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SYSTEM

System when a number of elements or components are connected
In a sequence to perform a specific function, the group thus
formed is called a system.

Example: a lamp (made up of glass, filaments)

CONTROL SYSTEM

In a system when the output quantity is controlled by varying the
Input quantity the system is called control system
Example: a lamp controlled by a switch

The output quantity is called controlled variable or response

The input quantity is called command signal or excitation




open loop control system
&
closed loop control system



OPEN LOOP SYSTEM

Any physical system which does not automatically correct the

variation in its output is called an open loop system or control

system in which output quantity has no effect upon the input
quantity are called open loop control system.

The output is not a feedback to the input for correction

_Cwontroll_t::iﬂ g

Input ———>¢ Controller process

——> Output

Example: Automatic Washing Machine



OPEN LOOP SYSTEM

Advantage

1. simple

2. economical

3. easier to construct
4. stable

Disadvantage

1. Inaccurate

2. unreliable

3. the changes in the output due to external disturbances are not
corrected automatically



CLOSED LOOP SYSTEM

(automatic control system)

control systems in which the output has an effect upon the input
quantity in order to maintain the desired output value are called
closed loop control systems

Lrror

Detector
Reference P .

Ll erence < T Open loop system Output
nput (Plant) =P
r(t) c(t)

Feedback —

Example: Air conditioner provided with thermostat



CLOSED LOOP SYSTEM

Advantage

1. accurate

2. the sensitivity of the system may be made small to make the
3. system more stable

4. less affected by noise

Disadvantage
1. complex

2. costly
3. feedback in closed loop system may lead to oscillatory
4. response feedback reduces the overall gain of the system
5. stability i1s a major problem in closed loop system




Comparison between open loop system and closed

loop system
Open loop system Closed loop system
these are not reliable these are reliable
it is easier to build it is difficult to built
if calibration is good they are accurate
they perform accurately because of feedback
operating systems are these are less stable
generally more stable
Optimization is not Optimization is possible

possible



MATHEMATICAL MODEL OF CONTROL SYSTEM

Control system is a collection of physical object connected
together to serve an objective

The input output relations of various physical components of a
system are governed by differential equation

The mathematical model of a control system constitutes a set of
differential equations

The response or output of the system can be studied by solving
the differential equations for various input condition



MATHEMATICAL MODEL OF CONTROL SYSTEM

The differential equations of a linear time invariant system can be
reshaped into different form for the convenience of analysis

One such model for single input and single output system
analysis is called transfer function



TRANSFER FUNCTION

Transfer function is the ratio of Laplace transform of outputs of the
system to the Laplace transform of the inputs under the assumption
that all initial conditions are zero

f(t) —— System p—s cft) Ris)—— T(s) p>—Cls)

[aplan transform of output ~ C(s)

[ e

] d})]m(’ transform of mput — R(s)




TRANSFER FUNCTION

Transfer function is the ratio of Laplace transform of outputs of the
system to the Laplace transform of the inputs under the assumption
that all initial conditions are zero

Laplace Transform of output I | |

Transfer function = :
Laplace Transform of input | .

with zeroinitial conditions

) ——f System — c(t) R(s)—— T(s) }—=»—Cs)

l aplau transform of output ~ C(s)

Is) = d})la e transform oflnput ~ R(s)




Advantages of Transfer function

1. The response of the system to any input can be determined very
easily.

2. It gives the gain of the system.

3. It help In the study of stability of the system

4. Since Laplace transform is used it converts time domain
equations to simple algebraic equations

5. Poles and zeroes of a system can be determined from the
knowledge of the transfer function of the system.

Disadvantages

1. transfer function cannot be defined for Non linear system

2. transfer function is defined only for linear system

3. from the transfer function physical structure of a system cannot
determine

4. initial conditions lose their importance



Characteristic Equation (C.E)

The characteristic equation of a linear system can be obtained by
equating the denominator polynomial of the transfer function to
zero. The roots of the characteristic equation are the poles of
corresponding transfer function.

Poles of a transfer function

The value of ‘S’ which makes the transfer function infinite after
substitution in the denominator of a transfer function are called
poles of that transfer function

Zeros of a transfer function

The value of ‘S’ which make the transfer function zero after
substituting in the numerator are called zeros of that transfer
function



Consider a linear systemhaving input r(t) & c(t)tis the output of the system
The input - output relationcan be describedby the followingn® order differential equation

n n-1 m m-1

a, d C(t)+an1 d Cft) .......... d (t) ra,ct)=b. d r(t)+bm_ld_r_(lt)
dt" dt" dt dt™ dt™

where 'a' and 'b' are constants

take the Laplace transform

(a,s"+a, s +..+a5+a,)C(s)=b _s"+b_.s" +...b,s+b,)R(s)

C(s) b,s"+b,,s""+...b;s+b,
R(s) as"+a s"" +....+asS+a,

TF =



e _ C(8) _ K(S=8,)(8=S,) ... (S-S )(as’ +bs +c)
CR(S)  (S-S,)(S-S,)......... (S—S,)(ds? + es +f)

_h+ 2 _
Zeros:S,,S, ..., b b’ —ac
2a
_p44/p% _
Poles:S,,S,,......S,, e+ Ve’ — df
2d

C.E:(S=S,)(S=S,) .. (S—S. )(ds® +es+F) =0



Basic formula
L[x(t)]=X(S)

L[I(D]=I(S)

[dx(t)

] = SX(S) |with zeroinitial condition

d2x(t)
H g

] = S*X(S) |with zeroinitial condition
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Mechanical system
two types
1. translational systems
2. rotational systems

The motion takes place along a straight line is known as
translational motion.

The rotational motion of a body can be defined as the motion of a
body about a fixed axis.



Mechanical translational system

The model of mechanical translational system can be obtained by
using three basic elements mass, spring and dashpot.

The weight of the mechanical system is represented by the element of
mass

The elastic deformation of the body can be represented by spring

The friction existing in rotating mechanical system can be represented
by dashpot

When a force is applied to a translational mechanical system it is
opposed by opposing forces due to mass, friction and elasticity of the
system

Force acting on a mechanical body are governed by Newton's second
law of motion



LIST OF SYMBOLS USED IN MECHANICAL TRANSLATIONAL SYSTEM
x = Displacement, m

dx
V= = Velocity, m/sec
dv dzﬁ
a = dtz = Acceleration, m/sec’

f = Applied force, N (Newtons)

fo= Oppusing force offered by mass of the body, N

f, = Opposing force offered by the elasticity of the body (spring), N
f, = Opposing force offered by the friction of the body (dash pot), N
M= Mass, ke

K = Stiffness of spring, N/m

B = Viscous friction co-efficient, N-sec/m

Note : Lower case letters are functions of time




FORCEBALANCE EQUNTIONSOF DEALIZEDELEWENTS

Consider an ideal mass element show in fig 1.9 which s negligible friction and elastiéityz Leta

foree be applied onit. The mass will offer an opposing force which is proportional to acceleration of the
body,

- Let, 1 =Applied force | !
1 =Opposing force due to mass N __E
dx i - Reference
Here, f o« — o [ =M— _
s dt’ Fig 19 ldeal mass elemen
By Newton's second law, f=f, =M —| 1)
s




Consider an ideal frictional element dashpot shown in fig 1.10 which has negligible mass and
elasticity . Let a force be applied on it. The dash-pot will offer an opposing force which is proportional to
velocity of the body.

- - X

Let, f =Applied force }_} | T

f, = Opposing force due to friction f—> — U E
Here, f, o dx or f,= BE - B Reference
& a Fig 1.10: Ideal dashpot with
By Newton's second law,|f = f, = Bi—}: +++++ (13 e end Jedloreferece
‘When the dashpot has displacement at both ends as shown in [_, X, i_, X,
fig 1.11, the opposing force is proportional to differential velocity. 7 |
d | d f—p |
ota(xlmxz) or f =BE{ (X; —X5) J

B Reference
=t =B d %, ~x,) | (14) Fig 1.11 : Ideal dashpot with
dt - displacement at both ends.




Consider an ideal elastic element spring shown in fig 1,12, ~
which has negligible mass and friction, Let a force be applied on it l_* '

The spring will offer an opposing force which is proportional to (. - 2
lisplacement of the body. 00 ;
K Reference
Let, = Applied force Fig 1.12.: Ideal spring with one end

f = Opposing force due to elasticity fixed to reference,

Herefwx or f=Kx

|
By Newton’s second law, | f=f=Kx |  ..(L3)

T m—— ST RN

When the spring has displacement at both ends as shown in P}q ng |
g 1.13 the opposing force is proportional to differential displacement, -

f—» i

b (x)-x,) or f =K(x;—%y) K
Fig LI3 : Ideal spring with
displacement at both ends.

df=f=K-x) . (16




Guidelines to determine the transfer function of mechanical
translational system

1. consider each mass separately

2. draw the free body diagram

3. write the differential equations

4. take the Laplace transform of differential equations

5. rearrange the s-domain equation to eliminate the unwanted
variables and obtain the ratio between output variable and input
variable



Mechanical rotational systems

The model of mechanical rotational systems can be obtained by
using three elements moment of inertia [J] of mass, dash-pot with
rotational frictional Coefficient [B] and torsional spring with
stiffness [K]

The weight of the rotational mechanical system is represented by
the moment of inertia of the mass

The elastic deformation of the body can be represented by a
spring

The friction existing in rotational mechanical system can be
represented by dash-pot



LIST OF SYMBOLS USED IN MECHANICAL ROTATIONAL SYSTEN

® = Angular displacement, rad

% = Angular velocity, rad/sec

Ellt? = Angular acceleration, rad/secz

= Applied torque, N-m

= Moment of mertia, Kg-m2/rad

B = Rotational frictional coefficient, N-m/(rad/sec)
K = Stiftness of the spring, N-m/rad




TORQUE BALANCE EQUATIONS OF IDEALISED ELEMENTS

Consider an ideal mass element shown in fig 1.14 which has negligible friction and elasticity. The
opposing torque due to moment of inertia is proportional to the angular acceleration.

Let, T = Applied torque.
T = Opposing torque due to moment of inertia of the bady

i ) |
HereToc—-e- or Ti= Jd—e A\ |
B i L] =“[
By Newton's second law, | T‘ — 9
2
1T=T.= jde | Fig 114 ldeal rotational mass element
R A1 .




Consider an ideal frictional element dash pot shown in fig 1.15 which has negligible moment of
inertia and elasticity. Let a torque be applied on it. The dash pot will offer an opposing torque which is
proportional to the angular velocity of the body.

Let, T =Applied torque.

T, =Opposing torque due to friction. ) _u E
i & ' L ’
Te— or T,=B— _|B
"Td o Tt T o =
| 0 Fig 1.15 : ldeal rotational dash-por with
By Newton's second law, |T=T, :BE ..... (1.8) one end fixed to reference,

When the dash pot has angular displacement at both ends as shown n f g 1.16, the opposing torque

is propertional to the differential angular velocity. 1
L
i N
Ty (6,-0;) or T,=B—(4,-6) A LB
o | | Fig 1.16 : laeal dash-pot with
Ty Bdt Y] (L) angular displacement at both ends.




Consider anideal elastic element, torsional spring as shown in fig 117, which has negligible moment
of inertia and friction, Let a torque be applied on it, The torsional spring will offer an opposing torque
which is proportional to angular displacement of the body.

Let, T = Applied torque. ) ) e E
Tk;Opposing torque due to elasticity. T 8
T or T=Kf Fig 117 Ideal spring with one
end fixed to reference.

By Newton's second law, T=T =KB| = (1.10)

When the spr ing has angular displacement at both ends as shown in fig 1.18 the opposing torque is
proportional to differential angular displacement, R )

(i)
/
T o« (9-6) or T =K@ -0) | I 9|‘/ K Uz‘/
(L) Fig 1.18 : ldeal spring with angular
displacement at both ends,

T =T =KGB -6)




Guidelines to determine the transfer function of mechanical
rotational system

1. consider each moment of inertia separately

2. draw the free body diagram

3. write the differential equations

4. take the Laplace transform of differential equations

5. rearrange the s-domain equation to eliminate the unwanted
variables and obtain the ratio between output variable and input

variable
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ELECTRICALANALOGOUS OF MECHANICAL SYSTEMS

Systems remain analogous as long as the differential equations governing the systems
or transfer functions are in ideal form.

Since the electrical systems are two types of inputs either voltage or current source,
there are two types of analogies - force voltage analogy/ torgue voltage analogy and
force current analogy/ torque current analogy

Force / torque voltage analogy - Each junction in the mechanical system response to a
closed loop which consists of electrical excitation sources and passive elements
analogous to the mechanical driving source and passive elements connected to the
junction

Force / torque current analogy - Each junction in the mechanical system corresponds to
a node which joins electrical excitation sources and passive elements analogous to the
mechanical driving sources and passive elements connected to the junction
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BLOCK DIAGRAM

A block diagram of a system is a pictorial representation of the functions performed by
each component and of the flow of signals.

The elements of a block diagram are block, branch point and summing point.

Block - 1s a symbol for the mathematical operation on the input signal to the block that
produces the output

The transfer function of the components are usually ended in the corresponding blocks.

Input. A | Transfer Qutput, B
function ——————""

G(s) |B=AG(s)




Summing point - Is used to add two or more signals in the system
‘“+> or ‘-¢ sign at each arrowhead indicates whether the signal is to be added or subtracted.

Branch points — is a point from which the signal from a block goes concurrently to other
blocks or summing points.

Branch point
x B




BLOCK DIAGRAM REDUCTION

The block diagram can be reduced to find the overall transfer function of the system.

Rules of block diagram algebra

Rule-1 : Combining the blocks in cascade

A

—

G,

AG, !AG.iGE A AG,G,

G, — = GG, —>»

Rule-2 : Combining Parallel blocks (or combining feed forward paths)

A

AG,

>

G,

_....'._..

G,

AG, %AG#AGH(G&GE} = A el AGHG)
1 2




Rule-3 : Moving the branch point ahead of the block

A

Rule-4 : Moving the branch point before the block

A

)

AG

G

AG

>

l.
‘AGl

A—HG | AGP
]AG |

G —»

Rule-5 : Moving the summing point ahead of the block

B

A

G

(A+B)G
—p

G

BG
AG % AG + BG = (A+B)G




Rule-6 : Moving the summing point before the block
B E

- E
A__,,.. G —%‘f =

Rule-7 : Interchanging summing p&:‘nf
A g A=C % A-C+B=A+B-C

Rule-8 : Spﬁtﬁng summing points
- .

A A+B-C =

C




Rule-9 : Combining summing points

Rule-10 : Elimination of (négative) feedbﬂck loop
(R-CH) (R-CH)G

>
R G C = R > G
CH - r C - 1+ GH

C=R-CH)G - C=RG-CHG = C+CHG=RG

C_ G
- C(1+HG) =RG ==
1+ HE) ~ R 1:CH

v

Proof:

Rule-11 : Elimination of (positive) feedback loop

L@_.a T-"{’::,- N

L e | 1- GH




Reduce block diagram and find C(s)/R(s)

»G;]

G,

ﬂ_.ﬁ%l?

T

Step 1: Move the branch point after the block.

-

A AG
N -
fal
AG |
AG e .
AGHA



AG,G,

AG,G;

v




1+ GH "G,

C_{_G (g, o8| [_G |[GGe+Gs)_ GG +Gs
R (1+GH/) * G, (1+GHJ{ G, 1+GH



Reduce block diagram and find C(s)/R(s)

G1 4’%—_’(32

H, 14

*
L L}
‘‘‘‘‘‘‘




-Tn

v




R(s)

il
[ ]
-
-
=
&
L
-
-
-
E
il
E
-
E
E
L
-
L]
"
-
-
-
L
-
-
-
o
*
L Y

v

G.Gy

T+ GSG4H1 + GEGEHE

G,

"f{"}



R(3)

>

‘1".' GEGdHT + GEGEHE

G,

ey L) ﬁ-ﬁ@—.e

R

[:J:
F-3

"f{"}

G,G,G,
14+ G,G,H; + G,GJH,

1+

4:311:32{33
1+ GG H, + G,G,.H,

x G,

IIIII:illl+illll LERE N Illll=

G,G,G,

C(S)

15 G,GH + + GyGaH, + CG.G,CoC

h'Gg:_E_h

-
ENFEEENF TP AR R PR EFAEIA N FF SN A PP AR AR

.

1+ GH

v



C(s) GG,G.G,

———————

R(S) 1+ GyGyH, + GoGyH, + G.G,G4G,



Reduce block diagram and find C(s)/R(s)







R(S)

>| G,G,
| 1+ GgHy + GG,

G,G,
1+ G2H1

L GGty
1 + GEH1




:Eliminating

forward path

GGG,
RES) G(G,Gs C(S) | 1+ GoHs + G,GH,
1+ G,H, + G,G.H, - GG.H S GGG [ H
Ml S b M v % 11+GH+EGGH[G}
»G,| |
C(s) _ G,G,G, o
o e .
R(s) 1+ G,H,+ G,G:H, - GG,H,
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TRANSFER FUNCTION OF ARMATURE CONTROLLED DC MOTOR
The speed of DC motor is directly proportional to armature voltage

and inversely proportional to flux in the field winding
In armature controlled DC motor the desired speed is obtained by

varying the armature voltage

This speed control system is an electromechanical control system

The electrical system consists of armature and field circuit but for analysis purpose only
the armature circuit is considered because the field is excited by a constant voltage.

The mechanical system consists of the rotating part of the motor and

load connected to the shaft of the motor



Armature controlled DC motor

if iu;

- e

. Load

T " T MNN

v;= Constant v,= input L., ‘) i ﬂ

L, 0
i _ | (Output)




R = Armature resistance, )

L = Armature inductance, H

i = Armature current, A

v = Armature voltage, V

¢, = Backemf, V

Kl = Torque constant, N-m/A

T = Torque developed by motor, N-m
6 = Angular displacement of shaft, rad
J = Moment of inertia of motor and load, Kg-m¥/rad .
B = Frictional coefficient of motor and load, N-m/(rad/sec)
K= Back emf constant, V/(rad{sac)




Armature equivalent circuit

R, L,
P AN
iR SN
R, Ay
V R

By Kirchoff’s voltage law

,R,+L c;:+eh=v ) 1

Torgue of DC motor is proportional to the product of flux and current
Tecl,
Torque, T=K 1, —)




The mechanical system of the motor

W
J 7

g T B
The differential equation governing the mechanical system of motor
2
J d E + Hﬁ =T ) 3
dt dt

The back EMF of DC machine is proportional to speed of shaft

do
O —
dt

49

Baﬂkemf, ﬁszh‘&‘t' > a

=




Take the Laplace Transform of all equation
[ ()R +L sL(s)+E(s)=V(s) ) s
T(s)=K ]I, (s) mm) 6

Jszﬂ(s} +Bs0(s)=T() ) 7
E,(s)=Ks 6(s) ) 8

From equation 6 & 7

K. (s)=(Js" +Bs) (s)

{2
L(s)= s IZBS} B(s) ) 9

t



On rearranging Va(S)
(R +sL)1(s)TE(s)=V(s) m—) 10
Substitute the values of 1a(S) and En(S) in equation 10

2
(R, +sL,) Us ; Bs) 6(s) + K5 08(s) = V,(s)

L

(R, +sL,) (Js* + Bs) + KK
K’[

]G(s} = V,(s)

A




8{s)
The required functionis v _(s)

. o(s) _ o K, _
TV.(s) (R, +sL,)(Js* +Bs)+KK;s
— K‘i _
) RﬂJE-E + R, Bs+ LEJS‘?‘ +L,Bs" +K K5
. e

s[IL,& +(R, +BL,) s+(BR, +K;K, )|

K, /L,

sle+ ;}_Ra_t'BI‘_‘i g+ _B_R&+Khl{t J
IL, L,

=
— L a —_—




TRANSFER FUNCTION OF FIELD CONTROLLED DC MOTOR

The speed of DC motor is directly proportional to armature voltage and inversely
proportional to flux

In field controlled DC motor the armature voltage is kept constant and the speed is
varied by varying the flux of the machine.

Since flux is directly proportional to field current, the flux is varied by varying field
current.

The speed control system is an electromechanical control system

The electrical system consists of armature and field circuit but for analysis purpose only
field circuit is considered because the armature is excited by a constant voltage.

The mechanical system consists of the rotating part of the motor and the load connected
to the shaft of the motor






-

< e
]

B

Djf-q-:

Il

Field resistance, O
Field inductance, H
Field current, A
Field voltage, V
Torque developed by motor, N-m
Torque constant, N-m/A
Moment of inertia of rotor and load, Kg-m?/rad
Frictional coefficient of rotor and load, N-m/(rad/sec)



T IR, SR di,

v. o Rflf'lrLfE:vf— 1
| dt <

v

The torque of DC motor is proportional to product of flux and armature current.

Since armature current Is constant in this system, the torque is proportional to flux
alone, but flux is proportional to field current

Toci,, .. Torque, T=K,i w=—



The mechanical system of the motor

|
J |

A
R

E"x"a o

The differential equation governing the mechanical system of the motor

2
JdE+EEZT ) 3
dt dt

Take the Laplace transform of all equation

Rele(s) + Les[p(s) = Vi(s) mmmmmm) 4
T(s) =K 14(s) —) S

J$%0(s) + BsO(s) = T(s) mmmmb




From equation 5 and 6

K.; I:(s) = Js"8(s) + Bs6(s)
(Js+B)

tf

I(s)=s

O(s) ) -

Rearranging equation 4

(R +8Lg) [¢(s) = Vi (s) mmmmm) s



Substituting equation 7 in 8

(Ry +sLy)s Us+B) B(s) = V:(s)
if
8(s) _ K
‘n.f’f(s.) s(Re+sL;y)(B+sl))
= K Km

Cs(1+ +
MY AN ACIERIGES
R, B



Where

Ky = Be _ Motor gain constant
R.B
T, = %—f- = Field timé constant
A

T, = é— = Mechanical time constant



SIGNAL FLOW GRAPH

The signal flow graph is used to represent the control system graphically and it was developed
by S J mason

A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations

The advantage in signal flow graph method is that, using mason's gain formula the overall gain
of the system can be computed easily.




Explanation of terms used in signal flow graph

R(s)

‘ Fig I

Node: a node is a point or representing a variable or signal

Branch: a branch is directed line segment joining two nodes. The arrow on the branch
Indicates the direction of signal flow and the gain of a branch is the transmittance

Input node (source): It is a node that has only outgoing branches

Output node (sink): it is a node that has only incoming branches



Explanation of terms used in signal flow graph

. G,
R(S) @ '
- G 534 G; Cf)
1 2\M 5 6
I_E1 HE H] .
Fig 1

Mixed node: it is a node that has both incoming and outgoing branches

Path: a path is a traversal of connected branches in the direction of the branch arrows. The
path should not cross a node more than once

Open path: a open path starts at a node and ends at another node
Closed path: closed path starts and ends at same node

Forward path: it is a path from an input node to an output node that does not cross any node
more than once



Explanation of terms used in signal flow graph

-H,

. Gﬁ
R{S) G-, | GZ G.‘:l Gi’f
o

; — Q > v o 5C(ﬂ)
hlh Fig I

Forward path gain: it is the product of the branch transmittance (gain) of a forward path

Individual loop: it Is a closed path starting from a node and after passing through a certain
part of a graph arrives at same node without crossing any node more than once

Loop gain: it is the product of branch transmittance (gain) of a loop

Non-touching loop: if the loops does not have a common node, then they are said to be non-
touching loops



Properties of signal flow graph
Signal flow graph is applicable to linear time invariant systems
The signal flow is only along the direction of arrows

The value of variable at each node is equal to the algebraic sum of all signals entering at that
node

The gain of signal flow graph is given by Mason's gain formula
The signal gets multiplied by the branch gain when it travels along it

The signal flow graph is not be the unique property of the system



Comparison of block diagram and signal flow graph method

SI.No |Block diagram SFG
1 applicable to Linear time invariant systems |applicable to Linear time Invariant
systems
2 each element is represented by block each variable is represented by node
3 summing point and take off points arejsumming and take off points are
separate absent
4 self-loop do not exist self-loop can be exist
5 It Is time consuming method require less time by using Mason gain
formula
6 block diagram is required at each and every|at each step it is not necessary to
step draw SFG
7 Only transfer function of the element is shone |transfer function is shown along the
Inside the corresponding block branches connecting the nodes
8 feedback path Is present feedback loops are used




Construction of signal flow graph from equations
Yap=Car ¥V, v €az3 Iy - Yyl z59, V€3 FTCI)H

% = tuesdy T CaRTIR. S Ty = bxuTy ) K <G Wy
€2
&_a. m 9 =
- > s 7, iy o s




Construction of signal flow graph from equations

Sp=Ca ¥, y€a1¥y o Yol oY, FE3a 4L TONS

7(, :1':},._3.7_3" b‘riy{/' T = ¢3-¢,y‘,/- Z cb‘r?',—"t'n/,.

———— eq&
&
&3 ’ 3 Y s
Ea ot S sy R = %
N )
J/ 1& =3 7
&6



construction of signal flow graph from block diagram

All variables, summing point and take off points are represented by
nodes

If a summing point is placed before a take off point in the direction of
signal flow, in such case represent the summing point and take off
Point by a single node

If a summing point is placed after a takeoff point in the direction of
signal flow, in such case, represent the summing point and take off

Point by separate nodes connected by a branch having transmittance
Unity






Mason's gain formula states the overall gain of the system [transfer function]

: 1
Overall gain, T=E Z P Ay

K

T T(s) = Transfer function of the system
Px = Forward path gain of K* forward path
K
A

= Number of forward paths in the signal flow graph
= ] — (Sum of individual loop gains) |

. (Sum of gain products of all possible J
S

 combinations of two non - touching loop

(Sum of gain products of all possible
_combinations of three non - touching loops

>
-
i

A for that part of the graph which is not touching K# forward path -



Find the overall gain C(s)/R(s) for the signal flow graph




Forward Path Gains

There are two forward paths. . K=2. Letthe forward path gains be P, and P,,

RE) G G, G G
o b oo — E( 9
1 . 3 4 5
Fig 2 ; Forward path-1
R(s) G, G, C(s)
o
1 2 3 4 5
Fig 3 : Forward path-2. G,

Gain of forward path-1, P, =G G,G.G,

Gain of forward path-2, P,=G.G,G,



adividual Loop Gain

There are five individual loops. Let the individual loop gains be p.., p,,, p,., h41_and Py

Fig 6 : loop-3

e 4
F:g?- loop-4 Fig 8 : loop-5



Loop gain of individual loop-1, P, =-G,GH,
Loop gain of individual loop-2, P,,=-H,G,
Loop gain of individual loop-3, P,,=-G G_H,

Loop gain of individual loop4, P, =-G.G,GH,
Loop gain of individual loop-5, P,, =G,

Gain Products of Two Non-touching Loops

There are two combinations of two non-touching loops.
Letthe gain products of two non-touching loops be P_,and P,,,.

G,
2 U 3 OGE 2
-H,

Fig 9 : First combination of Fig 10 : Second combination of
two non-touching loops two non-touching loops




Gain product of first combination

of two non touching loops } Prz = PoPyy = (-GzH;) (Gs) = G,GsH,

zain product of second combination

P, =P.P., = (-G,GHa ) (Ge ) = -G G-GH
of two non touching loops } 2 = Fas: = (=GGe ) (Gs) = -GGG

Calculation of A and A,

A=1—(Py;+Poy +P3 + Py +F50) + (P + Py
=1-(-G,G5H, — HG; — GGG H; + Gs — G,GgHa)
+(—GH Gy — GGsGgH3)

Since there is no part of graph which is not touching forward path-1, A+=1.
The part of graph which is not touching forward path-2 is shown in fig 11.

s A2=1-Gs



3y Mason's gain formula the transfer function, T is given by,

_ i Zﬁ:ﬂg (Number of forward path is 2 and so K = 2)
L

i P, +Pzai]=l G,6,GG, X1+6GGy(1-G, )

0,G,6,G, +G,G,G, GGGG
1+GGH+HG +GGGH G+GGH GHG - 0,00, H;




Find the overall gain of the

system whose signal flow graph is R(s} 1
shown




Module 11
1. Control system components: DC and AC servo motors — synchro - gyroscope - stepper

motor - Tacho generator.

2. Time domain analysis of control systems:

Transient and steady state responses

o @

Test signals

Order and type of systems

o

d. Step responses of first and second order systems.

e. Time domain specifications



TIME RESPONSE

The time response of a system is the output of a closed loop system as a function of time. It is
denoted by C(t).

CS)__ B _ s
R(S) 1+G(S)H(S)
Responsein 'S'domain, C(S) = R(S)M(S)

Respomsein time domain, C(t) = L™ {C(S)} = L {R(S)M(S)}

Closedlooptransfer function,

The time response of a control system consists of two parts; the transient state response

and steady state response

The transient response Is the response of the system when the input changes from one state to
another the steady state response is the response time approaches infinity

C(t) — Ctr (t) + Css (t)



C(t)=C, () + C.. (1

TEST SIGNALS

The characteristics of actual input signals are a sudden shock, a sudden change, a constant
velocity and a constant acceleration.

Test signals which resembles these characteristics are used as input signal to predict the
performance of the system.

The standard test signals are step signal, unit step signal, unit ramp signal, ramp signal, unit
Impulse signal and sinusoidal signal
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IMPULSE SIGNAL

A signal of very large magnitude which is available for very short duration is called Impulse
signal

Ideal impulse signal is a signal with infinite magnitude and zero duration but with an area of

A. |
r(t) = o(1)A

ook

.



Standard Test Signals

Name of the signal

Time domain equation
of signal, r(t)

Laplace transform of
the signal, R(s)

A
Step A S
_ 1
Unit step l —
S
A
Ramp At 2
]
Unit ramp t 2
2 A
: t el
Parabolic iz— 3
2 I
Unit parabolic Py &3
Impulse o(t) 1




IMPULSE RESPONSE

The response of the system, with input as impulse signal is called a weighting function or
Impulse response of the system.

It is also given by the inverse Laplace transform of the system transfer function and denoted
by m(t)

Impulse response, m(t) = L7 {R(s) M(s)} = £ {M(s)}

R(s) = 1, for impulse

where, M(s) = Gy
1+G(s)H(s)




ORDER OF A SYSTEM

The input and output relationship of a control system can be expressed by n-th order
differential equation.

The order of the system Is given by the order of the differential equation governing the
system.

. dn . d[l—l dI':I—E d dm
03 p(t)+a, S p(t)+a, = p(t) +....+a, —p{t)+aﬂ p(t) = hu-m—mq(t}
m—1 dl‘l‘l—"". d
+ b, dtm_l {t} bzd A A+t by I_‘?I(t}‘[’ by q(t)

If the system is governed by n-th order differential equation, then the system is called n-th
order system



The order can also be determined from the transfer function of the system.

The order of the system is given by the maximum power of ‘S’ in the denominator
polynomial

P(s) _ bgs™+b;s™ " +b,s" ...t by 5+ b

Q(s)  aps"+a;s" +a,s" 2 +....... 48, ;s+a

m

Transfer function, T(s) =

The order of the system is given by the maximum power of s in the denominator polynomial, Q(s).
Here, Q(s)=a,5°+a s +a, 577 + ..o ta _sta.

Now, n is the order of the system

When n = 0, the system is zero order system.

When n = 1, the system is first order system.

When n = 2, the system is second order system and so on.



TYPE NUMBER OF CONTROL SYSTEMS
The type number is specified for loop transfer function G(S)H(S).

The number of poles of the loop transfer function lying at the origin decides the type number of
the system

In general If ‘N’ Is the number of poles at the origin then the type number is ‘N’

P{s} (s+ Z,) (5+2,) (S+2Z3) comecanen.

G(s} H(s)=K———
Q{} 5 (s+py) (s+p;) (5+P3) ceeeee
nF trancfar fimrtinn
WhEI'E, Zl" ZZ" Z?:’ essssnasnss ATE ZETOS If N = 0, then the system is type — 0 system
p . pﬂ lin VDU | | p[}lﬂg { If N =1, then the system is type — 1 system
R If N = 2, then the system is type — 2 system
K = Constant If N = 3, then the system is type — 3 system and so on.

N = Number of poles at the origin



TYPE NUMBER OF CONTROL SYSTEMS

P(s) (5+zl) (s+2,) (5+Z3) ceomrreiuras

G(S) Hs) = Km s (s+py) (s+p;) (s+P3) -eeee
where, Z, Z,, Z, ............. are zeros of transfer function
D,s Pos Pys «eeeeneennns @€ poles of transfer function
K = Constant

N = Number of poles at the origin

If N = 0, then the system is type — O system
If N = 1, then the system 1s type — 1 system
If N = 2, then the system is type — 2 system
If N = 3, then the system is type — 3 system and so on.



Response of first order system for unit step input

The closed loop first order system with unity feedback is

R(s) 1 Cs) R(s) 1 | C(s
—"-————P{g 'r > >
Ts 1+Ts

'-..___..

C(s) _ 1
R(s) 1+Ts
. : 1
. " - - =R
. The response in S dﬂmﬂl.l‘! C(s) | (s) (7 Ts)

1

If the ijiput is unit step then, r(t)=1 and R(s) = <



1

_ 11 _ 1 7
N ”(1+T5) s (1+Ts) 51{_1__+5} {Hl)
| | T ).\ T

By partial fraction expansion,

R
S+ — S+ —
T T

A is obtained by multiplying C(s) by s and letting s = 0.

1 1
A=C(s)xy,_, =—& = T

0L

5+ — S+ —

T T
5=0

_|...

I



B is obtained by multiplying C(s) by (s+1/T) and letting s = —1/T.

5+ —

1
=T
S

The response in time domain 1s given by,

1

c() =L CE) =L -

1
3=__
T

1
T
-1

T

-1



When

—t e e e

—

T,
2T,
3T,
4T,

5T,

c(t) =1-¢e"=0

o(t) =1-e'=0.632
c(t) =1-¢7=10.865
c(t) =1-e3=095
c(t) =

c(t) =1-¢°=

c(t) =1-e™=

- ¢+ =0.9817
0.993

t=0
Fig 2.7a : Unit step input,

>
i

----------

0T o1 31 4
Fig 2.7 : Response for Unit step inpu.



SECOND ORDER SYSTEM

The closed loop second order system is

2 H

R(s) (1)
% s+ 2w s

The standard form of closed

Tl

C(s) 0>
R(s) - §° +2C,mn5+m§

C 7 o C
fi} R(s) | o {E}

s?+ 2o s+ OF

—

oop transfer function of second order system is

where, ® = Undamped natural frequency, rad/sec.

C = Damping ratio.



The damping ratio is defined as the ratio of the actual damping to the critical damping.
The response C(t) of second order system depends on the value of damping ratio.

Depending on the value of damping ratio, the system can be classified into four.

Casel : Undamped system. =0
Case 2 : Under damped system, -~ 0<{<1
Case3 : Cl‘iﬁ;‘.’lﬂﬂjf damped system, (=1
Case 4 : Over damped system, £>1

The characteristics equation of the second order system 1is,

sf+2los+w?’ =0



The characteristics equation of the sccond order system 1is,
s+ 20w s+ o' =0

It 1s a quadratic equation and the roofs of this equation is giveﬁ by,

_ 2o, #4202 —dod 2o, + 40l 1)
2 o 2




= Lo, £0,C -

roots are purely imaginary

When =0, s,, 5, =1j,: )
: R {and the system is undamped

roots are real and equal and
Whenc =1, sy, 8, =—0; ] .o
the system is critically damped

roots are real and unequal and
When{ >1, s;, 85 =— nﬂ' —~1
. St» S =760, % {the system is overdamped

When 0<¢ <1, 5. 5, = Loy £0,yC —1 ~ Lo, o ANED (1-8)
=L, T@, V-1 (1= = Lo, +jo, ﬁ

roots are complex conjugate
= -C.:mn — de > -
the system is underdamped

where, @y4 = mnﬁrll—qz

Here o, is called damped frequency of oscillation of the system and its unit is rad/sec.




RESPONSE OF UNDAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT

C(s) _ i
R(s) s +200,S+0.

For undamped system, (=0

2
C(s) _ Wy

R(s) s+

1
the input is unit step, r(t)=1and R(s) = =
| 2

. ' 1
onse in s-domain, C(s)=R(s o -

By partial fraction expansion,

C(s) = w2 A, _B
S =
s(s>+@2) 5 .S+




A is obtained by multiplying C(s) by s and letting s

i ' 2
H —
g=0}

w? 02

E{‘S 4‘([1]1} s +mﬂ£s 0

A=C(s)xs_,

B is obtained by multiplying C(s) by (s* + @) and letting s = -0 * or s = ja,.

2 2 2
) x(F+od)  =—Agx(s+0)) T P -
=io §(s" +0)) R I
5= )0 5 = jidg
A B 1 5 _ .
5 C(g)=— + == = | | :
o s g+al s '+ Li}=- gi{uﬂsmt} —
f ) R
Time domain response, c(t)=L l{C(s.)}=[ '<1— ) s ~r=1-00s @,

S 5T+,




RESPONSE OF CRITICALLY DAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT

It

C(s) ®
R(s) s*+200,5+m5

For critical damping C = 1.

Cs) - el ) @2
;
n

TR(s) $* +20 5+ @

(5-+ mn)j
When input is unit step, r(t) = 1 and R(s) = 1/s.

.. The response in s-domain,

2
W 1 mi B ®

AT 0,7 s Gre?  sGro?




By partial fraction expansion, we can write,

2 .
C(s) = ——2 == A +—-E—E+ ¢
S(s+w,)" s (s+0.) s+,

2 z
- I

LL =—=}

{s+*.:::u,1jiE M

A=SKC{S)L=U=

B=(s+®,)* x C(s)

s=—; §

d ; - d|o;
C-E[(Hmn] xC(s)LLmn = ds( : )

§ = —,




o=ty B, C 1
s {(s+o,) s+, s

it

c(t) = LHC@E) =L~ -

c(t)=1-o te 0t —g™n

c(t)y=1-e"(1+o_t)

|-
)]
. L{tﬂ | } (S_]_E)E
T }
.L"{ﬂ m}=;




RESPONSE OF OVER DAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT

C(s) 2
R(s) s*+20o s+0>

For overdamped system C > 1

The roots of the denominator of transfer function are

. I,:-‘E_ 2
Saish_ Cmni—.muﬂ‘ﬁ |:’Pmr|—':':i '-JC J

Let s, =-s_ands, = -5, nsy =Co, —m 4 —1

37 =Cmn+mﬂ\||§2_l

C{s}_ - mﬁ N mﬁ

R(s) s 200 5+ mﬁ B (s+5)) (5*523




For unit step input r(t) = 1 and R(s) = 1/s.

7 . 2
- C(s) = R{s} o O

(5+5) (5+5;) s (s+85) (5+5,)
By partial fraction e:{pansmn we can write,

2
0 A B C
C(s) = e + +
s[s+sl} {5+5¢) S S8+5 S+8,
2 2
o W
A=st(s)15=D=5x — l -

S(s+s;) {5+5?}|5=n - 5454

2

| oF e
{gmﬂ — W0y ngml:t[ O, T0O, .CE'I} C‘Imi_m (C I) @



B=(s+8;)x C(s) - -

- s(s+ 52)‘3_ & -51(-51_-;5;)
— 2 m 1
I-P*m ro, EE 1+Cm T+ J_} {Zm ] 1 51
2
C= C(%’) X (5+52}L, —s g (?jsi) s i —Sg(iz +5))
_ o mi ) .mz _’I"n 1
_ —%[‘Cmn—mn\/ffj +C‘f"n‘mﬂ_‘]€] [zm J_} e



]
E(t):fh:-]——.— .mn- - -1- 1 -I- m“ _— —
s 2J2-1 8 Fs) 221 &
o) =1-—n Lemiy @n 1 oa
2Jc2 -1 S 20 -1 %

1
(5+5,)

|



RESPONSE OF UNDERDAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT

C(s) o

n
R(s) s®+200, s+

2

Op

C(s) = R(s)

7
$* +20o s+ 02

For unit step input, r(t) = 1 and R(s) = 1/s.

mE

L C(s)=— -
s (5° +20® s+ o)

5 .
C(s) = Wy =AL+ Bs+C

e 2
s(sz+2{1mﬂs+mfl) s S +200. 5+




2
e O _

M
S 3 2 -
s{s +2§mns+m“} @

On cross multiplication after substituting A = 1

. A=8% E{S)L:{J =

H b

5=}

w2 =5 +2lm s+ o +(Bs+C)s

> = LV

®; =5 + 2w, s+0; +Bs +Cs

Equating coefficients of s“we get, 0=1+B

Equating coefficient of s we get, 0=2Co_+C
5 Os)= 4 S 20

s & +2m_ s+

~B=-1
~C=-20.



Let us add and subtract (% * to the denominator of second term

L $+200, 1 s+200,
R S R s a Rl Jeoto s+ 00+ (@ 0.
s s+ 2o, s+o,+l0. ~Co, s (5 +2o.s5+00;)+H o, -Co;)
R s+ 200, 1 s+2p, - —
s (4, +03(1-0) s (s+00,) +0; 0g=0,y1-C
] 5+(0. (o,

g (5+an)z+mﬁ (5+Cmn]z+m§



multiply and divide by ®, In the third term

. C(s]=l- ﬁ'ﬁﬁ% Lo, ol

J (5+Cmn)z+m§ 04 (5+Cmn)"'+mﬁ

The response in time domain is given by,

rfoufor] 2 e
s (s+C0,) +o; 05 (s+00,) 40y




Gy -

By

g =0n! | e
[ﬂ'lmﬁf cos@4t+ C sinmdt]=1-
III_CE | _ ‘JI"_QE

Let us express c(t) in a standard form as shown below.

~Logt

= 1-e " r'cosm 4t — =2 > 'sinm t=1- e"*""“{cusmdt +

=1=

c(t) =1- =(sinw 4t x cosB + cosw,t x sinb)
y1-C°
e-l:m“t
=] sinfmat+0)y L (2.28)
-
1-¢*

where, | 6 = tan™

[s_inmdt x G+ cos@gt X 1,']“-[’;1)

Note : On constructing right angle
triangle with ¢ and y'rljf, we gef
sin B = 4/1-¢2
cos 6=( ;

iz A

1-&?

tan 8 =

r g

|
[ -
i




TIME DOMAIN SPECIFICATIONS

The transient response characteristis of a control system o a unit step input is specitied in terms

of the following time domain specifications
|. Delay time, t,
2. Rise time, t
3, Peak time, {
4, Maximum overshoot, Mp
5. Settling time, t

c(Da

c(t,)

~_ Allowable error

S Ry SR A N A Y AR 2% or 5%

~Y



TIME DOMAIN SPECIFICATIONS

c(t)a
c(t)--g----; ' -

e/ 1

1;.-.1'.- AU U ] . ... Allowable error
2% or 3%
0.5b-4 ¢
o : . -
O t. t t, - t, "



Delay Time (td): It is the time taken for response to reach 50 % of the final value for the very
first time
Rise Time (Tr): It is the time taken for response to rise from 0 to 100 % for the very first time.

. , T—0
Rise Time, t, = -
oF (i d = i3] i 1 — C:
’1 — QZ - - :
& or tan ' should be measured in radians.

For underdamped system the rise time is calculated from O to 100 %
For overdamped system it Is the time taken by the response to rise from 10 to 90%

For critically damped system it is the time taken for response to rise from 5 to 95 %






Peak Time (tp): It 1s the time taken for the response to reach the peak value the very first time

T
Peak time, t, =— 3
: P l:t}d md =mﬂ.J1_‘;

- T |
Peak time. t. = |
*p |
.mﬂﬂl—gzi

Peak Overshoot (Mp): It is defined as the ratio of the maximum peak value to the final value
were the maximum peak value i1s measured from final value

X
"1
i

Percentage Peak Overshoot, %Mp =e V'™ x100




Settling Time (ts): It is defined as the time taken by the response to reach and stay within a
specified error.

It is usually expressed as percentage of final value.

The usual tolerable error 1s 2% or 5% of the final value.

- 0
Settling time (t,) = In(/oerror): -T.In(% error)

Co,

1

For the second order system, the time constant, T=
(1
d

n



Obtain the response of unity feedback system whose open loop transfer function is
4

G(8)= 575 and when the input is unit step.
R(s) % GE) IC[S)
Cs) _ _G(s)
R(s) 1+G(s)
4 4
C{s) s{s+5)  s(s+5)
R(S]*_1+ 4 s(*5)+4

s(s+9) s{s+5)



R R
s(s+5)+4 s?+55+4 (s+4)(s+1)

- : 4
The response in s-domain, C(s) =R(s
P C(s) “{s+1){s+4}
Since the input is unit step, R(s) -1 g) = — 4
| o S s(s+1) (s+4)
By partial fraction expansion, we can write,
E(s}:____.__{;.____,—_i.;.__.ﬁ___{.i

s{(st+1)(s+4) s s+1 s+4



4 4
" A=C - = =1
(5} b4 EEEZD {E"‘-l] (54—4}5:{1 1% 4
C(s) x (s+1)]__ 4 . S
Cs(s+4)| . —H-1+4) 3
4 4 1
= > 4 = — =
C=Cle) x (s+4),. _q s(s+1)|,_., —HA4+T 3
Response in time domain, c(t)= L{C(s)} = 1{1 41 1
s 3 s+1 3 s+4
- 4 1 4 L ~t _dt
= 1-§e +§e = 1—-5[45 —e ]



The response of a servomechanismis ¢(t) =1+ 0. 2079 _1 2710 \when subject to a unit
step input. Obtain an expression for closed loop transfer function. Determine the undamped
natural frequency and damping ratio.

c(t)=1+0.2e %" —-1.2e™

Take the Laplace transform

1 1 1
Cls)=5+02 (5+ED}h12{s+1D)

_(s+60)(s+10)+0.25(s+10)-1.2 5 (s +60)
B s (s +60) (s +10)

s__ _T?Es+ﬁﬂﬂ +0.2 8° +.=5_ _125 —
s (s+60) (s+10)




. 600 _ 1 600
s (s+60) (s +10) s (s+60)(s+10)
nput is unit step, R{s) = 1/s.
60 , 600

s) =Rs) (s+ ED}“{S +10) =R(s) s2 + 70s + 600

C(s) _ 600 |
R(s) s%+70s+600

Cs) o 800
Ris) s?°+2e.s+0° s°+70s+600




On comparing we get,

©; =600 2w, =70
70 70
P = - 414 E . - — — 1_.:1.

w, =600 = 24.49 racifse:; | 2. - 2% 2449 3

RESULT
| . C(s) . 600
The closed loop transfer function of the system, ——-=
P YSIeM: Ris) - s2+70s + 600

Natural frequency of oscillation, _=24.49rad/secC
Damping ratio, =143



The unity feedback system is characterized by an open loop transfer function G(s) =K/s (s +10).
Determine the gain so that the system will have a damping ratio of 0.5 for this value of K.
Determine peak overshoot and time at peak overshoot for a unit step input.

R(s) % ais C(s)

Cls) __Gis)
R(s) 1+G(s)

Gis)=K/s (s +10)

K
Cls) _ s(s+10)
R{S) ‘i+ K
s(s+10)
K . K

T s(s+10)+K  s2+10s+K



C(s) o2 K

R(s) s2+2ws+w’ s2+10s+K

On comparing we get,
oi=K - 2w, =10 K=100
o, =vK PutZ=05and o, = vK w, = 10rad/sec
~2x05x K =10
JK =10

The value of gain, K =100.

Percentage peak overshoot, %M, = e":”"”'"“"*z x 100 -
= @05 VH05% L 100 = 0163 x 100 =16.3%

Fis L

i
Peak time, t, = = = =(.363 sec
"oy g 12 1041-05




A unity feedback control system has an open loop tra r_tsfer function, G(s) = 10/s(s+2).
Find the rise time, percentage overshoot, peak time and settling time for a step input of 12 units.

Cls)  G(s) R(s) : -~ C(s)

= G(s)
R(s) 1+G(s) T»

G(s) = 10/s (s+2)

10
Cls) s(s+2) 10
RS) 4,10 s(s+2)+10
s{s+2)
10 | 0?2

£l

-52‘1'25"'1” _52+2(:mn5+m2




o’ =10 2o, =2 |
o =+10=3.162 rad/sec | f;—-—’? ' 1 =0.316
ud 20, 3162
_ e 2
b=tan" 1 c—=tan™ "h --931—6 = 12495 rad
e 0.316
0y = 0,y1-C2 =3162y1-0316% = 3 rad/sec
Rise time, t. == ® T F}?‘% = 0,63 sec

r 3



_—&n D36x

Percentage overshoot, %M, = Em 100 = gV+-0316% 4 100
| = 0.3512x 100=35.12%

Peak aovershoot = 35;2 x 12 units = 4.2144 units
Peak time, ¢t = -ﬂ- = 2 _ 1047 sec
ﬂ':id 3
1 1.

Time constant, T = =1sec

| o, 0316x3.162
- For5% error, Settling time, t, =3T =3 sec

For 2% error, Setilingtime,t, =4T =4 sec



Aclosed loop servo is represented by the differential equation = g8=—=_
g :

Where c is the displacement of the output shaft, ris the displacement of the inputshaftande=r-c.
Determine undamped natural frequency, damping ratio and percentage maximum overshoot for unit step input.

2
E+E':'!—":=E~¢71~L==
dt cit

e=r-C
d’c

dc
F-FHET—MI'“C)

Take Laplace Transform
5?2 C(s) + 8s C(s) =64 [R(s) - C(s)]
5¢C(s) + 85 C(s) + 64 C(s) =64 R(s)
{s? +8s +64) C(s) =64 R(s)



Cs) _ 64

¥

RS) s2+85+64 52 +20,S5+02

o’ =64

o, =8rad/sec

_gﬂ_

2ZLo,=8

3 8 '
= = :DE
: 2o, 2x8

5=

%M, =eV"*" x100 =eV05 x100 =16.3%



A positional control system with velocity feedback is shown in fig
What is the response of the system for unit step input.

R(s) »% 0], Ce
_ s(s+ 2) ’
0.1s+1
Cls) . Gls)
R(s) 1+G(s) H(s)

100 100

C(s) _ s(s+2) B - s(s+2) ..

R(s) 100 . T s(s+2)+100(0.1s+1)
1+(5(5+2)](0.15 1) s(5:2)

_ 100 _ 100
sZ+2s+10s+100 s?+125+100

The roots of the characteristic polynomial are,

_ -12+144-400 -121j16

S 83 = — 2 = 2 —6+)8
100
CE=RE) F s 100
F{{s}:_
C(s;.=l 100 _ 100
s s2+125+100 s(s”+12s+100)



By partial fraction expansion we can write,

100 A Bs+C
Cls)=——= =—+—
. s(8°+12s+100) s s“+12s+100

The residue A is obtained by multiplying C(s) by s and lettings = 0.

100 | _100 _,

A=C(s)x s = ==
(©)% ol s?+12s+100[,., 100

Theresidue B and C are evaluated by cross multiplying the following equation
and equating the coefficients of like power of s.

1DU=A{52+125+1Uﬂ)+{Bs+C}s
100 = As? + 12As + 100A + Bs? + Cs

On equating the coefficients of sweget, 0=A+B s B=-A=-1
On equating coefficients of s we get, 0=12A+C .. C=-1ZA=-12
1 —s-—12 1 s+12
C(s) = —+— = ——— 1
s s°+12s+100 s 5 °+125+36+64
_ 1 s+6+6 _ 1 s+6 ~ 6
s (s+6)°+8° s (s+6°+8°  (s+6)°+8°

e _ )1 s+6 8 8
c{t}—f{C{sl}—f{S (s+6°+8 8 {s+512+32}

=1—e % cos8t - 6 e'gin8t=1- e“ﬁ‘[% sin8t + cos&tJ



A positional control system with velocity feedback is shown in fig
What s the response c(t) to the unit step input. Giiven that{=0.5.
Also calculate rise time, peak time, maximum overshoot and settling time.

R(s) 16 C(s)

C(s) _  G(s)
R(s) 1+ G(s) H(s)

G(s) = 16/s(s + 0.8) and H(s) = Ks +1

_ 16
C(s) s (s +0.8) _ 16
Ris) 4, 16 eiqy S(s+0.8)+16(Ks+1)
Fssrog ot
16 16

T 521085+ 16Ks+16 s2+(08+16K) s+16

C(s) _ @3 16

R(s) s°+ 20o 5+0° T g? +{0.8+16K) s +16

=16 0.8+16K=2Co,
- 2w, —08 _2x05x4-0.8
= s K= . = =0.2
o, =4 rad/sec 16 6
C(s) 16 16

RS) s2+(08+16x02)s+16 s2+4s+16



16

C(S}=R{E) m H[E}=1f5.
1 16 16
Ae)=3 rasvi6 s (s + 45+ 16)

Cs) - 16 A__Bs<C

T Ss(s2+45+16) 5 s2:4st16
The residue A is obtained by multiplying C(s) by s and letting s =0.

16 | 16

A=Cl8)x 8|, 0= 7 7o 16l " 16

On cross multiplicationwe get, 16=A(s’+4s5+16)+(Bs+(C)s

16=As5"+4As+ 16A+Bs2+(Cs

On equating the coefficients of swe get, 0=A+B .. B=-A=-1
On equating the coefficients of swe get, 0=4A+C . C=-4A=-4

C{s}-—1+ -s-4 1 s+4
s s%+4s+16 s s®+4s+4+12
1 s+2+2

— —

s (s+2)2+12

_1- s+2 2 Ji2

s (s+2)72+12 iz (s+2)%+12




1 s+ 2 2 J12
= L{C{s)} = :{5 (s+2)2+12 J_ (s+2)° +12}

=1me-ﬂmsﬂt-% e?sind12'1

=1-e? [%sin(«.ﬁ_E t) + cos(v12 t}}

of oscillation

D fr '
amped equenc?}% - 0,{1-C2 = 4y1-057 = 3.464 rad/ sec

Rise time, t, —E_E=“*1M?=u,5n4553.;
L
Peaktime, t. = = (0,907 sec
e e = 3454

% M —f‘.;fc 5=z
fw?gggl} oM, = eV %100 =eV+0% 100 =0163 x 100 =16.3%

. ' 1 1

Time constant, T= = = 05 sec

' Lo, 05x4

For 5% error, Settling time, t,=3T=3x0.5=1.5sec
For 2% error, Settling time, t. =4T=4 x0.5=2sec



Module 111
Error analysis:

steady state error analysis

static error coefficient of type 0,1, 2 systems
Dynamic error coefficients

Concept of stability:

Time response for various pole locations
stability of feedback system

Routh's stability criterion



ORDER OF A SYSTEM

The input and output relationship of a control system can be expressed by n-th order
differential equation.

The order of the system is given by the order of the differential equation governing the
system.

. dn . d[l—l dI':I—E d dm
03 p(t)+a, S p(t)+a, = p(t) +....+a, —p{t)+aﬂ p(t) = hu-m—mq(t}
m—1 dl‘l‘l—"". d
+ b, dtm_l {t} bzd A A+t by I_‘?I(t}‘[’ by q(t)

If the system is governed by n-th order differential equation, then the system is called n-th
order system



The order can also be determined from the transfer function of the system.

The order of the system is given by the maximum power of ‘S’ in the denominator
polynomial

P(s) _ bgs™+b;s™ " +b,s" ...t by 5+ b

Q(s)  aps"+a;s" +a,s" 2 +....... 48, ;s+a

m

Transfer function, T(s) =

The order of the system is given by the maximum power of s in the denominator polynomial, Q(s).
Here, Q(s)=a,5°+a s +a, 577 + ..o ta _sta.

Now, n is the order of the system

When n = 0, the system is zero order system.

When n = 1, the system is first order system.

When n = 2, the system is second order system and so on.



TYPE NUMBER OF CONTROL SYSTEMS
The type number is specified for loop transfer function G(S)H(S).

The number of poles of the loop transfer function lying at the origin decides the type number of
the system

In general If ‘N’ Is the number of poles at the origin then the type number is ‘N’

P(s) (s+ Z,) (5+2,) (S+2Z3) comecanen.

G(S) HE= KQ( 5) 5 (s+py) (s+Dp;) (s+P3) weeeee.
where, Z, Z,, Z, ............. are zeros of transfer function
D,s Pas Pys «oeeensemnns are poles of transfer function
K = Constant

N = Number of poles at the origin



TYPE NUMBER OF CONTROL SYSTEMS

P(s) (5+zl) (s+2,) (5+Z3) ceomrreiuras

G(S) Hs) = Km s (s+py) (s+p;) (s+P3) -eeee
where, Z, Z,, Z, ............. are zeros of transfer function
D,s Pos Pys «eeeeneennns @€ poles of transfer function
K = Constant

N = Number of poles at the origin

If N = 0, then the system is type — O system
If N = 1, then the system 1s type — 1 system
If N = 2, then the system is type — 2 system
If N = 3, then the system is type — 3 system and so on.



STEADY STATE ERROR
The steady state error is the value of error signal e(t), when ‘t’ tends to infinity.
Steady state error Is a measure of system accuracy.

These errors arise from the nature of in inputs, type of system and from non linearity of system
components.

The steady-state performance of a stable control system is generally judged by its steady state
error to step, ramp and parabolic inputs



C(s)

R(s) E(s) 56
H{s}j—’

C(s)H(s)

Consider a closed loop system

R(s) = Input signal

E(s) = Error signal

C(s) H(s) = Feedback signal

C(s) = Qutput signal or response

E(s) = R(s) - C(s) H(s)
C(s) = E(s) G(s)

E(s) = R(s) — [E(s) G(s)] H(s)



E(s) + E(s) G(s) H(s) = R(s)
E(s) [1 + G(s) H(s)] = R(s)

_ R(s)
1+ G(s) H(s)

E(s)

e(t) = error signal in time domain.

15 _ ! R(S)
e()=L {E@®=L {1 +G(s) H(S]}

The steady state error 1s the value of error signal e(t), when ‘t’ tends to infinity.

steady state error. €55 = Lt (1)

L =D



The final value theorem of Laplace transform states that,
If, F(s)=L{f(t)} then, Lt f(t) = Lt s F(s)
[—>c0 J=—F

R
€, _IE}ED E(‘E} Lt SE{E) S—H]' 1+;{:;?H(5:|



STATIC ERROR CONSTANTS

Positional error constant, K_ = Lt G(s) H(s)
: - Ll
Velocity error constant, K, = Lt s G(s)H(s)
e R -

Acceleration error constant, K, = Lt s°G(s) H(s)
' : e L L



STEADY STATE ERRORWHENTHE INPUT IS UNIT STEP SIGNAL

e, = Lt SREs) R(s)=1/s
] 520 4 G{S} H(S}
. -
e, = Lt 3 = Lt L

>0 1+G(s) H(s) 50 1+G(s) H[s)'

1 1
14+ Lt G(s)H(s) 1+K,
s—»0

where, K, = Lt G(s) H(s)
0 -

The constant K is called positional error constant.



Type-0 system

(5+z)(st2Z,) (S 2Z3}me... B Zy.Zy.Zgenenns _ ¢
K. =Lt G(s)H(s)= Lt K - = K- _ = ¢constan
Ps0 (IHS= 5% (s+py) (s+P2) (5F 3l Pi-P2:P3eseres
e, = L constant
1+K,

in type-0 systems when the input is unit step there will be a constant steady state error.

Type-1 system
K,=Lt G(s)H(s)= Lt K (5*2) 512) (s+2)...... =w
5-»0 520 s(s+py)(8+py) (STP3)eee
1 1
. _

TETIHK) l4w

In systems with type number 1 and above, for unit step input the value of K is infinity and so the
steady state error 15 zero,



STEADY STATE ERROR WHENTHE INPUT IS UNIT RAMP SIGNAL

e, = Lt SXLs) the input is unit ramp, R(s) =3
* 90 1+G(s)H(s) ’ s

1
s 3 .
: g I ~ I I

a—m -

— = -
57 50 1+G(s) H(s) 0 s+5G(s) HE) Lt sG(s) His) K,
- S—¥

where, K

Lt sG(s) H(s) The constant K is called velocity error constant.

5—»{)

Type-0 system

K, = Lt sG(s) H(s) = Lt K-S 8¥B) (¥Z) g
s=+0 0 (s+py) (s+pa) (57P3)eene

| "“ES-S-:]":KT:]"!{}:'II

Hence in type-0 systems when the input is unit ramp, the steady state error is infinity.



Type-1 system

.= Lt sG(s) H(s)= Lt sK (572) $+2) §*2)..... Km:_l:cﬂnstaﬁt
-0 50 (5+PI)(5+P*)(5J‘P3) ------ Dy-Dy:P3eseen

" &, =1/K, = constant

Hence in type-1 systems when the input is unit ramp there will be a constant steady state error,

Type-2 system

K, = Lt sG(s) H(s) = Lt sK f‘ n) 5+2) (4 2)e
30 =0 5" (s+p)) (s+py) (5+D3)..eee

neg=1/K,=1/0=0

In systems with type number 2 and above, for unit ramp input, the value of K_ is infinity so the
steady state error is zero.



STEADY STATE ERRORWHENTHE INPUT IS UNIT PARABOLIC SIGNAL

e, = Lt SRE)
s=»0 1+ G(s) H(s)

1
S—-

R(s)=—

= Lt =Lt 5— 1 = 5 E = !
>0 1+G[5) H(s) s»0 s"+s° G(s) H(s) Lt'j s"G(s) H(s) K

a

Ka= 1t s’G(s) H(s) The constant K_is called acceleration error constant.

&

Type-0 system

K, = Lt slG{s) H(s)= Lt s’K (5+2) (5%2,) (s+73)... =0
50 (34py) (s+py) (51 P3)eee.
1 1

."‘E: = ¥ &

Hence in type-0 systems for unit parabolic input, the steady state error is infinity.



Type-1 system

K, = Lt 2G(s) H(s) = Lt sK— &) 872) 6%%)..

50 530 S(s*+p ) (s+py) (5t ps)
11
EEE =K_ E:E.E

Hence in type-1 systems for unit parabolic input, the steady state error is infinity.

Type-2 system

K, = Lt ’G(s) H(s) = Lt SZK (8+2) +2) (57 2)... e -

0 s(5+p1 (5+p,) 5+P3) ------ | P1-P2-Pseeeee

" € =— = constant
a

Hence in type-2 system when the input is unit parabolic signal there will be a constant stead}f
state error.



Type-3 system

el crp e STR) (4%) (%)
e S ) ) 5t p

In systems with type number 3 and above for unit parabolic input the value of K is infinity and so
the steady state error is zero.




Static Error Constant for
Various Type Number of Systems

Type numher of system

12
—

Error
Cunstant

ﬂi




Steady State Error for
Various Types of Inputs

Type number of system
Signal | 0] 1 |

Unit Step | 7 +11<: “
o [ 2

e o] 2




10(s +2)

For a unity feedback control system the open loop transfer function, G(s) = s+ Find
a} the position, velocity and acceleration error constants,
b) the steady state error when the input is R(s), where R(s) = %— :‘_;_ + 3;3
static error constants
H(s)=1
1 s+ 2
Position error constant, K, = Lt G{s}H{s} = Lt G{s} Lt ;((5_:_1))
Velocity error constant, K, = Lt sG[s}H{s}— Lt sG{s) = Lt 5121‘:55:'3)] = a0

Acceleration error constant, K, = Lt s°G(s)H(s) = Lt 52{3(5]

1
= Lt E 2{5"'2) 10x 2
50 s(s+1) i

=20



R(s)

" 1+ G(s)H(s)
3 2 1
A

aE) =D

E(s) =

s¥(s+1) As)=1

3 2 1

____ 353
10{5+2}

52[5 +1)

na| IS

1

0| O
l

F2)

+
3

o

|"tn

+1

+ 1'0(5_ + 2)

T

s*(s+1)



s%(s +1)

e.= Lt et)= Lt s E(s)

L=

.= Lt s
g0

_}_

s| s%(s+1)+10(s +2)

) _

s*(s+1)

- =

1 s*(s +1)

EE

3 s*(s+1)
s|s°(s+1)+10(s +2

3s {s+1}

E[s+1]+10{5+2] 353 2{5+1}+1D(5+2};

[ime
) |- s?| s

2s(s+1)

(s +1) L] sé(s+1) ]
s+1)+10(s +2) 3s%| s’(s+1)+10(s + 2)

s+

o
=Lt 4=

g-30

(s+1)+10(5+2)

s+ +10(8+2)

3s%(5+1)+30 (s+2)

. =0- U+——
60




d calculate their values.
> of input signal give rise to a constant steady state erroran
whattype of inp

10
O h TP R O S L MY s*(s+ (s
?) Gls)= s(s+7)(s+3) " ) (s+2)(s +3)



_ 20(s+2)
a) Gls)= (s +1(s +3)

Let us assume unity feedback system, .-.H(s)=1
type-1 system.
the velocity (ramp) input will give a constant siéa{!y state error.

The steady state error with unit velocity input, B, = 1

K,

Velocity error constant, K, = S s G(s) H(s) = <t s G(s)

= It s 20 +2) -20x2 40

$—0  s(s+T)(s+3) 1x3 3

1 3
K" 30" 0075

Steady state error, egg =



10

?) G8)= 53 2)(s+ 3)

H(s)=1.

itis a type-0 system

the step input will give a constant steady state error.

1+l'(|:I
10 10 5
K, = Lt = L G =
£ 0 Gls)H(s ; (8) = -m{s+2}{s+3} 2x3 3
1 13 3

B, = = = ——=— =375
1+K‘|ﬂ 1+% 3+5 8



10
Gls) = —
© Gis) s‘(s+1)(s+2)
HisF1.

it_is atype-2Z system.

acceleration (parabolic) input will give a con stant steady state em::-l_'

1

€y = —

55 Ha
K,= Lt s°G(s)H(s)= Lt s?G(s) = Lt &2 10 =£=
g—{ 5—0 {} 5—=0 5‘?[5+1}(5+2} 1w 2 >

0.2

D
|

il

fl

55 .
Ka



The open loop transfer function of a servo system with unity feedbackis G(s) = 10/s(0.1s+1).
Evaluate the static error constants of the system. Obtain the steady state error of the system,

when subjected to an input given by the polynominal, rt)=a, +at+ %‘-12

H(g)=1
G(s) H(s) =G(s)

10
Position error constant, K, = EL_ED G(s)= s-._m (0. 15+1)

- 10
Velocity error constant, K, = Lt sG(s)=Lt s
v YossD (8)= s=0  5(0. 15+1)

Acceleration error constant, K, = Lt EEG{S}— Lt s° 10 =
50 =0 s(0is+1)



E{s)= R(s)
1+ G(s)H(s)

rfty=a, +at+ EE—?t2

10

Gls) = 5(0.1s+1)

Ris)=20 . 81, 2221 3 3

s s° 25 s g g

___ R g @S
S REFCTAT TR S, L




a, a; a,

s (0.1s+1)

A
- s{01s+1)+10
- s(01s+1)
_El.:;lir S(ﬂ._'if—kﬂ _]_51.
s|s(0.1s+7)+10| §?

e..= Lt e{t)= Li sE(s)

= 5—0

s01s+9+10|

a,| s(0.1s+1 ]
g° 5(ﬂ.1$+1}+10*_




= |t s{ "’

E—HEI

: [ a,s(0.1s + ‘Ij

d
S

s{01s+1)

's{ﬁ‘ls +1)+10

}+

a,{0. 15+1}

]
2

S

l-.

s(0.1s + 1)

s01s+1)+10| s

EE{G.E + 1:}

B s—mi s(0.1s T H+10 "

(@5 +1)+10 " s[s{0s + )+10]

RESULT

(@) Position error constant,

(b} Velocity error constant,

(c) Acceleration error constant,

(d) When input, r{t)=

at
a, +at+—2—,
2

2

[
8

Jﬁljﬁﬂéﬁ
|| }
(3 -k
=

s(01s +1)
| s(01s+1)+10

—[]+———+4n = . o0

Steady state error, e, =




Consider a unity feedback system with a closed loop transfer function Us) __Ks=+b
| R(s) s°+as+b

Determine open loop: transfer function G(s). Show that steady state errorwith unit ramp input is given by

(a-K)
b
H(s)=1
M(s) = Cs) . __ G(s) __G(s)
Ris) 1+G(s)Hs) 1+G(s)
__Gfs)
M(s)= 1+ G(s)

(3(s) = M(s)[1+G(s)] = M(s) + M(s) G(s)

G(s) - M(s) G(s) = M(s)



G{s)[1 - M(s)] = M(s)
M(s)
1-M(s)

Ks+b
st+as+b

G(s) =

M(s) =

Ks+b
s‘+as+b Ks+b

Cq__Ks+b (67 +éé¥n)'—" (Ks +b)
s +as+b

Ks+Db Ks+b Ks+b

sZ2+ras+b-Ks—b s2+(a—K)s ='s[s+{a*K}]



Ks+D b

Ky=LtsG(s)H(s)=LtsG(s) = Lt s
Vo sS0 5.-}.[} { ) 5—0 | 5[5 + {:E _ K}] a-K

RESULT

G(s) = ot D

s[s+(a-K)]

a-K
e, = h




GENERALIZED ERROR COEFFICIENT

The error signal in s-domain

E(s) = R(s)
1+G(s) H(s)
E(s) _ 1

= . F(s)
R(s) 1+G(s)H(s)

The equation F(s) can be expressed as a power series of s

C C. 1
=Cy+C+ 25"+ 35 1.....
- 21 3t

E{S):. - =CG+C|S+C—ESE+&53+ .....
R(s) 1+G(s) H(s) S 21! 3t




C,

E(s)=C, R(s)+C;sR(s)

inverse Laplace transform
e(t) =C, r(t)+C, i(t) + % i(t) + % F(t) +....+C—I: T(t)..nn
! . n!

The equation is the general equation for error signal, e(t).
The coefficients C,, CI, ('.‘,z ,.....'.Cn are called the generalized error coefficients

or dynamic error coefficients

!C; Lt (s)l
! LC,] LtF() |  L0ds
e a | | d"
| - Lt — C = Lt F(s) |
Y7 S M= Y )




CORRELATION BETWEEN STATIC AND DYNAMIC ERROR COEFFICIENTS

1
KE
Proof

T 1
Cy= Lt F(s)= Lt = ———— =
S—»0 s—>01+G(s)H(s) 1+ EEG(EJ His) 1+K,
5
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STABILITY

The term stability refers to the stable working condition of a control system. Every working
system Is designed to be stable. In a stable system the response or output is predictable, finite
and stable for a given input.

The different definition of the stability are the following
1. A system is stable, if its output is bounded (finite) for any bounded (finite) input.

2. A system Is asymptotically stable, if in the absence of the input, the output tends towards
zero irrespective of initial conditions.

3. A system is stable if for a bounded disturbing input signal the output vanishes ultimately
as‘t’ approaches infinity.

4. A system is unstable if for a bounded disturbing input signal the output is of finite amplitude
or oscillatory.



5. For a bounded input signal, if the output has constant amplitude of oscillation then the
system may be stable or unstable under some limited constraints. Such a system is called
limitedly stable.

6. If a system output is stable for all variations of its parameters, then the system is called
absolutely stable system.

7. If a system output is stable for a limited range of variations of its parameters, then the
system is called conditionally stable system



LOCATION OF POLES ON s-PLANE FOR STABILITY

M(s) = =2 C(s) = M(s) R(s) R(s) = L[5()] = 1
R(s)
IMPULSE RESPONSE OF ASYSTEM  ¢(t) = L{C(s)} Jo =35

Transfer function, M(s) and location

“of roots on s-plane Impulse response, m(t)

A Jog m(t) 4 m(t) = [’ i = Ae™
M(s) = — s+a
s+a A
X —»
_a L4
ht

Impulse response is exponentially

Root on negative real axis decaying. Stable system.




A M = {2 = A
= M mit
M(s) = JOA {)‘ s—a
—3C »

d ) A

=

t

Root on positive real axis Impulse response is exponentially
increasing, Unstable system.




I ol A A
M()" s AW m(t) . mg=L s+a+jb+s+a ib
Sl = » -
s+a+jb s+a-jb JOA

— AE'[EﬂbJ* + A (adbh

+]b Y X ‘‘‘‘ |
M. =2A¢™ cosbt=2A¢™ sin(bt+90")
Y > [\ -
° N Kome
ey LM
Complex conjugate roots ; “'Impu!se response is damped sinusoidal

on left half of s-plane (i.e., Damped oscillatory). Stable system




A. A"
ty=L" +
() {s—a+jh s—a—jb}

o

M(s) = 2 - + . ™ ‘:lm e e
S—a-+] S—a— | " r 7 B .:.
N1 E— m(t)a =2Ae"” cosbt = 2&5 sin (bt +90 )
-4
-jb —X

Complex conjugate roots
on right half of s-plane

Impulse response is exponentially increasing sinusoidal
(i.e., Amplitude of oscillations exponentially increases
with time). Unstable system.




#

jeo
].'\:1{5)= A_ + A. &
s+jb s—jb
+jb %
-
o
-ib %

Single pair of roots on imaginary axis -

m(t)

m{t)=f1{

A

-

s+ ib

At
s— jb

= Ae 0t 4 A%etiDt
=2A cos bt =2A sin (bt +9{}°)

i

i

\

!

v.

\/

Marginally stable

»
t

Impulse response is oscillatory




e . A |
O, {(s+jhf N (s—jbf}

A A" | =Ate P AT et
Mis) = st = 2At cos bt = 2At sin (bt +90°
- (s+ib)? (s- j]:,}2 - _ cos sin )
}{!:I & I'n(t) A : )
; T
Double pair of roots on imaginary axis \J

Impulse response is linearly increasing sinusoidal
(i.e., amplitude of oscillations linearly increases
with time). Unstable system.




M(s) = —A— Jo4
S
2 >
o
Single root at origin

m(4  m(t)= 1:'1{%} =A

b

t
Impulse response is constant.

Marginally stable system.




M(s) = Joh

Al 3

—ik >
83

Double root at origin

m(t) 4 m(t) = L{ﬁ} = At

S5

3
t
Impulse reponse linearly increases

with time.Unstable system




The stability of the system depending on the location of roots of characteristic equation

1. If all the roots of characteristic equation has negative real parts, then the system is stable.

2. If any root of the characteristic equation has a positive real part or if there is a repeated
root on the imaginary axis then the system is unstable.

3. If the condition (1) is satisfied except for the presence of one or more non repeated roots
on imaginary axis, then the system is limitedly or marginally stable.

Methods of determining stability
1. Routh-Hurwitz criterion (RH criterion)
2. Bode plot

3. Nyquist criterion



Routh-Hurwitz criterion (RH criterion)
Necessary and Sufficient condition
The necessary and sufficient condition for stability is that all of the elements in the first
column of the Routh array be positive. If this condition Is not met, the system is unstable and
the number of sign changes in the elements of the first column of the Routh array

corresponds to the number of roots of the C.E. in the right half of S plane.

RH criterion is algebraic method for determining the location of poles of a characteristic
equation with respect to left half and right half of ‘S’ plane without actually solving the

equation



CONSTRUCTION OF ROUTH ARRAY

et the characteristic polynomial be

S : @ @y ag B ...
When n is even, the s® row is formed by coefficients of even order terms

s row is formed by coefficients of odd order terms

When n is odd, the s” row is formed by coefficients of odd order terms

s~! row is formed by coefficients of even order terms



ags" +a,s" " +a,5" .42, s+a, =0, where a, >0

SI’I
Sll—.l

Sn—!

Si'l.—3

-

C

a,
5,
bl

]

,

a;

o

o

3

a.

o

o

dy



The other rows of routh array upto s° row can be formed by the following procedure
Each row of Routh array is constructed by using the elements of previous two rows
Consider two consecutive rows of Routh array as shown below.

S!!.—'I; :Xﬂ 11 K‘E 13_ _x4 __15“?"'
" 1Yo Y1 Y2 Y3 Vi Yseeo
next row be

e R R T

X, -V
7, - L2
‘i¥p




Case-I : Normal Routh array (Non-zero elements in the first column of routh array).
Case-Il  : A row of all zeros. " |

Case-ITII : First element of a row is zero but some or other elements are not zero.

Case-I : Normal routh array

The routh array can be constructed as explained above

1. If there is no sign change in the first column of Routh array then all the roots are lying on lett
half of s-plane and the system is stable. u

2. If there is sign change in the first column of routh array, then the system 1S unstable and the

‘number of roots lying on the right half of s-plane is equal to number of sign changes. The
remammg roots are lying on the left half of s-plane.



Case-Il : A row of all zeros

METHOD-1
1. Determine the auxiliary polynomial, A(s)

2. Differentiate the auxiliary polynomial with respect to s, to get d A(s)/ds
3.- The row of zeros is replaced with coefficients of dA(s)/ds.

4. Continue the construction of the array in the usual manner (as that of case-I )
METHOD-2

1. Determine the auxiliary polynomial, A(s).

2. Divide the characteristic equation by auxiliary polynomial.

3. Construct Routh array using the coefficients of quotient polynomial.



Case-I1I : First element of a row Is zero

let 0—  and complete the construction of array in the usual way (as that of case-1 )

Finally let e—>0 and determine the values of the elements of the array which are functions of €



Construct Routh array and determine the stability of the system whose characterisitc equation is
5%+25°+8s+125%+20s2 +165+16=0,

Also determine the number of roots lying on right half of s-plane, left half of s-plane and on imaginary axis

s9+25°+8s*+125%+ 205%+165+16=0

s 1 8 20 16 ... Row-1
g - 2 §2 16 ... Row-2

The elements of s° row can be divided by 2 io simplify the calculations.

g 1 6 8 . ROW-2



EE : Ir T '; 8 2{] 16 """ﬁﬂw_-‘l 54 ; 1:{8;63{1 133":201—3':'{1 1:{16;0}{1
gt 1 1 g 8 _Row-2 s*: 2 12 16
| | divide by 2 f
55 : - : 6 8 Row4 s*: 1 - 6 5
T MmO oE - 7
r_.sf‘ N _U_ 0 ...ROW-4 2y Ix6-6x1 1x8-8x1
i | ;
& 1,3 ~Rowd 0’ 0‘ |
R
2. 3,8 ..Row5
; I I T he awxiliary polynomial is
b ¥ [}33 | .Hﬂ‘l‘!"ﬁ St +-8s24+2 =0
. | ' .
vt 8 ...Row-7 ﬂifl_=453+}25
& ds

e Column-1



g% £ T’: g 20
'55::1:5 8
gt EL1 D6 TR
D,

§° :: 1 : 3
52::3:8

s' i 033

P 1, 8

A

L Column-1

...Row-5

... Row-6
_Row-7

The coefficients of dA/dS are used
to form S° row

s%: 4 12
divide by 4
s> 1 3

5§_1xﬁm3x11x8—ﬂx1
' . 1 1

s : 3 8
4 3x3-8x1

s':

: 3

s': 0.33

o, 0.33x8-<0x3

- o

0.33

s’:- 8




There is no sign change in the first column. The row with all zeros indicate the possibility of

roots on imaginary axis. Hence the system is limitedly or marginally stable.

The auxiliary polynomialis,

s'+6s52+8=0
Let, s°=x
XX +8 =0
6+6%-4x8
The roots of quadraticare, X = 5
_ E=dtil=der =4

The roots of auxiliary polynomial is,

S=+yX =+4-2 and i.\;——#_
=+/2,- jW2,+j2 and -2



The roots of auxiliary polynomial are also roots of characteristic equation.

Hence roots are lying on imaginary axis and the remaining two roots are lying on the left half
of S-plane

RESULT
1. The systemis limitedly or marginally stable.

2. Fourroots are lying on ima ginary axis and remaining two roots are lying on left half of s-plane.



Construct Routh array and determine the stability of the system represented by the characteristic equation,
si+54+2574 252+ 35+5=0. Comment on the location of the roots of characteristic equation

sP+s*+257+ 25+ 35+5=0. 3.1x2-2x1 Tx3-5x1
& - 1 2 3 .. Row-1 1 1
5 0 =D
st 1 2 95 ...Row2 Replace O by €
5 O = .2 .... Row-3 s < =0
g e - . -2  ..Row3 s ex2—-(-2x1) ex5-0x1
s 242 - g ' e c
c e ROW , 2e+2
g e 5.
~(5& +4 e+4) €
g .... Row-5
' 24l

gl 5 veee ROW-6



On letting e —0, we get

&5
s*
g°
§°

ST

r =

i 1018 &
L q4:la B
L

L © 5
Y
5

) _r—_ : ¢D|LETE'I-1

.. ROW-1
... Row-2
e ROW-3
e ROW-4
... Row-5
... Row-6!

; 4 EETZ x (~2) - (5x &)
S TP,
; =
(6 S 4 )
: 2e+2

RESULT
There are two sign changes in the first column.
Two roots are lying on right half of S plane.

The system is unstable.



By routh stability criterion determine the stability of the system represénted by the characteristic equation,
9s°- 205*+10s°- 52— Gs —10 = 0. Comment on the location of roots of characteristic equation,

——1

g8 9% 10 -9 _Rowl  ; 20x10-(-1)x9 -20x(-9)-(-10)x9
5 . 2! 1 10 R | - =20
: = ] — — e ROW-2 ;
| | ! ' — s 955 -135
£ ¢ 1985 5 =135 ... Row-3
i i
£ . 1-2931 -0 ... Row-4 2. 999 x (1) —(13.9)x(-20) 9.55x(-10)
1 ! | o 955 955
5 |_1 E‘H ; . HDW’E EE: 28 293 _-ID
? =10 ... Row-6 <. 7293 x(-135) —(-10) x 955
; - —{=_2Column-1 | : —29.3
RESULT s: —168
There are three sign changes 0. ~108 x(-10)
Three roots are lying on right half of S plane and Two roots are lying on -16.8
left half of S plane s —10

The system is unstable.



The characteristic polynomial of a system is, s7+9s%+245°+245*4+245%+2452+23s5+15=0.
Determine the location of roots on s-plane and hence the stability of the system.

s’ +9s°® + 245° + 245" + 24s® + 245 + 235+ 15=0 5. 3x24-8x1 3x24-8x1 3x23-5x1
' 3 3 3
gl 1T 24 24 23 ... Row1 s?:21.33 21.33 2133
$ : 9 24 24 15 .._Row2 | Divideby21.33
s 1 1 1
Divide s° row by 3 to simplify the computations. o 1x8-1x3 1x8-1x3 1x5-0x3
§ - 1 24 24 23 .. Row-i 1 : L
| : s*: 5§ 5 5
s 3 8 8 5 ... Row-2 Divide by 5
: 4 ,
& 1 1 1 .Row-3 (5 : 1 “‘ 1
53 - TxT=1xT Tx1=1x1
5t - 1 1 1 .... Row-4 ' 1 1
| s*: 0 0
5 0 0 oo ROW=D




The auxiliary polynomial is
s"+s*+1=0

8% +95° + 235 +15 (Quotient Polynomial)

—— T

E ﬁrs +1 | 87 +9s% 4+ 248° + 245" + 245% + 245% + 235+ 15
ve |
: 7 o
Polynomial) - _,_,j” 5 [ B R
Os® + 235" + 24s* 4+ 238” + 2458 + 235+ 15

{_}95 +

{a'_l'l'gﬂ {_J+95

e

(-}

23s® + 158" +235 +1582 +235+15
23s” ) +23s% () +23s




s’ +9s + 2485 + 245* + 245% + 2452 + 235+ 15=0

(s*+5%+1) (s +9s2+235+15)=0

_Even Quotient polynomial
polynomial
s 1 23
s 9 15 i

1. A — A

Divide s°row by 3 | o 5y

$ :, 1 .23 ot 4k

@ 3. L5 ‘ _

1 m i e g0 21.33x5-0x3
S L 21.33I : LT

Sﬂ . 5 4 _ Eﬂ - 5

i A I




The elements of column-1 of quotient polynomial are all positive.
There Is no sign change
All the roots of quotient polynomial are lying on the left half of S-plane.

To determine the stability, the roots of auxiliary polynomial should be evaluated
The auxiliary equation is, s*+s2+1=0,

Put, s?=xin the auxiliary equation. st+s%+ 1;_:-:E+x+ 1=0
—1+ 1= 1, .43 . o
The roots of quadraticare, X = =t 21 ki =—Eij—2- =1,120° or 1£-120

Buts2=x  ~s=+Jx = +1£120° or +17-120°

= 1212002 or x12£-120%2
=+1/60° or i.i 2 —60°

= +(0.5 + j0.866) or +(05—j0.866)



The roots of auxiliary equation are complex.

Two roots of auxiliary equation are lying on the right half of S plane and the other two on the
left half of S plane

RESULT
The roots of auxiliary polynomial is also the roots of C.E.

Hence two roots of C.E are lying on the right half of S plane and remaining five roots are
lying on left half of S plane.

The system is unstable.



Determine the range of K for stability of unity feedback system whose open loop transfer function is
K

G_[S}=5{5+1)(s+2)
K
Cls) _ _Gls) _ ,sls+l)(s+2) _ K
R(s) 1+G(s) 1, K. s(s+1) (s+2)+K
s{s+1) (s+2)

The characteristic equationis s(s+1)}(s+2)+K=0

s°+352+25+K=0



&3 g k.9 M e o
! |
&2 L 3 1 K 3
| | 1. 6-K
] I 5 [ ——
; 1 6—K | s S
S o o i
, 3 6 HHK*GKS
| ! 0 3 |
s’ 3 f J (6-K)/3
— Column-1 s¥: K

From s? row, for the system to be stable, K > 0

From s' row, for the system to be stable, 3 >0

6-K
3

The range of K for the system to be stable is 0<K<6

For >{), the value of K should be less than 6.



MODULE IV

Root locus
General rules for constructing Root loci
Stability from root loci

Effect of addition of poles and zeros.



ROOT LOCUS
Graphical approach

Powerful tool for adjusting the location of closed loop poles to achieve the desired system
performance by varying one or more system parameters.

Consider open loop transfer function of the system

K
G(s) =
@ s (s+p;) (s+py)
K
Cs) _ G _ sG+p)G+p). . K
R(s) 1+G(s) K s(s+p;) 5+py)+K

s(s+py) (s+p;)



The C.E Is
s+p)(+p,)+K=0

Roots of characteristic equation depends on the value of ‘K’

‘K’ equal to open loop gain

The value of ‘K’ is varying from zero to infinity

When ‘K’ equal to zero, open loop poles and closed loop poles are identical

when K is varied from zero to infinity the roots of characteristic equation will take different
values



Root loci

The path taken by the roots of characteristics equation when open loop gain ‘K’ is varied
from 0 to Infinity.

For the single loop system

il G(s) cle)

Characteristic equation is,
1+G(s) H(s) = 0

G(s) H(s) = -1



G(s) H(s) = -1
The equation can be converted to two

IG(9H(s)|=1 is called magnitude criterion

£G(s)H(s)=+180"(2q +1), is called angle criterion
where q =0,1,2,3, .....

The magnitude criterion states that s = s_will be a point on root locus if for that value of s,

IG(s) H(s)| = 1

The angle criterion states that s = s_will be a point on root locus if for that value of s

ZG(s) H(s) is equal to an odd multiple of 180°,



GOH()=K (s+2) (s+2) (s+23)-... <o, r

— _1 _
(s+py) (s+p2) (8+p3)ene. r2 < 62 o r2 < 61 62

IG(S)H{S)I a .K |S 5 ZII X IS % 22] X Is - 33I _____
ls+py| x|s+ Do x5+

(r,<0,)(r,<0,)=rr,<0,+0,

Ilis+z
s Ki 1

m
n

gt B

p—

m = Number of zeros of loop transfer function.
n = Number of poles of loop transfer function.



fiseal_ (e
n i
H|5+ pi‘ H|s+zi[

i=1 i=1
The open loop gain ‘K’ corresponding to a point S=Sa on root locus can be calculated using
above equation.
s + P;| IS equal to the length of vector drawn from S=Pi to S=Sa
s +z|is equal to the length of vector drawn from S=Zi to S=Sa

Hence

~ Productof length of vector fromopen - looppolesto the point S = Sa

K =
Product of length of vector fromopen loopzerosto the point S = Sa




fiseal_ (e
n i
H|5+ pi‘ H|s+zi[

i=1 i=1
The open loop gain ‘K’ corresponding to a point S=Sa on root locus can be calculated using
above equation.
s + P;| IS equal to the length of vector drawn from S=Pi to S=Sa
s +z|is equal to the length of vector drawn from S=Zi to S=Sa

Hence

~ Productof length of vector fromopen - looppolesto the point S = Sa

K =
Product of length of vector fromopen loopzerosto the point S = Sa




| |




LG(s)H(s) = L(s+ 2y} + £(s+ 2y ) + L(s+ Z3)+...~£(8+ Py) = £(s+ Pz ) = £(s+ P3)-...

=Y Ls+z)- ) Ls+p) <0t
i=1 i=1 1 1 "1
ZG(s)H(s) = +180° (2q + 1) <0, 1
L(s+z)— Z(s+p;)=*180°2g+1) .
; ' ; (r1<61)(r2 <92)_r1r2 <91+92

The above equation can be used to check whether a point S=Sa is a point on the root locus or
not.

<(S+P1) Is equal to the angle of vector drawn from S=Pi to S=Sa

<(S+21) Is equal to angle of vector drawn from S=Zi to S=Sa




(- Sum of angles of vector) (Sum of angles of vector )
ZG(s)H(s) = from open loop zeros |—| from open loop poles |=x180° (2q+1)
L to the points=sy | |  tothe pqint 5=8y

Determination of open loop gain for a specified damping of the dominant roots

The dominant Pole is a pair of complex conjugate pole which decides the transient response of
the system.

In higher order systems the dominant poles are given by the poles which are very close to
origin, provided all other poles are lying far away from the dominant poles.

The poles which are far away from the origin will have less effect on the transient response of
the system.



The transfer function of higher order system can be approximated to a second order transfer

function whose standard form of closed loop transfer function is

C(s) o

R(s) s +2Cm s+ mﬁ

The dominant poles (Sd & Sd*) are given by the roots of quadratic factor

s +2Lm st i=10

g fypd o 2 |
200, 44070, — 4o N Y
B¢ = : "JE s i =-K:El:lni_]:[t}“ I_CE_

The dominant pole can be plotted on the ‘S’ plane as shown below




The dominant pole can be plotted on the ‘S’ plane as shown below

Jo 4

+j®n \fl—Cz_ ‘ —Cmnijmn 1—"—;2_

s-plane
| >
/J;A S c
= C(Dné
3. —jo_ J1-C3
S, JOq

COs 0L = — o — E‘DE_] Q




To fix a dominant pole on root locus, draw a line at an right angle of c©O 5! C with respect to
negative real axis .

The meeting point of this line with root locus will give the location of dominant pole.

The value of ‘K’ corresponding to the dominant pole can be obtained magnitude condition

The gain 'K'correspondng)  Productof length of vectorsfromopen looppolesto dominant pole
to dominant pole,Sd Product of length of vectorsfromopen loopzerosto dominant pole




RULES FOR CONSTRUCTION OF ROOT LOCUS

Rule 1
The root locus Is symmetrical about the real axis

The root locus on real axis 1s shown as a bold line

jos
S-plane
Angle of .

Arrival
s-plane

oo — e

| ] Breakaway

Breakaw&y point point
____Angle of

Arrival



Rule 2: Location of poles and zeros
Locate the poles and zeros of G(S)H(S) on the ‘S’ plane.
The poles are marked by cross “X” and zeros are marked by small circle “0”.

The number of root locus branches is equal to number of poles of open loop transfer
function.

The root locus branch start from open loop poles and terminate at zeros.
If n=number of poles and m=number of finite zeros,
then ‘m’ root locus branches ends at finite zeros.

The remaining (n-m) root locus branches will end at zeros at infinity.



Rule 3: The root locus on real axis
To decide the part of root locus on real axis, take a test point on real axis.

If the total number of poles and zeros on the real axis to the right of this test point is odd
number then the test point lies on the root locus.

If it IS even then the test point does not lie on the root locus.
The root locus on real axis i1s shown as a bold line

Rule 4: Angles of asymptotes and centroid

If n Is number of poles and m is number of finite zeros, then n-m root locus branches will
terminate at zeros at infinity.

These n-m root locus branches will go along an asymptotic path and meets the asymptotes at
Infinity.



Hence number of asymptotes Is equal to number of root locus branches going to infinity.

The angles of asymptotes and the centroid are given by the following formula.

-+
Angles of asymptotes = *180(2q+1)

where, q =0, 1, 2, 3, ......(n—m)

Centroid (meeting point of asymptote with real axis)

_ Sum-of poles — Sum of zeros

—

n-—r1mn .



Rule 5: Breakaway and Breakin points

The breakaway or breakin points either lie on real axis or exist as complex conjugate pairs.
If there Is a root locus on real axis between 2 poles then there exist a breakaway point.

If there Is a root locus on real axis between 2 zeros then there exist a breakin point.

Let the C.E. be in the form

B(s) + K A(s)=0

G "B(S} — 1
AS)

The breakaway and breakin point is given by roots of the equation ‘:'j—*S( =0

Substitute the value of ‘S’ in equation -1

If the gain ‘K’ is positive and real, then there exist a breakaway or breakin point



Rule 5: Breakaway and Breakin points

The breakaway or breakin points either lie on real axis or exist as complex conjugate pairs.
If there Is a root locus on real axis between 2 poles then there exist a breakaway point.

If there Is a root locus on real axis between 2 zeros then there exist a breakin point.

Let the C.E. be in the form

B(s) + K A(s)=0

G "B(S} — 1
AS)

The breakaway and breakin point is given by roots of the equation ‘:'j—*S( =0

Substitute the value of ‘S’ in equation -1

If the gain ‘K’ is positive and real, then there exist a breakaway or breakin point



Rule 6: Angle of Departure and angle of arrival

Angle of departure >

, ([ sum of anglesof vector
from a complex pole A

to the complex pole A from other poles

sum of angles of vectors
to the complex pole A from zeros

Angle of arrival > _180° [sum of angles of vectors j

at a complex zero A to the complex zero A from all other zeros

sum of angles of vectors
to the complex zero A from poles



; a
6, =180°-tan™~ —
s-plane C
0, =90°
6, =tan™ it
d
a
6, =tan” —
> e
o)
Angle of departure
Angle of departure

AT —[ Angle of departure at pole A]
poie ' |



9, =180°—tan™ =
C
0, = 90°
94=tan"—2-1-
d
9,=tan"3
s & 4B
O
[«
e Anglﬂufarrivail 180°~(0, +0 T
b= 180°—(0, +8,)+(6, +6, +
@63 _ . 1 3)+(9; s +95)

Angle of arrival _
+ = —| Angle of arrival at zero B]

atzeroB¥*



Rule 7: Point of intersection of root locus with imaginary axis

Letting s =j In the C.E and separate the real part and imaginary part.
Equate real part to zero.

Equate imaginary part to zero.

Solve the equation for w and K.

The value of ‘gy gives the point where the root locus crosses imaginary axis.
The value of K gives the value of gain K at the crossing point.

This value of K is the limiting value of K for stability of the system



Rule 8: Test points and root locus
Take a series of test point in the broad neighbourhood of the origin of the ‘S’ plane and adjust
the test point to satisfy angle criterion.

Sketch the root locus by joining the test point by smooth curve



A unity feedback control systemn has an open loop transfer function, G(s) = 2 . Sketch the root locus:

s{s® +4s+13)

To locate poles and zeros

The poles of open loop transfer function are the roots of the equation s {s2+4s5+13)=0.

447 - 4x13

The roots of the quadratic are, s= > —=-2+i3

Thepoles arelyingats=0,-2+j3and-2-3






To find the root locus on real axis

the entire negative real axis will be part of root locus

To find angles of asymptotes and centroid

Camrhae Sum of pule: —nS]urn of zeros L. U—E—l—j3;2—-—j3-—l} _ —;1 - _133

+180° (2g+1)

Angles of asymptotes = oy : a=0, 1,..coe. =M
Heren=3,and m=0. =012 3.
When g=0, Angles=x L +60°

3






To find the breakaway and breakin points

There is no root locus exist between two poles or two zeros. So the root locus has neither
breakaway nor breakin point

To find the angle of departure

Here, 0, =180° -tan(3/2)=123.7° ; 6,=90°
Angle of departure from the complex pole p, = 180°— (8, +8.)
| =180° - (123.7° +90°)
=—33.F






To find the crossing point on imaginary axis

The characteristic equation is given by,
$3+45?+ 135+ K=0
Puts =jw

(0F + 4oy +13(0) +K=0  =-jo’ 402+ 13jo +K=0

On equating imaginary partto zero,weget, | On equating real part to zero, we get,
03+ 130 =0  dg?+K = 0
-0° =-130 | K = 4a?
0?=13 > 0=£/13=36 = 4x13 = 52
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Sketch the root locus of the system whose openlooptransfer functionis,  g(s) = s
s(s+2)(s+4)

Findthe value of K sothat the damping ratio of the closed loop systemis(0.5.

To locate poles and zeros
The poles of open loop transfer function are the roots of the equation, s{s+2}(s+4)=0.

The poles are lying at, s=0,-2, -4
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To find the root locus on real axis
real axis between s =0 and s = -2 will be a pari of root locus

real axis between s = -2 and s = — 4 will not be a part of root focus.

. - —--—= =

entire negative real axis froms =—4 to-wowillbea part of roctiocus.






asymptotes and centroid

£ 180" (2g+1) q=0, 1,2, ....n~-m
n—m

Angles of asympiotes =

Here,n=3andm=0. q=0,1,2,3

il = 60

When g=0, Angles=xz

. “ix3
When gq=1, @ Angles =‘:18'D; =k G

Sum of poles — Sum of zejos _ 0-2-4-0_
n—m 3

Centroid =
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breakaway and breakin points

. K .
Theclosedloop) C(s)  G(s) _ s(s+2)(s+4) _ K

transfer fuht:tinnJ R(s) 1+G(s) e K s(s+2)(s+4) + K
s{s+2)(s+4)

The characteristic equation is given by
s{s+2)(s+4)+K=0
s(s?+6s+8)+K=0 = s*+6s2+8s5+K=0

K=~5%—65°-8s



dK

—=—(3s°+125+8)
ds

*_o

ds

—~(3s*+125+8)=0

(352 +125+8)=0

S |II :‘E“_ N
gL IR ENIE © SRIED o nsas o 315
2 %3




When s = -0.345
K = —[(—0.845)" + 6(-0.845) + 8(~0.845)] = 3.08

Since K, is positive and real for, s =—0.845, this point is actual breakaway point.
Whens =-3.154, the value of Kis given by,

K =— [(~3.154)3 + 6(-3.154)% + 8(~3.154)] = -3.08

Since K, is negative for, s = —3.154, this is not a actual breakaway point.

ANGLE OF DEPARTURE OR ANGLE OF ARRIVAL

Since there iIs no complex pole or complex zero, there will be no angle of departure or angle
of arrival
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crossing point of imaginary axis

The characteristic equation is given by,
s*+6s8°+8s+K=0
Puts =jm |
 (j0)°+ 6(0)?+ 8(w) +K=0
-jo® 602 +j8u+K=0

Equating imaginary part to zero ' Equating real part o zero
-.j{i}3+j31:} ﬂ —E'-!}JE-!-K:{]
— jm = —jﬂ[ﬂ

K=6a’=6x8=48
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The crossing point of rootlocus is £j2.8. The value of K corresponding to this pointis K =48

This is the limiting value of K for the stability of the system

the value of K corresponding to £ = 0.5

£=05

a=cos{=cos10.5=60°

/ )
!{,:-”ﬂfﬁ=_1.3x1.?5x3.5=195m3
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EFFECT OF ADDITION OF POLES AND ZEROS ON ROOT LOCUS

Consider K

G(S)H(S) =

S(S+4)

The root locus Is

now add one pole at S= --5

K
S(S+4)(s+5)

G(S)H(S) =

The corresponding root locus is given by



Before addition of pole for any value of ‘K’ the system is stable

After addition of pole to the left half, the two branches of root locus moves to the right half

for some value of ‘K’.

The system will be stable for this value of ‘K’, after this value of ‘K’ the system becomes
unstable.

The stability of the system gets restricted.
Further addition of poles to the left half, the breaking point moves towards right.

So by addition of poles to the left half, the root locus shifted towards right half side and
stability of the system decreases.



Consider
K

G(S)H(S) =
The root locus IS

S(S+2)

now add one zero at S= --3

K(s+3)
S(S+2)

G(S)H(S) =

The corresponding root locus is given by




By addition of zeros towards left, the root locus shifts towards left half.

Since root locus shifts towards left half, the relative stability increases.

In conclusion

1. by addition of poles, the root locus shifts towards imaginary axis and system stability
decreases

2. by addition of zeros towards left half, the root locus moves away from the imaginary axis
and system stability increases



The open loop transfer function of a unity feedback systemis givenby, ()= <5+ 9)
Sketch the rootlocus ofthe system palnas.

locate poles and zeros

| 4+ 42 _ .
The roots of the quadratic are, s= i J42 alail L =2+ 264

The poles arelvingat,s=0,-2+j2.64, -2-j2.64

The zeros are lying at, s = -9 and infinity.

find the root locus on real axis

One pole and one zero lie on real axis.
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from s = 0 to s = -9 will be a part of root locus.

from s = -9 to —ec will not be a part of root locus.

To find angles of asymptotes and centroid
+ 180 (2q+1}'_

Angles of asymptotes =

n-—m
Here,n=3andm=0. ma=02. 34
180
When g=0, Angles==% =+60°
When q=1, Angles=zx 18{}2 2 £270°=TF90

: 2 : =
When g=2, Angles=z 18U2 %3 = i4_50°'= +90

q = Dm 11 21 S | m.-
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Sum of poles —~ Sum of zeros _ 0-2+j264-2-1264—(-9) _ .
n—m 2

Centroid =

the breakaway and breakin points
From the location of poles and zero there is no possibility of breakaway or breakin points.

the angle of departure

Here,0, = 15-:}‘—tan‘11?‘2E=1211*‘
8 = o
8 = a1 264

tan™ ——=20.7°
f

3

Angle of departure from L L p——
the complex pole p. - Dt 2

=180 (127174 90°) + 207 = -16.4°



Angle of departure at pole p, = ~(~16.4) = +16.4°
|

i

R =




the crossing point of imaginary axis

| K(s +9)
Cls) G(s)  s(s®+4s+11) _ K(s+9)

Ris) 1+G(s) 4, K(+9)  s(s?+4s+11)+K(s+9)
s (s?+4s+17)

- . The characteristic equation is,

s{s+4s+11)+K(s+9)=0 = (s?+4s?+115)+Ks+9K=0
puts =jo

(jo)* +4(jo)* +1¥jo) + K(jo)+9K = 0

—jw° - 40? + 1o + Ko +9K=0



On equating imaginary partto zero, | On equating real part to zero,
_jplrfllo+jKo =0 = —jo? = -jlio - jKo ~402+9K=0 = OK=4o?
o 2 114K Put, 02 =11+K .9K=4(11+K)= 44 + 4K
PutK=838, ~o?=11+88=198 | 2
o = +4198 =44 L 5K=44 = I{=ﬂ§-=8.3

The crossing point of rootlocus is £j4.4. The value of K atthis crossing pointis K=8.8

This is the limiting value of K for the stability of the system
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MODULE V

FREQUENCY DOMAIN ANALYSIS

Frequency domain specifications
Bode plot

Log magnitude vs. phase plot,



FREQUENCY DOMAIN ANALYSIS

Freguency response Is the steady state response of a system when the input
to the system is a sinusoidal signal.

Consider a LTI system

let r(t) be an input sinusoidal signal.

The response or output y(t) is also a sinusoidal signal of the same frequency
but with different magnitude and phase angle.

r{t) X e c(t) c(t)=B Lo |
f(t)= A sin(t +0)=AZ0 il mll R e

The magnitude and phase relationship between the sinusoidal input and the steady state output

of the system is termed as frequency response.




In the system transfer function T(S), if ‘S’ is replaced by j-Omega (J®)
then the resulting transfer function T( J®) is called sinusoidal transfer function.

The frequency response of the system can be directly obtained from the sinusoidal transfer
function T(J®) of the system.

Open loop transfer function : G(s) —== G(jo) =|G(jo)| £LG(jo)

Loop transfer function + G(s)H(s) —=12, G(jo)H(jo) =[G[jm)H(jm)|£G(jm}H{jm)

Closed loop transfer function: M(s) —=° 5 M(jo) =[M{jm}] ZM(jo)

where, |G(jo)|, M(jo)|, |G(jo)H(w)| are Magnitude functions
LG(jo), LM(jo), ZG(jo)H(jo) are Phase functions.




The advantage of frequency response analysis

The absolute and relative stability of the closed loop system can be estimated from the
knowledge of their open loop frequency response.

The practical testing of the system can be easily carried with available sinusoidal signal
generators and precise measurement equipment

The transfer function of complicated systems can be determined experimentally by frequency
response tests.

The design and parameter adjustment of the open loop transfer function of a system for
specified closed-loop performance is carried out more easily in frequency domain.

When the system is designed by use of the frequency response analysis the effect of noise
disturbances and parameters variations are relatively easy to visualise and incorporate
corrective measures.

The frequency response analysis and response can be extended to certain nonlinear control
systems.



Frequency domain specifications

resonant peak Mr
resonant frequency
bandwidth

cutoff rate

gain margin

6. phase margin

SANESEE A

Resonant peak
The maximum value of the magnitude of closed loop transfer function is called resonant peak

(Mr)

1

i

Resonant peak, My =




Resonant frequency @,
The frequency at which resonant peak occurs is called resonant frequency

Normalized resonant frequency, u, = el \/ 1 'm'-uz_ﬂf
o

n

The resonant frequency,o. =a, J 1-2¢°

Bandwidth @y,
The bandwidth is the range of frequencies for which the system gain is more than -3 db.

The frequency at which the gain -3 db is called cutoff frequency:.
The bandwidth Is a measure of the ability of a feedback system to reproduce the input signal,

noise rejection characteristics and rise time.

Normalized bandwidth, u, = bl S
mn



i

Cut off rate

The slope of the log magnitude curve near the cutoff frequency is called the cutoff rate.

The cut off rate indicates the ability of the system to distinguish the signal from the noise.

Gain margin K

The gain margin k; is defined as the reciprocal of the magnitude of open loop transfer function
at phase crossover frequency.

The frequency at which the phase of open loop transfer function is *- 180 degree’ is called the
phase crossover frequency @

i

5 1G(j0,0)

- Gain Margin, K



the gain margin in db can be expressed as

1
1GJop)l

K, indb=20 log K, =20 log

=-2010g|G(joo,)

Gain margin of a second order system is infinity.



Phase margin ¥

The phase margin is that amount of additional phase lag to be added at the gain crossover
frequency In order to bring the system to the verge of instability.

The gain crossover frequency is the frequency at which the magnitude of the open loop
transfer function is unity. (It is the frequency at which the db magnitude is zero)

Phase margin, y=180°+¢_,
where, ni;ﬁn = £G(jo,)

Note : £G(jo ) is the phase angle of G(jo)ato =0

At the gain cross-over frequency ®_, the magnitude of G(jo) is unity.

Let normalized gain cross over frequency, u,_ = o /o
B [ vl



1
Uy = {—zfﬂ/qzjnr

u
v = Iﬂﬂ+[—9ﬂ"‘ —tan™’ *‘*‘3}
2G

Frequency response plots

1. Bode plot

2. Polar plot (nyquist plot)
3. Nichols plot

4. M and N circles

5. Nichols chart



Bode plot
A bode plot consist of two graph

One is a product of the magnitude of a sinusoidal transfer function versus log Omega (log o)
The other is a plot of the phase angle of a sinusoidal transfer function versus log Omega (log »)

The bode plot can be drawn for both open loop and closed loop transfer function

Usually the bode plot is drawn for open loop system.
K (1+sTy)

' fer function, = ~
Consider the open loop trans G(s) S(1+5T) (1+5T

K(1+joT)
jo(1+jeT,) (1 +J(’JT3;‘

K£0° JHm:T /tan” T,

©290° 1+0°T2 Ztan™ 0T,y + 0?12 Ltan™ Lo,

G(jo)=




_. _ ; K Jl +m2-Tf
The magnitude of G(jo) = |G(jo)|= - ——

o J1+0°T} |1+0T2
The phase angle of the G(jo) = £ZG(jo) = tan T, — 90° — tan™ oT, —tan™ oT,

IG(jo)| in db = 20 log |G(j),

K |1+0°T
=20 log ==
| © JIT’mET; JI-’rm'T;
= 20 log ——xJI-f—mETZ X ] 4'.1.
) \/14-.:,:.21*2 " et
K
=20 log —+20 log -J]+{IJ2TIZ + 20 log I + 20 log lf
® . J1+0?T? V1+0?T2

K
=20 log —+20 log /1 +aT; 20 log y/1+?T2 - 20 log /1 +0*T2



When the magnitude is expressed in db, the multiplication is converted to addition.

In magnitude plot, the db magnitudes of individual factors of G(jo) can be added.

Individual factors of G(jw)

1.

2.

3.

constant gain K

_ K K
integral factor 3o " Ge)

derivative factor K x jo or K x (jo)*

first order factor in denominator

first order factor in numerator (1

1 1
or

1+joT  (1+joT)™

+joT) or (1 + joT)
1

quadratic factor in denominatol [

quadratic factor in numerator

1+28 (jo / 0,)+(0 / 0,)°

|

*

jo

@

M

o
o

)



1. constant gain

Let, G(s)=K . A
S Go)=K=K 20° . .].dh___iﬂ_____
A=|G(jo)indb=20logK 1 K = 1
&= £G(jo) =0° e Y e
O<K<1

¢ DGF—
— b
o(log scale)
Bode plot of constant gain, K.




2. Integral factor

Let, G(s) ==
S

SG(je)= _5= K/ -op

jo o
A=|G(jo) in db=20log (K/m)
o= /G(jo)=-90°

Wheno=0.1K, *A=201log(1/0.1)=204db T 0°

Wheno =K, A=20logl1=04db
Whenw=10K, A=20log(1/10)=-204db o

—90°

: : : >
0.1K K 10K o(log scale)

magnitude plot of the integral factor is a straight line with
a slope of —20 db/dec and passing through zero db, when
o = K. Since the £G(jw) is a constant and independent of ©
the phase plot is a straight line at —90°.




When an integral factor has multiplicity of n, then.

G —_ Kf n . :
=R +20n}
G(jo)=K/(jo)y = K/o* £-90n°
3o o K
A= |G(jo)indb - = 20 log — A 0
[ AY 5,1 db : :
n n : :
T Lt e —20R .- el s .
0 w0 : 4 :
o= -2G(jo)=-90n" T 0 : fx :
- >

, : 1 - 1 1

Now the magnitude plot of the infegral factoris  0.1K" K" 10K" o(log scale)
a straight line with a slope of —20n db/dec and passing
through zero db when ® = K", The phase plot is a

straight line at —-90n°.



3. der_ivative factor ED‘
Let, G(s) =Ks T *

.. GGo)=K jo=Ko £90°

A=1G(jo)| in db = 20 log (Ko) o

&= ZG(jo)=+90° : db =20
Wheno=0.1/K, A=20log(0.1)=-20db
When o = 1/K, A=20log1=0db
When o =10/K, A=201log10=++20db T +90°%

Dﬂ'
0

magnitude plot of the derivative factor is a straight line
with a slope of +20 db/dec and passing through zero db
when @ = 1/K. Sin¢e the ZG(jo) is a constant and
independent of o, the phase piot is a straight line at +90°.

01
K

E!_Lil.n a2 i oa ¥ . oW oW b oA E I B I

>
o(log scale)



When derivative factor has multiplicity of n then,
G(s)=K s"

- Gjo) =K(jo)y =Ka" £50n°
A =|G(jo) in db =20 log (Ka")
=20 log (K" @) =20n log (K" o)
o = £G(ja) = 90n°®

Dﬂ

_a__-"_—.—h.

o

Now the magnitude plot of the derivative factor
is a straight line with a slope of +20n db/dee and passing
through zero db when o = 1/K'. The phase plot is a
straight line at +90n°.

w(log scale)



4. first order factor in denominator

1
1+sT

1 1
LGe) ==

Let, A=|G(jo)] in db.

G(s) =

Z—tan T

1
A;tG(jm){mdh=2ﬂIﬁgm=—Eﬂ logV/1+0>T?

At very low frequencies, T <<1; - A=-20 log Y1+ ®>T% =20 logl =0 _
At very high frequencies, ©T >>1; - A=-20log V1+ 0°T? ~ =20 log ¥&*T2 =20 log & T
Atm=51;., A==201log 1=0

Ate = % =20 Jog10=~20 db



Magnitude plot can be approximated by two straight line

One Is a straight line at Odb for the frequency range ¢ <o <t/ T.

Second one Is a straight line with slope —20 db/dec for the frequency range, 1/T <o < o
The two straight lines are asymptotes of the exact curve.

The frequency at which the two asymptotes meet is called corner frequency or break

frequency
For factor 1/(1+joT) the frequency @ = 1/T IS the corner frequency

It divides the frequency response curve into two region, a curve for low frequency region and

a curve for high frequency region :
The actual magnitude at the corner frequency, o, . iS, A=-20logyl+1=-3db

Phase angle, ¢ = £G(jo} =—tan™' @T

i » _ )
At the corner frequency, o =0, =, o=—tan"'oT=—tan" 1 =-45

Asao—=0, ¢>0°
Aso—>w, ¢$—>-90°



A _20m
In

db
Tﬂ45rn°
q)_—Q{Jm”

1 1 10
@ = T (log scale) i T - dog scale)
O s——s ;5 Gljo)=r) = L
(1+sT) (1+ joT)™

17
[Ji+m1T1] Zm tan”'@T

A =|G(jo)| indb =20 log = 20 m logy1+@?T?

m

(\/1+mETﬂ

b= £G(jo)=-m tan ‘T



5. first order factor in numerator

G(s)=1+sT
G(jo)=1+ joT J 14 szz el
= |G(j@)| in db=20log \/ ]+ m‘?'TZ. 4
Sl
b

+90°

3
T e (log scale)



first order factor in the numerator has a multiplicity of m

G(s)=(1+sT)"

G(jo)=(1+ jmT)m = [JI +@ T ] Zmtan”"'oT

A= |G{jm)| in db = 20log (Jl +0?T? ] = Zﬂmlng\{l +2T?

A
T +20m

+3m
Ao

in
db

+90m— !
T +45m° / 1

b=2G(jo)=mtan  oT

10 o

1
T T (log scale)



6. quadratic factor in denominator

2
0 1

G(S}Z52+.2£a:u:uns+{f::2 5 2
I 2 1+2Ci+[i]
. L) ] B; )

®

2_

- ] —1 Cﬂ]n

G(j0) = e Z—tan 23

2 2 i

_..E].__- _|_4‘:2E_.. lﬂmz

mi mi f

Magnitude plot can be approximated by two straight line

One is a straight line at Odb for the frequency range0 <o < @®_

Second one Is a straight line with slope —40 db/dec for the frequency range, ® <o <
The two straight lines are asymptotes of the exact curve.

The frequency at which the two asymptotes meet is called corner frequency or break

frequency
For quadratic factor the frequency @_ iIs the corner frequency @..



+db

c=0.1

c=0.3

=05

Approximate plht '

=
w(log scale)

' Atm=mn,' A=-40logl =0db
- Ate =100, A=-40logl0=-40db

2 =
AS (!):f!}m d}:_tﬂ-“ l"'[_f‘“——tﬂ.ﬂ 1'3:1:"'

Aso—=0, o0
As @ >, b-—->-180



7. quadratic factor in numerator

51+2Cm S+ @

G(s) =

Jam

Fa

G{jo)=1+ j2C —+
mﬂ

7

: S
= “=]+2«’;(——J+{
mﬂ; mﬂ

R

Y

AT D
1-—| +4* — ZLtan™ o
®; @ 1@
MEeg



Magnitude plot can be approximated by two

" straight line
Approximate plot
T 0 - Slope= +40dbldec  Qne |s a straight line at 0db for the frequency
N o range 0 <o <o,
~ —db £=0.1 Second one Is a straight line with slope +40

db/dec for the frequency range, 0 <o <@

The two straight lines are asymptotes of the
exact curve.

For quadratic factor @, is the corner frequency

O =, : m(]ug scale)



Individual factors

K

K

Angle

-90n

90n

-mtan*eT

m tan*oT

- tan —1X
X

tan -1X

Slope

-n20

n20

-20m

20m

-40

40



BODE PLOT
Procedure for plotting magnitude plot

1. Put s— jo Iinopen loop TF
2. Find corner frequencies for (1+joT), o, =%

list the corner frequencies in the increasing order and prepare a table as shown below

. Term Corner frequency Slope | Change in slope
rad/sec db/dec db/dec

3. find Lower frequency and higher frequencies ®, <o, and o, > o,

calculate the db magnitude of K, x K(jo)" at ol and at the lowest corner frequency

(jo)'



4. calculate the remaining db magnitude one by one using the formula

Gain at @ = change in gain from o_to o + Gain at o,

M
= |:Slﬂpﬂ fromw, to®, X ]Dg—}} + Gainat.o,

Wy

5. plot the magnitude in semi log graph sheet

Procedure for plotting phase plot
1. Phase angles are computed for different values of Omega and tabulated.
2. Plot the phase angle in semi log graph sheet

Gain adjustment in bode plot
Let; x=change indb  (x is positive if the plot is shifted up and vice versa)

Now, 20 logK=x ; logK=%20; . K=10"%



TR
w4y .

o
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Sketch Bode plot for the following transfer function and determine the system gain K for the gain cross over frequency

to be S rad/sec

_ K&;.E
e (1+0.2s) (1+ 0.02s)

K(jo)*

(1+ 0.2jo )(1+ 0.02jo)
(jo)”

(1+ j0.20)(1+j0.020)

G(jo) =

LetK=1,  G(jo)=

MAGNITUDE PLOT

1
The corner frequencies are, oy =——=5rad/sec and o, = AL 20 rad/sec

0.2 0.02



Term Corner frequency Slope Change in slope
rad/sec db/dec db/dec
(joy = b
| @S | A | epex
- O = —__50 —20 2 20‘ .:.2”0 =0
1+ j0.020 | 0.02 - ¥
i Yl

Choose a low frequency o, such thatm, <e_, and choose a high frequency o, such thato,> o,

Let, o, = 0.5 rad/sec and o, =100 rad/sec.

Let, A =|G(jo)| in db.



Ato =a,, A=20 iugl(jm

}E[ =20 log ()*= 20l0g(0.5)° =—12 db

Ato=o., A=20 Iugl{jm)z‘ = 20 log (@) = 20i0g(5)* = 28 db

Ato=wg, A=

Ato=w, A=

s

slope from o, 10 ©, x log

siope from o, to o, x Ing ]+A
Oy (=

@ o
+ A
'-"3"::1} (o mzm“T]

e

—znxlugﬂ+za 48 db

=0x |UQJ£-§+4E 48 db



PHASE PLOT

d = £G(jo) = 180° - tan~'0.20 - tan"'0.02¢

o tan-' 0.20 tan—' 0.020 p = £G(jo) Point in
rad/sec deg deg deg phase plot
0.5 5.7 086 173.7=174 e
1 11.3 1.1 167.6 ~ 168 f
o 45 9.7 129.3=130 g
10 63.4 113 105.3~ 106 h
50 84.3 45 50.7 = 50 i
100 87.1 63.4 29.5 =30 j
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CALCULATION OF K

Given that gain cross over frequency Is 5rad/sec

At w=>5rad/sec the gain is 28db.

If gain crossover frequency is 5rad/sec then at that frequency the db gain should be zero.
Hence to every point of magnitude plot a db gain of -28db should be added.

The addition of -28db shifts the plot downwards.

The magnitude correction Is independent of frequency:.

20logK =-28db

28

K =1n_(-’=‘”] = 0.0398



Sketch the bode plot for the following transfer function and determine phase margin and gain margin

75 (1+0.2s)
S (52 +16s + ﬂ}ﬂ)

G(s) =

comparing the quadratic factor in the denominator of G(s) with standard form of quadratic factor

52 +16s+100 = s%+ 20 s+0?

On comparing
;=100 = 0,=10
16 .16
fo. =16 = (€= = =0.8
= T 2o, 2x10

convert the given s-domain transfer function into bode form or time constant form.



convert the given s-domain transfer function into bode form or time constant form.

Gls)=— ?5(1+{;I._25} . TE{‘I+E]___25} = 9_35_{1.[.{]_25) -
5(52+1ﬁs+1{lﬂ) 5::-:1L'ID( 57 +1ﬁ§+1 s(‘l+(}.ﬂ152+ﬂ,155)
700 " 100
by 0.75(1+ 0.2 jw) - D.?ﬁ {'I+ j0.20)

jo (1+ 0.01(jo)” + 0.1 Ejm) e [? -0.010° + jﬂ-?éﬂij



MAGNITUDE PLOT

The comer frequencies are, m., =

1
0.2

—=Drad/sec and

For quadratic factor the frequency €, is the corner frequency @,

0. =0, =10rad/sec

SE

Term Corner frequency Siope | Change in slope
rad/sec db/dec dl:;fdec
075 o
i® o o
S0 S o TR -
1+j0.20 Mg ====9 20 -20+20=0
_ 0.2 o
1 T
1-0.0%2 + 0. 160 g = ®, =10 -40 0y40=-40




find Lower frequency and higher frequencies o, <o, and o, > o,
o,= 0.5 rad/sec and o, =20 rad/sec. A =|G(jw)| in db

Letus calculate Aato, o, @ and o,.

AL o=, A=20Ilog2 2] = 201022 = 3.5db
jo " 05
0.75 0.75

At, o©=o, . A=20log = 20 log 5 —=—16.5db

jo

At, © = ®.g, A=|:5|ID]I.'IE from W 100 x log Eﬁ}-l'ﬁ{atmm‘}.;ﬂ
ci

=0 x lugi—-+{—-15 5)=—16.5 db

At © o, A= [slc:-pe fromo . too, xlﬂg;ﬂ“ ]J“A[mmmﬂ]
ce

2 a0 ;Dgf_”+(_15 5)=-28.5 db



PHASE PLOT

The phase angle of G(jo) as a function of o is given by,

0.16@

T 0012 for @ ﬂﬁ}n

b= £G(jo) =tan'0.20 — 90° —tan™

0.160
1-0.01n2

o =2/G(jo) =tan"'0.20 - 90° - ('can‘_1 + 180‘] for @ > @,

Note : In quadralic factors the
phase varies from 0° fo 180°. But
calculator calculates tam’ only
between 0° to 90°. Hence a
correction of 180° should be added
fo phase aftero ,



i) tan~ 102 @ BH'1% ¢ = £LG(jo) Points in
rad/sec deg deg deg - phase piot
0.5 5.7 | 46 ~88.9~-88 e
1 11.3 9.2 - 87.9~-88 f
5 45 | 46.8 ~91.8~-92 g
10 63.4 90 ~116.6 ~-116 h
20 75.9 —46.8+180=133.2 ~-147.3 =—148 i
50 84.3 ~18.4+180=161.6 -167.3 ~—168 j
100 87.1 ~ -92+180=170.8 —173.7~-174 K

Let ¢ _be the phase of G(jo) at gain cross-over frequency, o o
b gﬂ-—f B8°
-. Phase margin, g = 180° + ¢ = 180°-88°=92°

The phase plot crosses —-180° only at infinity. The |G{J'ﬂ:t)‘ atinfinity is— o db.

Hence gain margin is + .
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K et

Given, G(s) = S672) 679 . Find K so that the system is stable with,

(a) gain margih equal to 2db,  (b) phase margin equalto 45°.

K=1
time constant form or bode form.
G{S} = E—E.Es. " E—H.EE 2 DDEES E—E;EE '
s(s+2)s+8) 2(”%] o E('H %) s (1+0.5s)(1+ 0.125s)
| e o020
Gljo) 0.0625¢e

e (1+j0.50) (1+ j0.1250)



0.0625 & /7<°\ = 0.0625 and L(0.0625e°<° )=~0.20 radians.

1th — . 10
0.0625 e P2 — 00625 £-020 a+ib=r<6=re

b
r=J@+b2) H=tan*=
a
a=rcod b=rsind
MAGNITUDE PLOT
The corner frequencies are, ©g = —1—3 Zrad/sec and o, = =8rad/sec

0.5



L o

Term Corner frequency Slope Change .In slope
rad/sec db/dec dbl/dec
0.0625
o o = zmn.%_h._%

1 b ~20 y—20=—40
1+ j0.5w 0.5 R e

.E _.I ey ‘“-""“
T+ 01250 2= 53550 —20 —40-20=—60

=
L
-
E] L
we®
llllllllllll

o, =0.5rad/secand o, =50 rad/sec.

calculate A at v, o4, @ aNd ©,




Ato=a, A=20 EDQ\D'QEZE‘ = 20log Lol = -18db
Ato =m., A=20 Iﬂ# D'?EEEE = 20 log Lol ~-30db

Ate =oy, A=|Slope fromaeto o, x |ng—t2:|+ﬂ{at sy =4 x Ing-8=+{—30} = -54db
m'(;‘r &0 E

o

g | | o, ~ 50 L
Ato=w;, A= “SIape from o, to o, xlog a} + A(at ) -60 x log < + (_54} =-102db
PHASE PLOT

& = -0.20 x 180 _ 90° —tan10.50 - tan~10.1250

Fit



® -0.2 ® (180%x) tan-! 0.5 @ tan 0.125 o ¢ = ZG(iw) Point in
rad/sec deg deg | deg deg phase plot

0.01 -0.1145 0.2864 0.0716 _90.4~-90 &

0.1 -1.145 2.862 0.716 -94.7 = =94 f

0.5 -5.7 14 36 ~113.3=-114 g

1 -11.4 26 7.12 -134.4 =134 h

2 - 22.9 45 14 —1719~-172 i

3 ~34.37 56.30 20.56 -201.2~-202 j

4 —-45.84 63.43 26.57 —225.8 ~—- 226 k

CALCULATION OF K

Phase margin, v= 180+ ¢

e’

where ¢ isthe phase of G(jo) ato =0 .
Wheny=45" ¢, =71 800 = 45% — 180% = =135,




With K =1, the db gain at =-135 degree Is -24db.
This gain should be made zero to have to PM of 45degree.
Hence 24 degree should be added to every point.

20logK=24 ; K=10#2,; K=15384

With K =1 the gain margin=-(-32)=32db.
Required gain margin is 2 db.
Hence 30 db should be added to every point of magnitude plot.

20log K=30 s K=1100= : K=231.62
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Plot the Bode diagram for the following transfer function and obtain the gain and phase cross over frequencies.

10
s (1+0.4s) (1+0.1s)

G(s) =

10
jo (1+j0.40) {1+ j0.10)

Gljo) =

MAGNITUDE PLOT

D ;1 . 25rad/sec and o, =ﬁ%=1ﬂ rad / sec



Change in slope

Term Corner frequency Slope
rad/sec dbi/dec dbl/dec
-
;"Eﬂ ¢ -2 |

: 0= . 2.3 - 20 hfzt} -20=-40
1+ 0. 4a W04 Ly W e Sl TG ¥

1 ® =i=1ﬂ — 20 #4Dl:ﬂ2ﬂ=—5ﬂ
1+ j0. 1o 27 0.1 .

o, =0.1 rad/sec

,-and o, =50 rad/sec.




Letus calculate Aato), 0, 0, and o,

10 10

Atﬂl;{t]h A=20 109 = 20 Iﬂgm=4ﬂﬁh

i

BB
10 10
= = =20log—=12db
Ato =0, A EElﬂg‘j—m—] ﬂgzﬁ |

| 10
Atﬂ:] =0 A= 5|ﬂDE from lIlc-|tﬂ' D X Iﬂg {:ﬂﬂ} = o A(ﬂtm S Eﬂ'i_ﬂ] = =40 x Iﬂgﬁ+ 12==12db
c :

=

50
Ato =0, A=|Slopefromo,to mhx}ug-mi] +A{atm=m }=—6I}xlngTﬁ+{—12}=—54dh
Dez c2

PHASE PLOT

$==-90°=~tan—"'0.4e-tan'0.10



o tan~' 0.4 o tan' 0.1@ ¢ = ZG(jo) Points in
rad/sec deg deg deg i phase plot

0.1 229 0.57 ~-92.86~-92 e

1 21.80 5.71 ~-1175 =~-118 f

25 45.0 14.0 ~149  »-150 g

& 57.99 218 ~169.79~-170 h

10 75.96 450 ~210.86 =—210 i

20 82.87 63.43 ~236.3 =236 j

RESULT

(Gain cross-over frequency = 5 rad/sec.

Phase cross-over frequency = 5 rad/sec.




5(1+ 25)

For the function, G(g} = (17 45) (170.259) drawthg bode plot.
Gljo) = .5 (1+j21£::=)
(1+ j4o) (1+ j0.250)
0 =l=ﬂ25rad!sec i) =l=05radfser:,m =L=4radfsec
Gl S e “ 7025 '
Term | Corner frequency Slope Change in slope
rad/sec dbl/dec db/deg
5 - 0 ... =
1 I ot b e
1o e e * 0-20=-2
1 I R K ) P
1+20 D =5=05 20 -20+20=0
| 2 o A v
; 1 _ o
1+ j0.25w Dp = 55w = 4 —Eqm _‘..TEFEG =-20




Ato =, A =iG(jo)=20log5=+14db
Ato =, A=|Gljo) =20 log 5=+14 db

Ato=0,, A=|Slopefromo 0o, xlog Dc }+A[mm':mﬂ] =20 x Iug—q-'i +14 = +8db
= | @ o1 0.25

Atlo=o_,, A= Slopefromoe oo, xlngm—“ﬂ ]+A[M;ﬂﬂ} =Dxlﬂg§g+82+8dh

10
}L_A[mm:mﬂ} =—20 log = +8=04db

Wy

Ato=w, A=S {Slﬂﬁ& from o 410 o, xlog
Qc3

PHASE PLOT

b =tan '(20)-tan '(4o) - tan (0.250)



® tan~! 2o tan~! 4o tan~! 0.250 p = ZG(jo) Points in
deg deg deg phase plot
0.1 11.3 21.8 1.43 -11.93~-12 f
0.25 26.56 45.0 3.5 -21.894~=-22 g
0.5 450 63.43 7.1 ~25.53=-26 h
i 75.96 82.87 26.56 ~-33.47=-33 [
4 82.87 86.42 45.0 -48.5b~-49 i
10 87.13 88.56 68.15 -69.62=-70 K .
50 89.42 89.71 85.42 —85.71~-86 |




o — in rad/sec
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NICHOLS PLOT

The Nichols plot is a frequency response plot of the open loop transfer function of a system.
The Nichols plot is a graph between magnitude of G(jo) in db and the phase of G(j®)in
degree, plotted on a ordinary graph sheet.

Steps

Consider open loop transfer function G(jo) of the given system

Obtain the expression for |G(jo) in terms of €@

Obtain the expression for £G(jw) interms of

Tabulate the values of magnitude expressed in db and angle in degree for various values of {f
Select suitable scale on an ordinary graph paper with Y-axis representing magnitude in db and
X-axis representing phase angle in degrees

Plot all the points tabulated on the graph paper.

The smooth curve obtained by joining all such plotted points represents magnitude-phase plot
of a given system.



The gain margin in db is given by the negative of magnitude of G(jw) at the phase cross over

frequency ©_ . The @ _ is the frequency at at which phase of G(j®) is -180 degree.
(2 P

If the db magnitude of G(jm) at ﬂ}pc IS negative then gain margin is positive and vice
versa

Let ¢, be the phase angle of G(jw) atgain cross over frequency (Dgc .
The (Dgc IS the frequency at which the db magnitude of G(jm) IS zero.
Now the phase margin ¥ is given by ¥ =180°+¢__

If @z isless negative than -180 degree then phase margin is positive and vice versa.



+db

...... &~

~db - /le—» | Poasitive
* IPM +db
| ' t

-360° -270° -180° ¢, —90° ( IGU{’J}‘ 0

in
db




K(1+ 10s)
s* (1+s) (1+ 2s)
Sketch the Nichols plot and determine the value of K so that (i) Gain margin is 10db, (ii) Phase margin is 10°.

Consider a unity feedback system having an open loop transfer function G{s} =

__ K(1+10s) outkK=1 $=jo
Che) s?(1+s)(1+ 2s)
_ (1+ {100)
G =
o) (jo)(1+ jo)(1+ j20)

_ J1+(100)* Ztan00
TS ... |
022180°%/1+0? stan"'o/1+(20)° Ltan""20




£G(jw) =tan 100 -180° —tan"o — tan"* 2w

] ‘. i | |
e | | |
rad/sec | 02 0.4 i 06 | 08 | 1.0 | 15 2.0 3.0 4.0 !
H | 1 1 | ~

Gl | | | " . |
db | 341 254 | 193 | 143 | 10 | 14 -53 | -152 | -225 |

'- | | |

deg |l —-150 | 164 | 181 i -194 ‘ =204 | =222 -232 1 =244 | -250 !

[ - I




when K=1
Gainmargin = -19.5db
Phase margin= —45°

Gain adjustment for required gain margin
The gain margin =10db which means magnitude of G(jo) =-10db at fﬂp:

When K=1 corresponding magnitude of G(je) Is +19.5db at mp‘: .

Hence -29.5db should be added to every point of  G(jw)

-28.5

o Y K,=10 2 =00335

20
Gain adjustment for required phase margin

20 log K, =—29.5 db = log K, =

.Phase margin, y,= 180° o
$.»=7,—180° =10°-180° =-170°



When K=1 corresponding magnitude of G(jo) is +23db at -170 degree.
But for a phase margin of 10 degree, this gain should be made zero.

Hence -23db should be added to every point of G(je)

| _ 23
WlogK,=-23 = logK,=-23/20 =  K,=102 =007
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MODULE VI

Polar plot

Nyquist stability criterion
Nichols chart
Non-minimum phase system

transportation lag



Minimum phase system and non minimum phase system
T.F having no poles and zeros in right half of ‘S’ plane is called minimum phase T.F.

System with minimum phase T.F are called minimum phase system.

A \w)

@[}CLQJ': .';f_l_(i/ol 1 7Ra
'”*’}‘/LQT? "/Tl

(e =3t pnp=-Q
Seths plole =-b




The T.F having poles and/or zeros in the right half of ‘S’ plane are called non minimum phase
T.F.

System with non minimum phase T.F are called non minimum phase system

, |— jeeo T Al
€ W) = —— ;
[,{,]Cul), ————7
..‘/'r‘2 q—|1'
|

(D = 2% “
S+l — 1




POLARPLOT

The polar plot of a sinusoidal transfer function G(j®) is a plot of the magnitude of G(jo) versus the
phase angle of G(jo) on polar coordinates as o is varied from zero to infinity.

the polar plot is the locus of vectors |G(jo)| £G(jo) as ® is varied from zero to infinity.
The polar plot is also called Nyquist plot.

The polar plot is usually plotted on a polar graph sheet.

polar graph sheet has concentric circles and radial lines.
The circles represent the magnitude and the radial lines represent the phase angles.

Each point on the polar graph has a magnitude and phase angle.
magnitude of a point is given by the value of the circle passing through-
that point and the phase angle is given by the radial line passing through that point.



Positive

: angle
+180 0°
-180° ‘ Reference
Negative
angie

LAY

ot

")

p LN

"



In order to plot the polar plot, magnitude and phase of G(jo) are computed for various

values of @ and tabulated.

Usually the cheice of frequencies are corner frequencies and frequencies around corner frequencies.

Alternatively, if G(jo) can be expressed in rectangular coordinates as,
- G(o)=Gje) +iGje) | |
where, G (jo) = Real part of G(jo) ; G (jo) = Imaginary part of G(jo).
then the polar plot can be plotted in ordinary graph sheet between G (jo) and G (jo) by varying o from
0 to oo,
to plot the polar plot on ordinary graph sheet, the magnitude and phase of G(jo) are
computed for various values of @.

Then convert the polar coordinates to rectangular coordinates using

P — R conversion {polar to rectangular conversion) in the calculator.



The change in shape of polar plot can be predicted due to addition of a pole or zero.

1. When a pole is added to a system, the polar plot end point will shift by —90°.
2.  When a zero is added to a system the polar plot end point will shift by +90°.

Start of type-3
system

Start of type-2—»
system

Start of type-1T
system

«— Start of type-0
system

End of 3°
order system

End of 4"
order system

End of 2™
order system

N\
-

End of 1
order system




Typical Sketches of Polar Plot

|

Tvne : 0, Order: 1 G(s) =
- 1+sT
G(jo)= 1 ! : Z—tan"'oT
jo)= PR
1+ joT ..;‘1+-:s_-FT2 Ztan'oT  J1+0°T°
Aso =0, G(jo) > 120°
As o — o, G(jo)—> 0£-90°
1
e: 1, Order:?2 G(s) =
Typ &)= Xi7sT)
, 1 ! s
G(jo) = =

jo(+i0T) o ,90° 1+o T LtanoT  oy1+0’T

G(jo) = 0L—90°
 G(jo) = 0L£-180°

Asw —=0,

ASs @ —> o0,

-270°

1

i i
-180 7 > 0
o Fal

-90°

~180°

/(-90° —tan™ mT}

4 increasi ng

o |-270°

4

g O increasing
——p

H
O



| | 1
Type : 0, Order : 2 G(s) = %
S ) (1+sT)A+sT,) . 3

Saot—2
(A joT) (1+j0T)  [1+0’2 £ tan” 0T, {1+0°T Ltan 0T, a o S°

. -90°
‘\/(1::;2 T )1+’ T3 )
Aso =0, G(jo) > 1£L0°
AS S >, GLinY -5 02-180°

é("’ tan-l G)Tl S tan_l O)Tz)




Type: 0, Order:3 G(s) : =270

= : %
(1+sT)(1+5T)(1+5Ty) . 2
G(jo) 1 ~180%F¥= ('
®) = -
0 (I+joTy) (1+ joT,) (1+ joTs) L\_//Z
I A’
= G}‘\{\G

1+m2T121:'tan"lmT1 JHmE’I%itan_lmTz -,;"1+m2‘?§itan_lmT3
| » y ’
= £L(~tan ‘0T, —tan 0T, — tan 0 T;)
(1+m3TE)(1+m2T§)(1+mET§)
Asmw =0, G(jo)—> 120°
As o 5o, G(jo) - 0L=270




Type : 1, Order:3 | G(s) ]

= —ETED
s(1+sT ) {1+5T5)
. 1 18030
G(jo )=~ - o . . - 5
1+ joT i o 22 -1 = o %
jo(l+ jo x} (1+ joT;) ©£90 Y1+ 07T Ztan T, |1+0?T} LtanoT, %ﬁ‘(
- ]
= £(=90° - tan 0T, — tan"' 0Ty) 2
mJ(i+m2Tf)(i+sz§] £
Aso -0, G(jo) = 0L-90° o =0 '—90°

As 2w, Glin) = 0£-270°



1

Type : 2, Order: 4 G(s) =
) $ (1+sT)(1+sTy)
G(jo) - 1 - :
Il . : i o e
(jo)* (+joT) (1+joTy)  ©2/-180° |1+0’T} Ltan 0T {1+ 0> T2 Ltan 0T,
1 . . —270°
e /(~180° - tan ‘0T, - tan " 0Ty) P a7y
®’ (i+m2T]2)(1+mszz] . - jfy- Z
m=0 : 0
Aso -0, G(jo)— 0L-180° = 9
-go°! ®

As o -, G(jo)—= 0L-360°



Tvpe:2, Order:5 - G(s) 1 8™ (270

T @ (1+5T)(1+5T,)(1+5T) ey
1 = Q/j
: «——0°

TR . :
(jo) (1+joT)(1+joT)(1+ joT;) —180° 2
1 ® ~go°

 02s-180° 1/1 + 0T Ltan 0T, -\/‘1 +0?T? Ltan 0Ty ,/:- ®*T§ Ltan 0T,
1 £(~180° ~ tan 0T, ~ tan 'oT, — tan" o T;)
o’ 1+’ )(1+0°T} J(1+0 1) - -
Aso =0, G(jo) > xZ-180° |
As® -, G(jo)—=> 0£L-450"=0L-90°

:G( jo)=




G)=2

ivype : 1, Order: 1
5 f
1 1 1 -180° = 0°
-
G(jo)=—-= = —Z-90° 71 E
(jo) o ©Z9%° o g =
o
[ i ]
As@ =0, G(gon) - oL -90° £
S
As®o 5w, G(jo) > 0L£-9° ®=0
_ -90°
14+sT =27
; : H
Gl
5 uw SN ~180° 0°
+ 1+joT 1 ] &
Gl S et 0 = izt oy A B
joT joT oT £90° oT %
| S
O
Aso -0, G(jo)— «os-90+1 E
As® —, G{jo) > 0£-90" +1 QD{.{ﬂ:D



G(s} =s
G{jo) = jo =0/90°

Aso =0, G(jo)— 029¢°
As® —»w,  G(jo) —> 0s90°

G(s) =1+sT
G{jo)=1+joT=1+0TZL9°

Asw —=0, G(jo) — 1+0290°
Asw - o,  G(jo) - 1+0,90°

o increasing

=)

I
o
o

L ]

.,..,.

o increasing




DETERMINATION OF GAIN MARGIN AND PHASE MARGIN FROM POLAR PLOT

0
unity circle=>magnitude=1 -270
- magnitude in dB=20 log 1 . : —270°
=0 Unity circle
Unity circle
—1 800 00 Oc
Gai K 1 90’
lﬂ.margm, 9 - EB.

' llaselllalgiﬂ, Y=1m°+% : Pt‘asemgin’y=1mo+%



DETERMINATION OF GAIN MARGIN AND PHASE MARGIN FROM POLAR PLOT

-270° 270°

unity circle=>magnitude=1 unity circle=>magnitude=1
- magnitude in dB=20 log 1 - magnitude in dB=20 log
=0 Unity circle

0° -180Q°

-180°
Gain margin, K, = —C;: 0 Gain margin, K, = —C;: | .

Phasemaﬁgin,.y=180°+¢;9c =, Phasernaﬁgirx,.y=180°+¢>gc



GAIN ADJUSTMENT USING POLAR PLOT

To Determine K for Specified GM

Draw G(jo) locus with K =1.

Let it cut the —180° axis at

point B corresponding to a gain of G,.
Let the specified gainmargin be x db.

For this gain margin, the G(io) locus will cut
~180° at point A whose magnitude is G,.

]
H':'“?r Zﬂing-—i—-=}; p— lﬂg_=i = —1 =]"-]:":'|IEI:||
1
S i)

Now the value of K is given by, K = %.
- B

K1

If, K >1, then the system gain should be increased.
If, K < 1, then the system gain should be reduced.



To Determine K for Specified PM

Draw G{jwo) locus with K = 1. Let it cut the unity circle at
point B. (The gain at point B is G, and equal to unity).

-270°,

Let the specified phase margin be x°

For a phase margin of x°, let q:m be the phase angle of
G(jo) at gain crossover frequency.

X =180°+ ¢ = ¢ =x° =180°

ECcX

- In the polar plot, the radial line corresponding to ¢ will
cut the locus of G(jo) with K = 1 at point A and the magnitude

corresponding to that point be G,

-O0°



The open loop transfer function of 3 unity feedback systemis given by G(s) = 1/s(1+s) (1+2s).
Skelch the polarplotand determine the gain margin and phasle margin.

G(s) = 1/s(1+s) (1 +2s)

i f— e .. 1
S o (i jo) (1+ j20)

The corner frequencies arew , = 1/2=0.5rad/secand w_, = 1 rad/sec.

. 1 1
Gljo) = . T = EF
(o) (1+jo) (1+20) 4 /80° Ji+0? stan o y1+40? Ltan 20
1

Z —-90°~tan"'o —1an"' 20

0 {(1+0?) (1+40?)



1Gljo)l=

1

1

1

o J(1+0?) (1+40?) "o V1+4a2+02+d0® o {14502+ 4o’

TABLE-1 : Magnitude and phase of G(j®) at various frequencies

' @
rad/sec 0.35 0.4 0.45 05 0.6 0.7 1.0
IGlioo)] 2.2 1.8 15 1-.2' 0.9 7o 0.3
ZGlim) -144 ~150 -156 -162 -171 -179.5 -198
© deg | ~-180.




£G(joo) = -90°-tan"'® — tan™ 20

TABLE-2 : Real and imaginary part of G(jo) at various frequencies

L))
radisec 0.35 0.4 0.45 0.5 0.6 07 | 10
G (o) 178 | 156 | 137 | 114 | -0.86 0.7 | -0.29
G o) 1.29 0.9 061 -037. ] -014 0 0.09
RESULT

Gain margin, K = 1.4286

Phase margin,y =+12°
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The open loop transfer function of a unity feedback system is given by G(s) = 1/ s*(1+s) (1+2s). Sketch the polar plot and

determine the gain margin and phase margin.

G(s) =1/ s¥(1+s){1+2s) G(jo) = ;

(jo)” (1+jo) (1+]20)

o_, = 0.5 rad/sec and o, = 1 rad/sec.
. 1 3

Gljo)=— : :
(jo)? (1+jo) (1+]20) -
' 1
022180° Y1+ o? stan~'o Y1+ 402 san 20
Gljo) = ! Z(-180—-tan"'o ~ tan"" 20)

02y1+02 {1+ 402
’

- i 1 = -
|G(jo)i= &% 1+ o? V1+40? 02y(1+0?) (1+40?)
1

02 V1+502 + 4ot
ZG(io)=-180"-tan '® —tan " 2w.



TABLE-1 : Magnitude and phase plot of G(jo) at various frequencies

® |
radisec |- 045 | 05 0.55 06 | 065 0.7 0.75 1.0
Giy | 33 | 25 | 19 | 15 | 12 |097«=1 | 08 | 03
£Glj) |
deg | 246 | -251 | 256 | -261 | -265 | -269 | —273 | -288
TABLE-2 ; Real and imaginary parts of G(jo)
R E— | E
radisec | 045 | 05 | 055 | 06 | 065| 07 | 075 | 10 |
ieﬂﬁm} 134 | -0.81| -046 | —023 |01 |-0.02 | 004 | 009
Go) | 301 | 236 | 184 | 148 | 12 | 10 08 | 029 ;
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K
Consider a unity feedback system having an open loop transfer function G(s) = s(1+ 0.2s) (1+0.05s)

oketch the polar plot and determine the value of K so that (i) Gain margin is 18 db (jii) Phase margin is 60°,

K
" s(1+0.2s) (1+0.05s)

1 .
jo (1+j0.2m) {1+ j0.050)

G(s) PutK=1ands=jo

Gjw) =

O, = 1/0.2 = 5 rad/sec and @, =1/0.05 = 20 rad/sec.

,
jo (1+j0.20) (1+ j0.050)

Gljo) =

1
©£90° 1+(0.20)? ~tan"'0.20 4/1+(0.050)% £tan*0.050
_ 1
© 41+(0.20)? 1+(0.050)?

£(~90° —tan""0.20 - tan"'0.050)



1G(jo)l=

1

® .ﬁ%{u.zm}? J1+(0.050)?

.

!

TABLE-1: Magnitude and Phase of G(jo) at Vatious Frequerncies

and £G(jo)=-90°—tan"'0.20 —tan"'0.050

o |

| radlsec | 06 0.8 1. 1 2 3| 4

Bl [ 165 123 .| 10 | -05 03 | 02

| £Gl) | | | |

| deg | -08 101 -104 | 1175 | -1294 | -140
rad/sec 5 6 7 9 - 10 11 N 14

e el AT

Giio) 0.14 0.1 007 | 005 | 004 | 003 | 002
£Gle) | | | |
deg —149 —157 —164 —178 -180 -184 | 195




TABLE-2 : Real and Imaginary Parts of G(jo) at Various Frequencies

0D | | E i [ i

rad/sec 0.6 0.8 1 F 2 & 3 . e

&3 ! | |

G, (o) —0.23 -0.23 024 | -023 | -0.19 } -0.15 |

e _ | suiB |

G (i) ~1.63 ~1.21 | -097 | -044 | 023 | -013 |

¥ | . t . i

rad/sec | 5 | 6 7 9 L 10 11 14
Ge) wll -0120 | 0092 | 0067 | -0050 | -0.04 | -0.030 | _0.019 |
G(io) | 0072 | -0039 | -0019 | -0.0034 0 0.002 0.005

there are two plots, marked as curve-l and curve-ll. These two loci are
sketched with different scales to clearly determine the gain margin and phase margin.



From the polar plot, with K=1,

Gain margin, K_=1/0.04 =25.

Gain margin in db =20 log 25 =28 db.
F’hase margin, y = 76°.

Case (i)

With K=1, let G(jo) cut the —180° axis at point B and gain corresponding to that point be G,. From the polar plot
G, =0.04. The gain margin of 28 db with K= 1 has to be reduced to 18 dband so K has to be increased to a value greater than

One.

Let G, be the gain at-180° for a gain margin of 18 db.

| :
Now, 20 log ——=18 — o
G, =60 T 6,

1
e GA = W =0.125

The value of Kis given by, K= Eﬂ 0125

I
!
L2
-—
M
o




Case (if)

With K= 1, the phase margin is 76°. This has to be reduced to 60°. Hence gain has to be increased.
Let - be the phase of G{jo) for a phase margin of 60°
. 60°=180"+¢_, |
b, o = 60° - 180° =-120°

In the polar plot the -120° line cut the locus of G(jo) at point C and cut the unity circle at point D.
Let, G, =Magnitude of G{jo)at pointC.

G, = Magnitude of G(jo) at point D.
From the polar plot, G, =0.425and G =1.

Gp 1
G~ 0425

Now, K= = 2353



RESULT

@)

(©)
(©)
(d)

When K =1, Gain margin, I{u = 25
Gain marginindb - = 28db
When K =1, Phase margin,y = 76°
Foragainmarginof 18db, K = 3.125
Foraphasemarginofe0®, K = 2.353
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Transportation Lag

It is also called dead time or time delay.

In practical systems due to several reasons, it is necessary to stop certain action in a system for
some time.

Such time delay is called transportation lag.

For example in modern systems using micro controllers, it is difficult to match the speed of
peripherals with micro controller.

In such a case It Is necessary to provide purposely a time delay to micro controllers to adjust
with the speed of other supporting peripherals.

: . : ~Ts . :
The transportation lag is given by the expression € > in Laplace domain

e—TS

G(S)=e "
e(jow) =e "



e(jow) ="

e” =cosO + jsing

e =cosO - jsin T

‘G(ja))‘ — vJcos?oT +sin’eT =1
iIndB=20logl=0dB

Introducing time delay in system has no effect on the magnitude plot.



But <G(Jw) of transportation lag is

} = —tan~(tan @T) = -&T radians

=-57.3 wT degree
The phase angle is linearly vary with @




Nichols chart

Nichols transformed the constant M and N circle contours on the polar plots to log magnitude

versus phase angle plot.
M circles are called constant magnitude loci while N circles are called as constant phase

angle loci

The frequency response characteristics of a system can be studied by plotting the log
magnitude in dB versus the phase angle for various frequencies.

When the open loop gain in dB versus loop phase angle in degree is plotted for different
frequencies and M and N circles are superimposed on it, the resultant plot thus obtained is
called Nichols chart

With the help of Nichols chart the following can be evaluated:

1. Complete closed loop frequency response.

2. Parameters M, bandwidth, gain and (1) can be calculated for the closed loop system
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The Nichols chart may be thought of as a Nyquist plot on a log scale.
A Nyquist plot is a plot in the complex plane of

Gliw) = Re{ GI juw JImi G
g JLI BRI pem—
¥~ coordinata y-coordinato

Instead, on a Nichols chart, we plot

|': I|_.:: |I. |I _|i.\_|_' ]I |ﬂ. |I. |I _|i._|_' __i. d l::.: -.I___'
A em B e Sl
wooardimata ooond 1 b

Notice that we reverse the coordinates -the real part is plotted on the vertical, and the
Imaginary part is plotted on the horizontal.
In addition, the chart has contours of constant closed-loop magnitude and phase,
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