
1

MODULE II

Processors and memory hierarchy – Advanced processor technology- Design Space of

processors, Instruction Set Architectures, CISC Scalar Processors, RISC Scalar

Processors, Superscalar and vector processors, Memory hierarchy technology.

2.1 : ADVANCED PROCESSOR TECHNOLOGY

Architectural families of modern processors are introduced here. Major processor families to be studied include

the CISC, RISC, superscalar, VLIW, superpipelined, vector, and symbolic processors. Scalar and vector

processors are for numerical computations. Symbolic processors have been developed for AI applications.

Qn:Explain design space of processor?

2.1.1 Design Space of Processors

• Processor families can be mapped onto a coordinated space of clock rate versus cycles per instruction
(CPI), as illustrated in Fig. 4.1.

• As implementation technology evolves rapidly, the clock rates of various processors have moved from

low to higher speeds toward the right of the design space (ie increase in clock rate). and processor

manufacturers have been trying to lower the CPI rate(cycles taken to execute an instruction) using

innovative hardware approaches.

• Two main categories of processors are:-

o CISC (eg:X86 architecture)

o RISC(e.g. Power series, SPARC, MIPS, etc.) .

• Under both CISC and RISC categories, products designed for multi-core chips, embedded applications,
or for low cost and/or low power consumption, tend to have lower clock speeds. High performance

processors must necessarily be designed to operate at high clock speeds. The category of vector

2

processors has been marked VP; vector processing features may be associated with CISC or RISC main

processors.

 Qn:Compare CISC ,RISC, Superscalar and VLIW processors on the basis of design space?

Design space of CISC ,RISC, Superscalar and VLIW processors

 The CPI of different CISC instructions varies from 1 to 20. Therefore, CISC processors are at the upper

part of the design space. With advanced implementation techniques, the clock rate of today‘s CISC

processors ranges up to a few GHz.

 With efficient use of pipelines, the average CPI of RISC instructions has been reduced to between one and

two cycles.

 An important subclass of RISC processors are the superscalar processors, which allow multiple instructions
to be issued simultaneously during each cycle. Thus the effective CPI of a superscalar processor should

be lower than that of a scalar RISC processor. The clock rate of superscalar processors matches that of

scalar RISC processors.

 The very long instruction word (VLIW) architecture can in theory use even more functional units than a
superscalar processor. Thus the CPI of a VLIW processor can be further lowered. Intel‘s i860 RISC

processor had VLIW architecture.

The effective CPI of a processor used in a supercomputer should be very low, positioned at the lower

right corner of the design space. However, the cost and power consumption increase appreciably if

processor design is restricted to the lower right corner.

Instruction Pipelines

Qn:Explain the execution of instructions in base scalar and underpiprelined processors?

 Typical instruction includes four phases:

o fetch

3

o decode

o execute

o write-back

 These four phases are frequently performed in a pipeline, or ―assembly line‖ manner, as illustrated on the

figure below.

Qn:Define the following g terms related to modern processor technology: a: Instruction issue

latency b) Simple operation latency c) Instruction issue rate?

Pipeline Definitions

 Instruction pipeline cycle – the time required for each phase to complete its operation (assuming equal

delay in all phases)

 Instruction issue latency – the time (in cycles) required between the issuing of two adjacent instructions

 Instruction issue rate – the number of instructions issued per cycle (the degree of a superscalar)

4

 Simple operation latency – the delay (after the previous instruction) associated with the completion of a

simple operation (e.g. integer add) as compared with that of a complex operation (e.g. divide).

 Resource conflicts – when two or more instructions demand use of the same functional unit(s) at the same

time.

Pipelined Processors

 Case 1 : Execution in base scalar processor -

 A base scalar processor, as shown in Fig. 4.2a and below. :

o issues one instruction per cycle

o has a one-cycle latency for a simple operation

o has a one-cycle latency between instruction issues

o can be fully utilized if instructions can enter the pipeline at a rate on one per cycle

 CASE 2 : If the instruction issue latency is two cycles per instruction, the pipeline can be underutilized, as

demonstrated in Fig. 4.2b and below:

 Pipeline Underutilization – ex : issue latency of 2 between two instructions. – effective CPI is 2.

 CASE 3 : Poor Pipeline utilization – Fig. 4.2c and below:-, in which the pipeline cycle time is doubled

by combining pipeline stages. In this case, the fetch and decode phases are combined into one pipeline stage,

and execute and write-back are combined into another stage. This will also result in poor pipeline

utilization.

5

o combines two pipeline stages into one stage – here the effective CPI is ½ only

 The effective CPI rating is 1 for the ideal pipeline in Fig. 4.2a, and 2 for the case in Fig. 4.2b. In Fig.
4.2c, the clock rate of the pipeline has been lowered by one-half.

 Underpipelined systems will have higher CPI ratings, lower clock rates, or both.

Qn:Draw and explain datapath architecture and control unit of a scalar processor?

Data path architecture and control unit of a scalar processor

 The data path architecture and control unit of a typical, simple scalar processor which does not employ an

instruction pipeline is shown above.

 Main memory, I/O controllers, etc. are connected to the external bus.

 The control unit generates control signals required for the fetch, decode, ALU operation, memory access,a

nd write result phases of instruction execution.

 The control unit itself may employ hardwired logic, or—as was more common in older CISC style

processors—microcoded logic.

 Modern RISC processors employ hardwired logic, and even modern CISC processors make use of many of

the techniques originally developed for high-performance RISC processors.

6

2.1.2 Instruction-Set Architectures

Qn:Distinguish between typical RISC and CISC processor architectures?

Qn:Compare ISA in RISC and CISC processors in terms of instruction formats, addressing

modes and cycles per instruction?

Qn:List out the advantages and disadvantages of RISC and CISC architectures?

 The instruction set of a computer specifics the primitive commands or machine instructions that a

programmer can use in programming the machine.

 The complexity of an instruction set is attributed to the instruction formats data formats, addressing modes.

general-purpose registers, opcode specifications, and flow control mechanisms used.

 ISA Broadly classified into 2:

 CISC

 RISC

 A computer with large number of instructions is called complex instruction set computer(CISC)

 A computer that uses a few instructions with simple constructs is called Reduced Instruction set

computers (RISC). These instructions can be executed at a faster rate.

S.No CISC RISC

1 Large set of instructions with variable

format (16-64 bits per instr)

Small set of instructions with fixed (32 bit)

format, mostly register based

2 12-24 addressing modes 3-5 addressing modes

3 8-24 general purpose registers Large no of general purpose registers (32-

195)

4 Have a unified cache for holding both

instr and data

Use separate instruction and data cache

5 CPI btw 2 and 15 Avg CPI <1.5

6 CPU control is Earlier Microcoded using

control memory(ROM) ,but modern

CISC also uses hardwired control.

Hardwired control logic

7 Clock rates btw 33-50 MHz Clock rate btw 50-150 MHz

8 Ex: 8086, 80386 Ex: SUN SPARC, ARM

9 Architectural Distinctions: Architectural Distinctions:

7

NOTE:MC68040 and i586 are examples of CISC processors which uses split caches and hardwired

control for reducing the CPI.(some CISC processor can also use split caches and hardwired control.

 CISC Advantages

 Smaller program size (fewer instructions)

 Simpler control unit design

 Simpler compiler design

 RISC Advantages

 Has potential to be faster

 Many more registers

 RISC Problems

 More complicated register decoding system

 Hardwired control is less flexible than microcode

Qn:Differentiate between scalar processor and Vector processors?
Difference between Scalar and Vector processor

Scalar Processor Vector Processor

1. One result/many clock cycles is

produced

2.

1. One result/clock cycle is produced

2.

8

2.1.3 CISC SCALAR PROCESSORS

 Executes scalar data.

 Executes integer and fixed point operations.

 Modern scalar processors executes both integer and floating-point unit and even multiple such units.

 Based on a complex instruction set, a CISC scalar processor can also use pipelined design.
 Processor may be underpipelined due to data dependence among instructions, resource conflicts,

branch penalties and logic hazards.



Qn:Expalin 5 or 6 stage pipeline of CISC processors?

9

CISC Processor examples:

CISC Microprocessor Families: widely used in Personal computers industry

INTEL: 4-bit Intel 4004
 8-bit –Intel 8008, 8080, and 8085.
 16-bit - 8086, 8088, 80186, and 80286.

 32 bit-, the 80386
The 80486 and Pentium are the latest 32-bit processors in the Intel 80x86 family.

MOTOROLA: 8 –bit MC6800

 16 bit MC68000
 32 bit MC68020, MC68030, MC68040.

National Semiconductor’s:32 bit –NS32532

10

TYPICAL CISC PROCESSOR ARCHITECTURE- VAX 8600 Processor architecture

• VAX 8600 processor uses typical CISC architecture with microprogrammed control.

• The instruction set contained about 300 instructions with 20 different addressing modes.

• The CPU in the VAX 8600 consisted of two functional units for concurrent execution of integer and

floating-point instructions.

• The unified cache was used for holding both instructions and data.

• There were 16 GPRs in the instruction unit.

• Instruction pipelining was built with six stages in the VAX 8600.

• The instruction unit prefetched and decoded instructions, handled branching operations, and

supplied operands to the two functional units in a pipelined fashion.

• A translation lookaside buffer [TLB) was used in the memory control unit for fast generation of a

physical address from a virtual address.

• Both integer and floating-point units were pipelined.

• The CPI of VAX 8600 instruction varied from 2 to 20 cycles. Because both multiply and divide

instructions needs execution units for a large number of cycles.

11

The Motorola MC68040 microprocessor architecture

Figure below shows the MC68040 architecture. Features are listed in the above table.

The architecture has involved

• Separate instruction and data memory unit, with a 4-Kbyte data cache, and a 4-Kbyte instruction
cache, with separate memory management units (MMUs) supported by an address translation cache

(ATC), equivalent to the TLB used in other systems.

• The processor implements 113 instructions using 16 general-purpose registers.

• 18-Addressing modes includes:- register direct and indirect, indexing, memory indirect, program
counter indirect, absolute, and immediate modes.

• The instruction set includes data movement, integer, BCD, and floating point arithmetic, logical,

shifting, bit-field manipulation, cache maintenance, and multiprocessor communications, in addition to

program and system control and memory management instructions

• The integer unit is organized in a six-stage instruction pipeline.

• The floating-point unit consists of three pipeline stages .

• All instructions are decoded by the integer unit. Floating-point instructions are forwarded to the floating-

point unit for execution.

12

• Separate instruction and data buses are used to and from the instruction and data from memory units,

respectively. Dual MMUs allow interleaved fetch of instructions and data from the main memory.

• Three simultaneous memory requests can he generated by the dual MMUs, including data operand read

and write and instruction pipeline refill.

• Snooping logic is built into the memory units for monitoring bus events for cache invalidation.

• The complete memory management is provided with support for virtual demand paged operating
system.

• Each of the two ATCs has 64 entries providing fast translation from virtual address to physical address.

2.1.4 RISC SCALAR PROCESSORS

Qn:Explain the relationship between the integer unit and floating point unit in most RISC

processor with scalar organization?

 Generic RISC processors are called scalar RISC because they are designed to issue one instruction per

cycle, similar to the base scalar processor

 Simpler: - RISC design Gains power by pushing some less frequently used operations into software.

 Needs a good compiler when compared to CISC processor.

 Instruction-level parallelism is exploited by pipelining

Qn:Expalin classic 5 stage pipeline of RISC processors?

RISC Pipelines

Basic five-stage pipeline in a RISC machine (IF = Instruction Fetch, ID = Instruction Decode, EX =

Execute, MEM = Memory access, WB = Register write back). The vertical axis is successive instructions;

the horizontal axis is time. So in the green column, the earliest instruction is in WB stage, and the latest

instruction is undergoing instruction fetch.

https://en.wikipedia.org/wiki/RISC
https://en.wikipedia.org/wiki/Instruction_fetch

13

RISC Processor examples:

The Intel i860 Processor Architecture - RISC

• It was a 64-bit RISC processor fabricated on a single chip containing more than l million transistors.

• The peak performance of the i860 was designed to reach 80 Mflops single-precision or 60 Mflops

double-precision, or 40 MIPS in 32-bit integer operations at a 40-MHz clock rate.

• In the block diagram there were nine functional units (shown in 9 boxes) interconnected by multiple

data paths with widths ranging from 32 to 128 bits.

14

• All external or internal address buses were 32-bit wide, and the external data path or internal data

bus was 64 bits wide. However, the internal RISC integer ALU was only 32 bits wide.

• The instruction cache had 4 Kbytes organized as a two-way set-associative memory with 32 bytes per

cache block. lt transferred 64 bits per clock cycle, equivalent to 320 Mbytes/s at 40 MHz.

• The data cache was a two-way set associative memory of 8 Kbytes. lt transferred 128 bits per clock

cycle (640 Mbytes/s) at 40 MHZ .

• The bus control unit coordinated the 64-bit data transfer between the chip and the outside world.

• The MMU implemented protected 4 Kbyte paged virtual memory of 2^32 bytes via a TLB .

• The RISC integer unit executed load, store. Integer , bit, and control instructions and fetched

instructions for the floating-point control unit as well.

• There were two floating-point units, namely, the multiplier unit and the adder unit which could be

used separately or simultaneously under the coordination of the floating-point control unit.Special

dual-operation floating-point instructions such as add-and-multiply and subtract-and-multiply used both

the multiplier and adder units in parallel .

• The graphics unit supported three-dimensional drawing in a graphics frame buffer, with color

intensity, shading, and hidden surface elimination.

15

• The merge register was used only by vector integer instructions. This register accumulated the results

of multiple addition operations .

2.2: SUPERSCALAR AND VECTOR PROCESSORS

Qn: Describe the structure of a superscalar pipeline in detail.Discuss the various instruction

issue and completion policies in superscalar processors?

A CISC or a RISC scalar processor can be improved with a superscalar or vector architecture. Scalar

processors are those executing one instruction per cycle. Only one instruction is issued per cycle, and only one

completion of instruction is expected from the pipeline per cycle.

In a superscalar processor, multiple instructions are issued per cycle and multiple results are generated per

cycle.

A vector processor executes vector instructions on arrays of data; each vector instruction involves a string of

repeated operations, which are ideal for pipelining with one result per cycle.

2.2.1 SUPERSCALAR PROCESSORS

Qn:explain pipelining in superscalar procesors?

 Designed to exploit instruction level parallelism in user pgms

 Independent instr‘s can be executed in parallel.

 A superscalar processor of degree m can issue m instructions per cycle.

 Superscalar processors were originally developed as an alternative to vector processors, with a view to

exploit higher degree of instruction level parallelism.

Pipelining in Superscalar Processors

 The fig shows a three-issue (m=3) superscalar pipeline, m instructions execute in parallel.

 Instruction issue degree (m) in a superscalar processors is limited btw 2 to 5.(2<m<5)

 A superscalar processor of degree m can issue m instructions per cycle. In this sense, the base scalar

processor, implemented either in RISC or CISC, has m = 1.

16

 In order to fully utilize a superscalar processor of degree m, m instructions must be executable in

parallel.

 This situation may not be true in all clock cycles. In that case, some of the pipelines may be stalling in a

wait state.

 In a superscalar processor, the simple operation latency should require only one cycle, as in the base

scalar processor.

 Due to the desire for a higher degree of instruction-level parallelism in programs, the superscalar

processor depends more on an optimizing compiler to exploit parallelism.

 Table below lists some landmark examples of superscalar processors from the early 1990s.

17

A typical superscalar architecture for a RISC processor:

 The instruction cache supplies multiple instructions per fetch. However, the actual number of

instructions issued to various functional units may vary in each cycle.

 The number is constrained by data dependences and resource conflicts among instructions that are

simultaneously decoded .

 Multiple functional units are built into the integer unit and into the floating point unit. Multiple data

buses exist among the functional units. In theory, all functional units can be simultaneously used if

conflicts and dependences do not exist among them during a given cycle

18

 The maximum number of instructions issued per cycle ranges from two to five in these superscalar

processors.

 Typically. the register files in the lU and FPU each have 32 registers. Most superscalar processors

implement both the IU and the FPU on the same chip.

 The superscalar degree is low due to limited instruction parallelism that can be exploited in ordinary

programs.

Qn:Why are Reservation stations and reorder buffers are needed in a super scalar processor?

 Besides the register files, reservation stations and reorder buffers can be used to establish instruction

windows. The purpose is to support instruction lookahead and internal data forwarding, which are

needed to schedule multiple instructions simultaneously.

2.2.2 VLIW Architecture (Very Long Instruction Word)(VLIW processor as an

 extreme example of a superscalar processor)

 Horizontal micro-coding + superscalar processing = VLIW architecture

 VLIW machine has instruction words hundreds of bits in length

 As shown above, Multiple functional units are use concurrently in a VLIW processor.

 All functional units share a common large register file.

 The operations to be simultaneously executed by functional units are synchronized in a VLIW

instruction. ,say 256 or 1024 bits per instruction word.

 Different fields of the long instruction word carry the opcodes to be dispatched to different functional

units.

 Programs written in short instruction words (32 bits) must be compacted together to form the VLIW

instructions – the code compaction must be done by compiler.

19

Qn:Explain pipelining in VLIW processors?

Pipelining in VLIW Processor –

 The execution of instructions by an ideal VLIW processor is shownbelow: each instruction specifies

multiple operations. The effective CPI becomes 0.33 in this example.

 VLIW machines behave much like superscalar machines with three differences:

1. The decoding of VLIW instructions is easier than that of superscalar instructions.

2. The code density of the superscalar machine is better when the available instruction-level

parallelism is less than that exploitable by the VLIW machine. This is because the fixed VLIW

format includes bits for non-executable operations, while the superscalar processor issues only

executable instructions.

3. A superscalar machine can be object-code-compatible with a large family of non-parallel

machines. On the contrary, VLlW machine exploiting different amounts of parallelism would

require different instruction sets.

 lnstruction parallelism and data movement in a VLIW architecture are completely specified at compile

time. Run-time resource scheduling and synchronization are in theory completely eliminated.

 One can view a VLIW processor as an extreme example of a superscalar processor in which all

independent or unrelated operations are already synchronously compacted together in advance.

 The CPI of a VLIW processor can be even lower than that of a superscalar processor. For example, the

Multiflow trace computer allows up to seven operations to be executed concurrently with 256 bits per

VLIW instruction.

20

Qn:Explain the difference between superscalar and VLIW architectures in terms of

hardware and software requirements?

Comparison between Superscalar and VLIW

Superscalar VLIW

1. Code size is smaller

2. Complex hardware for decoding and

issuing instruction

3. Compatible across generations

4. No change in hardware is required

5. They are scheduled dynamically by

processor

1. code size is larger

2. simple hardware for decoding and

issuing

3. not compactable across generations.

4. Requires more registers but simplified

hardware

5. Scheduled dynamically by compiler.

Application – VLIW processors useful for special purpose DSP(digital signal processing) ,and scientific

application that requires high performance and low cost. But they are less successful as General purpose

computers. Due to its lack of compatibility with conventional hardware and software, the VLIW architecture

has not entered the mainstream of computers.

4.2.3 VECTOR and SYMBOLIC PROCESSORS

 Vector processor is specially designed to perform vector computations, vector instruction involves large

array of operands.(same operation will be performed over an array of data)

 Vector processors can be register-to-register architecture (use shorter instructions and vector register

files) or memory-to-memory architecture (use longer instructions including memory address).

Vector Instructions

Qn:List out register based and memory based vector operations?

 Register-based vector instructions appear in most register-to-register vector processors

like Cray supercomputers.

 We denote vector register of length n as V1, a scalar register as si ,a memory array of length n as M(1 :

n). operator denoted by a small circle ‗o‘.

 Typical register based vector operations are:

21

 Vector length should be equal in the two operands used in binary vector instruction.

 The reduction is an operation on one or two vector operands, and the result is a scalar—such as the
dot product between two vectors and the maximum of all components in a vector.

 In all cases, these vector operations are performed by dedicated pipeline units, including functional
pipelines and memory-access pipelines.

 Long vectors exceeding the register length n must be segmented to fit the vector registers n elements at

a time.

 Memory based Vector operations:

where M1(1 : n) and M2(1 : n) are two vectors of length n and M(k) denotes a scalar quantity stored in

memory location k. Note that the vector length is not restricted by register length. Long vectors are

handled in a streaming fashion using super words cascaded from many shorter memory words.

Vector Pipelines

Qn:Compare scalar and vector pipeline execution?

The pipelined execution of a Vector processor compared to a scalar processor (fig below). Scalar

instruction executes only one operation over one data element whereas each vector instruction executes a

string of operations, one for each element in the vector.

22

SYMBOLIC PROCESSORS

Qn:Explain the characteristics of symbolic processors?

 Applied in areas like – theorem proving, pattern recognition, expert systems, machine intelligence etc

because in these applications data and knowledge representations, operations, memory, I/o and

communication features are different than in numerical computing.

 Also called Prolog processor, Lisp processor or symbolic manipulators.

Characteristics of Symbolic processing

Attributes Characteristics

Knowledge representation Lists, relational databases, Semantic nets,

Frames, Production systems

Common operations Search, sort, pattern matching, unification

Memory requirement Large memory with intensive access pattern

Communication pattern Message traffic varies in size, destination and

format

Properties of algorithm Parallel and distributed, irregular in pattern

Input / Output requirements Graphical/audio/keyboard. User guided

programs, machine interface.

Architecture Features Parallel update, dynamic load balancing and

memory allocation

For example, a Lisp program can be viewed as a set of functions in which data are passed from function to

function. The concurrent execution of these functions forms the basis for parallelism. The applicative and

recursive nature of Lisp requires an environment that efficiently supports stack computations and function

23

calling. The use of linked lists as the basic data structure makes it possible to implement an automatic garbage

collection mechanism.

Instead of dealing with numerical data, symbolic processing deals with logic programs, symbolic lists, objects,

scripts, blackboards, production systems, semantic networks, frames, and artificial neural networks. Primitive

operations for artificial intelligence include search,compare, logic inference, pattern matching, unification.

Filtering, context, retrieval, set operations, transitive closure, and reasoning operations. These operations

demand a special instruction set containing compare, matching, logic, and symbolic manipulation operations.

Floating point operations are not often used in these machines.

Example: The Symbolics 3600 Lisp processor

The processor architecture of the Symbolics 3600 is shown in Fig. 4.16. This was a stack-oriented

machine. The division of the overall mar:h.ine architecture into layers allowed the use of a simplified

instruction-set design, while implementation was carried out with a stack-oriented machine. Since most

operands were fetched from the stack, the stack buffer and scratch-pad memories were implemented as fast

caches to main memory.

The Symbolics 3600 executed most Lisp instructions in one machine cycle. Integer instructions fetched

operands form the stack buffer and the duplicate top of the stack in the scratch-pad memory. Floating-point

addition, garbage collection, data type checking by the tag processor, and fixed-point addition could be carried

out in parallel.

24

2.3 :MEMORY HIERARCHY TECHNOLOGY

Qn:Describe the memory level hierarchy?

2.3.1 Hierarchical Memory Technology

The memory technology and storage organization at each level is characterized by 5 parameters

1. Access Time (ti) - refers to round trip time for CPU to the i
th

-level memory.

2. Memory size(si) - is the number of bytes or words in level i

3. Cost per byte(ci) – is the cost of i
th

level memory esitamed by cisi

4. Transfer bandwidth(bi) – rate at which information is transferred between adjacent levels.

5. Unit of transfer(xi) - grain size of data transfer between levels i and i+1

Memory devices at lower levels (top of hierarchy) are:

 Faster to access

 Smaller in size

 More expensive/byte

 Higher bandwidth

 Uses smaller unit of transfer

Registers

 Registers are part of processor – Thus, at times not considered a part of memory

 Register assignment made by compiler

 Register operations directly controlled by compiler – thus register transfers take place at processor speed

Cache

 Controlled by MMU

 Can be implemented at one or multiple levels

25

 Information transfer between CPU and cache is in terms of words(4 or 8 bytes- depends on word length

of machine)

 Cache is divided into cache blocks(typically 32 bytes)

 Blocks are unit of data transfer between cache and Main memory or btw L1 and L2 cache

Main Memory (primary memory)

 Larger than cache

 Implemented by cost effective RAM chips (ex DDR SDRAMs)

 Managed by MMU in cooperation with OS

 Divided into pages(ex 4 Kbytes), each page contain 128 blocks

 Pages are the unit of information transferred between disk and main memory

 Scattered pages are organized as segments

Disk Drives and Backup Storage

 Highest level of memory

 Holds system programs like OS and compilers, user pgms, data etc

A typical workstation computer has the cache and main memory on a processor board and hard disks in an

attached disk drive. Table below presents representative values of memory parameters for a typical 32-bit

mainframe computer built in 1993.

26

2.3.2 INCLUSION, COHERENCE and LOCALITY properties

Qn: Explain the properties of inclusion, coherence and locality?

Information a memory hierarchy(M1, M2,…, Mn) should satisfy these 3 imp properties as shown in figure

below:-

 inclusion,

 coherence,

 locality

Inclusion Property

 Stated as M1 C M2 C M3 C……C Mn (C – symbol for subset)

 Implies all information are originally stored in outermost level Mn

 During processing subsets of Mn are copied into Mn-1.

 Thus if an information word is found in Mi then copies of same word can also be found in upper levels

Mi+1, Mi+2…….Mn. However a word stored in Mi+1 may not be found in Mi

 A word miss in Mi implies its missing from all lower levels- thus highest level is the backup storage

where everything is found

 Information transfer between the CPU and cache----- is in terms of words (4 or 8 bytes each depending on

the word length of a machine). The cache (M1) is divided into cache blocks, also called cache lines by some

authors.

27

 Information transfer between cache and main memory, or between L1 and L2 cache---- is in terms of

Blocks(such as ―a‖ and ―b‖). Each block may be typically 32 bytes (8 words). The main memory (M2) is

divided into pages, say, 4 Kbytes each.

 Information transfer between disk and main memory.---- is in terms of Pages. Scattered pages are

organized as a segment in the disk memory, for example, segment F contains page A, page B, and other

pages.

 Data transfer between the disk and backup storage is ------ at the file level, such as segments F and G.

Coherence Property

QN:distinguish between write through and writeback caches?

 The property requires that copies of same information item at all memory levels should be consistent

(same)

 If a word is modified in cache – copies of of the word should be updated at all higher levels.

 Frequently used information are usually found at lower levels – in order to minimize effective access

time

 2 general properties to maintain coherence in memory hierarchy

1. Write Through – demands immediate update in Mi+1 if a word is updated in Mi for i=1,2,3…n-

1.

2. Write Back –delays the update in Mi+1 until word being modified in Mi is replaced or removed

from Mi.

Locality of Reference and memory design implications

Qn:Compare spatial locality, temporal locality and sequential locality?

The memory hierarchy was developed based on a program behavior known as locality of references. Memory

references are generated by the CPU for either instruction or data access. These accesses tend to be clustered

in certain regions in time, space, and ordering. Most programs use a certain portion of memory during a

particular time period. 90-10 rule: states that Typical pgm may spend 90% of the its execution time on only

10% of its code (ex loop in a code)

 3 dimensions of locality property and its memory design implication(shown in bullets)

1. Temporal locality – recently referenced items are likely to be referenced again in near future. (

ex: loop portion in a code is executed continuously until loop terminates)

 leads to usage of least recently used replacement algorithm

 helps to determine size of memory at successive levels

2. Spatial locality – tendency for a process to access items whose addresses are near one another.

(ex: array elements , macros, routines etc)

 Assists in determining size of of unit data transfer between adjacent memory levels

3. Sequential locality – execution of instructions follows a sequential order unless branched

instruction occurs

 Affects determination of grain size for optimal scheduling

28

Principle of localities guide in design of cache memory , main memory and even virtual memory organization..

Working Sets

Figure Below, shows the memory reference patterns of three running programs or three software

processes. As a function of time, the virtual address space (identified by page numbers) is clustered

into regions due to the locality of references.

The subset of addresses (or pages) referenced within a given time window is called the

working set by Denning (1968).

During the execution of a program, the working set changes slowly and maintains a certain degree of

continuity as demonstrated in Fig. below. This implies that the working set is often accumulated at the

innermost (lowest) level such as the cache in the memory hierarchy. This will reduce the effective

memoryaccess time with a higher hit ratio at the lowest memory level. The time window is a critical

parameter set by the OS kernel which affects the size of the working set and thus the desired cache size.

2.3.3 MEMORY CAPACITY PLANNING

The performance of a memory hierarchy is determined by the effective access time Teff to any level in the

hierarchy. lt depends on the hit ratios and access frequencies at successive levels.

Terms-

Hit Ratio – when an information item is found in Mi, we call it a hit, otherwise a miss.

Considering memory level Mi to Mi-1 in a hierarchy , i=1,2,3…n-1. The hit ratio ,hi at Mi is the probability

that an item required will be found in Mi. The miss ratio at Mi is 1-hi.

29

The hit ratios at successive levels are a function of memory capacities, management policies and program

behavior.

Every time a miss occurs a penalty has to be paid to access next higher level of memory. Cache miss is 2 to 4

times costlier than a cache hit. Page faults are 1000 to 10000 times costly than page hit

We assume h0 =0 and hn = 1, which means CPU always accesses M1 first, and the access to the outermost

memory Mn is always a hit.

Access frequency to Mi is defined as fi =(1-h1)(1-h2)….(1-hi-1)hi. This is the probability of successfully

accessing Mi when there are i-1 misses at the lower levels and a hit at Mi. Note that 𝑓𝑖 𝑛
𝑖=1 = 1 and f1=h1

Due to the locality property, the access frequencies decrease very rapidly from low to high levels; that is, f1

>>f2>> f3>> …>> fn. This implies that the inner levels of memory are accessed more often than the outer

levels.

Effective access time

In practice, we wish to achieve as high a hit ratio as possible at M1. Every time a miss occurs, a penalty must be

paid to access the next higher level of memory. The misses have been called block misses in the cache and

page faults in the main memory because blocks and pages are the units of transfer between these levels.

Using the access frequencies fi=1,2,….n, we can formally define the effective access time of a memory

hierarchy as follows
 𝑛𝑖=1 𝑓𝑖. 𝑡𝑖 = h1t1+(1-h1)h2t2+(1-h1)(1-h2)h3t3+…….(1-h1)(1-h2)….(1-hn-1)tn

Hierarchy Optimization

The total cost of a memory hierarchy is estimated as follows

Ctotal =
𝑛
𝑖=1 𝐶𝑖. 𝑆𝑖

This implies cost is distributed across n levels.

The optimal design of memory should result in total effective access time close to effective access time of

cache and a total cost of highest memory level-----practically not possible.

