

1

Module II

Abstract and Concrete Data Structures- Basic data structures – vectors and arrays. Applications, Linked lists:- singly

linked list, doubly linked list, Circular linked list, operations on linked list, linked list with header nodes, applications of

linked list: polynomials

Linked List

Like arrays, Linked List is a linear data structure. Unlike arrays, linked list elements are not stored at continuous location;

the elements are linked using pointers.

In linked list the element is represented by nodes. Each node contains a data field and a link to the next

node in the list.

Why Linked List?

Arrays can be used to store linear data of similar types, but arrays have following limitations.

1) The size of the arrays is fixed:

2) Inserting a new element in an array of elements is expensive, because we have to shift the elements

For example, id[] = [1000, 1010, 1050, 2000, 2040].

And if we want to insert a new ID 1005, then to maintain the sorted order, we have to move all the elements after 1000 .

Deletion is also expensive .For example, to delete 1010 in id[], everything after 1010 has to be moved.

Advantages over arrays

1) Dynamic size

2) Ease of insertion/deletion

Drawbacks of linked list:

1) Random access is not allowed. We have to access elements sequentially starting from the first node.

2) Extra memory space for a pointer is required with each element of the list.

3) Not cache friendly. Since array elements are contiguous locations, there is locality of reference which is not there in

case of linked lists.

Application of linked list

- Polynomial addition

- Memory allocation

- Used to implement stack and queues

- Used to implement graphs

- Implementing hash tables

Representation of linked list in memory

1. Static representation using array

2

2. Dynamic representation using free pool of storage

Static representation

Here we use two arrays. One for storing data and another for links

Representation of a node in linked list

A linked list is represented by a pointer to the first node of the linked list. The first node is called head. If the linked list is

empty, then value of head is NULL.

 Each node in a list consists of at least two parts:

 1) data

 2) Pointer to the next node

In C, we can represent a node using structures. Below is an example of a linked list node with an integer data.

struct node

{

 int data;

 struct node *link;

};

Link is a pointer which points to struct node

3

Types of Linked List

Following are the various types of linked list.

 Single Linked List − The list can be traversed forward direction only.

 Doubly Linked List -Pointers exist between adjacent nodes in both directions.

- The list can be traversed either forward or backward.

 Circular Linked List − The pointer from the last element in the list points back to the first element.

 Circular doubly linked list – both features of doubly and circular list

Singly linked list

In singly linked list is an ordered collection of finite , homogeneous data elements called nodes where the linear order is

maintained by means of links or pointers.

Creation of a node

p= (struct node *) malloc (size of struct node));

p->data=8;

p->link=NULL;

Algorithm for inserting a node to the List

Insert node at beginning

Algorithm Insert begin

// initially set start as NULL

Read the item

p= (struct node *) malloc (size of struct node));

p->data= item;

p-> link=NULL;

if(start=NULL)

start=p

4

else

 p->link=start

start=p

Insert node at last

Algorithm Insert end

Read the item

p= (struct node *) malloc (size of struct node));

p->data= item

p-> link=NULL

if(start=NULL)

start=p

else

 temp=start

while(temp->link!=NULL)

{

temp=temp->link

}

temp->link=p;

Insert a node at middle

Algorithm Insert middle

Read the item and position

p= (struct node *) malloc (size of struct node));

p->data= item

p-> link=NULL

temp=start

while(i<position-1)

5

{

temp=temp->link

i++

}

p->link=temp->link

temp->link=p

Deletion of a node from the List

There are three situations for Deleting element in list.

1. Deletion at beginning of the list.

2. Deletion at the middle of the list.

3. Deletion at the end of the list.

Deletion at beginning of the list.

Before Deletion

After Deletion

Algorithm Delete at begin

if(start==NULL)

print linked list is empty

Exit

Else

 temp=start

start=start->link

delete(temp)

6

Deletion at the end of the list.

After Deletion

Algorithm Delete at end

if(start==NULL)

print linked list is empty

Exit

Else

 temp=start

 while(temp->link!=NULL)

{

temp1=temp

temp=temp->link

}

delete (temp)

temp1->link=NULL

Deletion at the middle of the list.

Algorithm Delete at middle

if(start==NULL)

print linked list is empty

Exit

else

{

 temp=start

 while(i<pos-1)

{

temp1=temp

temp=temp->link

7

i++

}

temp1->link=temp->link

delete (temp)

}

Deletion of a node based on their data

Assume x be the data to be deleted

 temp =start

 if (temp->link=NULL)

 delete temp

 else

 {

 while (temp-> data!=x)

 {

temp1= temp

temp=temp->link

 }

 temp1->link= temp->link

 }

Traversing a list

Algorithm for traversing

temp=start

While(temp!=NULL)

{

print temp->data

temp=temp->link

}

Doubly Linked list

In this type of liked list each node holds two-pointer field. Pointers exist between adjacent nodes in both directions. The

list can be traversed either forward or backward.

- Doubly Linked List are more convenient than Singly Linked List since we maintain links for bi-directional traversing

We can traverse in both directions and display the contents in the whole List.

 Each Node contains two fields, called Links, that are references to the previous and to the Next Node in the sequence

The previous link of the first node and the next link of the last node points to NULL.

8

Representation of a node in doubly linked list

struct node

{

 int data;

 struct node *prev;

 struct node *prev;

};

Doubly Linked list Insertion

Three ways

-Insertion at beginning

- Insertion at the end of the list

- Insertion at anywhere in the list

Insertion at beginning

Algorithm_ Insert begin

// node creation

p= (struct node *) malloc (size of struct node));

p->data= item

p-> prev=NULL

p->next= NULL

if(start=NULL)

 start=p

else

p->next=start

 start->prev=p

 start=p

Insert node at last

Algorithm Insert end

p= (struct node *) malloc (size of struct node));

p->data= item

p-> prev=NULL

p->next=NULL

if(start=NULL)

start=p

9

else

 temp=start

while(temp->next!=NULL)

{

temp=temp->next

}

temp->next=p;

p->prev=temp

Insert a node at middle

Algorithm Insert middle

Read the item and position

p= (struct node *) malloc (size of struct node));

p->data= item

p-> next=NULL

p->prev=NULL

temp=start

while(i<position)

{

temp=temp->next

i++

}

temp1=temp->prev

p->prev=temp1

temp1->next=p

p->next=temp

temp->prev=p

Deletion of a node from the Doubly Linked List

There are three situations for Deleting element in list.

1. Deletion at beginning of the list.

2. Deletion at the middle of the list.

3. Deletion at the end of the list.

10

Deletion at beginning of the list.

Algorithm Delete at begin ()

if(start==NULL)

print linked list is empty

Exit

else

 temp=start

start=start->next

start->prev=NULL

 delete(temp)

Deletion at the end of the list.

Algorithm Delete at end ()

if(start==NULL)

print linked list is empty

Exit

else

 temp=start

 while(temp->next!=NULL)

{

temp=temp->next

}

temp1=temp->prev

temp1->next=NULL

 delete (temp)

Deletion at the middle of the list.

if(start==NULL)

print linked list is empty

Exit

else

{Read the position pos

 temp=start

 while(i<pos)

{

temp=temp->next

i++

}

11

temp1=temp->prev

temp2=temp->next

delete (temp)

temp1->next=temp2

temp2->prev=temp1

}

Traversing a list

Algorithm for traversing

temp=start

While(temp!=NULL)

{

print temp->data

temp=temp->next

}

Circular linked list

Advantages of Circular Linked Lists:

1) Any node can be a starting point.

2) Useful for implementation of queue.

3) Circular lists are useful in applications to repeatedly go around the list

12

+

Circular linked list

Doubly linked list

13

Linked Implementation of stack

The operation of adding an element to the front of a linked list is quite similar to that of pushing an element on to

a stack.

A stack can be accessed only through its top element, and a list can be accessed only from the pointer to its first element.

Similarly, removing the first element from a linked list is analogous to popping from a stack.

A linked-list is somewhat of a dynamic array that grows and shrinks as values are added to it and removed from it

respectively.

Rather than being stored in a continuous block of memory, the values in the dynamic array are linked together with

pointers.

Each element of a linked list is a structure that contains a value and a link to its neighbor.

The link is basically a pointer to another structure that contains a value and another pointer to another structure, and so on.

If an external pointer p points to such a linked list, the operation push(p, t) may be implemented by

f=getnode();

info(f)=t;

next(f)=p;

p = f;

The operation t = pop(p) removes the first node from a nonempty list and signals underflow if the list is empty

if(empty(p))

 {

printf('stackunderflow');

exit(1);

 }

 else{

f=p;

p=next(f);

 t=info(f);

 freenode(f);

 }

The getnode operation may be regarded as a machine that manufactures nodes. Initially there exist a finite pool of empty

nodes and it is impossible to use more than that number at a given instant . If it is desired to use more than that number

over a given period of time, some nodes must be reused. The function of freenode is to make a node that is no longer

being used in its current context available for reuse in a different context.

The list of available nodes is called the available list. When the available list is empty that is all nodes are currently in use

and it is impossible to allocate any more, overflow occurs.

Linked Implementation of Queue

Queues can be implemented as linked lists. Linked list implementations of queues often require two pointers or

references to links at the beginning and end of the list.

14

Using a pair of pointers or references opens the code up to a variety of bugs especially when the last item on the

queue is dequeued or when the first item is enqueued.

In a circular linked list representation of queues, ordinary 'for loops' and 'do while loops' do not suffice to traverse

a loop because the link that starts the traversal is also the link that terminates the traversal.

The empty queue has no links and this is not a circularly linked list. This is also a problem for the two pointers or

references approach.

If one link in the circularly linked queue is kept empty then traversal is simplified. The one empty link simplifies

traversal since the traversal starts on the first link and ends on the empty one.

Because there will always be at least one link on the queue (the empty one) the queue will always be a circularly linked

list and no bugs will arise from the queue being intermittently circular.

Let a pointer to the first element of a list represent thefront of the queue. Another pointer to the last element of the

list represents the rear of the queue as shown in fig. illustrates the same queue after a new item has been inserted

Under the list representation, a queue q consists of a list and two pointers, q.front and q.rear.

The operations are insertion and deletion. Special attention is required when the last element is removed from a

queue.

In that case ,q.rear must also be set to null, Since in an empty queue both r.front and q.rear must be null.

The pseudo code for deletion is below:

if(empty(q))

 {

printf("QueueisUnderflow");

exit(1);

 }

 f=q.front;

 t=info(f);

 q.front=next(f);

 if(q.front==null)

 q.rear=null;

 freenode(f);

return(t);

 The operation insert algorithm is implemented

15

 f=getnode();

 info(f)=x;

 next(f)=null;

 if(q.rear==null)

 q.front=f;

 else

 next(q.rear)=f;

 q.rear = f;

Circular Linked Lists

In linear linked lists if a list is traversed (all the elements visited) an external pointer to the list must be preserved

in order to be able to reference the list again.

Circular linked lists can be used to help the traverse the same list again and again if needed. A circular list is very

similar to the linear list where in the circular list the pointer of the last node points not NULL but the first node.

In a circular linked list there are two methods to know if a node is the first node or not.

Either a external pointer, list , points the first node or A header node is placed as the first node of the circular list.

The header node can be separated from the others by either heaving a sentinel value as the info part or having a dedicated

flag variable to specify if the node is a header node or not .

The structure definition of the circular linked lists and the linear linked list is the same:

struct node{

int info;

struct node *next;

};

typedef struct node *NODEPTR ;

The delete after and insert after functions of the linear lists and the circular lists are almost the same.

The delete after function : delafter()

void delafter(NODEPTR p, int *px)

{

NODEPTR q;

if((p == NULL) || (p == p->next)){ /*the empty list

contains a single node and may be pointing itself*/

printf(“void deletionn”);

exit(1);

}

q = p->next;

*px = q->info; /*the data of the deleted node*/

p->next = q->next;

freenode(q);

16

}

The insertafter function : insafter()

void insafter(NODEPTR p, int x)

{

NODEPTR q ;

if(p == NULL){

printf(“void insertionn”);

exit(1);

}

q = getnode();

q->info = x; /*the data of the inserted node*/

q->next = p->next;

p->next = q;

}

Doubly Linked list

It is a way of going both directions in a linked list, forward and reverse.

Many applications require a quick access to the predecessor node of some node in list

 info: the user's data

 next, back: the address of the next and previous node in the list

A doubly linked list provides a natural implementation of the List ADT

Nodes implement Position and store:

element

link to the previous node

link to the next node

Special trailer and header nodes

To simplify programming, two special nodes have been added at both ends of the doubly-linked list.

Head and tail are dummy nodes, also called sentinels, do not store any data elements.

Head: header sentinel has a null-prev reference (link).

Tail: trailer sentinel has a null-next reference (link).

• We no longer need to use prevLocation (we can get the predecessor of a node using its back member)

Inserting into doubly linked list

1. AddFirst Algorithm

17

 To add a new node as the first of a list:

 Algorithm addFirst()

 new(T)

 T.data ← y

 T.next ← head.next

 T.prev ← head

 head.next.prev ← T {Order is important}

 head.next ← T

 Size++

2. AddLast Algorithm

 To add a new node as the last of list:

 Algorithm addLast()

 new(T)

 T.data ← y

 T.next ← tail

 T.prev ← tail.prev

 tail.prev.next ← T {Order is important}

 tail.prev ← T

 Size++

 This Algorithm is valid also in case of empty list.

 1. newNode->back = location->back;

 2. newNode->next = location

 3. location->back->next=newNode;

 4. location->back = newNode;

Deleting from a doubly linked list

18

Algorithm removeLast()

 If size = 0 then output “error”

 else { T ← tail.prev

 y ← T.data

 T.prev.next ← tail

 tail.prev ← T.prev

 delete(T) {garbage collector}

 size--

 return y

 }

Circular Doubly Linked List

 Add a head node at the left and/or right ends

 In a non-empty circular doubly linked list:

– LeftEnd->left is a pointer to the right-most node (i.e., it equals RightEnd)

– RightEnd->right is a pointer to the left-most node (i.e., it equals LeftEnd)

Polynomial Addition using Linked list

Example

p1(x) = 23x9 + 18x7 + 41x6 + 163x4 + 3

p2(x) = 4x6 + 10x4 + 12x + 8

• Advantages of using a Linked list:

 save space (don’t have to worry about sparse polynomials) and easy to maintain

19

 don’t need to allocate list size and can declare nodes (terms) only as needed

• Disadvantages of using a Linked list :

 can’t go backwards through the list

 can’t jump to the beginning of the list from the end.

Adding polynomials using a Linked list representation: (storing the result in p3)

To do this, we have to break the process down to cases:

 Case 1: exponent of p1 > exponent of p2

 Copy node of p1 to end of p3.[go to next node]

Case 2: exponent of p1 < exponent of p2

 Copy node of p2 to end of p3.[go to next node]

Case 3: exponent of p1 = exponent of p2

Create a new node in p3 with the same exponent and with the sum of the coefficients of p1 and p2.

Arrays and polynomials

Polynomials like 5x4+2x3+7x2+10x-8 can be maintained using an array

To achieve each element of the array should have two values coefficient and exponent.

Two polynomial operations are performed

 Polynomial addition and polynomial multiplication

Addition of two polynomials

Here if the exponents of two terms being compared are then equal then their coefficients are added and the result is stored

in the 3rd polynomials

If the exponents of two terms are not equal then the term with bigger exponent is added to th third polynomial

If the term with an exponent is present in only 1 of the 2 polynomials then that term is added as it is to the 3rd polynomial.

Ex: 1st polynomial is 2x6+3x5+5x2

2nd polynomial is 1x6+5x2+1x+2

Resultant polynomial is 3x6+3x5+10x2+1x+2

Multiplication of 2 polynomials:

Here each term of the coefficient of the 2 nd polynomial is multiplied with each term of the coefficient of the 1st

polynomial.

Each term exponent of the 2 nd polynomial is added to the each tem of the 1st polynomial.

 Adding the all terms and these equations placed to the resultant polynomial.

Ex: 1st polynomial is 1x4+2x3+2x2+2x

2nd polynomial is 2x3+3x2+4x

 Resultant polynomial is 2x7+7x6+14x5+18x4+14x3+8x2

#include <iostream.h>

#include <conio.h>

class poly

{ int *coeff;

int dmax;

20

public:

void create(int);

void accept();

void display();

poly operator +(poly);

poly operator *(poly);

};

void poly::create(int m)

{ dmax=m;

coeff=new int[dmax+1];

for(int i=0;i<=dmax;i++)

coeff[i]=0;

}

void poly::accept()

{

for(int i=0;i<=dmax;i++)

{

cout<<”Enter the co-efficient at degree “<<i<<”:”;

cin>>coeff[i];

}

}

void poly::display()

{

cout<<endl<<”The polynomial is :”;

for(int i=0;i<=dmax;i++)

{

if(coeff[i]!=0)

cout<< coeff[i] << “X^”<< i << ” + “;

}

cout<<endl;

}

poly poly::operator *(poly p)

{

int s=dmax+p.dmax;

poly temp;

21

temp.create(s);

for(int i=0;i<=dmax;i++)

{

for(int j=0;j<=p.dmax;j++)

temp.coeff[i+j]+=(coeff[i] * p.coeff[j]);

}

return temp;

}

poly poly::operator +(poly p)

{

poly temp;

int small, large, flag;

if(dmax>p.dmax)

{

large=dmax;

small=p.dmax;

flag=1;

}

else

{

large=p.dmax;

small=dmax;

flag=0;

}

 temp.create(large);

for(int i=0;i<=small;i++)

{

temp.coeff[i]=coeff[i]+p.coeff[i];

}

for(i=small+1;i<=large;i++)

{

if(flag==1)

temp.coeff[i]=coeff[i];

else

temp.coeff[i]=p.coeff[i];

}

return temp;

22

}

void main()

{

clrscr();

poly p1,p2,p3;

cout<<”Enter the order of your first polynomial :”;

int deg;

cin>>deg;

p1.create(deg);

p1.accept();

p1.display();

cout<<”Enter the order of your second polynomial :”;

cin>>deg;

p2.create(deg);

p2.accept();

p2.display();

p3=p1+p2;

cout<<”Resultant polynomial after adding two polynomials”<<endl;

p3.display();

 p3=p1*p2;

cout<<”Resultant polynomial after multiplying two polynomials”<<endl;

p3.display();

getch();

}

23

Multiplication of two polynomials

f(x) and g(x) are two polynomials. In order to solve f(x)*g(x):

 Represent two polynomials in two linked lists (l1 for f(x) and l2 for g(x))

 For each item i in l1, multiply i with l2 and store the result in a new list. Add all the new lists together.

 To multiply an item i with a list l. You need to multiply i with each item in l and store the results in a new list.

Multiply an item i (exp1, coff1)with an item j(exp2, coff2), you get an item k (exp1+exp2, coff1*coff2)

public Polynomial multiply(Polynomial p) {

Node temp1 = poly;

 Node temp2 = p.poly;

 Node front = null;

 Node last = null;

 while(temp1!=null)

24

 {

 if(temp2==null)

 {

 temp2 = p.poly;

 }

 while(temp2!=null)

 {

 Nodeptr= new Node((temp1.term.coeff*temp2.term.coeff),(temp1.term.degree+temp2.term.degree), null);

 if(last!=null)

 {

 last.next = ptr;

 }

 else{

 front = ptr;

 }

 last = ptr;

 temp2=temp2.next;

 }

 temp1 = temp1.next;

 }

 Polynomial productPoly = new Polynomial();

 productPoly.poly = front;

 return productPoly;

 }

