=NULL) 
 

{ 
printf("%s",t);  

} 
fclose(fp); 
} 
 

 

 

 

 

 

Department of CSE, ICET 57



 Programming in C Lab Manual EST 102  
     

      

 

OUTPUT  

Enter the contents to append 
.................  

mea engg college 
 

4.21 OPEN A FILE, COUNT CHARACTER, WORDS AND LINES IN IT 
 

PROGRAM  

#include <stdio.h> 
#include <stdlib.h>  

int main() 
{  

FILE *fp;  

char fname[50]; 
int ch; 
int nl=0,nc=0,nw=0;  

printf("Enter the file name....\n"); 
scanf("%[^\n]",fname);  

fp=fopen(fname,"r");  

if(fp==NULL) 
{  

printf("Error opening file.."); 
exit(1);  

}  

ch=getc(fp); 
while(ch!=EOF) 
{ 
if (ch=='\n') nl++; 
if(ch==' ') nw++;  

nc++;  

ch=getc(fp);  

} 
fclose(fp);  

printf("Number of lines=%d Number of words=%d ,Number of characters 
= %d,\n",nl,nw,nc+nl);  

printf("results are written into result.dat 
file..\n"); fp=fopen("result.dat","w"); 
fprintf(fp,"Number of lines=%d Number of words=%d ,Number of characters = 
%d,\n",nl,nw,nc+nl);  

fclose(fp); 
} 
OUTPUT 

 

Enter the file name.... 
a.txt  

Number of lines=2 Number of words=4 ,Number of characters = 32, 
results are written into result.dat file.. 

 

**************************************************************************************************** 
 

 

 

 

 

Department of CSE, ICET 58



 


