0,

B

Dato Saed s 7 slodecfion

Daldu ﬂ.fi/?»ucm —> b(_)ag ozl Gﬁwlﬂoj

a'rhﬁ’
Aaja, n mem”’j and Hhain @
pata efruc bwe
A
[Il .
Ao P'Y/M.L&Ve
P'r/mxft ve o el

[_/77)0 » /&[_m:///jfw
o S | :
\ //.ﬂﬁ? ks Froe OLYY
! ‘

/A fraj "

Scanned with CamScanner

S{acl

- e,

Pime rjoda y/;'ucf(/u,L /DI J/orrry ﬂ i i
L NLaxr » |
'ba.!"(j onm [IO /)J/f)(lf(o ([a}'/ f/) %7”{ Ot) ‘

3 _4—op 8’ Sduck
(’? 7 > W/ be
[ol
Z (‘d"[??’lf(’f\.iﬂd Q/@/’ﬂf ,le'

clolotsd

ck
T T end @/&M

1o the Laat elomnt

{0/) 0% LS’MCé FO/‘D(J
@?{ glack - |
7“90 QU enation? A a0 lemund TOW stack)

push (175 ot Tote STt
an

o (P
) Pfc/ Julaliom Aorie szuolﬁ/ i

foseadion an

eod - fop
/n? p Chic nfekiom

Lu)m mftt7
..fwmj .éwk_zgd NG

Scanned with CamScanner

A v Iaj 71:1/) Lependcliom

f(‘(rﬁ f‘f’f‘! calzo)L

,J 25 f—-f/o
* {c /8

fop=-1 push(1s) push(95)
(an*;/ y

/I‘(IOf gy — 1)
Piot Stack @&79-'% feull

endd

else
{OF: (0/3 ot il
a[(o/aj: (em

Scanned with CamScanner

A
i [Hop= -)

' {
sack “ S

f’-n'ol
else
o = 4 [*ofj
fof) = {éf s |
Slack fo).l[(aboom
Rﬂaﬂ .Qz.éc
/j[(‘.‘ Oé [x:ok 5
[)-iw b‘\ajj
COMij‘“‘ Cucenle

.,‘I.f a (

Pf\ Cjz‘“t. m ernit chiom

EUaj u[d,[pj E‘,‘)r_lf; 22500 -

lc

Scanned with CamScanner

% Jato -
s ‘f OD&)

ik, S s 594 J’?’DM%Z
;S 78] ¢
bmed o 10 /owoa/DQ(CF‘T

; foSP 1
G "] g
fvané o 4
QAueus Rop Awo 6/90[5 :

»ﬁrorﬂ end aoc,) et ej)c‘j¥
67007‘ end /)o/m[s to The éu’rj

o q b e Al L o
Reot €p
Juent -

© . q’ M[VO‘YL |
/Kfffififﬂaffz~f—’-—**’ 1
o and AL

Jount O f

L wig o4

> wing Jooked Leb(-
Aorag Troplemen fatore
4y Irploner

W%ﬁ@%&

Scanned with CamScanner

ﬂ\ —— N PR R, B AT Reram s dlgy .
. —— —d o ————

Avvay Tmplmamialeon.
/Q‘_S_‘Eﬁ-———m o ?-"
§7 - quoue e’”f’g £
&) §

else

afRacs] = Alem

Scanned with CamScanner

T P

o e T E————

1 (ﬁm Pt = MM} @

pﬁ"TOO’}:: AI00AL = — |
else |
Q%oa? - fvonk +4

Scanned with CamScanner

Scanned with CamScanner

X
5
-

ZDA ’
[
quans fell
» o
28)
' £
aamz Gt D7 =) /Al
F = @*Dy'ﬁ 7:@+Dxf-

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Ocd/ué yesticl)

[Leemenl Can be
TnsesdrorL /oossszz_

camoved at one exd Ly
”/ﬂt}wcﬁzﬁ foth ends.

)nsoui’L——-) .
aperakions 2 Depest
-
Tpserk olomunl ab #L a:of”jjc
" @&/vu‘o/ al A’Q
- Z”’j: 0/(2 Aot al AL ma’c/
35&@ Y IS i
y?
LW)
el A Coare e 1
psd M
N (MM: ma ﬂ[){’ gg .
' o aunt 4 1 L b
| ’ o
ols € e .
3 i | f i3
_ ALON £
4004 (b \ ﬂ
@/’;Vaw—] A

Scanned with CamScanner

Scanned with CamScanner

COMfﬁzwI(ﬂr QK an A%”""-“L/‘"m

oty of_algouboe (il 49

G e fuoctiom. wkich geved
2he FNED Auime Ok AL i attinll
og FD/Dwf 3‘73—‘ . -

Juwo P °f wmfaym%
\ Time complndd
9 Space C@M{me“}d
{qu . M@/?/ru
- ‘*% a’b({’@ JWMJ Lored o

P lorufbrs X7 be
fhoiw P@,{t{wman&'

Scanned with CamScanner

S/xu@ naedlt] 4 sum of tuo Corvfomés

D) fiwad] port
2) Varlable W’

Scanned with CamScanner

SCPD = C‘]‘ Sf

)
i;o o 0t o/
oo stefi]
pafis 5,

Scanned with CamScanner

- { Int X, Y, &, Sum
Friotf (&t 3o
Stanf (114 2l | £, By, P,
Sum = o +9 £Z; |
pirf { (¥ Fa Sum = 7d ", sum));
j £ 2u =23
space fot Voruah 3w, A e

¢
6 Tl Spae weeded G 1+ HIH
! {/4

—_—

g,é > ﬂ{jﬂﬂ fum @,n) o gpace 6@‘7 n|
% g > |

. O)\
7580;0”1@%") j _i ‘\
'ro*(CJQ'I’O bWD | S
ov stefi) N L e

< nm
, gedwo §) “Jeded 2npro 45

Scanned with CamScanner

40 @@M"Hbd{
g - oY’
7 ~ Cpr®? L
et st
Coﬂoﬁlca%aj “S)‘WQM o Gf}
J20 cond 107 I n*m:u
g (54 &P

Scanned with CamScanner

JRepeen &y coun
ﬁ:-— Swm = 0 > |

By (P15 ienj134) o ntf

Jwum = J’m*a[’j 2 N

uchrs

Tuie cOmeMj u o0 12 f'a&

R A%T”b S (Q[j) n, m)
{

B@y l’éz}%@é@
S gl B

fg., ot a0)
} Zebuo

Scanned with CamScanner

ﬂ*%ﬁﬂj’
plyre S (3], 0,) £

{me =1 b do H’f/
[Jeitm A0 w(mt0)
s=staf][] —nm
wlins. — |

J

= 490/1’1 +300 ‘J"’?
%.

Scanned with CamScanner

Module IT
Abstract and Concrete Data Structures- Basic data structures — vectors and arrays. Applications, Linked lists:- singly
linked list, doubly linked list, Circular linked list, operations on linked list, linked list with header nodes, applications of
linked list: polynomials

Linked List
Like arrays, Linked List is a linear data structure. Unlike arrays, linked list elements are not stored at continuous location;
the elements are linked using pointers.

Head

| A 3 8 —)l C I — NULL

Data Next

In linked list the element is represented by nodes. Each node contains a data field and a link to the next
node in the list.
Why Linked List?
Arrays can be used to store linear data of similar types, but arrays have following limitations.
1) The size of the arrays is fixed:
2) Inserting a new element in an array of elements is expensive, because we have to shift the elements

For example, id[] = [1000, 1010, 1050, 2000, 2040].

And if we want to insert a new ID 1005, then to maintain the sorted order, we have to move all the elements after 1000 .
Deletion is also expensive .For example, to delete 1010 in id[], everything after 1010 has to be moved.

Advantages over arrays

1) Dynamic size

2) Ease of insertion/deletion

Drawbacks of linked list:

1) Random access is not allowed. We have to access elements sequentially starting from the first node.

2) Extra memory space for a pointer is required with each element of the list.

3) Not cache friendly. Since array elements are contiguous locations, there is locality of reference which is not there in
case of linked lists.

Application of linked list

- Polynomial addition

- Memory allocation

- Used to implement stack and queues
- Used to implement graphs

- Implementing hash tables

Representation of linked list in memory

1. Static representation using array

2. Dynamic representation using free pool of storage

Static representation

Here we use two arrays. One for storing data and another for links

DATA LINE

[38 }------- 50

B = leeeanuas

43 14 Jo..... 47
Header 5 f------- 41

45| B0 }.......

8B - fo-aaaa-

o I T 45

48 § G

49 Joo....

50 64 f------- 43
Memo
ety —— ;‘-T“’;:

Static representation of a single linked list using arrays.
Dynamic representation

The efficient way of representing a linked list is using free pool of storage. In this method, there
is a memory bank (which is nothing but a collection of free memory spaces), and a memory
manager (a program, in fact). During the creation of linked list, whenever a node is reguired
the request is placed to the memory manager; memory manager will then search the memory
bank for the block requested and if found grants a desired block to the caller. Again, there is
also another program called garbage callector, it plays whenever a node is no more in use; it
returns the unused node to the memory bank. It may be noted that memory bank is also a list
of memory space that is available to a programmer. Such a memory management is known as
dynamic memory management. Dynamic representation of linked list uses the dynamic memory
management policy.

Representation of a node in linked list

A linked list is represented by a pointer to the first node of the linked list. The first node is called head. If the linked list is
empty, then value of head is NULL.
Each node in a list consists of at least two parts:
1) data
2) Pointer to the next node
In C, we can represent a node using structures. Below is an example of a linked list node with an integer data.
struct node
{
int data;
struct node *link;
¥

Link is a pointer which points to struct node

Types of Linked List
Following are the various types of linked list.
e Single Linked List — The list can be traversed forward direction only.
¢ Doubly Linked List -Pointers exist between adjacent nodes in both directions.
- The list can be traversed either forward or backward.
e Circular Linked List — The pointer from the last element in the list points back to the first element.

e Circular doubly linked list — both features of doubly and circular list

Singly linked list

In singly linked list is an ordered collection of finite , homogeneous data elements called nodes where the linear order is

maintained by means of links or pointers.

Here, N1, N2, ..., N6 are the constituent nodes in the list. HEADER is an empty node
{having data content NULL) and only used to store a pointer to the first node N1, Thus, if one
knows the address of the HEADER node from the link field of this node, next node can be
traced and so on. This means that starting from the first node one can reach to the last node
whose link field does not contain any address rather a null value. Note that in a single linked
list one can move from left to right only; this is why a single linked list is also alternatively
termed as one way list

Fig. 3.2 A single linked list with 6 nodes.

Creation of a node

p= (struct node *) malloc (size of struct node));
p->data=8;

p->link=NULL,;

Algorithm for inserting a node to the List

Insert node at beginning
Algorithm Insert begin
// initially set start as NULL
Read the item
p= (struct node *) malloc (size of struct node));
p->data= item;
p-> link=NULL;
if(start=NULL)
start=p

else

p->link=start
start=p
Head ?
N \ | N
““““““ o a[4+—] =]+ el o—{]
S EIE
New Node Current Node

Insert node at last
Algorithm Insert end
Read the item
p= (struct node *) malloc (size of struct node));
p->data= item
p-> link=NULL
if(start=NULL)
start=p
else
temp=start
while(temp->link!=NULL)
{
temp=temp->link

}
temp->link=p;

Null
| mll [n[- ' ao| ‘ ' 40|—|----—J

CurrentNode

—> 50
Pre Node

New Node

Insert a node at middle

Algorithm Insert middle

Read the item and position
p= (struct node *) malloc (size of struct node));
p->data= item
p-> link=NULL

temp=start

while(i<position-1)

temp=temp->link
it+

}

p->link=temp->link

temp->link=p

T
o] HTNMW

Prev Node

CurrentNode

NewNode

Deletion of a node from the List

There are three situations for Deleting element in list.
1. Deletion at beginning of the list.

2. Deletion at the middle of the list.

3. Deletion at the end of the list.

Deletion at beginning of the list.

Before Deletion

o]
10 | I I 20 I I 30 I I 40 I I 50 |

After Deletion

| m||r+ S I =

Algorithm Delete at begin
if(start==NULL)

print linked list is empty

Exit
Else
temp=start
start=start->link
delete(temp)

Deletion at the end of the list.

After Deletion

Nl

Algorithm Delete at end
if(start==NULL)
print linked list is empty

Exit
Else
temp=start
while(temp->link!=NULL)
{
temp 1=temp

temp=temp->link

H
delete (temp)

temp1->link=NULL
Deletion at the middle of the list.

o]
S —EEN D -EEE—

Algorithm Delete at middle
if(start==NULL)

print linked list is empty
Exit
else
{

temp=start

while(i<pos-1)

{

temp l=temp

temp=temp->link

i++
}
temp 1->link=temp->link
delete (temp)
}
Deletion of a node based on their data
Assume x be the data to be deleted
temp =start
if (temp->link=NULL)

delete temp
else
{
while (temp-> data!=x)
{
templ= temp

temp=temp->link

}

temp1->link= temp->link

}

Traversing a list

Algorithm for traversing
temp=start
While(temp!=NULL)
{
print temp->data
temp=temp->link
}
Doubly Linked list

In this type of liked list each node holds two-pointer field. Pointers exist between adjacent nodes in both directions. The
list can be traversed either forward or backward.

- Doubly Linked List are more convenient than Singly Linked List since we maintain links for bi-directional traversing
We can traverse in both directions and display the contents in the whole List.

Each Node contains two fields, called Links, that are references to the previous and to the Next Node in the sequence

The previous link of the first node and the next link of the last node points to NULL.

| Head

— R — R — N —

[0 5

Representation of a node in doubly linked list
struct node
{
int data;
struct node *prev;
struct node *prev;
¥
Doubly Linked list Insertion
Three ways
-Insertion at beginning
- Insertion at the end of the list
- Insertion at anywhere in the list
Insertion at beginning
Algorithm_ Insert begin
// node creation
p= (struct node *) malloc (size of struct node));
p->data= item
p-> prev=NULL
p->next= NULL
if(start=NULL)
start=p
else
p->next=start
start->prev=p
start=p
Insert node at last
Algorithm Insert end
p= (struct node *) malloc (size of struct node));
p->data= item
p-> prev=NULL
p->next=NULL
if(start=NULL)
start=p

else
temp=start
while(temp->next!=NULL)
{
temp=temp->next
}
temp->next=p;
p->prev=temp
Insert a node at middle
Algorithm Insert middle
Read the item and position
p= (struct node *) malloc (size of struct node));
p->data= item
p-> next=NULL
p->prev=NULL
temp=start
while(i<position)
{
temp=temp->next
i++
}
temp 1=temp->prev
p->prev=templ
temp1->next=p
p->next=temp

temp->prev=p

(b) Inserting into a doubly linked list

David

Joshua
H
i
|

Miriam Robert ;
i
i
i
\ /
~j® | Leah |et”

!

newNode

Deletion of a node from the Doubly Linked List

There are three situations for Deleting element in list.
Deletion at beginning of the list.
Deletion at the middle of the list.
Deletion at the end of the list.

Deletion at beginning of the list.

Algorithm Delete at begin ()

if(start==NULL)

print linked list is empty

Exit

else
temp=start
start=start->next
start->prev=NULL
delete(temp)

Deletion at the end of the list.
Algorithm Delete at end ()
if(start==NULL)

print linked list is empty

Exit

else
temp=start
while(temp->next!=NULL)
{

temp=temp->next
}
temp l=temp->prev
temp1->next=NULL
delete (temp)
Deletion at the middle of the list.
if(start==NULL)

print linked list is empty

Exit

else

{Read the position pos
temp=start
while(i<pos)
{

temp=temp->next

i++

10

temp l=temp->prev

temp2=temp->next

delete (temp)

temp1->next=temp2

temp2->prev=temp1
}

Traversing a list

Algorithm for traversing
temp=start
While(temp!=NULL)
{
print temp->data
temp=temp->next
}
Circular linked list

A linked list where the last node points the header node is called circular linked list. Figure 3.8
shows a pictorial representation of a circular linked list.

HEADER

- - |

Fig. 3.8 A circular linked list.

Advantages of Circular Linked Lists:
1) Any node can be a starting point.
2) Useful for implementation of queue.

3) Circular lists are useful in applications to repeatedly go around the list

11

Circular Single Linked List
Head Head is HULL when list is empty

SRR OERTERE Hj

Circular linked list

J’_

Head

Empty linked list with efficient node

Bl
u Head always points to efficient node

Head Circular Single Linked List with efficient node
BIG iz moaceiteoarn walue for field type
CIG| B [e) B e B S L B fp
Doubly linked list

12

Linked Implementation of stack

The operation of adding an element to the front of a linked list is quite similar to that of pushing an element on to
a stack.
A stack can be accessed only through its top element, and a list can be accessed only from the pointer to its first element.
Similarly, removing the first element from a linked list is analogous to popping from a stack.
A linked-list is somewhat of a dynamic array that grows and shrinks as values are added to it and removed from it
respectively.
Rather than being stored in a continuous block of memory, the values in the dynamic array are linked together with
pointers.
Each element of a linked list is a structure that contains a value and a link to its neighbor.
The link is basically a pointer to another structure that contains a value and another pointer to another structure, and so on.
If an external pointer p points to such a linked list, the operation push(p, t) may be implemented by

f=getnode();

info(f)=t;

next(f)=p;

p=tf
The operation t = pop(p) removes the first node from a nonempty list and signals underflow if the list is empty

if(empty(p))

{

printf('stackunderflow’);

exit(1);

}

else{

=p;

p=next(f);

t=info(f);
freenode(f);
H

The getnode operation may be regarded as a machine that manufactures nodes. Initially there exist a finite pool of empty
nodes and it is impossible to use more than that number at a given instant . If it is desired to use more than that number
over a given period of time, some nodes must be reused. The function of freenode is to make a node that is no longer
being used in its current context available for reuse in a different context.
The list of available nodes is called the available list. When the available list is empty that is all nodes are currently in use
and it is impossible to allocate any more, overflow occurs.

Linked Implementation of Queue

Queues can be implemented as linked lists. Linked list implementations of queues often require two pointers or

references to links at the beginning and end of the list.

13

Using a pair of pointers or references opens the code up to a variety of bugs especially when the last item on the
queue is dequeued or when the first item is enqueued.

In a circular linked list representation of queues, ordinary 'for loops' and 'do while loops' do not suffice to traverse
a loop because the link that starts the traversal is also the link that terminates the traversal.

The empty queue has no links and this is not a circularly linked list. This is also a problem for the two pointers or
references approach.

If one link in the circularly linked queue is kept empty then traversal is simplified. The one empty link simplifies
traversal since the traversal starts on the first link and ends on the empty one.
Because there will always be at least one link on the queue (the empty one) the queue will always be a circularly linked
list and no bugs will arise from the queue being intermittently circular.

Let a pointer to the first element of a list represent thefront of the queue. Another pointer to the last element of the
list represents the rear of the queue as shown in fig. illustrates the same queue after a new item has been inserted

rear

fromt

3
T 4 F 9 (null

rear

front = 7
[

S - 2 =L g Jaull

=

Under the list representation, a queue ¢ consists of a list and two pointers, g.front and g.rear.

The operations are insertion and deletion. Special attention is required when the last element is removed from a
queue.
In that case ,g.rear must also be set to null, Since in an empty queue both r.front and g.rear must be null.

The pseudo code for deletion is below:

if(empty(q))

printf("QueueisUnderflow");
exit(1);
H
f=q.front;
t=info(f);
q.front=next(f);
if(q.front==null)
q.rear=null;
freenode(f);

return(t);

The operation insert algorithm is implemented

14

f=getnode();
info(f)=x;
next(f)=null;
if(q.rear==null)
q.front=f;
else
next(q.rear)=f;

g.rear = f;

Circular Linked Lists

In linear linked lists if a list is traversed (all the elements visited) an external pointer to the list must be preserved
in order to be able to reference the list again.
Circular linked lists can be used to help the traverse the same list again and again if needed. A circular list is very
similar to the linear list where in the circular list the pointer of the last node points not NULL but the first node.
In a circular linked list there are two methods to know if a node is the first node or not.
Either a external pointer, list , points the first node or A header node is placed as the first node of the circular list.
The header node can be separated from the others by either heaving a sentinel value as the info part or having a dedicated
flag variable to specify if the node is a header node or not .
The structure definition of the circular linked lists and the linear linked list is the same:
struct node {
int info;
struct node *next;
¥
typedef struct node *NODEPTR ;
The delete after and insert after functions of the linear lists and the circular lists are almost the same.
The delete after function : delafter()
void delafter(NODEPTR p, int *px)
{
NODEPTR q;
if((p ==NULL) || (p == p->next)){ /*the empty list
contains a single node and may be pointing itself*/

printf(“void deletionn”);

exit(1);
H
q = p->next;

*px = g->info; /*the data of the deleted node™*/
p->next = g->next;

freenode(q);

15

}

The insertafter function : insafter()
void insafter(NODEPTR p, int x)
{

NODEPTR q;

if(p == NULL){

printf(“void insertionn”);

exit(1);

}

q = getnode();

g->info = x; /*the data of the inserted node*/
g->next = p->next;

p->next = q;

}
Doubly Linked list

It is a way of going both directions in a linked list, forward and reverse.

Many applications require a quick access to the predecessor node of some node in list
info: the user's data
next, back: the address of the next and previous node in the list
A doubly linked list provides a natural implementation of the List ADT
Nodes implement Position and store:
element
link to the previous node
link to the next node

Special trailer and header nodes

To simplify programming, two special nodes have been added at both ends of the doubly-linked list.
Head and tail are dummy nodes, also called sentinels, do not store any data elements.
Head: header sentinel has a null-prev reference (link).

Tail: trailer sentinel has a null-next reference (link).

listData David Joshua Leah Miriam
[4 > o— [-

* We no longer need to use prevLocation (we can get the predecessor of a node using its back member)
Inserting into doubly linked list
1. AddFirst Algorithm

16

To add a new node as the first of a list:

Algorithm addFirst()
new(T)
T.data <y
T.next < head.next
T.prev < head
head.next.prev «— T
head.next < T
Size++

2. AddLast Algorithm

{Order is important}

To add a new node as the last of list:

Algorithm addLast()
new(T)

T.data <y

T.next « tail
T.prev « tail.prev
tail.prev.next « T
tail.prev < T

Size++

{Order is important}

This Algorithm is valid also in case of empty list.

Joshua

Miriam

-1

- |
C 7
1 \ /
\
X

L o o

h 4
@ L
e Leah
newNode

1. newNode->back = location->back;
2. newNode->next = location
3. location->back->next=newNode;

4. location->back = newNode;

Deleting from a doubly linked list

A
]
i

1
7
’
/

-

!

location

17

Delete Joshua

- ~<

d AN
\
. N —® _. .« .
listData David Joshua Miriam
. °
Ny o
location

Algorithm removeLast()
If size = 0 then output “error”
else { T « tail.prev

y « T.data
T.prev.next « tail
tail.prev «— T.prev
delete(T) {garbage collector}
size--
return y

}
Circular Doubly Linked List

® Add a head node at the left and/or right ends

® In a non-empty circular doubly linked list:
— LeftEnd->left is a pointer to the right-most node (i.e., it equals RightEnd)
— RightEnd->right is a pointer to the left-most node (i.c., it equals LeftEnd)

homd oL [21 =L [7] 3L T11 =L T8 =,

head | |

Polynomial Addition using Linked list

Example
pl(x) =23x" + 18x" + 41x° + 163x* + 3
p2(x) = 4x® + 10x* + 12x + 8

P1 |23 o — 18| 7 41| 6 —tslis| 7 —% 3| 0 ‘ T1
__» TAIL (contains pointer) o
| —
P2 |a 6 ——=10| 4 ——12 | 1 ——=8| 0 ——_L
L 1 -

N
-

* Advantages of using a Linked list:

save space (don’t have to worry about sparse polynomials) and easy to maintain

18

don’t need to allocate list size and can declare nodes (terms) only as needed
* Disadvantages of using a Linked list :
can’t go backwards through the list
can’t jump to the beginning of the list from the end.
Adding polynomials using a Linked list representation: (storing the result in p3)
To do this, we have to break the process down to cases:
Case 1: exponent of p1 > exponent of p2
Copy node of p1 to end of p3.[go to next node]
Case 2: exponent of p1 < exponent of p2
Copy node of p2 to end of p3.[go to next node]
Case 3: exponent of p1 = exponent of p2
Create a new node in p3 with the same exponent and with the sum of the coefficients of p1 and p2.

Arrays and polyvnomials

Polynomials like 5x4+2x3+7x2+10x-8 can be maintained using an array
To achieve each element of the array should have two values coefficient and exponent.
Two polynomial operations are performed
Polynomial addition and polynomial multiplication
Addition of two polynomials
Here if the exponents of two terms being compared are then equal then their coefficients are added and the result is stored
in the 3" polynomials
If the exponents of two terms are not equal then the term with bigger exponent is added to th third polynomial
If the term with an exponent is present in only 1 of the 2 polynomials then that term is added as it is to the 3rd polynomial.
Ex: Ist polynomial is 2**+3*°+5*
2nd polynomial is 1**+5"*+1x+2
Resultant polynomial is 3*+3*+10*+1x+2
Multiplication of 2 polynomials:
Here each term of the coefficient of the 2 nd polynomial is multiplied with each term of the coefficient of the 1st
polynomial.
Each term exponent of the 2 nd polynomial is added to the each tem of the 1st polynomial.
Adding the all terms and these equations placed to the resultant polynomial.
Ex: 1st polynomial is 1**+2°+2**+2x
2nd polynomial is 2°+3"*+4x
Resultant polynomial is 2""+7*%+14%+18**+14+8**
#include <iostream.h>
#include <conio.h>
class poly
{ int *coeff;

int dmax;

19

public:

void create(int);

void accept();

void display();

poly operator +(poly);
poly operator *(poly);

55

void poly::create(int m)
{ dmax=m;

coeff=new int[dmax+1];
for(int i=0;i<=dmax;i++)
coeft]i]=0;

H

void poly::accept()

{

for(int i=0;i<=dmax;i++)

{

cout<<"Enter the co-efficient at degree “<<i<<:”;
cin>>coeft[i];

H

H

void poly::display()

{

cout<<endl<<’The polynomial is :”;
for(int i=0;i<=dmax;i++)

{

if(coeft]i]!=0)

cout<< coeff[i] << “XN'<<i<<” +
H

cout<<endl,

}

poly poly::operator *(poly p)
{
int s=dmax+p.dmax;

poly temp;

20

temp.create(s);

for(int i=0;i<=dmax;i++)

{

for(int j=0;j<=p.dmax;j++)
temp.coeff[i+j[+=(coefii] * p.coeft]j]);
H

return temp;

}

poly poly::operator +(poly p)
{

poly temp;

int small, large, flag;
if(dmax>p.dmax)

{

large=dmax;
small=p.dmax;
flag=1;

}

else

{

large=p.dmax;
small=dmax;

flag=0;

}

temp.create(large);

for(int i=0;i<=small;i++)

{
temp.coeff[i]=coeft]i]+p.coeft]i];
H

for(i=small+1;i<=large;i++)

{

if(flag==1)

temp.coeff[i]=coeft]i];
else
temp.coeff]i]=p.coeft]i];
}

return temp;

21

void main()

{

clrscr();

poly p1,p2,p3;

cout<<"Enter the order of your first polynomial :”;
int deg;

cin>>deg;

pl.create(deg);

pl.accept();

pl.display();

cout<<"Enter the order of your second polynomial :”;
cin>>deg;

p2.create(deg);

p2.accept();

p2.display();

p3=pl+p2;

cout<<”Resultant polynomial after adding two polynomials”<<endl;
p3.display();

p3=pl*p2;

cout<<”Resultant polynomial after multiplying two polynomials”<<endl;
p3.display();

getch();

}

22

Multiplication of two polynomials

f(x) and g(x) are two polynomials. In order to solve f(x)*g(x):
® Represent two polynomials in two linked lists (11 for f(x) and 12 for g(x))
e For each item i in 11, multiply i with 12 and store the result in a new list. Add all the new lists together.
e To multiply an item i with a list . You need to multiply i with each item in | and store the results in a new list.
Multiply an item i (expl, coffl)with an item j(exp2, coff2), you get an item k (expl+exp2, coffl*coff2)
public Polynomial multiply(Polynomial p) {
Node temp1 = poly;
Node temp2 = p.poly;
Node front = null;

Node last = null;

while(temp1!=null)

23

if(temp2==null)
{

temp2 = p.poly;
}
while(temp2!=null)
{

Nodeptr= new Node((temp1.term.coeff*temp2.term.coeff),(temp1.term.degree+temp2.term.degree), null);

if(last!=null)
{
last.next = ptr;
}
else{
front = ptr;
}
last = ptr;
temp2=temp?2.next;
b

templ = temp1.next;

b
Polynomial productPoly = new Polynomial();

productPoly.poly = front;

return productPoly;

24

