MODULE I

Parallel computer models — Evolution of Computer Architecture, System attributes to
performance, Amdahl's law for a fixed workload. Multiprocessors and Multicomputers,

Multivector and SIMD computers, Architectural development tracks, Conditions of parallelism.

1.PARALLEL COMPUTER MODELS

> Parallel processing has emerged as a key enabling technology in modern computers, driven by

the ever-increasing demand for higher performance, lower costs, and sustained productivity in
real-life applications.

» Concurrent events are taking place in today's high-performance computers due to the common
practice of multiprogramming, multiprocessing, or multicomputing.
> Parallelism appears in various forms, such as pipelining, vectorization, concurrency,

simultaneity, data parallelism, partitioning, interleaving, overlapping, multiplicity, replication,

time sharing, space sharing, multitasking, multiprogramming, multithreading, and distributed
computing at different processing levels.

1.1THE STATE OF COMPUTING
1.1.1 Five Generation of Computers

Qn:Explain the five generations of computers?

Five Generations of Electronic Computers

Generation Technology and Software and Representative
Architecture Applications Systems
First Vacuum tubes and relay Machine/assembly languages, ENIAC,
(1945-54) memories, CPU driven by single user, no subroutine Princeton IAS,
PC and accumulator, linkage, IBM 701.
fixed-point arithmetic. programmed 1/0 using CPU.
Second Discrete transistors and HLL used with compilers, IBM 7090,
(1955-64) core memories, subroutine libraries, batch CDC 1604,
floating-point arithmetic, processing monitor. Univac LARC.
1/0 processors, multiplexed
ImMemory access.
Third Integrated circuits (SSI/- Multiprogramming and time- IBM 360/370
(1965-74) MSI), microprogramming, sharing OS, multiuser applications. CDC 6600 '
pipelining, cache, and TI-ASC, |
lookahead processors. PDP-8.
Fourth LSI/VLSI and semiconductor| Multiprocessor OS, languages, VAX 9000,
(1975-90) memory, multiprocessors, compilers, and environments

Cray X-MP,

vector supercomputers, for parallel processing. IBM 3090
multicomputers. BBN TC 7600
Fifth Advanced VLSI processors, Superscalar processors, systems
(1991-present) memory, and switches,

on a chip, massively parallel
processing, grand challenge
applications, heterogeneous
processing.

high-density packaging,
scalable architectures.

1.1.2 Elements of Modern Computer

Computing
Problems

Operating
System

y
Algorithms
and Data
Structures

Mapping

Hardware
Architecture

Programming

Binding

(compile, load) Applications Software

High-level
Languages

y

Performance
Evaluation

Elements of a modern computer system

1.1.3 Evolution of Computer Architecture

Qn:Describe the evolution of parallel computer architecture?

Qn:Explain the term look ahead parallelism?

The study of computer architecture involves both programming/software requirements and hardwarg
organization. Therefore the study of architecture covers both instruction set architectures and maching

implementation organizations.

As shown in figure below, Evolution Started with the von Neumann architecture built as a sequential
machine executing scalar data . The sequential computer was improved from bit-serial to word—
parallel operations, and from fixed—point to floating point operations. The von Neumann architecture
is slow due to sequential execution of instructions in programs.

Lookahead , parallelism, and pipelining: Lookahead techniques were introduced to prefetch
instructions in order to overlap I/E (instruction fetch/ decode and execution) operations and to enable
functional parallelism .

Functional parallelism was supported by two approaches: One is to use multiple functional
units simultaneously, and the other is to practice pipelining at various processing levels.

The latter includes pipelined instruction execution, pipelined arithmetic computations, and
memory-access operations. Pipelining has proven especially attractive in performing identical
operations repeatedly over vector data strings.

A vector is one dimensional array of numbers. A vector processor is CPU that implements an
instruction set containing instructions that operate on one dimensional arrays of data called vectors.

Vector operations were originally carried out implicitly by software-controlled looping using
scalar pipeline processors.

1=

17

Explicit vector instructions were introduced with the appearance of vector processors. A vector
processors equipped with multiple vector pipelines that can be concurrently used under hardware or
firmware control.

There are two Families of pipelined vector processors:
e Memory —to-memory- architecture supports the pipelined flow of vector operands directly
from the memory to pipelines and then back to the memory.
e Register-to register architecture uses vector registers to interface between the memory and
functional pipelines.

Another important branch of the architecture tree consists of the SIMD computers for synchronized
vector processing. An SIMD computer exploits spatial parallelism rather than temporal parallelism as
in a pipelined computer .SIMD computing is achieved through the use of an array of processing
elements [PEs] synchronised by the same controller. Associative memory can be used to build SIMD
associative processors.

Intrinsic parallel computers are those that execute programs in MIMD mode.

There are two major classes of parallel computers, namely, Shared memory multiprocessors and
message passing multicomputer. The major distinction between multiprocessors and multicomputer
lies in memory sharing and the mechanisms used for interprocessor communication.

The processors in a multiprocessor system communicate with each other through shared
variables in a common memory.

Each computer node in a multicomputer system has a local memory, unshared with other
nodes. Interprocessor communication is done through message passing among the nodes.

Legends:
VE: Instruction Fetch and Execute.
SIMD: Single Instruction stream and

Multipie Data streams
Lookahead MIMD: Muitipie Instruction streams

and Mutltiple Data streams

Scalar

Functional
Parallelism

e dird
e
Impilicit
Vector

IY/E Overap

Viemory-to Register-1o
-Mamaory -Register
SIMD MIMD
Associative Processor @umcompu!eD (Mulhprocessor)
Procassor Array

Massivealy parallel
processors (MPP)

Tree showing architectural evolution from sequential scalar computers to vector processors and
parallel computers

Flynn’s Classification (classified into 4)

Qn:Describe briefly about the operational model of SIMD computer with an example?
Qn: Characterize the architectural operations of SIMD and MIMD computers?

Describe briefly about Flynn’s classification?

« Michael Flynn (1972) introduced a classification of various computer architectures based on
notions of instruction and data streams. Stream denote a sequence of items (instructions or
data) as executed or operated upon by a single processor. Two types of information flow into a
processor: instructions and data. The instruction stream is defined as the sequence of
instructions performed by the processing unit. The data stream is defined as the data traffic
exchanged between the memory and the processing unit.

» Both instructions and data are fetched from the memory modules. Instructions are decoded by
the control unit, which sends the decoded instruction to the processor units for execution. Data
streams flow between the processors and the memory bidirectionally. Each instruction stream is
generated by an independent control unit.

According to Flynn’s classification, either of the instruction or data streams can be single or multiple.
Computer architecture can be classified
into the
e single-instruction single-data streams (SISD);
single-instruction multiple-data streams (SIMD);
e multiple-instruction single-data streams (MISD); and
e multiple-instruction multiple-data streams (MIMD).

1. SISD(Single Instruction Single Data Stream)

« Conventional sequential machines are called SISD -[single instruction stream over single data
stream] computers. Instructions are executed sequentially but may be overlapped in their
execution stages (pipelining).

Captions:
IS CU = Control Unit
B PU = Processing Unit
o IS - DS MU = Memory Unit
1710 =——| CU PU [> MU [IS = Instruction Stream

DS = Data Stream
PE = Processing Element

(a) SISD uniprocessor architecture LM = Local Memory

T

2. SIMD(Single Instruction Multiple Data Stream) — Represents vector computers/array processor
equipped with scalar and vector hardware.There are multiple processing elements supervised by th¢
same control unit. All PEs receive the same instruction broadcast from the control unit but operate on

different data sets from distinct data streams.

172

»| PE, |« » LM, |e—>
"os LY DS Data
IS 5 . Sets
— I CU}> IS e ™ loaded
rrogram loaded B . from
rom host DS DS host
> PE, f[e—> LM, f«—>

(b) SIMD architecture (with distributed memory)

prev instruct

prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)"B(1)| C(2)=A(2)"B(2) C(n)=A(n)"B(n|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

U7

3. MIMD(multiple instructions over multiple data stream) — most popular model. parallel computer

ters are reserved for MIMD

IS
110 Lis, cu; > PU, [«

IS DS
L (]
L4 ®
- ®

VO<~——cy,] IS PU, |.DS.

Os™

(c) MIMD architecture (with shared memory)

4. MISD(multiple instruction over single data stream)

The same data stream flows through a linear array of processors executing different instruction streams.
This architecture is also known as systolic arrays For pipelined execution of specific algorithms.

; A y
LN J CU

2ol 1" ey, G, - ™
(Memory ! IS i =S IS
program | ng D .
and data) » PU, S= PU, | D3 eece | PU,, g
1 1
DS
I/0

(d) MISD architecture (the systolic array)

Of the four machine models, most parallel computers built in the past assumed the MIMD model
for general purpose computations. The SIMD and MISD models are more suitable for special-purpose

computations. For this reason, MIMD is the most popular model, SIMD next, and MISD the least
popular model being applied in commercial machines.

Six Layers for Computer System Development

Qn:describe Six layers of computer system development?

Applications T
Programming Environment Machine
T Languages Supported Independent
Machine Communication Model l
Dependent Addressing Space
l Hardware Architecture

Six layers for computer system development {

A layered development of parallel computers is illustrated in Fig. above, based on a
classification by Lionel Ni [1990].
« Hardware configurations differ from machine to machine, even those of the same model.

» The address space of a processor in a computer system varies among different architectures. It
depends on the memory organization, which is machine—dependent. These features are up to the
designer and should match the target application domains.

* On the other hand, we want to develop application programs and programming environments
which are machine-independent. Independent of machine architecture, the user programs can be
ported to many computers with minimum conversion costs.

» High- level languages and communication models depend on the Architectural choices made in a
computer system. From a programmer's viewpoint, these two layers should be architecture-
transparent.

* Programming languages such as Fortran, C, C++, Pascal, Ada, Lisp and others can be supported
by most computers. However, the communication models, shared variables versus message
passing, are mostly machine-dependent.
Challenges in Parallel Processing: Major challenge is on the software and application side.lt is still difficul
to program parallel and vector computers.High performance computers should provide fast and accuratf
solutions to scientific ,engineering , business,social and defense problems.

2.SYSTEM ATTRIBUTES TO PERFORMANCE
Qn:Define the terms a)clock rate, b)CPI, MIPS rate, Throughput rate?
Qn:List out the matrics affecting scalability of a computer system for a given application?(
Ic,pmkt)
Qn:List and explain four system attributes affecting the performance of CPU?(

instruction-set architecture, compiler technology, CPU implementation and control, and
cache and memory hierarchy)

—t

T

System Attributes versus Performance Factors

The ideal performance of a computer system requires a perfect match between machine
capability and program behaviour.

Machine capability can be enhanced with better hardware technology, however program behaviour
is difficult to predict due to its dependence on application and run-time conditions.

Below are the five fundamental factors for projecting the performance of a computer.

CPU is driven by a clock of constant clock with a cycle time (t). The inverse of cycle time is the clock
rate (f=1/1)

Size of the program is determined by the Instruction Count(lc). Different instructions in a particular
program may require different number of clock cycles to execute. So,

Cycles per instruction (CPI):-is an important parameter for measuring the time needed to execute an
instruction .

Execution Time/CPU Time (T): Let Ic be Instruction Count or total number of instructions in the
program. The Execution Time or CPU time (T) will be:

T =1c xCPI x1 Eq.1.1

» The execution of an instruction involves the instruction fetch, decode, operand fetch, execution
and store results.
Only instruction decode and execution phases are carried out in CPU. The remaining three operations
may require access to memory
The CPI of an instruction type can be divided into two component terms corresponding to the total
processor cycles and memory cycles needed to complete the execution of the instruction. That is :-
CPI = Instruction Cycle = Processor Cycles +Memory Cycles. ie
CPI = Instructioncycle =p+m+k
where
m = number of memory references
P = number of processor cycles
k = latency factor (how much the memory is slow w.r.t to CPU)

Therefore, Equation 1.1 can be rewrite as follows:-

T = Ic x (ptmtk) x71 Eq.1.2

From the above equation the five factors affecting performance are:-Ic ,p,m,k, T

System Attributes: The above five performance factors (Ic ,p,m K, 1) are influenced by four system
attributes: instruction-set architecture, compiler technology, CPU implementation and control,
and cache and memory hierarchy, as specified in Table 1.2 below.

The instruction-set architecture affects the program length (1,) and processor cycles needed (p). The
compiler technology affects the values of Ic, p, and the memory reference count (m). The CPU

implementation and control determine the total processor time (p * t) needed. Finally, the memory

technology and hierarchy design affect the memory access latency (k * T). The above CPU time can be
used as a basis in estimating the execution rate of a processor.

Table 1.2 Performance Factors versus System Attributes

Performance Factors
S Instr Average Cycles per Instruction, CPJ Processor
Walem
Count, Processor Memory Memory- Cycle
Attri butes : -
1, Cycles per References per dccess Time.
Instruction, p Instruc tion, m Latency, k T
Instruction-set
3 v v
Architecture
Compiler
; v v v
Technology
Processor
Implementation v v
and Control
Cache and
Memory v v
Hierarchy

MIPS Rate. The processor speed is often measured in terms of million instructions per second
(MIPS). We simply call it the MIPS rate of a given processor.

Let C be the total number of cycles needed to execute a given program (ie C=Ic * CPI).
Then the CPU time in Eqg. 1.2 can be estimated as
T=C*1
=CIf.

Furthermore, CPI = C/Ic and
T =Ic*CPIl*<

= Ic * CPI/t.
_ 6
MIPS rate = Ic/(T*10)6 Eq.1.3
=f/(CP1*10°)
=(f*Ic)/(C*10°)
If f f b I.:-

MIPS rate

5 T T x10° CPIx 10° C = 10°
)

Now Based on Equation 1.2 and 1.3
CPU Time , T = (IC*lO'G)/MIPS

MFLOPS:
Most compute intensive applications in science and engineering make heavy use of floating point
operations. For such applications a more relevant measure of performance is floating point operations
per second abbreviated as mflops. With prefix mega(10”6),giga(1079) tera(10712) or peta(10”°15).
Floating-point performance is expressed as millions of floating-point operations per second (MFLOPS),
defined as follows ,only with floating-point instructions.

Number of executed floating-point operations in a program |

MFLOPS =

execution time * 10°

Throughput Rate:- Number of programs executed per unit time is called system throughput ws(in

programs per second).In a multiprogrammed system, the system throughput is often lower than CPU
throughput Wp defined by

Wp = f Eq.1.4

Ic *CPI

W=1/T
OR
W =(MIPS*10°)/Ic

Problems:-

1 A benchmark program is executed on a 40MHz processor. The benchmark program has the
following statistics.

Instruction Type | Instruction Count| Clock Cycle Count
Arithmetic 45000 i
Branch 32000 2
I.oad/Store 15000 2
Floating Point S000 2

Calculate average CPI1, MIPS rate & execution time for the above benchmark program
Given Clock speed of the processor= 40 MHz=40*10° Hz
Average CPI= C/Ic
=Total cycles to execute the program/Instruction count
=(45000 *1 + 32000*2 + 1500*2 + 8000*2) /(45000 + 3200 + 15000 + 8000)
=155000/100000
=1.55

Execution Time ,T=C/f
T = 150000 / 40 *10°
T=0.155/40
T =.003875 s
T =3.875ms (since 1s=1000ms)

MIPS rate = Ic / T * 10°
MIPS rate = 100000/(0.003875*10°
=25.8

2. Consider the execution of an object code with 2 *10° instructions on a 400 MHz processor. The
program consists of four major types of instructions. The instruction mix and the number of
cycles [CPI] needed for each instruction type are given below based on the result of a program
trace experiment:

10

Insoruc ton Cyp-e CPl Ins cruction mix
Arichoecic and logic 1 &%

Losad feenare wisth 2 18%

cache hic

Branch i 12%
Memory reference 8 10%

with cache miss

(a) Calculate the average CPl when the program is executed on a uniprocessor with the above
trace results.
(b) Calculate the corresponding MIPS rate based on the CPI obtained in part (a).

Answer:
average CPI = 0.6 +(2 *0.18) +(4* 0.12) +(8 *0.1) =2.24.
MIPS rate = f/(CPI*10%

=(400* 10°) /(2.24 *10°) =178

Programming Environments:
Qn: Difference between Implicit Parallelism and Explicit forms of Parallelism?

The programmability of a computer depends on the programming environment provided to the users.
conventional uniprocessor computers are programmed in a sequential environment in which
instructions are executed one after another in a sequential manner. Parallel computers employs parallel
environment where parallelism is automatically exploited.. Based on the programming environments
required parallelism can be of two types:

(Programmer) (Programmer)

\

Source code written Source code written
In saquential languages In concurrent dialects
C, C++, Fortran, or of C, C++, Fortran,
Pascal or Pascal
1
Paralellzing Concurrency
compier presenving compiler
\
Paralel Concurrent
object code object code
\J A
Execution by Execution by
runtime system runtime system
(a) Implicit paralielism (b) Explicit paralielism

Fig. 1.5 Two approaches to parallel programming (Courtesy of Charles Seltz; adapted with permission from
“ConcurrentArchitectures”, p.51 and p. 53, VLSI and Parallel Computation, edited by Suaya and Birtwistle,
Morgan Kaufmann Publishers, 1990)

IMPLICIT PARALLELISM

EXPLICIT PARALLELISM

In computer science, implicit
parallelism is a characteristic of a
programming language that allows a
compiler or interpreter to
automatically exploit the parallelism

In computer programming, explicit
parallelism is the representation of
concurrent computations by means of
primitives in the form of special-purpose
directives or function calls. Most parallel

inherent to the computations expressed
by some of the language's constructs.

primitives are related to process

synchronization, communication or task

partitioning.

2. Uses conventional languages such as
C, C++, Fortran or Pascal to write | 2. Requires more effort by programmers to
source program develop a source program using parallel

dialects like C, C++, Fortran and Pascal.

3. The sequentially coded source | 3. Parallelism is explicitly specified in the
program is translated into parallel user programs.
object code by a parallelizing
compiler.

4. Compiler detects parallelism and | 4. Burden on compiler is reduced as
assigns target machine resources. parallelism specified explicitly.

5. Success relies on intelligence of | 5. Programmer’s effort is more- special s/w
parallelizing compiler. Requires less tools needed to make environment more
effort from programmers. friendly to user groups.

memory | 6. Applied in Loosely coupled
Multiprocessors to tightly coupled VLIW

6. Applied in shared
multiprocessors.

3. MULTIPROCESSORS AND MULTICOMPUTERS

Qn. Distinguish between multiprocessor and multicomputers based on their structure,
resource sharing, and interprocessor communication)?

Qn:List differences between UMA, NUMA,COMA Models?

Qn:Describe in detail the types of shared memory multiprocessors models?

- 2 categories of parallel computer
- Distinguished by having shared memory(multiprocessors) or unshared distributed memory(multi
computers)

Multiprocessors Multicomputer

1. Single computer with
processors

multiple 1. Multiple autonomous computers

2. Each PE’s(CPU/processing elements) 2. Each PE’s has its own memory and
do not have their own individual resources — no sharing — Thus called
memories — memory and /O resources Distributed Memory Multicomputers
are shared — Thus called Shared
Memory Multiprocessors

3. Communication between PE’s not

12

Communication between PE’s a must

. Tightly coupled — due to high degree of
resource sharing

Use Dynamic Network — thus
communication links can be
reconfigured

Ex: Sequent Symmetry S-81

3 Types

UMA model
NUMA model
COMA model

mandatory

Loosely coupled as there is no resource
sharing

Use Static Network — connection of
switching units is fixed

Ex: Message Passing Multicomputer

NORMA model/
Memory Multicomputer

Distributed-

THE UMA MODEL

A

Y

Processors

ecoeo P

A

Y

System Interconnect
(Bus, Crossbar, Multistage network)

ﬂ\

Y

I/O SM,

Shared Memory

A

Y

(XXX} SM

m

The UMA multi;ﬁrocessor model

Physical memory is uniformly shared by all processors

All processors (PE1....PEn) take equal access time to memory — Thus its termed as Uniform

Memory Access Computers
Each PE can have its own private Cache

High degree of resource sharing(memory and 1/0) — Tightly Coupled

Interconnection Network can be — Common bus, cross bar switch or Multistage n/w (discussed

later)

When all PE’s have equal access to all peripheral devices — Symmetric Multiprocessor

In Asymmetric multiprocessor only one subset of processors have peripheral access. Master
Processors control Slave (attached) processors.

Applications of UMA Model

Suitable for general purpose and time sharing application by multiple users
Can be used to speed up execution of a single program in time critical application

13

DISADVANTAGES

Interacting process cause simultaneous access to same locations — cause problem when an

update is followed by read operation (old value will be read)
Poor Scalability — as no: of processors increase —shared memory area increase-thus n/w becomes

bottleneck.
- No: of processors usually in range(10-100)

THE NUMA MODEL (Ex: BBN Butterfly)

GSM GSM ceee GSM

A A A

Y y
Global Interconnect Network

Legends:
________________ i seoeTesegemEEEgSE] PHPrOCeSSOr

1 1
1 ! H 1
1 ! i I CSM: Cluster
E E}_ E i IE,_!—— :' Shared Mem«
L _l : | 5 ! GSM: Global
I ! i I Shared Memc
N~ Py | E'_ P i E_ ¢ CSM|i CIN: Cluster
o2k N e . by N : 1 interconnectio
Inter- bt & ' T 5 Network
LMz 2 connection| , E E E E
: Network | | | [P} csM: 5 [PFH fHesM!
. H 1 | 1
M P, | Cluster1 | | ClusterN !

(b) A hierarchical cluster model (e.g. the Cedar system at the Uni-

(a) Shared local memories (e.g. the
versity of lllinois)

N Butterfly)

Two NUMA models for multiprocessor systems

- Access time varies with location of memory

- Shared memory is distributed to all processors — Local memories

- Collection of all local memories forms global memory space accessible by all processors.

- Its faster to access content within local memory of a processor than to access remote
memory attached to another processor (delay through interconnection) — Thus named as
NON-Uniform Memory access — because access time depends on whether data available in

local memory of the processor itself or not.

Advantage

— reduces n/w bottleneck issue that occurs in UMA as prcessors have a direct access path to
attached local memory

3 types of Memory access pattern

I. Fastest to access — local memory of PE itself
[l. Next fastest — global memory shared by PE/Cluster
I1l. Slowest to access — remote memory(local memory of PE from another Cluster)

14

THE COMA MODEL

Interconnection Network

D D
g
| P P |

The COMA model of a multiprocessor (P: Processor, C: Cache, D: Directory;

Multiprocessor + Cache Memory = COMA Model

Multiprocessor using cache only memory

Ex: Data diffusion Machine , KSR-1 machine

Special case of NUMA machine in which distributed main memories are converted to caches —
all caches together form a global address space

Remote cache access is assisted by Distributed Cache directories (D in fig abv)

Application of COMA

- General purpose multiuser applications

DISTRIBUTED MEMORY / NORMA / MULTICOMPUTERS (Intel Paragon,
NCUBE, SuperNode1000)

M M M
® o e
P P P
A A y
v y 4
M| P [Message-passing - P | M
interconnection network
2 (Mesh, ring, torus, .
hypercube, cube-
M| P |« connected cycle, etc.) |le—> P | M
A y y
\ 4 A 4 y
P P R P
M M M

Generic model of a message-passing multicomputer

- Consists of multiple computers(called nodes)

- A node is an autonomous computer consisting of processor, local memory attached disks or
I/O peripherals.

- Nodes interconnected by a message passing network — can be Mesh, Ring, Torus, Hypercube

etc (discussed later)
- All interconnection provide point to point static connection among nodes

15

- Local memories are private and accessible only by processor — Thus Multicomputer are also
called No-remote-Memory —Access(NORMA)(difference with UMA and NUMA)

- Communication between nodes if required is carried out by passing messages through static
connection network.

Advantages over Shared Memory

- Scalable and Flexible : we can add CPU’s
- Reliable and accessible : since with Shared memory a failure can bring the whole system down

Disadvantage

- Considered harder to program because we are used to programming on common memory
systems.

ATaxonomy of MIMD Computers

The architectural trend for general-purpose parallel computers is in favor of MIMD configurations with
various memory configurations. Gordon Bell (1992) has provided a taxonomy of MIMD
machines. He considers shared-memory multiproccssors as having a single address
space. Scalable multiproccssors or multicomputers must use distributed memory. Multiprocessors using
centrally shared memory have limited scalability.

Bell’s taxonomy of MIMD computers

Dynamic binding of
Sidressss 1 rOOSSS0MS
KSR

Siatc binding, ring mult
[EEE SCI standaxd proposal

Destributed memory
muliprocessnes
Y Statc binding cacheng
Alliant DASH

Static program bindng
BBN. Cadar, CW”

Croas.pant or mult-slage
Cray. Fuitey, Hiachi, IBM
NEC, Tera

Simple, g mutl, bus
mull replacemant

Multiprocessors

Single Address Space
Shared Mamory
Computaton

Canral memory
mulproc assors
(nol scdable)

Bus mulss
DEC, Encore, NCR,
Sequant, SGL Sun

MMD Mesh connacied
nte)
Distibues .o
mulicomputens
(scalable) Hypercubes
NCUBE

Fast LANs far high
avatabllity and hgh
capacly dusiers
DEC. Tandem

Multicomputers
Multple Address Space
Mess 3ge-Pasang
Cormputation

LANs ©or disributed
prooassing
workstations, PCs

Centesl mulloompuierns

16

4. MULTIVECTOR and SIMD COMPUTERS

Qn:Write on the structure and functioning of vector supercomputers?
Qn:Differentiate multivector and SIMD computers?

We can classify supercomputers into 2

- Pipelined Vector machines using powerful processors equipped with vector hardware
- SIMD computers emphasizing on massive data parallelism

VECTOR SUPERCOMPUTERS

=
Scalar Processor
Scalar
| Functional
Pipelines

Vector Processor

]

]

1

1

1

1

1

)

! .
! Scalar Instructions
1

1

1

]

1

1

1

1

Vector Vector
Scalar < - »| Control Unit
Control Unit Instructions
i { Control

» Vector Func. Pipe.

f peidadhenn Pooce ___} r v

J, Instructions

A

— Main Memory [Vector .
Scalar| (Programand | pata! Vector .
Data | Data) <—!{Registers ° ¢—_—

» Vector Func. Pipe.

| Host
Mass | |Computer
Storage | e S e s S A i s !
I1/0O (User)

A vector computer is usually built on top of scalar processor — its attached to scalar processor as

an optional feature
- Program and data are first loaded into main memory through host computer

- Instructions are first decoded by scalar Control Unit

— if it’s a scalar operation or program control operation, it will be directly executed using scalar
functional pipelines.

-If its vector operation it will be send to the vector control unit. The control unit supervises the flow of
vector data between main memory and vector functional pipelines. Vector data flow is coordinated by
the control unit. A number of vector functional pipelines may be built into a vector processor

VECTOR PROCESSOR MODELS

Qn:Distinguish between Register to Register and Memory to memory architecture
for building conventional multivector supercomputers?

2 types :

17

o Register to Register architecture
o Memory to memory architecture

REGISTER to REGISTER architecture

- The fig above shows a register to register architecture. Vector registers are used to hold
vector operands, intermediate and final vector results.

- All vector registers are programmable

- Length of vector register is usually fixed (ex 64 bit for CRAY Series Supercomputer). Some
machines use reconfigurable vector registers to dynamically match register length(ex: Fujitsu
VVP2000)

- Generally there are fixed no: of vector registers and functional pipilines in vector processors
— hence they must be reserved in advance to avoid conflicts

MEMORY to MEMORY architecture

- differs from register to register architecture in use of vector stream unit in place of
vector registers.

- Vector operands and results are directly retrieved from and stored into main memory in
superwords (ex: 512 bits in Cyber 205)

Representative Supercomputers — Stardent 3000, Convex C3, IBM 390Cray Research Y-MP family,
Fujitsu VP2000)

SIMD SUPERCOMPUTERS

SIMD computer have One Control Processor and several Processing Elements.All Processing Elements
execute the same instruction at the same time. Interconnection network between PEs determines
memory access and PE Interaction.

SIMD computer (array processor) is normally interfaced to a host computer through the control unit.
The host computer is a general purpose machine which serves as the operating manager of the entire
system.

Each PE; is essentially an ALU with attached working registers and local memory PEM,; for the storage
of distributed data. The CU also has its own main memory for storage of programs. The function of CU
is to decode all instruction and determine where the decoded instructions should be executed. Scalar or
control type instructions are directly executed inside the CU. Vector instructions are broadcasted to the
PEs for distributed execution.

Masking schemes are used to control the status of each PE during the execution of a vector instruction.
Each PE may be either active or disabled during an instruction cycle. A masking vector is used to
control the status of all PEs. Only enabled PEs perform computation. Data exchanges among the PEs
are done via an inter-PE communication network, which performs all necessary data routing and
manipulation functions. This interconnection network is under the control of the control unit.

Fig below shows an abstract model of SIMD computer having single instruction over multiple data
streams

18

Control Unit
PE O PE 1 PE2 PE N-1
| Proc. 0| [Proc. 1] | | [Proc. 2|
[Mem. 0| [Mem. 1| [Mem. 2|

[Proc. N-1

Interconnection Network

Operational model of SIMD computers

SIMD Machine Model

An operational model of SIMD computer is specified by a 5-tupe :

M=(N,C,1,M,R)

Where

1. N is the number of Processing Element’s(PE’s) in m/c (ex: Illiac IV has 64 PE’s)
2. C is the set of instructions directly executed by Control Unit(CU)- including scalar and program

flow control instructions.

3. lis the set of instruction broadcast by CU to all PE’s for parallel execution(Ex: arithmetic, logic

, data routing, masking etc)

4. M is the set of masking schemes which sets each PE’s into enabled and disabled mode
5. R is the data-routing function, specifies the pattern to be set up in the interconnection n/w for

inter-PE communications.

Representative Systems:

» MasPar MP-1 (1024 to 16384 PEs), CM-2 (65536 PEs), DAP600 Family (up to 4096 PEs),

Illiac-1V (64 PEs)

5. ARCHITECTURAL DEVELOPMENT TRACKS

Qn: Explain the three tracks of evolution of parallel computers?

The evolution of parallel computers sprang along three tracks. These tracks are distinguished by
similarity in the underlying parallel computational models.

/ - Multiprocessor track
.--> Multiple processor track -<
| \ - Multicomputer track

/

/ / - Vector track
--< ---> Multiple data track =~ -<

\ \ - SIMD track

\

| / - Multithreaded track
“--> Multiple threads track -<
\ - Dataflow track

1.4.1 Multiple Processor track
e In the multiple processor track, the source of parallelism is assumed to be the concurrent
execution of different threads on different processors, with communication occurring either
through shared memory (multiprocessor track) or via message passing (multicomputer track).

e In the multiple data track, the source of parallelism is assumed to be the opportunity to execute
the same code on massive amounts of data. This could be through the execution of the same
instruction on a sequence of data elements (vector track) or through the execution of the same
sequence of instructions on similar data sets (SIMD track).

e In the multiple threads track, the source of parallelism is assumed to be the interleaved execution
of different threads on the same processor so as to hide synchronization delays between threads
executing on different processors. Thread interleaving could be coarse (multithreaded track) or
fine (dataflow track).

Architecture of todays systems pursue development tracks. There are mainly 3 tracks. These tracks are
illustrious by likeness in computational model & technological bases.
1. Multiple Processor tracks: multiple processor system can be shared memory multiprocessor or a

distributed memory multicomputer.
() Shared Memory track:

Shared memory track shows a track of multiprocessor development employing a single address
space in the entire system

20

Stanford/Dash
(Lenoski, Hennessy et al, 1992)

Fujitsu VPPS500
',2:,";?::? “ (Fujitsu, Inc. 1992)
1987)
KSR1
CMU/C.mmp (Kendall Square Research,1990)
(Wulf and Bell, 1972)
IBM RP3

NYU/ (Pfister et al, 1985)
Ultracomputer <
(Gottlieb et al, 1983)

BBN Butterfly
(BBN,1989)
(a) Shared-memory track
nCUBE-2/6400
nCUBE Corp. 1990)
Intel IPSC’s Intel Paragon
m&ﬂ?" (Intel Scientific —» (Intel Supercomputer
Computers, 1983) Systems, 1992)
Mosaic MIT/J Machine

(Seitz 1992) (Dally et al, 1992)
(b) Message-passing track

Fig. 1.17 Two multiple-processor tracks with and without shared memory

Message Passing Track
Th Cosmic Cube pioneered the development of message passing multicomputers.

2.Multivector and SIMD tracks

Multivector and SIMD tracks are useful for concurrent scalar/vector processing

CDC Cyber205 ETA10
{Levine, 1982) (ETA, Inc. 1989)
CDC 7600
(CDC,1870) Cray Y-MP Cray/MPP
(Cray Resaarch, 1989) {Cray Rasaarch, 1983)
Cray1
(Russall, 1978)

Fujitsu, NEC. Hitachi Modals

(a) Multivector track

21

DAP 610
(AMT, Inc. 18987)
Goodyear MPP
(Batcher, 1980)
cMm2 . ’CMS
(TMC, 1990) {TMC, 1891)
Ihac IV
{(Barnas etal, 1968)
MasPar MP1
{Nickolis, 1990)
BSP
{(Kuck and Stokaes. 1882)
IBMGF/1

(Beelem et al, 1985)
(b) SIMD track

Multivector Track

These are traditional vector super computers.The CDC 7600 was first vector dual processor system.Two
subtracks were derived from CDC 7600. The Cray and Japanese supercomputers are followed the
register-to-register architecture. The other subtrack used memory-to-memory architecture in building
vector supercomputers. We have identified only the CDC Cyber 205 and its successor the ETAICI here,
for completeness in tracking different supercomputer architectures.

SIMD Track
The Illiac IV pioneerd the construction of SIMD computers.

3.Multithreaded Track and Dataflow Track

Tera
(Alverson, Smith, et al, 1990)

CDC 6600 ’HEP
(CDC, 1964) (Smith 1978)
MIT/Alewife

(Agarwal et al, 1989)

(a) Multithreaded track

Monsoon

MIT Tagged Token T

(Arvind et al, 1980) . gpua“‘;?d?ggg‘)“& ™ (Nikhil etal, 1991)
Static Datafiow
(Dennis 1974)

Manchester EMS

Sigma 1 . 3
(Gurd & (Shimada et al, 1987) (Sakai et al, 1989)

Watson, 1982
(b) Datafiow track

The term multithreading implies that there are multiple threads of control in each processor.
Multithreading offers an effective mechanism for hiding long latency in building large-scale
multiprocessors.. As shown in Fig. the multithreading idea was pioneered by Burton Smith [1978] in
the HEP system which extended the concept of scoreboarding of multiple functional units in the CDC
6600.

22

Dataflow Track

The key idea is to use a dataflow mechanism,instead of a control-flow mechanism as in von Neumann
machines, to direct the program flow. Fine grain instruction-level parallelism is exploited in dataflow
compulters.

6. CONDITIONS of PARALLELISM

Qn:Explain three types of dependencies?

The ability to execute several program segments in parallel requires each segment to be independent of
the other segments. We use a dependence graph to describe the relation between statements The nodes
of a dependence graph correspond to the program statement (instructions), and directed edges with
different labels are used to represent the ordered relations among the statements. The analysis of
dependence graphs shows where opportunity exists for parallelization and vectorization.

Program segments cannot be executed in parallel unless they are independent. Independence comes in
several forms.

3 main types of dependencies

1. Data dependence: situation in which a program segment (instruction) refers to the
preceding statement.

2. Control dependence:This refers to the situation where the order of the execution of statements
cannot be determined before run time..It occurs with branches. On many instruction pipeline
architectures, the processor will not know the outcome of the branch in the fetch stage.

3. Resource Dependence: even if several segments are independent in other ways, they cannot

be executed in parallel if there aren’t sufficient processing resources (eg. Functional units)

Data dependence: The ordering of relationship between statements is indicated by the data dependence.
Five type of data dependence are defined below:

Qn:Describe the possible hazards between read and write operations in an instruction
pipeline?

1. Flow dependence: A statement S2 is flow dependent on S1 if an execution path exists from S1 to S2

and if at least one output (variables assigned) of S1 is used as input (operands to be used) to S2 .Also

S, —S,
called RAW hazard and denoted as * =

S1. R2<-R1+R3

S2. R4<-R2+R3
A data dependency occurs with instruction S2 as it is dependent on the completion of instruction S1.
5. Antidependence: Statement S2 is antidependent on the statement S1 if S2 follows S1 in
program order and instruction S2 tries to writes a register or memory location before

instruction S1 reads. The original order must be preserved to ensure that S1 reads correct

23

value. It also called WAR hazard and denoted as sl ¥ S:

S1. R4<-R1+R5
S2.R5<-R1+R2

6. Output dependence : two statements S1 and S2 are output dependent if they write to the
same memory location(S1 tries to write an operand before it is written by S1). Also called

WAW hazard and denoted as >1°7 32
environment.

S1. R2<-R4+R7

S2.R2<-R1+R3

A WAW hazard may occur in concurrent execution

4. 1/0 dependence: Read and write are 1/O statements. I/O dependence occurs not because the same
variable is involved but because the same file referenced by both 1/0O statement
5. Unknown dependence: The dependence relation between two statements cannot be determined in
the following situations:

» The subscript of a variable is itself subscribed (ex:a(l(J)))

« The subscript does not contain the loop index variable. (ex: a[])

« A variable appears more than once with subscripts having different coefficients of the loop

variable.

« The subscript is non linear in the loop index variable.

Thus Parallel execution of program segments which do not have total data independence can produce

non-deterministic results.

Consider the following fragment of four instructions
program:

S1: Load R1,A /R1<-Memory(A)/
S2:AddR2,R1 /R2<-(R1)+(R2)/

S3: Move R1,R3 /R1<-(R3)/

S4: Store B, R1 /Memory(B)<-(R1)/

« here the flow dependency S1 to S2, S3 to S4, S2 to S2
» Anti-dependency from S2to S3

* Output dependency S1 toS3

(a) Dapandance graph

24

Consider a code fragment involving 1/0O opeerations

Si: Read (4), A(I) Read array A from file 4/
S2: Process Process data/

S3: Write (4), B(I) Write array B into file 4/
S4: Close (4) /Close file 4/

) O depandance causad by
arcassmg the sams file by
the mad and write state-
mants

2. Control Dependence: This refers to the situation where the order of the execution of statements
cannot be determined before run time.

For example conditional statement(IF), will not be resolved until run time, where the flow of statement
depends on the output of the conditional statement. Different paths taken after a conditional branch
may introduce or eliminate data dependence among instructions.depend on the data hence we need to
eliminate this data dependence among the instructions. This dependence also exists between operations
performed in successive iterations of looping procedure.

Control-independent example:

for (i=0;i<n;i++)

{
a[i] = c[i[;
if (a[i] <0)
ali] =1;

}

Control-dependent ex:

for (i=1;i<n;i++)

{

if (afi-1] < 0)
afi] = 1;

}

Control dependence also avoids parallelism to being exploited. Compiler techniques or hardware branch
prediction techniques are needed to get around the control dependence in order to exploit more
parallelism.

3.Resource dependence:

Data and control dependencies are based on the independence of the work to be done. Even if several
segments are independent in other ways, they cannot be executed in parallel if there aren’t sufficient
processing resources. Resource dependence is concerned with conflicts in using shared resources, such
as registers, integer and floating point units, ALUs and memory areas among parallel events .ALU
conflicts are called ALU dependence. Memory (storage) conflicts are called storage dependence.

25

Bernstein’s Conditions —
On: What is the significance of Bernstein’s conditions in detecting parallelism in a
program?

Bernstein’s conditions are a set of conditions which must exist if two processes can execute in parallel.
Bernstein’s condition -1

Notation
e LetP1and P2 be two processes.

e Input set li is the set of all input variables for a process Pi . li is also called the read set or
domain of Pi. We define the input set li of a process Pi as the set of all input variables needed
to execute the process.

e Output set Oi is the set of all output variables generated after execution for a process Pi .Oi is
also called write set.

Input variables.are essentially operands which can be fetched from the memory or registers and output
variables are the results to be stored in working registers or memory locations.

If P1 and P2 can execute in parallel (which is written as P1 || P2), then:

N —_— %
1,70, = O

= =)
I 2 1 0 1 L

o 1 P 0 ~3 — :Z’:

Bernstein’s condition -2

In terms of data dependencies, Bernstein’s conditions imply that two processes can execute in
parallel if they are flow-independent, antindependent, and output-independent. In general, a set of
processes P1, P2 ,...,Pk, can execute in parallel if Bernstein’s conditions are satisfied on a pairwise
basis.That is P1||P2||Ps....|[Pkif and only if Pi|[Pj for all ij.

The parallelism relation || is commutative ie (Pi || Pj implies Pj || Pi), but not transitive (Pi || Pj and Pj
|| Pk does not guarantee Pi || Pk) . Therefore, || is not an equivalence relation. Pi || Pj || Pk implies
associativity.ie

(Pi || Pj)Il Pk =Pi || (Pj || Pk) . Since the order in which parallel executable processes are executed

should not make any difference in the output sets.

Example

Detection of parallelism in a program using Bernstein’s conditions

Consider the simple case in which each process is a single HLL statement. We want to detect the parallelism

embedded in the following five statements labeled P I, P2, P3, P4, and P5, in program order.

26

BR:C=DXE)
B:M=G+C |
P:A=B+C }
P:C=L+M

P:F=G+E |

Assume that each statement requires one step to execute. No pipelining is considered here. The
dependence graph shown in Fig. 2.2a demonstrates flow dependence as well as resource dependence. In
sequential execution. five steps are needed (Flg. 2.2Db).

(a) A dependence graph showing both data dependence (solid arrows)
and resource dependence (dashed amrows)

D
o p.‘

\J

(b) Sequential execution in five steps, (c) Paraliel execution in three steps,
assuming one step per statement assuming two adders are available
(no pipelining) per step

Fig.2.2 Detection of parallelism in the program of Example 2.2

If two adders are available simultaneously, the parallel execution requires only three steps as shown in
Fig. 2.2c. Pairwise, there are 10 pairs of statements to check against Bernstein's conditions. Only 5
pairs, P1,||P5, P2|| P3, P2| | P5, P5 ||P3, and P4||P5, can execute in parallel as revealed in Fig 2.2a if there
are no resource conflicts. Collectively, only P2||P3||P5, is possible (Fig. 2.2c] because P2||P3, P3||P5,
and P5||P2 are all possible.

Violations of any one or more of the three conditions in 2.1 prohibits parallelism between two
processes. In general, data dependence, control dependence, and resource dependence all prevent
parallelism from being exploitable.

27

Hardware and Software Parallelism

Qn:Distinguish between hardware and software parallelism?

Hardware Parallelism Software Parallelism

1. Its build into machines architecture 1. Its exploited by the concurrent
and hardware multiplicity. Also known execution of machine language
as machine parallelism instructions in a program

2. It’s a function of cost and performance 2. It's a function of algorithm,
trade off programming style and compiler

optimization.

3. It displays resource utilization patterns
of simultaneously executable 3. It displays patterns of simultaneously
operations. It also indicates the peak executable operations.

performance of processor resources

4. The program flow graph displays the

4. 1Its characterized by no: of instruction patterns of simultaneously executable
issues per machine cycle operations
5. 2types—

e Control parallelism — allows 2
or more operations to be
performed simultaneously.

e Data parallelism - atmost
same operation is performed
over many data elements by
many processors
simultaneously.

One way to characterize the parallelism in a processor is by number of instruction issues per machine
cycle. If a processor issues k instructions per machine cycle, then it is called a k-issue processor. A
conventional pipelined processor takes one machine cycle to to issue a single instruction.These type of
processors are called one-issue machines,with a single instruction pipeline in the processor.

Mismatch between software parallelism and hardware parallelism

Qn:Expalin the process of finding out the Mismatch between software parallelism and
hardware parallelism

Consider the example program graph in Fig. 2.3a. There are eight instructions (four loads and four
arithmetic operations) to be executed in three consecutive machine cycles. Four load operations are
performed in the first cycle, followed by two multiply operations in the second cycle and two
add/subtract operations in the third cycle. Therefore. the parallelism varies from 4 to 2 in three cycles.
The average software parallelism is equal to 8/3=2.67 instructions per cycle in this example program.

Now consider execution of the same program by a two-issue processor which can execute one memory
access (load or write) and one arithmetic (add, subtract, multiply etc.) operation simultaneously. With
this hardware restriction, the program must execute in seven machine cycles as shown in Fig. 1.3b.

28

Therefore. the hardware parallelism displays an average value of 8/7= 1.14 instmctions executed per
cycle. This demonstrates a mismatch between the software parallelism and the hardware parallelism.

L;: Load operation
- Multply operation

(b) Hardware parallelism

{a) Software paraliehsm

Fig 1.3 Executing an example program by a two-issue superscalar processor

Let us try to match the software parallelism shown in Fig. 2.3a in a hardware platform of a dual
processor system, where single-issue processors are used. The achievable hardware parallelism is shown
in Fig. 1.4.where L/S stands for load/store operations. Note that six processor cycles are needed to
execute the 12 instructions by two processors. .S1 and S2 are two inserted store operations, and 15 and 16
are two inserted load operations. These added instructions are needed for interprocessor communication
through the shared memory.

Cyde 1
Cyde 2
U/S: Load/Suxe operaton
X: Mulsply operaton
Cyde 3 - AVSubract oparation
Cyde 4
Adced
NStruchons
for IPC
Cyde 5
Cyde 6

Fig 1.4 :Dual-processor execution of the program in fig 1.3 a

Of the many types of software parallelism, two are most frequently cited as important to parallel
programming: The first is control parallelism which allows two or more operations to be performed
simultaneously. The second type has been called data parallelism, in which almost the same operation
IS

performed over many data elements by many processors simultaneously.

29

Control parallelism, appearing in the form of pipelining or multiple functional units, is limited by the
pipeline length and by the multiplicity of functional units. Both pipelining and functional parallelism are
handled by the hardware; programmers need take no special actions to invoke them.
Data parallelism offers the highest potential for concurrency. It is practiced in both SIMD and MIMD
modes on MPP systems. Data parallel code is easier to write and to debug than control parallel code.
Synchronization in SIMD data parallelism is handled by the hardware. Data parallelism exploits
parallelism in proportion to the quantity of data involved.

To solve the mismatch problem between software parallelism and hardware parallelism, one approach is
to develop compilation support, and the other is through hardware redesign for more efficient
exploitation of parallelism. These two approaches must cooperate with each other to produce the best
result.

ROLE OF COMPILERS - Hardware processors can be better designed to exploit parallelism by an
optimizing compiler.That is compiler techniques are used to exploit hardware features to improve
performance. Such processors use large register file and sustained instruction pipelining to execute
nearly one instruction per cycle. The large register file supports fast access to temporary values
generated by an optimizing compiler. The registers are exploited by code optimizer and global register
allocator in such a compiler.

. AMDAHL’S LAW FOR FIXED WORKILOAD

On:State amdahl’s law and describe its significance:?

BASICS OF PERFORMANCE EVALUATION

A sequential algorithm is evaluated in terms of its execution time which is expressed as a function of
its input size.
For a parallel algorithm, the execution time depends not only on input size but also on factors such as
parallel architecture, no. of processors, etc.
Important Performance Metrics are:

e Parallel Run Time

e Speedup

e Efficiency
Parallel Runtime
The parallel run time T(n) of a program or application is the time required to run the program on an n-
processor parallel computer.
When n = 1, T(1) denotes sequential runtime of the program on single processor.

Speedup

30

Speedup S(n) is defined as the ratio of time taken to run a program on a singleprocessor to the time
taken to run the program on a parallel computer with identical processors.
(1)

It measures how faster the program runs on a parallel computer rather than on a single processor.
Efficiency
The Efficiency E(n) of a program on n processors is defined as the ratio of speedup achieved and the

number of processor used to achieve it.

Speedup Performance Laws
e Amdahl’s Law [based on fixed problem size or fixed work load]
e Gustafson’s Law][for scaled problems, where problem size increases with machine size
i.e. the number of processors]

e Sun & Ni’s Law [applied to scaled problems bounded by memory capacity]

Amdahl’s Law (1967)

Amdahl’s law is used to find the maximum improvement possible by improving a particular part of a
system. In parallel computing, Amdahl’s law is mainly used to predict the theoretical maximum
speedup for program processing using multiple processors

For a given problem size, the speedup does not increase linearly as the number of processors increases.

In fact, the speedup tends to become saturated. This is a consequence of Amdahl’s Law.

According to Amdahl’s Law, a program contains two types of operations:
e Completely sequential

e Completely parallel

Let, the time Ts taken to perform sequential operations be a fraction a (0<o<1) of the total execution

time T(1) of the program, then the time Tp to perform parallel operations shall be (1-a) of T(1).
Thus, Ts=a.T(1) and Tp = (1-a).T(1)

Assuming that the parallel operations achieve linear speedup (i.e. these operations use 1/n of the time

taken to perform on each processor), then

31

(1 — a). T(1L)

T(n) = Ts + Tp,/n = a. T(1) +

L
Thus, the speedup with n processors will be:

T(1)
5 = —
(1) TG
_ 1

B 1 - @)

a+

v EQ: 1.1
Sy =

I+ im — e

Sequential operations will tend to dominate the speedup as n becomes very large.

Asn 2 ©, S(n) 2 1/«

(Division of any number by infinity=0)

This means, no matter how many processors are employed, the speedup in this problem is limited
to 1/a. This is known as sequential bottleneck of the problem.

Note: Sequential bottleneck cannot be removed just by increasing the no. of processors.

Example:

e Suppose that a calculation has a 4% serial portion, what is the limit of speedup on 16
processors?

P

Sy —
B - fwr — 0 pe

16/(1 + (16 — 1)*.04) = 10

What is the maximum speedup?(ie 1/a)
1/0.04 = 25

e [90% of a calculation can be parallelized (i.e. 10% is sequential) then the maximum speed-up
which can be achieved on 5 processors is 1/(0.1+(1-0.1)/5) or roughly 3.6 (i.e. the program can
theoratically run 3.6 times faster on five processors than on one)

1

S(n) e+

=1/(0.1+(1-0.1)/5)
=36
(i.e. the program can theoretically run 3.6 times faster on five processors than on one)

32

Amdahl’s law for fixed workload

Qn:Describe amdahl’s law for fixedworkload?

Qn:Describe the term asymptotic speedup?

A =Computing capacity of a single processor
W =Total amount of work(instructions or computations)
DOP=Degree of parallelism(The number of processors used to execute a program).
n = Machine size
w =Workload

m =Maximum parallelism in a profile

Asymptotic Speedup:

Asympnatic Speedup Denote the amount of work executed with DOP =i as i = /A% or we can write
W= T'"II H:

ket

The execution time of W; on a single processor [(sequentially) is 1(1) = WiA. .

The execution time of W; on K processors is t{k) = WikA.

The execution time with infinite number of processors is f4==) = Hi/iA

Thus we can write the response time as:

Ll ar

W

)= > ¢ (1)= .
IEI’ i=] A

o o H,

T{m)— ZI’I {n—:r]— E

i=] i=]
The asymptotic speedup S, 1s defined as the ratio of 7(1) to T{ss):

e

s (1) e
T () —

i=l EQ-1.2
Fixed Load Speedup

The speed up formulae given in EQ-1.2 is based on fixed workload, regardless of machine
size. Speed up equation given below do give consideration to machine size also.

As the number of processors increases in a parallel computer, the fixed load is distributed to
more processors for parallel exccution. Therefore the main objective is to produce the results as soon as
possible. In other words, minimal turnaround time is the primary goal. Speedup obtained for time
critical applications is called fixed—Iload speedup.

33

We consider below both the cases of DOP < n and of DOP = n. We use the ceiling function [x | to represent
the smallest integer that is greater than or equal to the positive real number x. When x is a fraction, x equals
|. Consider the case where DOP = i > n. Assume all » processors are used to execute I, exclusively. The
execution time of W, is

W, [i
rj{” B e | i
) iA [n-‘

Thus the response time is

WAL
= >

Note that if i < n, then 1{n) = t{==) = W{iA. Now, we define the fived-load speedup factor as the ratio of
I{1)to0 Iin):

I

W
) _ i
’|
n

T{J’.’j I
= EQ-1.3

.

W
2

Amdahl’s Law Revisited

Gene Amdahl derived a fixed-load speedup For the special case where the computer operates either in

sequential mode (with DOP = 1) or in perfectly parallel mode (with DOP =n). That is, Equation 1.3 is
then simplified to,

o= Wi,
W, +W,in

Amdahl’s law implies that the sequential portion of the program w; does not change with respect to the

machine size n. However, the parallel portion is evenly executed by n processors, resulting in a reduced
time.

A Workload 4 Execution Time
T
W[WL WL WL W, W, =
Tq
Ty
Ty T
W, IW, W W IW W T 1 ¥
n
T, r - T4
niT
n|T,
~-ry -
1: 203 € 5 6 1 9 % 8 6
No. of processors No. of processors
(a) Fixed workioad (b) Decreasing execution time

Fig:Fixed load speedup model and amdahl’s law
As shown above, when the number of processors increases, the load on each processor decreases.
However. the total amount of work (workload) w; +wj, is kept constant as shown in Fig. a.
In Fig. b, the total execution time decreases because T, = wy/n. Eventually, the sequential part will
dominate the performance because T,=0 as n becomes very large and T; is kept unchanged.

34

More Solved Problems

1 .A workstation uses a 15 MHz processor with a claimed 1000 MIPS rating to execute a given
program mix. Assume one cycle delay for each memory access.

a. What is the effective CPI of this computer?

b. Suppose the processor is upgraded with a 3.0 MHz clock. However, the speed of the memory
subsystem remains unchanged, and consequently two clock cycles are needed per memory access.
If 30% of the instructions require one memory access and another 5% require two memory
accesses per instruction, what is the performance (new MIPS rating) of the upgraded processor
with a compatible instruction set and equal instruction counts in the given program mix?(Kerala
university QP)

Answer:
a)MIPS=f/(CP1*10%)
CPI=f/(MIPS*10°)
=(1.5*10% /(1000*10°)
=1.5

b)30% instructions take one memory(hence 2 clock cycles as two clock cycles are needed per memory
access as per gn).Similarly 5% instructions take 2 memory accesses(ie..4 cycles).remaining 65% takes 1
clock cycle.

Total number of cycles=(30*2)+(5*4)+(65*1)= 145 cycles

CPI=total no of clock cycles/total no of instructions
=145/100
=1.45
MIPS=f/(CPI*10°)
=(3*10Y /(1.45*10°)

=2068.9
2
Draw a dependence graph to show all the dependences among the following
statements.
B+D
= A X 3
= A=A 4 (
o - \/2
Answer:
7 N
:\(.’ “\&,\z\
*’9\/ 53)
(oy
| TRED
\ s
N

Dottedd Lirvass-

35

Problem 2.5 Armnzalyze the darta dependences
among the following statements in a given prograrm:

S1: Load R1, 1024 /IR1 «— 1024/
S2: Load R2 M(10) /R2Z «— Memory(10)/
S3: Add R1,.R2 /R1 «— (R1) + (R2)y/

S4: Store M{(1024).RI1 Memory(1024) «— (R1)Y
S5: Store M{((R2)). 1024 /Memory(64) «— 1024/

where (Ri) means the content of regisver Ri and
Memory(10) contains 64 initially.
(2) Draw a dependence graph to show all dhe
dependences.
(b) Aure there any resource dependences if only

one copy of each funcrional umnic is available in
the CPU?
{(c) Repear the above for the following program

statementcts:
S1: Load R1, M(100) /R1 « Memory(100)V
S2: Move R2 . R1 /IR2 «— (R1)Y
S3: Inc R1 /R1 «— (R1) = 1/
S4: Add R2. R1 /IR2 «— (R2) + (R1WV

= - Store M{(100). R1 /Memory(100) «— (R1)/

Answers:

(‘a) Dependence graph:

a)

(b) There are storage dependences between instruction pairs (S2, S5) and (S4, S5).

There is a resource dependence between Sl and S2 on the load unit, and another between S4 and S5 on the
store unit.

(c) There is an ALU dependence between S3 and S4, and a storage dependence between S1 and S5.

36

4.
Problem 2.6 A sequential program consists
of the following five statements, S1 dhrough S5.
Considering each stcarement as a separate process,
clearly identfy input set I, and ocutput set O, of each
process. Restructure the program using Bernstein’'s
conditions in order o achieve maximum parallelism
between processes. If any pair of processes cannot
be executed concurrentdy, specify which of the three
conditions is not satisfied.
S1: A =8B+ C
S2: C=BxD
~ % - S=0
S4: Dol = A 100
S =S + X(I)
End Do
S5: IF (S . GT.1000) C = C < 2
Answer:

The input and output sets for the instructions are enumerated below:

11 ={B,C}, O: = {A},
1,={B,D}, 0, = {C},
3=, O3 ={S},
14={SAX(D} O, ={5},
I5={S,C}, 05 ={C}.

Using Bernstein's conditions, we find that

S1 and S3 can be executed concurrently, because 11 n03 =, 13 n01 = J,and 01 n O3 = <.
S2 and S3 can be executed concurrently, because 12 N 03=,13n 02=J,and 02 n 03 = J ..
S2 and S4 can be executed concurrently, because 12N 04 =, 14n 02 =J, and O, N O4 = .

S1 and S5 cannot be executed concurrently, because 11 n O 5 = {C}.

S1 and S2 cannot be executed concurrently, because 11 n O, ={C}.

S1 and S4 cannot be executed concurrently, because 14n O, = {A}.

S2 and S5 cannot be executed concurrently, because I5n O, = O5 n O, = {C}.

S3 and S4 cannot be executed concurrently, because 14 O3 =04 N O3 = {S}.

S3 and S5 cannot be executed concurrently, because 15 N O; = {S}.

S4 and S5 cannot be executed concurrently, because 15 14 = 15n 04 = {S}.

The program can be reconstructed as shown in the flow graph below:

37

Problem 2.4 Perform a data dependence analysis

on each of the following Fortran program fragments.

Show the dependence graphs among the smatements
with justification.
(2) S1: A=B+D
S2: C=AXx3
S3: A=A +C
S4: E=A/2
(b) S1: X = SIN(Y)
S2: Z=X+W
S3: Y =-25 xW
S4: X =COS(2)
(c) Determine the data dependences in
the same and adjacent iterations of the
following Do-loop.

Do 101=1,N
Si: A(l+ 1) =8B -—-1)+C()
S2: B(l) =A(l) x K
S3: C(h)=8B()—1

10 Continue

Answer:

a)
Cs10

38

b

6:Define pipeline throughput and efficiency?

Throughput Rate:- Number of programs executed per unit time is called system throughput ws(in
programs per second).In a multiprogrammed system, the system throughput is often lower than CPU
throughput Wp defined by

Wp = f
Ic *CPI
W=1/T
OR
W =(MIPS*10°)/Ic
Efficiency

The Efficiency E(n) of a program on n processors is defined as the ratio of speedup achieved and the

number of processor used to achieve it.

S(n) T(1)

E(n) = n n.T(n)

