
1

MODULE I

Parallel computer models – Evolution of Computer Architecture, System attributes to

performance, Amdahl's law for a fixed workload. Multiprocessors and Multicomputers,

Multivector and SIMD computers, Architectural development tracks, Conditions of parallelism.

1.PARALLEL COMPUTER MODELS

 Parallel processing has emerged as a key enabling technology in modern computers, driven by

the ever-increasing demand for higher performance, lower costs, and sustained productivity in

real-life applications.

 Concurrent events are taking place in today's high-performance computers due to the common

practice of multiprogramming, multiprocessing, or multicomputing.

 Parallelism appears in various forms, such as pipelining, vectorization, concurrency,

simultaneity, data parallelism, partitioning, interleaving, overlapping, multiplicity, replication,

time sharing, space sharing, multitasking, multiprogramming, multithreading, and distributed

computing at different processing levels.

1.1THE STATE OF COMPUTING

1.1.1 Five Generation of Computers

 Qn:Explain the five generations of computers?

2

1.1.2 Elements of Modern Computer

1.1.3 Evolution of Computer Architecture

Qn:Describe the evolution of parallel computer architecture?

Qn:Explain the term look ahead parallelism?

The study of computer architecture involves both programming/software requirements and hardware

organization. Therefore the study of architecture covers both instruction set architectures and machine

implementation organizations.

As shown in figure below, Evolution Started with the von Neumann architecture built as a sequential

machine executing scalar data . The sequential computer was improved from bit-serial to word—

parallel operations, and from fixed—point to floating point operations. The von Neumann architecture

is slow due to sequential execution of instructions in programs.

Lookahead , parallelism, and pipelining: Lookahead techniques were introduced to prefetch

instructions in order to overlap I/E (instruction fetch/ decode and execution) operations and to enable

functional parallelism .

Functional parallelism was supported by two approaches: One is to use multiple functional

units simultaneously, and the other is to practice pipelining at various processing levels.

The latter includes pipelined instruction execution, pipelined arithmetic computations, and

memory-access operations. Pipelining has proven especially attractive in performing identical

operations repeatedly over vector data strings.

A vector is one dimensional array of numbers. A vector processor is CPU that implements an

instruction set containing instructions that operate on one dimensional arrays of data called vectors.

Vector operations were originally carried out implicitly by software-controlled looping using

scalar pipeline processors.

3

Explicit vector instructions were introduced with the appearance of vector processors. A vector

processors equipped with multiple vector pipelines that can be concurrently used under hardware or

firmware control.

There are two Families of pipelined vector processors:

 Memory –to-memory- architecture supports the pipelined flow of vector operands directly

from the memory to pipelines and then back to the memory.

 Register-to register architecture uses vector registers to interface between the memory and

functional pipelines.

Another important branch of the architecture tree consists of the SIMD computers for synchronized

vector processing. An SIMD computer exploits spatial parallelism rather than temporal parallelism as

in a pipelined computer .SIMD computing is achieved through the use of an array of processing

elements [PEs] synchronised by the same controller. Associative memory can be used to build SIMD

associative processors.

Intrinsic parallel computers are those that execute programs in MIMD mode.

There are two major classes of parallel computers, namely, Shared memory multiprocessors and

message passing multicomputer. The major distinction between multiprocessors and multicomputer

lies in memory sharing and the mechanisms used for interprocessor communication.

The processors in a multiprocessor system communicate with each other through shared

variables in a common memory.

Each computer node in a multicomputer system has a local memory, unshared with other

nodes. lnterprocessor communication is done through message passing among the nodes.

4

Flynn’s Classification (classified into 4)

Qn:Describe briefly about the operational model of SIMD computer with an example?

Qn: Characterize the architectural operations of SIMD and MIMD computers?

Describe briefly about Flynn’s classification?

• Michael Flynn (1972) introduced a classification of various computer architectures based on

notions of instruction and data streams. Stream denote a sequence of items (instructions or

data) as executed or operated upon by a single processor. Two types of information flow into a

processor: instructions and data. The instruction stream is defined as the sequence of

instructions performed by the processing unit. The data stream is defined as the data traffic

exchanged between the memory and the processing unit.

• Both instructions and data are fetched from the memory modules. Instructions are decoded by

the control unit, which sends the decoded instruction to the processor units for execution. Data

streams flow between the processors and the memory bidirectionally. Each instruction stream is

generated by an independent control unit.

According to Flynn’s classification, either of the instruction or data streams can be single or multiple.

Computer architecture can be classified

into the

 single-instruction single-data streams (SISD);

 single-instruction multiple-data streams (SIMD);

 multiple-instruction single-data streams (MISD); and

 multiple-instruction multiple-data streams (MIMD).

1. SISD(Single Instruction Single Data Stream)

• Conventional sequential machines are called SISD -[single instruction stream over single data

stream] computers. Instructions are executed sequentially but may be overlapped in their

execution stages (pipelining).

2. SIMD(Single Instruction Multiple Data Stream) – Represents vector computers/array processors

equipped with scalar and vector hardware.There are multiple processing elements supervised by the

same control unit. All PEs receive the same instruction broadcast from the control unit but operate on

different data sets from distinct data streams.

5

3. MIMD(multiple instructions over multiple data stream) – most popular model. parallel computers

ters are reserved for MIMD

4. MISD(multiple instruction over single data stream)

The same data stream flows through a linear array of processors executing different instruction streams.

This architecture is also known as systolic arrays For pipelined execution of specific algorithms.

Of the four machine models, most parallel computers built in the past assumed the MIMD model

for general purpose computations. The SIMD and MISD models are more suitable for special-purpose

6

computations. For this reason, MIMD is the most popular model, SIMD next, and MISD the least

popular model being applied in commercial machines.

Six Layers for Computer System Development

Qn:describe Six layers of computer system development?

A layered development of parallel computers is illustrated in Fig. above, based on a

classification by Lionel Ni [I990].

• Hardware configurations differ from machine to machine, even those of the same model.

• The address space of a processor in a computer system varies among different architectures. It

depends on the memory organization, which is machine—dependent. These features are up to the

designer and should match the target application domains.

• On the other hand, we want to develop application programs and programming environments

which are machine-independent. Independent of machine architecture, the user programs can be

ported to many computers with minimum conversion costs.

• High- level languages and communication models depend on the Architectural choices made in a

computer system. From a programmer's viewpoint, these two layers should be architecture-

transparent.

• Programming languages such as Fortran, C, C++, Pascal, Ada, Lisp and others can be supported

by most computers. However, the communication models, shared variables versus message

passing, are mostly machine-dependent.

Challenges in Parallel Processing: Major challenge is on the software and application side.It is still difficult

to program parallel and vector computers.High performance computers should provide fast and accurate

solutions to scientific ,engineering , business,social and defense problems.

2.SYSTEM ATTRIBUTES TO PERFORMANCE

Qn:Define the terms a)clock rate, b)CPI, MIPS rate, Throughput rate?

Qn:List out the matrics affecting scalability of a computer system for a given application?(

 Ic,p,m,k t)

Qn:List and explain four system attributes affecting the performance of CPU?(

 instruction-set architecture, compiler technology, CPU implementation and control, and

 cache and memory hierarchy)

7

System Attributes versus Performance Factors

The ideal performance of a computer system requires a perfect match between machine

capability and program behaviour.

Machine capability can be enhanced with better hardware technology, however program behaviour

is difficult to predict due to its dependence on application and run-time conditions.

Below are the five fundamental factors for projecting the performance of a computer.

 CPU is driven by a clock of constant clock with a cycle time ().he inverse of cycle time is the clock

rate (f=1/

Size of the program is determined by the Instruction Count(Ic). Different instructions in a particular

program may require different number of clock cycles to execute. So,

Cycles per instruction (CPI):-is an important parameter for measuring the time needed to execute an

instruction .

Execution Time/CPU Time (T): Let Ic be Instruction Count or total number of instructions in the

program. The Execution Time or CPU time (T) will be:

T = Ic CPI
• The execution of an instruction involves the instruction fetch, decode, operand fetch, execution

and store results.

Only instruction decode and execution phases are carried out in CPU. The remaining three operations

may require access to memory

The CPI of an instruction type can be divided into two component terms corresponding to the total

processor cycles and memory cycles needed to complete the execution of the instruction. That is :-

CPI = Instruction Cycle = Processor Cycles +Memory Cycles. ie

CPI = Instruction cycle = p + m + k

where

m = number of memory references

P = number of processor cycles

k = latency factor (how much the memory is slow w.r.t to CPU)

Therefore, Equation 1.1 can be rewrite as follows:-

T = Ic (p+m+k)

From the above equation the five factors affecting performance are:-Ic ,p,m,k,

System Attributes: The above five performance factors (Ic ,p,m,k,) are influenced by four system

attributes: instruction-set architecture, compiler technology, CPU implementation and control,

and cache and memory hierarchy, as specified in Table 1.2 below.

The instruction-set architecture affects the program length (1,) and processor cycles needed (p). The

compiler technology affects the values of Ic, p, and the memory reference count (m). The CPU

implementation and control determine the total processor time (p *) needed. Finally, the memory

technology and hierarchy design affect the memory access latency (k *). The above CPU time can be

used as a basis in estimating the execution rate of a processor.

Eq.1.1

Eq.1.2

8

MIPS Rate. The processor speed is often measured in terms of million instructions per second

(MIPS). We simply call it the MIPS rate of a given processor.

Let C be the total number of cycles needed to execute a given program (ie C=Ic * CPI).

Then the CPU time in Eq. 1.2 can be estimated as

 T = C*

 = C/f .

Furthermore, CPI = C/Ic and

T = Ic* CPI *

 = Ic * CPI/f.

MIPS rate = Ic/(T*10
6

)

 =f/(CPI*10
6
)

 =(f*Ic)/(C*10
6
)

Or

Now Based on Equation 1.2 and 1.3

CPU Time ,T = (IC*10
-6

)/MIPS

MFLOPS:

Most compute intensive applications in science and engineering make heavy use of floating point

operations. For such applications a more relevant measure of performance is floating point operations

per second abbreviated as mflops. With prefix mega(10^6),giga(10^9) tera(10^12) or peta(10^15).

Floating-point performance is expressed as millions of floating-point operations per second (MFLOPS),

defined as follows ,only with floating-point instructions.

 Number of executed floating-point operations in a program

Eq.1.3

9

MFLOPS = ___

 execution time * 10
6

Throughput Rate:- Number of programs executed per unit time is called system throughput ws(in

programs per second).In a multiprogrammed system, the system throughput is often lower than CPU

throughput Wp defined by

Wp = f Eq.1.4

 Ic *CPI

W = 1 / T

OR

W =(MIPS*10
6
)/Ic

Problems:-

1 A benchmark program is executed on a 40MHz processor. The benchmark program has the

following statistics.

Calculate average CPI, MIPS rate & execution time for the above benchmark program

 Given Clock speed of the processor= 40 MHz=40*10
6
 Hz

Average CPI= C/Ic

 =Total cycles to execute the program/Instruction count

 =(45000 *1 + 32000*2 + 1500*2 + 8000*2) /(45000 + 3200 + 15000 + 8000)

 =155000/100000

 =1.55

Execution Time ,T= C / f

 T = 150000 / 40 *10
6

 T = 0.155 / 40

 T = .003875 s

 T = 3.875 ms (since 1s=1000ms)

MIPS rate = Ic / T * 10
6

MIPS rate = 100000/(0.003875*10
6)

 =
25.8

2. Consider the execution of an object code with 2 *10
6

 instructions on a 400 MHz processor. The

program consists of four major types of instructions. The instruction mix and the number of

cycles [CPI] needed for each instruction type are given below based on the result of a program

trace experiment:

10

(a) Calculate the average CPl when the program is executed on a uniprocessor with the above

trace results.

(b) Calculate the corresponding MIPS rate based on the CPI obtained in part (a).

Answer:

average CPI = 0.6 +(2 *0.18) +(4* 0.12) +(8 *0.1) =2.24.

MIPS rate = f/(CPI*10
6)

 =(400* 10
6
) /(2.24 *10

6
) =178

Programming Environments:

Qn: Difference between Implicit Parallelism and Explicit forms of Parallelism?

The programmability of a computer depends on the programming environment provided to the users.

conventional uniprocessor computers are programmed in a sequential environment in which

instructions are executed one after another in a sequential manner. Parallel computers employs parallel

environment where parallelism is automatically exploited.. Based on the programming environments

required parallelism can be of two types:

11

IMPLICIT PARALLELISM EXPLICIT PARALLELISM

1. In computer science, implicit

parallelism is a characteristic of a

programming language that allows a

compiler or interpreter to

automatically exploit the parallelism

inherent to the computations expressed

by some of the language's constructs.

2. Uses conventional languages such as

C, C++, Fortran or Pascal to write

source program

3. The sequentially coded source

program is translated into parallel

object code by a parallelizing

compiler.

4. Compiler detects parallelism and

assigns target machine resources.

5. Success relies on intelligence of

parallelizing compiler. Requires less

effort from programmers.

6. Applied in shared memory

multiprocessors.

1. In computer programming, explicit

parallelism is the representation of

concurrent computations by means of

primitives in the form of special-purpose

directives or function calls. Most parallel

primitives are related to process

synchronization, communication or task

partitioning.

2. Requires more effort by programmers to

develop a source program using parallel

dialects like C, C++, Fortran and Pascal.

3. Parallelism is explicitly specified in the

user programs.

4. Burden on compiler is reduced as

parallelism specified explicitly.

5. Programmer’s effort is more- special s/w

tools needed to make environment more

friendly to user groups.

6. Applied in Loosely coupled

Multiprocessors to tightly coupled VLIW

3. MULTIPROCESSORS AND MULTICOMPUTERS

Qn. Distinguish between multiprocessor and multicomputers based on their structure,

resource sharing, and interprocessor communication)?

Qn:List differences between UMA, NUMA,COMA Models?

Qn:Describe in detail the types of shared memory multiprocessors models?

- 2 categories of parallel computer

- Distinguished by having shared memory(multiprocessors) or unshared distributed memory(multi

computers)

Multiprocessors Multicomputer

1. Single computer with multiple

processors

2. Each PE’s(CPU/processing elements)

do not have their own individual

memories – memory and I/O resources

are shared – Thus called Shared

Memory Multiprocessors

1. Multiple autonomous computers

2. Each PE’s has its own memory and

resources – no sharing – Thus called

Distributed Memory Multicomputers

3. Communication between PE’s not

12

3. Communication between PE’s a must

4. Tightly coupled – due to high degree of

resource sharing

5. Use Dynamic Network – thus

communication links can be

reconfigured

6. Ex: Sequent Symmetry S-81

7. 3 Types

- UMA model

- NUMA model

COMA model

mandatory

4. Loosely coupled as there is no resource

sharing

5. Use Static Network – connection of

switching units is fixed

6. Ex: Message Passing Multicomputer

7. NORMA model/ Distributed-

Memory Multicomputer

THE UMA MODEL

- Physical memory is uniformly shared by all processors

- All processors (PE1….PEn) take equal access time to memory – Thus its termed as Uniform

Memory Access Computers

- Each PE can have its own private Cache

- High degree of resource sharing(memory and I/O) – Tightly Coupled

- Interconnection Network can be – Common bus, cross bar switch or Multistage n/w (discussed

later)

- When all PE’s have equal access to all peripheral devices – Symmetric Multiprocessor

- In Asymmetric multiprocessor only one subset of processors have peripheral access. Master

Processors control Slave (attached) processors.

Applications of UMA Model

- Suitable for general purpose and time sharing application by multiple users

- Can be used to speed up execution of a single program in time critical application

13

DISADVANTAGES

- Interacting process cause simultaneous access to same locations – cause problem when an

update is followed by read operation (old value will be read)

- Poor Scalability – as no: of processors increase –shared memory area increase-thus n/w becomes

bottleneck.

- No: of processors usually in range(10-100)

THE NUMA MODEL (Ex: BBN Butterfly)

- Access time varies with location of memory

- Shared memory is distributed to all processors – Local memories

- Collection of all local memories forms global memory space accessible by all processors.

- Its faster to access content within local memory of a processor than to access remote

memory attached to another processor (delay through interconnection) – Thus named as

NON-Uniform Memory access – because access time depends on whether data available in

local memory of the processor itself or not.

Advantage

- – reduces n/w bottleneck issue that occurs in UMA as prcessors have a direct access path to

attached local memory

3 types of Memory access pattern

I. Fastest to access – local memory of PE itself

II. Next fastest – global memory shared by PE/Cluster

III. Slowest to access – remote memory(local memory of PE from another Cluster)

14

THE COMA MODEL

- Multiprocessor + Cache Memory = COMA Model

- Multiprocessor using cache only memory

- Ex: Data diffusion Machine , KSR-1 machine

- Special case of NUMA machine in which distributed main memories are converted to caches –

all caches together form a global address space

- Remote cache access is assisted by Distributed Cache directories (D in fig abv)

Application of COMA

- General purpose multiuser applications

DISTRIBUTED MEMORY / NORMA / MULTICOMPUTERS (Intel Paragon,

nCUBE, SuperNode1000)

- Consists of multiple computers(called nodes)

- A node is an autonomous computer consisting of processor, local memory attached disks or

I/O peripherals.

- Nodes interconnected by a message passing network – can be Mesh, Ring, Torus, Hypercube

etc (discussed later)

- All interconnection provide point to point static connection among nodes

15

- Local memories are private and accessible only by processor – Thus Multicomputer are also

called No-remote-Memory –Access(NORMA)(difference with UMA and NUMA)

- Communication between nodes if required is carried out by passing messages through static

connection network.

Advantages over Shared Memory

- Scalable and Flexible : we can add CPU’s

- Reliable and accessible : since with Shared memory a failure can bring the whole system down

Disadvantage

- Considered harder to program because we are used to programming on common memory

systems.

ATaxonomy of MIMD Computers

The architectural trend for general-purpose parallel computers is in favor of MIMD configurations with

various memory configurations. Gordon Bell (1992) has provided a taxonomy of MIMD

machines. He considers shared-memory multiproccssors as having a single address

space. Scalable multiproccssors or multicomputers must use distributed memory. Multiprocessors using

centrally shared memory have limited scalability.

16

4. MULTIVECTOR and SIMD COMPUTERS

Qn:Write on the structure and functioning of vector supercomputers?

Qn:Differentiate multivector and SIMD computers?

We can classify supercomputers into 2

- Pipelined Vector machines using powerful processors equipped with vector hardware

- SIMD computers emphasizing on massive data parallelism

VECTOR SUPERCOMPUTERS

- A vector computer is usually built on top of scalar processor – its attached to scalar processor as

an optional feature

- Program and data are first loaded into main memory through host computer

- Instructions are first decoded by scalar Control Unit

 – if it’s a scalar operation or program control operation, it will be directly executed using scalar

functional pipelines.

-If its vector operation it will be send to the vector control unit. The control unit supervises the flow of

vector data between main memory and vector functional pipelines. Vector data flow is coordinated by

the control unit. A number of vector functional pipelines may be built into a vector processor

VECTOR PROCESSOR MODELS

Qn:Distinguish between Register to Register and Memory to memory architecture

for building conventional multivector supercomputers?

2 types :

17

 Register to Register architecture

 Memory to memory architecture

REGISTER to REGISTER architecture

- The fig above shows a register to register architecture. Vector registers are used to hold

vector operands, intermediate and final vector results.

- All vector registers are programmable

- Length of vector register is usually fixed (ex 64 bit for CRAY Series Supercomputer). Some

machines use reconfigurable vector registers to dynamically match register length(ex: Fujitsu

VP2000)

- Generally there are fixed no: of vector registers and functional pipilines in vector processors

– hence they must be reserved in advance to avoid conflicts

 MEMORY to MEMORY architecture

- differs from register to register architecture in use of vector stream unit in place of

vector registers.

- Vector operands and results are directly retrieved from and stored into main memory in

superwords (ex: 512 bits in Cyber 205)

Representative Supercomputers – Stardent 3000, Convex C3, IBM 390Cray Research Y-MP family,

Fujitsu VP2000)

SIMD SUPERCOMPUTERS

SIMD computer have One Control Processor and several Processing Elements.All Processing Elements

execute the same instruction at the same time. Interconnection network between PEs determines

memory access and PE Interaction.

SIMD computer (array processor) is normally interfaced to a host computer through the control unit.

The host computer is a general purpose machine which serves as the operating manager of the entire

system.

Each PEi is essentially an ALU with attached working registers and local memory PEMi for the storage

of distributed data. The CU also has its own main memory for storage of programs. The function of CU

is to decode all instruction and determine where the decoded instructions should be executed. Scalar or

control type instructions are directly executed inside the CU. Vector instructions are broadcasted to the

PEs for distributed execution.

Masking schemes are used to control the status of each PE during the execution of a vector instruction.

Each PE may be either active or disabled during an instruction cycle. A masking vector is used to

control the status of all PEs. Only enabled PEs perform computation. Data exchanges among the PEs

are done via an inter-PE communication network, which performs all necessary data routing and

manipulation functions. This interconnection network is under the control of the control unit.

Fig below shows an abstract model of SIMD computer having single instruction over multiple data

streams

18

SIMD Machine Model

An operational model of SIMD computer is specified by a 5-tupe :

 M=(N,C,I,M,R)

Where

1. N is the number of Processing Element’s(PE’s) in m/c (ex: Illiac IV has 64 PE’s)

2. C is the set of instructions directly executed by Control Unit(CU)- including scalar and program

flow control instructions.

3. I is the set of instruction broadcast by CU to all PE’s for parallel execution(Ex: arithmetic, logic

, data routing, masking etc)

4. M is the set of masking schemes which sets each PE’s into enabled and disabled mode

5. R is the data-routing function, specifies the pattern to be set up in the interconnection n/w for

inter-PE communications.

Representative Systems:

• MasPar MP-1 (1024 to 16384 PEs), CM-2 (65536 PEs), DAP600 Family (up to 4096 PEs),

Illiac-IV (64 PEs)

19

5.ARCHITECTURAL DEVELOPMENT TRACKS

Qn: Explain the three tracks of evolution of parallel computers?

The evolution of parallel computers sprang along three tracks. These tracks are distinguished by

similarity in the underlying parallel computational models.

 / - Multiprocessor track

 .--> Multiple processor track -<

 | \ - Multicomputer track

 /

 / / - Vector track

 --< ---> Multiple data track -<

 \ \ - SIMD track

 \

 | / - Multithreaded track

 `--> Multiple threads track -<

 \ - Dataflow track

1.4.1 Multiple Processor track

 In the multiple processor track, the source of parallelism is assumed to be the concurrent

execution of different threads on different processors, with communication occurring either

through shared memory (multiprocessor track) or via message passing (multicomputer track).

 In the multiple data track, the source of parallelism is assumed to be the opportunity to execute

the same code on massive amounts of data. This could be through the execution of the same

instruction on a sequence of data elements (vector track) or through the execution of the same

sequence of instructions on similar data sets (SIMD track).

 In the multiple threads track, the source of parallelism is assumed to be the interleaved execution

of different threads on the same processor so as to hide synchronization delays between threads

executing on different processors. Thread interleaving could be coarse (multithreaded track) or

fine (dataflow track).

Architecture of todays systems pursue development tracks. There are mainly 3 tracks. These tracks are

illustrious by likeness in computational model & technological bases.
1. Multiple Processor tracks: multiple processor system can be shared memory multiprocessor or a

distributed memory multicomputer.

(a) Shared Memory track:

Shared memory track shows a track of multiprocessor development employing a single address

space in the entire system

20

Message Passing Track

Th Cosmic Cube pioneered the development of message passing multicomputers.

2.Multivector and SIMD tracks

Multivector and SIMD tracks are useful for concurrent scalar/vector processing

21

Multivector Track

These are traditional vector super computers.The CDC 7600 was first vector dual processor system.Two

subtracks were derived from CDC 7600. The Cray and Japanese supercomputers are followed the

register-to-register architecture. The other subtrack used memory-to-memory architecture in building

vector supercomputers. We have identified only the CDC Cyber 205 and its successor the ETAICI here,

for completeness in tracking different supercomputer architectures.

SIMD Track

The llliac IV pioneerd the construction of SIMD computers.

3.Multithreaded Track and Dataflow Track

The term multithreading implies that there are multiple threads of control in each processor.

Multithreading offers an effective mechanism for hiding long latency in building large-scale

multiprocessors.. As shown in Fig. the multithreading idea was pioneered by Burton Smith [1978] in

the HEP system which extended the concept of scoreboarding of multiple functional units in the CDC

6600.

22

Dataflow Track

The key idea is to use a dataflow mechanism,instead of a control-flow mechanism as in von Neumann

machines, to direct the program flow. Fine grain instruction-level parallelism is exploited in dataflow

computers.

6. CONDITIONS of PARALLELISM

Qn:Explain three types of dependencies?

The ability to execute several program segments in parallel requires each segment to be independent of

the other segments. We use a dependence graph to describe the relation between statements The nodes

of a dependence graph correspond to the program statement (instructions), and directed edges with

different labels are used to represent the ordered relations among the statements. The analysis of

dependence graphs shows where opportunity exists for parallelization and vectorization.

Program segments cannot be executed in parallel unless they are independent. Independence comes in

several forms.

3 main types of dependencies

1. Data dependence: situation in which a program segment (instruction) refers to the

preceding statement.

2. Control dependence:This refers to the situation where the order of the execution of statements

cannot be determined before run time..It occurs with branches. On many instruction pipeline

architectures, the processor will not know the outcome of the branch in the fetch stage.

3. Resource Dependence: even if several segments are independent in other ways, they cannot

be executed in parallel if there aren’t sufficient processing resources (eg. Functional units)

Data dependence: The ordering of relationship between statements is indicated by the data dependence.

Five type of data dependence are defined below:

Qn:Describe the possible hazards between read and write operations in an instruction

pipeline?

1. Flow dependence: A statement S2 is flow dependent on S1 if an execution path exists from S1 to S2

and if at least one output (variables assigned) of S1 is used as input (operands to be used) to S2 .Also

called RAW hazard and denoted as

S1. R2<-R1+R3

S2. R4<-R2+R3

A data dependency occurs with instruction S2 as it is dependent on the completion of instruction S1.

5. Antidependence: Statement S2 is antidependent on the statement S1 if S2 follows S1 in

program order and instruction S2 tries to writes a register or memory location before

instruction S1 reads. The original order must be preserved to ensure that S1 reads correct

23

value. It also called WAR hazard and denoted as

S1. R4<-R1+R5

S2.R5<-R1+R2

6. Output dependence : two statements S1 and S2 are output dependent if they write to the

same memory location(S1 tries to write an operand before it is written by S1). Also called

WAW hazard and denoted as .A WAW hazard may occur in concurrent execution

environment.

S1. R2<-R4+R7

S2.R2<-R1+R3

4. I/O dependence: Read and write are I/O statements. I/O dependence occurs not because the same

variable is involved but because the same file referenced by both I/O statement

5. Unknown dependence: The dependence relation between two statements cannot be determined in

the following situations:

• The subscript of a variable is itself subscribed (ex:a(I(J)))

• The subscript does not contain the loop index variable. (ex: a[])

• A variable appears more than once with subscripts having different coefficients of the loop

variable.

• The subscript is non linear in the loop index variable.

Thus Parallel execution of program segments which do not have total data independence can produce

non-deterministic results.

Consider the following fragment of four instructions

program:

S1: Load R1, A /R1<-Memory(A)/

S2 : Add R2, R1 /R2<-(R1)+(R2)/

S3: Move R1, R3 /R1<-(R3)/

S4: Store B, R1 /Memory(B)<-(R1)/

• here the flow dependency S1 to S2, S3 to S4, S2 to S2

• Anti-dependency from S2to S3

• Output dependency S1 toS3

24

Consider a code fragment involving I/O opeerations

2. Control Dependence: This refers to the situation where the order of the execution of statements

cannot be determined before run time.

 For example conditional statement(IF), will not be resolved until run time, where the flow of statement

depends on the output of the conditional statement. Different paths taken after a conditional branch

may introduce or eliminate data dependence among instructions.depend on the data hence we need to

eliminate this data dependence among the instructions. This dependence also exists between operations

performed in successive iterations of looping procedure.

Control-independent example:

 for (i=0;i<n;i++)

 {

a[i] = c[i];

if (a[i] < 0)

a[i] = 1;

}

Control-dependent ex:

for (i=1;i<n;i++)

 {

if (a[i-1] < 0)

a[i] = 1;

}

Control dependence also avoids parallelism to being exploited. Compiler techniques or hardware branch

prediction techniques are needed to get around the control dependence in order to exploit more

parallelism.

3.Resource dependence:

Data and control dependencies are based on the independence of the work to be done. Even if several

segments are independent in other ways, they cannot be executed in parallel if there aren’t sufficient

processing resources. Resource dependence is concerned with conflicts in using shared resources, such

as registers, integer and floating point units, ALUs and memory areas among parallel events .ALU

conflicts are called ALU dependence. Memory (storage) conflicts are called storage dependence.

25

Bernstein’s Conditions –

Qn: What is the significance of Bernstein’s conditions in detecting parallelism in a

program?

Bernstein’s conditions are a set of conditions which must exist if two processes can execute in parallel.

Bernstein’s condition -1

Notation

 Let P1 and P2 be two processes.

 Input set Ii is the set of all input variables for a process Pi . Ii is also called the read set or

domain of Pi. We define the input set Ii of a process Pi as the set of all input variables needed

to execute the process.

 Output set Oi is the set of all output variables generated after execution for a process Pi .Oi is

also called write set.

Input variables.are essentially operands which can be fetched from the memory or registers and output

variables are the results to be stored in working registers or memory locations.

If P1 and P2 can execute in parallel (which is written as P1 || P2), then:

Bernstein’s condition -2

In terms of data dependencies, Bernstein’s conditions imply that two processes can execute in

parallel if they are flow-independent, antindependent, and output-independent. In general, a set of

processes P1, P2 ,…,Pk, can execute in parallel if Bernstein’s conditions are satisfied on a pairwise

basis.That is P1||P2||P3….||Pk if and only if Pi||Pj for all i≠j.

The parallelism relation || is commutative ie (Pi || Pj implies Pj || Pi), but not transitive (Pi || Pj and Pj

|| Pk does not guarantee Pi || Pk) . Therefore, || is not an equivalence relation. Pi || Pj || Pk implies

associativity.ie

(Pi || Pj)|| Pk =Pi || (Pj || Pk) . Since the order in which parallel executable processes are executed

should not make any difference in the output sets.

 Example

Detection of parallelism in a program using Bernstein’s conditions

Consider the simple case in which each process is a single HLL statement. We want to detect the parallelism

embedded in the following five statements labeled P I, P2, P3, P4, and P5, in program order.

26

Assume that each statement requires one step to execute. No pipelining is considered here. The

dependence graph shown in Fig. 2.2a demonstrates flow dependence as well as resource dependence. In

sequential execution. five steps are needed (Flg. 2.2b).

If two adders are available simultaneously, the parallel execution requires only three steps as shown in

Fig. 2.2c. Pairwise, there are 10 pairs of statements to check against Bernstein's conditions. Only 5

pairs, P1,||P5, P2|| P3, P2| | P5, P5 ||P3, and P4||P5, can execute in parallel as revealed in Fig 2.2a if there

are no resource conflicts. Collectively, only P2||P3||P5, is possible (Fig. 2.2c] because P2||P3, P3||P5,

and P5||P2 are all possible.

Violations of any one or more of the three conditions in 2.1 prohibits parallelism between two

processes. ln general, data dependence, control dependence, and resource dependence all prevent

parallelism from being exploitable.

27

 Hardware and Software Parallelism

Qn:Distinguish between hardware and software parallelism?

Hardware Parallelism Software Parallelism

1. Its build into machines architecture

and hardware multiplicity. Also known

as machine parallelism

2. It’s a function of cost and performance

trade off

3. It displays resource utilization patterns

of simultaneously executable

operations. It also indicates the peak

performance of processor resources

4. Its characterized by no: of instruction

issues per machine cycle

1. Its exploited by the concurrent

execution of machine language

instructions in a program

2. It’s a function of algorithm,

programming style and compiler

optimization.

3. It displays patterns of simultaneously

executable operations.

4. The program flow graph displays the

patterns of simultaneously executable

operations

5. 2 types –

 Control parallelism – allows 2

or more operations to be

performed simultaneously.

 Data parallelism – atmost

same operation is performed

over many data elements by

many processors

simultaneously.

One way to characterize the parallelism in a processor is by number of instruction issues per machine

cycle. If a processor issues k instructions per machine cycle, then it is called a k-issue processor. A

conventional pipelined processor takes one machine cycle to to issue a single instruction.These type of

processors are called one-issue machines,with a single instruction pipeline in the processor.

Mismatch between software parallelism and hardware parallelism

Qn:Expalin the process of finding out the Mismatch between software parallelism and

hardware parallelism

Consider the example program graph in Fig. 2.3a. There are eight instructions (four loads and four

arithmetic operations) to be executed in three consecutive machine cycles. Four load operations are

performed in the first cycle, followed by two multiply operations in the second cycle and two

add/subtract operations in the third cycle. Therefore. the parallelism varies from 4 to 2 in three cycles.

The average software parallelism is equal to 8/3= 2.67 instructions per cycle in this example program.

Now consider execution of the same program by a two-issue processor which can execute one memory

access (load or write) and one arithmetic (add, subtract, multiply etc.) operation simultaneously. With

this hardware restriction, the program must execute in seven machine cycles as shown in Fig. 1.3b.

28

Therefore. the hardware parallelism displays an average value of 8/7= 1.14 instmctions executed per

cycle. This demonstrates a mismatch between the software parallelism and the hardware parallelism.

 Fig 1.3 Executing an example program by a two-issue superscalar processor

Let us try to match the software parallelism shown in Fig. 2.3a in a hardware platform of a dual

processor system, where single-issue processors are used. The achievable hardware parallelism is shown

in Fig. 1.4.where L/S stands for load/store operations. Note that six processor cycles are needed to

execute the I2 instructions by two processors. .S1 and S2 are two inserted store operations, and I5 and l6

are two inserted load operations. These added instructions are needed for interprocessor communication

through the shared memory.

 Fig 1.4 :Dual-processor execution of the program in fig 1.3 a

Of the many types of software parallelism, two are most frequently cited as important to parallel

programming: The first is control parallelism which allows two or more operations to be performed

simultaneously. The second type has been called data parallelism, in which almost the same operation

is

performed over many data elements by many processors simultaneously.

29

Control parallelism, appearing in the form of pipelining or multiple functional units, is limited by the

pipeline length and by the multiplicity of functional units. Both pipelining and functional parallelism are

handled by the hardware; programmers need take no special actions to invoke them.

Data parallelism offers the highest potential for concurrency. It is practiced in both SIMD and MIMD

modes on MPP systems. Data parallel code is easier to write and to debug than control parallel code.

Synchronization in SIMD data parallelism is handled by the hardware. Data parallelism exploits

parallelism in proportion to the quantity of data involved.

To solve the mismatch problem between software parallelism and hardware parallelism, one approach is

to develop compilation support, and the other is through hardware redesign for more efficient

exploitation of parallelism. These two approaches must cooperate with each other to produce the best

result.

ROLE OF COMPILERS - Hardware processors can be better designed to exploit parallelism by an

optimizing compiler.That is compiler techniques are used to exploit hardware features to improve

performance. Such processors use large register file and sustained instruction pipelining to execute

nearly one instruction per cycle. The large register file supports fast access to temporary values

generated by an optimizing compiler. The registers are exploited by code optimizer and global register

allocator in such a compiler.

7.AMDAHL’S LAW FOR FIXED WORKLOAD

Qn:State amdahl’s law and describe its significance:?

BASICS OF PERFORMANCE EVALUATION

A sequential algorithm is evaluated in terms of its execution time which is expressed as a function of

its input size.S O

For a parallel algorithm, the execution time depends not only on input size but also on factors such as

parallel architecture, no. of processors, etc.A

Important Performance Metrics are:

 Parallel Run Time

 Speedup

 EfficiencyNC

Parallel Runtime

The parallel run time T(n) of a program or application is the time required to run the program on an n-

processor parallel computer.

When n = 1, T(1) denotes sequential runtime of the program on single processor.

Speedup

30

Speedup S(n) is defined as the ratio of time taken to run a program on a singleprocessor to the time

taken to run the program on a parallel computer with identical processors.

It measures how faster the program runs on a parallel computer rather than on a single processor.

Efficiency

The Efficiency E(n) of a program on n processors is defined as the ratio of speedup achieved and the

number of processor used to achieve it.

Speedup Performance Laws

 Amdahl’s Law [based on fixed problem size or fixed work load]

 Gustafson’s Law[for scaled problems, where problem size increases with machine size

 i.e. the number of processors]

 Sun & Ni’s Law [applied to scaled problems bounded by memory capacity]

Amdahl’s Law (1967)

Amdahl’s law is used to find the maximum improvement possible by improving a particular part of a

system. In parallel computing, Amdahl’s law is mainly used to predict the theoretical maximum

speedup for program processing using multiple processors

For a given problem size, the speedup does not increase linearly as the number of processors increases.

In fact, the speedup tends to become saturated. This is a consequence of Amdahl’s Law.

According to Amdahl’s Law, a program contains two types of operations:

 Completely sequential

 Completely parallel

Let, the time Ts taken to perform sequential operations be a fraction α (0<α≤1) of the total execution

time T(1) of the program, then the time Tp to perform parallel operations shall be (1-α) of T(1).

Thus, Ts = α.T(1) and Tp = (1-α).T(1)

Assuming that the parallel operations achieve linear speedup (i.e. these operations use 1/n of the time

taken to perform on each processor), then

31

Thus, the speedup with n processors will be:

 EQ: 1.1

Sequential operations will tend to dominate the speedup as n becomes very large.

 (Division of any number by infinity=0)

This means, no matter how many processors are employed, the speedup in this problem is limited

to 1/α. This is known as sequential bottleneck of the problem.

Note: Sequential bottleneck cannot be removed just by increasing the no. of processors.

Example:

 Suppose that a calculation has a 4% serial portion, what is the limit of speedup on 16

processors?

 16/(1 + (16 – 1)*.04) = 10

What is the maximum speedup?(ie 1/α)

 1/0.04 = 25

 If 90% of a calculation can be parallelized (i.e. 10% is sequential) then the maximum speed-up

which can be achieved on 5 processors is 1/(0.1+(1-0.1)/5) or roughly 3.6 (i.e. the program can

theoratically run 3.6 times faster on five processors than on one)

 S(n)

 =1/(0.1+(1-0.1)/5)

 = 3.6

(i.e. the program can theoretically run 3.6 times faster on five processors than on one)

32

Amdahl’s law for fixed workload

Qn:Describe amdahl’s law for fixedworkload?

Qn:Describe the term asymptotic speedup?

 =Computing capacity of a single processor

 W =Total amount of work(instructions or computations)

DOP=Degree of parallelism(The number of processors used to execute a program).

n = Machine size

w =Workload

m =Maximum parallelism in a profile

Asymptotic Speedup:

Asympnatic Speedup Denote the amount of work executed with DOP = i as or we can write

The execution time of Wi on a single processor [(sequentially) is ..

The execution time of Wi on K processors is .

The execution time with infinite number of processors is

Thus we can write the response time as:

 EQ-1.2

Fixed Load Speedup

The speed up formulae given in EQ-1.2 is based on fixed workload, regardless of machine

size. Speed up equation given below do give consideration to machine size also.

 As the number of processors increases in a parallel computer, the fixed load is distributed to

more processors for parallel exccution. Therefore the main objective is to produce the results as soon as

possible. In other words, minimal turnaround time is the primary goal. Speedup obtained for time

critical applications is called fixed—load speedup.

33

 EQ-1.3

Amdahl’s Law Revisited

Gene Amdahl derived a fixed-load speedup For the special case where the computer operates either in

sequential mode (with DOP = 1) or in perfectly parallel mode (with DOP =n). That is, Equation 1.3 is

then simplified to,

Amdahl’s law implies that the sequential portion of the program wi does not change with respect to the

machine size n. However, the parallel portion is evenly executed by n processors, resulting in a reduced

time.

Fig:Fixed load speedup model and amdahl’s law

As shown above, when the number of processors increases, the load on each processor decreases.

However. the total amount of work (workload) w1 +wn is kept constant as shown in Fig. a.

In Fig. b, the total execution time decreases because Tn = wn/n. Eventually, the sequential part will

dominate the performance because Tn=0 as n becomes very large and T1 is kept unchanged.

34

More Solved Problems

1 .A workstation uses a 15 MHz processor with a claimed 1000 MIPS rating to execute a given

program mix. Assume one cycle delay for each memory access.

a. What is the effective CPI of this computer?

b. Suppose the processor is upgraded with a 3.0 MHz clock. However, the speed of the memory

subsystem remains unchanged, and consequently two clock cycles are needed per memory access.

If 30% of the instructions require one memory access and another 5% require two memory

accesses per instruction, what is the performance (new MIPS rating) of the upgraded processor

with a compatible instruction set and equal instruction counts in the given program mix?(Kerala

university QP)

Answer:

a)MIPS=f/(CPI*10
6
)

 CPI=f/(MIPS*10
6
)

 =(1.5*10
9)

/(1000*10
6
)

 =1.5

b)30% instructions take one memory(hence 2 clock cycles as two clock cycles are needed per memory

access as per qn).Similarly 5% instructions take 2 memory accesses(ie..4 cycles).remaining 65% takes 1

clock cycle.

Total number of cycles=(30*2)+(5*4)+(65*1)= 145 cycles

CPI=total no of clock cycles/total no of instructions

 =145/100

 =1.45

MIPS=f/(CPI*10
6
)

 =(3*10
9)

/(1.45*10
6
)

 =2068.9

2

Answer:

35

3

Answers:

(a) Dependence graph:

(b) There are storage dependences between instruction pairs (S2, S5) and (S4, S5).

There is a resource dependence between Sl and S2 on the load unit, and another between S4 and S5 on the

store unit.

(c) There is an ALU dependence between S3 and S4, and a storage dependence between S1 and S5.

36

4.

Answer:

The input and output sets for the instructions are enumerated below:

I1 = {B, C}, O1 = {A},

12 = {B,D}, O2 = {C},

I3 = , O3 = {S},

I4 = {S,A,X(I)}, O4 = {S},

 I5 = {S,C}, O5 = {C}.

Using Bernstein's conditions, we find that

S1 and S3 can be executed concurrently, because I1 03 = , I3 O1 = , and 01 O3 = .

S2 and S3 can be executed concurrently, because I2 O3 = , 13 O2 = , and O2 O3 = ..

S2 and S4 can be executed concurrently, because 12 O4 = , 14 O2 = , and O 2 O4 = .

S1 and S5 cannot be executed concurrently, because I1 O 5 = {C}.

S1 and S2 cannot be executed concurrently, because I1 O2 = {C}.

S1 and S4 cannot be executed concurrently, because 14 O 1 = {A}.

S2 and S5 cannot be executed concurrently, because I5 O2 = O5 O2 = {C}.

S3 and S4 cannot be executed concurrently, because 14 O3 = O4 O3 = {S}.

S3 and S5 cannot be executed concurrently, because I5 O3 = {S}.

S4 and S5 cannot be executed concurrently, because I5 14 = I5 04 = {S}.

The program can be reconstructed as shown in the flow graph below:

37

5

Answer:

38

6:Define pipeline throughput and efficiency?

Throughput Rate:- Number of programs executed per unit time is called system throughput ws(in

programs per second).In a multiprogrammed system, the system throughput is often lower than CPU

throughput Wp defined by

Wp = f

 Ic *CPI

W = 1 / T

OR

W =(MIPS*10
6
)/Ic

Efficiency

The Efficiency E(n) of a program on n processors is defined as the ratio of speedup achieved and the

number of processor used to achieve it.

