
Computer System Architecture

1

 MODULE V

Instruction pipeline design, Arithmetic pipeline deign -Super Scalar Pipeline Design

INSTRUCTION PIPELINE DESIGN

Qn:What is instruction pipeline? Explain in detail.

 Instruction pipeline processor is processor which executes different instructions belonging to a process

in its different stages.

 A stream of instructions can be executed by a pipeline in an overlapped manner.

Techniques for improving pipelined processor performance

1. Instruction Execution Phases(pipelined Instruction processing)

2. Mechanisms for Instruction Pipeline

2.1 Pre-fetch Buffers

2.2 Multiple Functional Units

2.3 Internal Data Forwarding

2.4 Hazard avoidance

3. Dynamic Instruction scheduling techniques

3.1 Tomasulo’s algorithm

3.2 CDC Scoreboarding

4. Branch Handling Techniques

1.Instruction Execution Phases

The phases are ideal for overlapped execution of a linear pipeline, each phase may require one or more

clock cycles to execute depending on the instruction type and processor/memory architecture.

Fetch Stage – fetches instr’s from a cahe memory, ideally one/cycle

Computer System Architecture

2

Decode Stage – reveals instr function to be performed and identifies the resources needed. Resources

include registers, buses, Functional Units…

Issue Stage – reserves resources, operands are read from registers

Execute Stage – instr’s are executed in one or several execute stages.

Writeback - stage is used to write results into registers.

Computer System Architecture

3

 Figure above shows the flow of machine instructions through a typical pipeline. These eight

instructions are for pipelined execution of the high-level language statements

X = Y + Z and A = B * C.

 Here we have assumed that load and store instructions take four execution clock

cycles, while floating-point add and multiply operations take three cycles.

 Figure b (above)illustrates the issue of instructions following the original program order. The shaded

boxes correspond to idle cycles when instruction issues are blocked due to resource latency or conflicts

or due to data dependences.

 The first two load instructions issue on consecutive cycles.

 The add is dependent on both loads and must wait three cycles before the data (Y and Z) are loaded in.

 Similarly, the store of the sum to memory location X must wait three cycles for the add to finish due to a

flow dependence.

There are similar blockages during the calculation of A. The total time required is 18 clock

cycles. This time is measured beginning at cycle 4 when the first instruction starts execution until

cycle 21 when the last instruction starts execution. This timing measure eliminates the undue effects of

the pipeline “startup" or “draining” delays.

Figure c (above) shows an improved timing after the instruction issuing order is changed to eliminate

unnecessary delays due to dependence. The idea is to issue all four load operations in the beginning. Both

the add and multiply instructions are blocked fewer cycles due to this data prefetching. The reordering

should not change the end results. The time required is being reduced to 11 cycles, measured from cycle 4 to

cycle I4.

2. MECHANISMS FOR INSTRUCTION PIPELINING

2.1 Pre-fetch Buffers

2.2 Multiple Functional Units

2.3 Internal Data Forwarding

2.4 Hazard avoidance

2.1 . PREFETCH BUFFERS

Qn: What type of buffers are used to match the instruction fetch rate to the pipeline consumption rate?

Qn: Discuss about prefetch buffers?

3 type’s of buffers are used to match instr fetch rate to pipeline consumption rate.

1. Sequential buffer

Computer System Architecture

4

2. Target buffer

3. Loop buffer

In a single memory access time, a block of consecutive instr’s are fetched into prefetch buffer.

- Sequential inst’s are loaded into a pair of sequential buffers for in-sequence pipelining.

- Instr’s from Branch target are loaded into pair of target buffers for out of sequence

 Pipelining.

- Both buffers operate in FIFO (First In First Out)

- A conditional branch instr causes both sequential buffers and target buffers to fill with instr. After

checking branch condition, appropriate instruction will be taken from one of the two buffers and instr

in other buffer is discarded.

- From each buffer pair, one may be used to load instr’s from memory and another buffer may be

used to feed instr’s into pipeline, thus it prevents collision btw instr flowing IN and OUT of

pipeline.

- Loop Buffer – holds sequential instr’s in a loop. Its maintained by Fetch Stage.

- Pre fetched instr’s in a loop body will be executed repeatedly until all iterations complete execution.

Loop Buffer operates in 2 steps:

- First it contains instrs sequentially ahead of current instr, thus saves instr fetch time from

 memory.

- It recognizes when target of a branch falls within loop boundary. In this case, unnecessary

 memory accesses can be avoided if the target instruction is already in the loop buffer.

2.2. Internal Data Forwarding

- Memory access operations can be replaced by register transfer operations to save time

- Store Load Forwarding

Computer System Architecture

5

load operation(LD R2,M) from memory to register R2 can be replaced by move operation (MOVE R2,R1)

from register R1 to R2, since register transfer is faster than memory access and will also reduce memory

traffic , resulting in shorter execution time.

- Load-Load Forwarding

-

We can eliminate 2
nd

 load operation(LD R2,M) and replace it with move operation(MOVE r2, R1)

Example :problem:

 Implementing the dot-product operation with internal data forwarding between a multiply unit

and an add unit

One can feed the output of a multiplier directly to the input of an adder (Fig. 6.14) for

implementing the following dot-product operation:

Without internal data forwarding between the two functional units. the three instructions must be

sequentially executed in a looping structure [Fig. a below).

With data forwarding, the output of the multiplier is fed directly into the input register R4 of the

adder (Fig. b). At the same time, the output of the multiplier is also routed to register R3. internal

Computer System Architecture

6

data forwarding between the two functional units thus reduces the total execution time through

the pipelined processor.

2.3.Multiple Functional Units

Qn: Explain a pipeline processor with multiple functional units?

- Certain pipeline stage becomes bottleneck – this stage corresponds to row with maximum number of

checkmarks in the reservation table

- Can be solved using multiple copies of same stage simultaneously , ie:- use of multiple execution units

in a pipelined processor design.

Computer System Architecture

7

FIG – A pipelined processor with multiple FU’s and distributed RS’s supported by Tagging.

- In order to resolve data or resource dependences among successive instructions entering the pipeline the

Reservation Stations(RS) are used with each functional unit.

- Operands wait in RS until data dependences are resolved.

- Each RS is uniquely identified by a Tag monitored by tag unit.

- Tag unit keeps checking the tags from all currently used registers or RS’s

- RS also serve as buffers to interface pipelined functional units with decode and issue unit

- Multiple Functional units operate in parallel once dependencies are resolved.

2.4.Hazard avoidance

Qn: Define hazards with respect to pipeline. Describe the various categories of the hazards .

Qn:

- The read and write of shared variables by different instructions in a pipeline may lead to different results

if these instructions are executed out-of-order.

Three types of logic hazards are possible. As shown in figure below:-

Computer System Architecture

8

- Consider instr’s I and J, J assumed to logically follow instr I ,according to program order.

- If the actual execution order of these two instructions violates the program order. incorrect

- results may be read or written, thereby producing hazards.

- Hazards should be prevented before these instructions enter the pipeline, such as by holding instruction

J until the dependence on instruction I is resolved.

- D is the domain of instr –input set D(I) and D(J)

- R is the range of instr – output set

 Conditions that cause Hazards

 R(I) ∩ D(J) ≠ ᶲ for RAW hazard- flow dependence

 Ex:

I : a = b + c (R(I)∩D(J)a)

 J : e =a + d

 R(I) ∩ R(J) ≠ ᶲ for WAW hazard – o/p dependence

Ex:

I: a=b+c (R(I)∩R(J) a)

J: a=d+e

 D(I) ∩ R(J) ≠ ᶲ for WAR hazard – anti-dependence

EX:

I: a=b+c ((D(I)∩R(J) b)

J:b=a+d

- Resolution of hazard conditions can be checked by special hardware while instr’s are being loaded into

prefetch buffer

- Special tag bit can be used with each operand register to indicate safe or hazard.

3. DYNAMIC INSTRUCTION Scheduling

Qn: What are the methods for scheduling instructions through an instruction pipeline.

Qn: What is dynamic scheduling?

2 techniques

1. Tomasulo’s Algorithm

Computer System Architecture

9

2. CDC scoreboarding

STATIC Scheduling

 Data dependencies in sequence of instructions create interlocked relationships.

 Inter-locking is resolved through compiler based static scheduling approach

 Compiler or post-processor can be used to increase separation between interlocked

instructions.

 Considering the execution of code, multiply instr cannot be started until preceding load is

complete.

 It stalls pipeline for 3 clock cycles(since 2 loads overlap by one cycle)

 The 2 loads are independent of add and Move instr. We can move it ahead to increase spacing

btw them and multiply instr.

 Through this code rearrangement data dependences and program semantics are preserved and

multiply can be started without delay

 Compiler based s/w interlocking is cheaper to implement and flexible to apply.

3.1. Tomasulo’s algorithm scheme

 Named after the chief designer.

 This hardware dependence –resolution scheme was first implemented with multiple floating

point units of the IBM 360/91 processor.

 Functional units are internally pipelined and can complete one operation in every clock cycle,

provided the reservation station(Structure of RS shown below) of the unit is ready with the

required input operand values.

Computer System Architecture

10

 If source register is busy when an instr reaches issue stage, tag for source register is forwarded to

RS

 When register becomes available tag can signal availability.

 This value is copied into all reservation station which have the matching tag. Thus operand

forwarding is achieved here with the use of tags.

 All destinations which require a data value receive it in the same clock cycle over the common data

bus, by matching stored operand tags with source tag sent over the bus.

 The fig above shows a functional unit connected to common data bus with three reservation

stations provided on it.

Op – operation to be carried out

OPnd-1 and Opnd-2 – two operand values needed for operation

Computer System Architecture

11

t1 and t2 – two source tags associated with the operands

 When the needed operand values are available in reservation station, the functional unit can initiate

the required operation in the next clock cycle.

 At time of instruction issue the reservation station is filled out with the operation code(op).

o if an operand value is available in programmable register it is transferred to the

corresponding source operand field in the reservation station. It waits until its data

dependencies are resolved and operands become available. Dependence is resolved by

monitoring Result bus and when all operands of an instr are available its dispatched to

functional unit for execution.

o If the operand value is not available at the time of issue, the corresponding source tag(t1

and/or t2) is copied into the reservation station. The source tag identifies the source of the

required operand. As soon as the required operand is available at its source- typically output

of functional unit – the data value is forwarded over the common data bus along with source

tag.

Example:Tomasulo’s algorithm for dynamic instruction scheduling

 Tomasulo's algorithm was applied to work with processors having a few floating-point

registers. In the ease of Model 91, only four registers were available.

 Fig a below shows a minimum-register machine code for computing X = Y + Z and A = B

* C. The pipeline timing with Tomasulo‘s algorithm appears in Fig.-b.

 Here, the total execution time is 13 cycles, counting from cycle 4 to cycle 15 by ignoring

the pipeline startup and draining times.

Computer System Architecture

12

Memory is treated as a special functional unit. When an instruction has completed execution, the

result (along with its tag} appears on the result bus. The registers as well as the RSs monitor the

result bus and update their contents (and ready/busy bits) when a matching tag is found.

3.2. CDC SCOREBOARDING

 Figure above shows CDC6600 like processor that uses dynamic instruction scheduling hardware,.

 Here Multiple Functional units appeared as multiple execution units pipelines.

 Parallel units allow instr’s to complete out of original program order.

 The processor had instr buffers for each execution unit

 Instrs are issued to available FU’s regardless of whether register i/p data are available.

 To Control correct routing of data btw execution units and registers CDC 6600 used a Centralized

Control unit known as scoreboard.

 Scoreboard kept track of registers needed by instrs waiting for various functional units

 When all registers have valid data scoreboard enables instr execution.

 When a FU finishes it signals scoreboard to release the resources.

 Scoreboard is a Centralized control logic which keeps track of status of registers and multiple

functional units.

Example: Pipelined operations using hardware scoreboarding

Execution of the same machine code for X = Y + Z and A= B * C.

 The pipeline latencies are the same as those resulting from Tomasulo's algorithm.

 The add instruction is issued to its functional unit before its registers are ready.

 lt then waits for its input register operands.

 The scoreboard routes the register values to the adder unit when they become available.

Computer System Architecture

13

 In the meantime, the issue stage is not blocked, so other instructions can bypass the blocked

add.

 It takes 13 clock cycles to perform the operations.

4. BRANCH HANDLING TECHNIQUES

Qn:What are the branch handling techniques

Here we are going to discuss the effects of branching on performance of pipelined processors.

TERMS :

 Branch Taken : the action of fetching a non sequential or remote instruction after a branch

instruction is called Branch taken.

 Branch Target : the instruction to be executed after a branch taken is called Branch target

Delay slot : the no: of pipeline cycles wasted between a branch taken and its branch target is

called delay slot, denoted by b

0 ≤ b ≤ k-1 (K-no of pipeline stages)

EFFECT OF BRANCHING

Computer System Architecture

14

 When a branch is taken all instructions following the branch in the pipeline becomes useless and

will be drained from the pipeline. Thus branch taken causes a pipeline to be flushed losing a

number of pipeline stages.

 Branch taken causes Ib+1 through Tb+k-1 to be drained from pipeline.

 Let p be the probability of a conditional branch in instruction stream

 q be the probability of successfully executed conditional branch (ie:-branch taken)

 typical values p=20% and q=60% have been observed in some programs

 Penalty Paid by branching equal to pqnb because each branch taken costs b extra pipeline

cycles.

Calculating Total Execution Time for n instr’s including effect of branching (Teff)

Teff= k+(n-1)+pqnb

Calculating pipeline throughput (Heff) with influence of branching

Heff = n / Teff = nf / k+n-1+pqnb

Computer System Architecture

15

When n∞ and tightest upperbound is obtained when b=k-1

H
*

eff= f / pq(k-1)+1

When no branching p=q=0

Maximum throughput Heff= f = 1 /

EX: suppose p=.2 and q=.6 and b=k-1=7

We define Performance Degradation Factor :

 (ie pipeline performance degrades by 46% with branching when instruction stream is

sufficiently long. The above analysis demonstrates the high degree of performance degradation

caused by branching in an instruction pipeline.)

BRANCH PREDICTION (Static and Dynamic)

Static Branch Prediction Strategy

 Branches are predicted based on branch code types statically or based on branch History

during program execution.

 The frequency and probabilities of branch taken and branch types across large no of pgm

traces is used to predict a branch.

 Such a Static branch strategy may not be very accurate.

 The static prediction direction (taken or nor rat-en) can even be wired into the processor.

 The wired-in static prediction cannot be changed once committed to the hardware.

 Dynamic Branch Prediction Strategy- works better than static)

 Uses recent branch history to predict whether or not the branch will be taken next time

when it occurs.

 To be accurate we may need to use entire histoty of branch to predict future choice – but

not practical. Thus we use limited recent history.

Computer System Architecture

16

 Requires additional hardware to keep track of the past behavior of the branch instructions

at run time.

 Branch Target Buffers are used to implement branch prediction – BTB holds recent

branch information including address of branch target used. The address of branch instr

locates its entry in BTB.

 The state transition diagram is used for backtracking the last 2 branches in a given

program. The BTB entry contains backtracking information which will guide the

prediction.

 BTB can store not only Branch Target address but also target instruction itself and few

successor instr’s, in order to allow zero delay in converting conditional branches to

unconditional branches.

DELAYED BRANCHES

 The branch penalty can be reduced if delay slot is shortened or minimized to zero penalty.

 The purpose of delayed branches is to make this Possible, as illustrated in Fig. below

 A delayed branch of d cycles allows at most d-1 useful instr’s to be executed following branch

taken.

 The execution of these instr’s should be independent of the outcome of branch instruction.

Computer System Architecture

17

(According to some program trace results.)

 The probability of moving one instruction (if = 2 in Fig. a) into the delay slot is > 0.6.

 The probability of moving two instructions (d = 3 in fig b) is about 0.2,

 and that of moving three instructions (d= 4 in Fig. c) is less than 0.1.

 From the above analysis, one can conclude that delayed branching may be more effective in short

instruction pipelines with about four stages.

Example: A delayed branch with code motion into a delay slot

 Code motion across branches can be used to achieve a delayed branch, as illustrated in fig

below.

 Consider the execution of a code fragment in Fig. 6.21 a. The original program is

modified by moving the useful instruction Il into the delay slot after the branch instruction

I3.

Computer System Architecture

18

 In case branch is not taken , execution of modified pgm produces the same result as

original pgm.

 In case branch is taken in modified pgm (fig b) execution of delayed instr I1 and I5 is

needed anyways.

 5.2 ARITHMETIC PIPELINE DESIGN

Qn:What is arithmetic pipleline?

5.2.1 Computer arithmetic Principles

• In a digital computer, arithmetic is performed with finite precision due to the use of fixed-size

memory words or registers.

• Fixed-point or integer arithmetic offers a fixed range of numbers that can be operated upon.

Floating-point arithmetic operates over a much increased dynamic range of numbers.

• In modem processors, fixed-point and floating-point arithmetic operations are very often performed

by separate hardware on the same processor chip.

FIXED-POINT OPERATIONS

• Fixed-point numbers are represented internally in machines in sign-magnitude, ones compliment or

2’s compliment notation.

• Most computers use the two’s complement notation because of its unique representation of all

numbers (including zero).

• Add, subtract, multiply and divide are the four primitive arithmetic operations.

Computer System Architecture

19

• For fixed-point numbers, the add or subtract of two n-bit integers (or fractions) produces an n-bit

result with at most one carry-out.

• The multiplication of two n-bit numbers produces a 2n-bit result which requires the use of two

memory words or two registers to hold the full-precision result.

• Only an approximate result is expected in fixed-point division with rounding or truncation.

Floating Point Numbers: A floating-point number X is represented by a pair (m , e) , when m is the

mantissa and e is the exponent with an implied base (radix).The algebraic value is represented as X=m* .

The sign of X can be embedded in the mantissa.

IEEE 754 floating-point standard

A binary base is assumed with r = 2. The 8-bit exponent e field uses an excess – 127 code. The dynamic

range of e is (-127, 128), internally represented as (0, 255). The sign s and the 23-bit mantissa field m form

a 25-bit sign-magnitude fraction, including an implicit or “hidden“ l bit to the left of the binary point. Thus

the complete mantissa actually represents the value 1.m in binary.

This hidden bit is not stored with the number . If 0<e< 255 , then a nonzero normalized number represents

the following algebraic value:

X= x x (1.m)

Floating – Point Operations

The four primitive arithmetic operations are defined below for a pair of floating point numbers represented

by X = (,) and Y = (,) . For clarity , we assume <

The above equations clearly identify the number of arithmetic operations involved in each floating-point

function. These operations can be divided into two halves: One half is for exponent operations such as

comparing their relative magnitudes or adding/subtracting them; the other half is for mantissa operations,

Computer System Architecture

20

including four types of fixed-point operations. Arithmetic shifting operations are needed for equalizing the two

exponents before their mantissas can be added or subtracted.

5.2.2 STATIC ARITHMETIC PIPELINES

The arithmetic /logic units (ALUs) perform fixed-point and floating-point operations separately.

- The fixed-point unit is also called the integer unit.

- The floating-point unit can be built either as part of the central processor or on a separate

coprocessor.

These arithmetic units perform scalar operations involving one pair of operands at a time. And vector

operations. Scalar and vector arithmetic pipelines differ mainly in the areas of register files and control

mechanisms involved.

 Vector hardware pipelines are often built as add-on options to a scalar processor or as an

attached processor driven by a control processor.

Arithmetic Pipeline Stages:

 Since all arithmetic operations (such as add, subtract,multiply,divide,squaring,square rooting ,logarithm

etc,) can be implemented with the basic add and shifting operations, the core arithmetic stages

require some form of hardware to add and to shift.

For example, a typical three stage floating-point adder includes the following stages:-

1. first stage for exponent comparison and equalization which is implemented with an integer adder

and some shifting logic;

2. a second stage for fraction addition using a high-speed carry lookahead adder;

3. and a third stage for fraction normalization and exponent readjustment using a shifter and

another addition logic.(Fraction normalization means, Shifting mantissa to right and

incrementing exponent by 1 to get a non zero value after fraction)

Eg:X=0.9504*10
3

Y=0.8200*10

2

After Step1: X=0.9504*10
3

Y=0.08200*10

3

 Step2:Add

 Result=1.0324*10
3

Step 3: fraction normalization and exponent readjustment

 Result=0.10324*10
4

Computer System Architecture

21

 Arithmetic or logical shifts can be easily implemented with shift registers.

 High-speed addition requires either the use of a carry-propagation adder (CPA) which adds two

numbers and produces an arithmetic sum as shown in Fig. a below,

o In a CPA, the carries generated in successive digits are allowed to propagate from the low

end to the high end, using either ripple carry propagation or some carry lookahead technique.

 or the use of a carry-save adder (CSA) to three input numbers and produce one sum output and a

carry output as exemplified in Fig. b. below

o In a CSA, the carries are not allowed to propagate but instead are saved in a carry vector.

 In general, an n-bit CSA is specified as follows: Let X, Y, and Z be three n-bit input numbers,

expressed as X=(Xn-1,Xn-2 …,X1,X0) and so on. The CSA performs bitwise operations

simultaneously on all columns of digits to produce two n bit output numbers , carry and sum

denoted as and C= (Cn,Cn-1,…..C1, 0).

Note that the leading bit of bitwise sum is always 0 and the tail bit of the carry vector C is always a 0.

The input output relationships are expressed below:

The arithmetic sum of 3 input numbers i.e S= X+Y+Z is obtained by adding two output numbers ie

S= +C Using a CPA.

We use the CPA and CSA to implement the pipeline stages of a fixed- point unit as follows:

Computer System Architecture

22

Multiply Pipeline Design : Consider as an example the multiplication of two 38bit integers .AxB = P,

where P is the 16-bit product. This fixed-point multiplication can be written as the summation of eight

partial products as shown below: P = A x B = P0 + P1 + P2 + …..+ P7, where x and + are arithmetic

multiply and add operations, respectively

 The summation of the eight partial products is done with a Wallace tree of CSAs plus a CPA at the final

stage, as shown in Fig. 6.23.

 The first stage (S1) generates all eight partial products, ranging from 8 bits to 15 bits

simultaneously.

Computer System Architecture

23

 The second. stage (S2) is made up of two levels of four CSAs, and it essentially merges eight

numbers into four numbers ranging from 12 to 15 bits.

 The third stage (S3) consists of two CSAs, and it merges four numbers from S1 into two l6-bit

numbers.

 The final stage (S4) is a CPA, which adds up the last two numbers to produce the final product P.

EXAMPLE: THE FLOATING – POINT UNIT IN THE MOTOROLA MC68040

Fig 6.4 below shows the design of a pipelined floating-point unit built as an on-chip feature in the Motorola

MC68040 processor.

 This arithmetic pipeline has three stages.

 The mantissa section and exponent section are essentially two separate pipelines. 64-bit registers are

used in this stage. Note that all three stages are connected to two 64-bit data buses.

o In the mantissa section, stage 1 receives input operands and returns with computation results;

o Stage 2 contains the array multiplier (64 X 8) which must be repeatedly used to carry out a

long multiplication of the two mantissas. The 67-bit adder performs the Addition/subtraction

of two mantissas, the barrel shifter is used for normalization.

Computer System Architecture

24

o Stage 3 contains registers for holding results before they are loaded into the register file in

stage 1 for subsequent use by other instructions.

 On the exponent side, a l6-bit bus is used between stages.

o Stage 1 has an exponent adder for comparing the relative magnitude of two exponents. The result

of stage 1 is used to equalize the exponents before mantissa addition can be performed.

Therefore, a shift count (from the output of the exponent adder) is sent to the barrel shifter for

mantissa alignment.

o After normalization of the final result (getting rid of leading zeros), the exponent needs to be

readjusted in stage 3 using another adder. The final value of the resulting exponent is fed from

the register in stage 3 to the register file in stage 1, ready for subsequent usage.

Convergence Division

One technique for division involves repeated multiplications. Mantissa division is carried out by a

convergence method . This convergence division obtains the quotient Q = M/D of two normalized fractions

0.5 <M< D < l in two‘s complement notation by performing two sequences of chain multiplications as

follows:

Q=

Where the successive multipliers

5.2.3 Multifunctional Arithmetic Pipelines

 Static arithmetic pipelines are designed to perform a fixed function and are thus called unifunctional.

 When a pipeline can perform more than one function, it is called multifunctional.

o A multifunctional pipeline can be either static or dynamic .

o Static pipelines perform one function at a time, but different functions can be performed at

different times.

o A dynamic pipeline allows several functions to be performed simultaneously through the pipeline

as long as there are no conflicts in the shared usage of pipeline stages.

EXAMPLE :T1/ASC ARITHMENTIC PROCESSOR DESIGN

 (a static multifunctional pipeline which was designed into the TI Advanced Scientific Computer (ASC).

 There were four pipeline arithmetic units built into the Tl-ASC system, as shown in Fig. 6.26 below.

Computer System Architecture

25

 The instruction processing unit handled the fetching and decoding of instructions.

o There were a large number of working registers in the processor which also controlled the

operations of the memory buffer unit and of the arithmetic units.

 There were two sets of operand buffers, { X , Y , Z} and {X', Y’, Z’}, in each arithmetic unit. .

o X’ , X, Y’ and Y were used for input operands, and Z’ and Z were used to output results.

o Note that intermediate results could be also routed from Z-registers to either X or Y registers.

 Both processor and memory buffers accessed the main memory for instructions and operands/results,

respectively.

 Each pipeline arithmetic unit had eight stages as shown in Fig. 6-.27a below. The PAU was a static

multifunction pipeline which could perform only one function at a time. Figure 6.27a shows all the

possible interstage connections for performing arithmetic, logical, shitting, and data conversion functions.

 Both fixed-point and floating-point arithmetic functions could be performed by this pipeline. The PAU

also supported vector in addition to scalar arithmetic operations. It should be noted that different

functions required different pipeline stages and different interstage connection patterns.

Computer System Architecture

26

For example, fixed-point multiplication required the use of only segments S1, S6, S7 and S8 as -Shown

in Fig. 6.27b. On the other hand, the floating-point dot product function, which performs the dot product

operation between two vectors, required the use of all segments with the complex connections shown in

Fig. 6.27c. This dot product was implemented by essentially the following accumulated summation of a

sequence of multiplications through the pipeline:

Z<-Ai*Bi+Z

where the successive operands (Ai, Bi) were fed through the X and Y -buffers, and the accumulated sums

through the Z-buffer recursively.

Even though the Tl-ASC is no longer in production, the system provided a unique design for multifunction

arithmetic pipelines. Today, most supercomputers implement arithmetic pipelines with dedicated functions

for much simplified control circuitry and faster operations.

5.3 SUPERSCALAR PIPELINE DESIGN

Qn: What are the pileline design parameters?

Pipeline Design Parameters: Some parameters used in designing the scalar base processor and superscalar

processor are summarized in Table 6.1 for the pipeline processors to be studied below. All pipelines discussed are

assumed to have k stages.

The pipeline cycle for the scalar base processor is assumed to be l time unit, called the base cycle. We

defined the instruction issue rate ,issue latency and simple operation latency. The instruction level

Computer System Architecture

27

parallelism is the maximum number of instructions that can be simultaneously executed in the

pipeline.

 For the base processor, all of these parameters have a value of 1. All processor types are designed relative

to the base processor. The ILP is needed to fully utilize a given pipeline processor.

Super scalar Pipeline Structure

Qn: Discuss about the two issue superscalar processor? Or

Qn: Describe the superscalar pipeline structure/design.

In an m-issue superscalar processor, the instruction decoding and execution resources are increased to form

effectively m pipelines operating concurrently. At some pipeline stages, the functional units may be shared

by multiple pipelines.

This resource-shared multiple pipeline structure is illustrated by a design example in Fig. 6.28a.In this

design, the processor can issue two instructions per cycle if there is no resource conflict and no data

dependence problem. There are essentially two pipelines in the design. Both pipelines have four

processing stages labeled fetch, decode, execute, and store, respectively.

Computer System Architecture

28

Each pipeline essentially has its own fetch unit, decode unit and store unit. The two instruction streams

flowing through the two pipelines are retrieved from a single source stream (the I-cache). The fan-out from

a single instruction stream is subject to resource constraints and a data dependence relationship among the

successive instructions.

For simplicity, we assume that each pipeline stage requires one cycle, except the execute stage which

may require a variable number of cycles. Four functional units, multiplier, adder, logic unit, and load

unit, are available for use in the execute stage. These functional units are shared by the two pipelines

on a dynamic basis. The multiplier itself has three pipeline stages, the adder has two stages, and the

others each have only one stage.

The two store units (S1 and S2) can be dynamically used by the two pipelines, depending on availability

at a particular cycle. There is a lookahead window with its own fetch and decoding logic. Lookahad

window is used for instruction lookahead in case out-of-order instruction issue is desired to achieve

better pipeline throughput.

It requires complex logic to schedule multiple pipelines simultaneously, especially when the instructions

are retrieved from the same source. The aim is to avoid pipeline stalling and minimize pipeline idle time.

Data dependence: In fig 6.28 B, a dependence graph is drawn to indicate the relationship among the instructions.

Because the register content in R1 is loaded by I1 and then used b I2, we have flow dependence I1->I2

To schedule instructions through one or more pipelines, these data dependences must not be violated (Eg fig

6.28). Otherwise, erroneous results may be produced.

Pipeline Stalling

Qn:What is pipeline stall?

A pipeline stall is a delay in execution of an instruction in order to resolve a hazard.

Computer System Architecture

29

This is a problem which may seriously lower pipeline utilization. Proper scheduling

avoids pipeline stalling. The problem exists in both scalar and superscalar processors. However, it is more

serious in a superscalar pipeline. Pipeline stalling can be caused by data dependences or by resource

conflicts among instructions already in the pipeline or about to enter the pipeline. We use an example

to illustrate the conditions causing pipeline stalling.

Consider the scheduling of two instruction pipelines in a two-issue superscalar processor. Figure 6.29a

shows the case of no data dependence on the left and flow dependence (ll -> I2) on the right. Without data

dependence, all pipeline stages are utilised without idling.

With dependence, instruction I2 entering the second pipeline must wait for two cycles (shaded time slots)

before entering the execution stages. This delay may also pass to the next instruction I4 entering the

pipeline.

In Fig. 6.29b, we show the effect of branching (instruction I2). A delay slot of four cycles results from a

branch taken by I2 at cycle 5. Therefore, both pipelines must be flushed before the target instructions I3 and

I4 can enter the pipelines from cycle 6. Here, delayed branch or other amending actions are not taken.

Computer System Architecture

30

In Fig. 6.29c , we show a combined problem involving both resource conflict and data dependence.

Instructions Il and I2 need to use the same functional unit, and also I2 -> I4 exists.

The net effect is that I2 must be scheduled one cycle behind because the two pipeline stages (e1 and e2) of

the same functional unit must be used by ll and I2 in an overlapped fashion. For the same reason, I3 is also

delayed by one cycle. Instruction I4 is delayed by two cycles due to the flow dependence on I2. The shaded

boxes in all the timing charts correspond to idle stages

Superscalar pipeline Scheduling

Qn: Discuss about the in-order and out-of-order issue processor ? or

Qn: Describe the superscalar pipeline scheduling.

Instruction issue and completion policies are critical to superscalar processor performance. Three

scheduling policies are introduced below.

1. In order issue & In order completion : Instructions are issued in program order and instructions

are completed in program order.

2. In order issue & Out of order completion : Instructions are issued in program order and

instructions are completed not in program order.

3. Out of order issue & Out of order completion : Program order is violated in instruction issue and

completion

In-order issue may result in either in-order or out-of-order completion. . ln-order issue is easier to

implement but may not yield the optimal performance. The purpose of out of order issue and completion

is to improve performance.

These three scheduling policies are illustrated in Fig 6.30 by the execution of the example program in Fig

6.28b on the dual-pipeline hardware in Fig 6.28a. It is demonstrated that performance can be improved from

an in-order to out-of-order schedule. Not all programs can be scheduled out of order.

In-Order Issue

Figure 6.30a shows a schedule for the six instructions being issued in program order Il, I2, I6. Pipeline 1

receives I1, I3, and I5, and pipeline 2 receives I2, I4, and I6 in three consecutive cycles. Due to I1 —> I2, I2

has to wait one cycle to use the data loaded in by I1.

I3 is delayed one cycle for the same adder used by I2. I6 has to wait for the result of I5 before it can enter

the multiplier stages. In order to maintain in-order completion , I5 is forced to wait for two cycles to come

out of pipeline 1. In total, nine cycles are needed and five idle cycles (shaded boxes) are observed.

Computer System Architecture

31

In Fig. 6.30b , out-of-order completion is allowed even if in-order issue is practiced. The only difference

between this out-of-order schedule and the in-order schedule is that I5 is allowed to complete ahead of I3

and I4, which are totally independent of I5. The total execution time does not improve. However, the

pipeline utilization rate does.

Only three idle cycles are observed. Note that in Figs. 6.29a and 6.29b, we did not use the lookahead

window. In order to shorten the total execution time, the window can be used to reorder the instruction

issues.

Out-of-Order Issue

By using the lookahead window, instruction I5 can be decoded in advance because it is independent of all

the other instructions. The six instructions are issued in three cycles as shown: I5 is fetched and decoded by

the window, while I3 and I4 are decoded concurrently.

It is followed by issuing I6 and I1 at cycle 2, and I2 at cycle 3. Because the issue is out of order, the

completion is also out of order as shown in Fig. 6.30c. Now, the total execution time has been reduced to

seven cycles with no idle stages during the execution of these six instructions.

The in-order issue and completion is the simplest one to implement. It is rarely used today even in a

conventional scalar processor due to some unnecessary delays in maintaining program order. However, in a

multiprocessor environment, this policy is still attractive. Allowing out-of-order completion can be found in

both scalar and superscalar processors.

Computer System Architecture

32

Output dependence and antidependence are the two relations preventing out-of-order completion. Out of

order issue gives the processor more freedom to exploit parallelism, and thus pipeline efficiency is

enhanced. It should be noted that multiple-pipeline scheduling is an NP-complete problem. Optimal

scheduling is very expensive to obtain.

Simple data dependence checking, a small lookahead window, and score-boarding mechanisms are needed

along with an optimizing compiler, to exploit instruction parallelism in a superscalar processor.

Motorola 88710Architecture

The Motorola 88110 was an early superscalar RISC processor. It combined the three chip set, one CPU

(B8100) chip and two cache (33200) chips, in a single-chip implementation, with additional

improvements. The 83110 employed advanced techniques for exploiting instruction-level parallelism,

including instruction issue, out-of order instruction completion, speculative execution, dynamic instruction

rescheduling, and two on-chip caches. The unit also supported demanding graphics and digital signal

processing applications.

The 88110 employed a symmetrical superscalar instruction dispatch unit which dispatched two instructions

each clock cycle into an array of 10 concurrent units. It allowed out-of-order instruction completion and

some out-of-order instruction issue, and branch prediction with speculative execution past branches.

The instruction set of the 88110 extended that of the 83100 in integer and floating-point operations. It

added a new set of capabilities to support 3-D color graphics image rendering. The 88110 had separate,

independent instruction and data paths, along with split caches for instructions and data. The instruction

cache was 8K-byte, 2-way set-associative with 128 sets, two blocks for each set, and 32 bytes (8

instructions) per block. The data cache resembled that of the instruction set.

The 88110 employed the MESI cache coherence protocol. A write-invalidate procedure guaranteed that

one processor on the bus had a modified copy of any cache block at any time. The 83110 was implemented

with 1.3 million transistors in a 299-pin package and driven by a 50 MHz clock.

Superscalar Performance

Qn: What is the performance of superscalar processor

To compare the relative performance of a superscalar processor with that of a scalar base machine, we

estimate the ideal execution time of N independent instructions through the pipeline.

The time required by the scalar base machine is

 T(1,1) = k+N-1 (base cycles)

Computer System Architecture

33

The ideal execution time required by an m-issue superscalar machine is

T(m,1) = k+ N-m (base cycles)

 m

where k is the time required to execute the first m instructions through the in pipelines simultaneously, and

the second term corresponds to the time required to execute the remaining N-m instructions, m per cycle,

through m pipelines.

The ideal speedup of the superscalar machine over the base machine is

DEC Alpha 21064 superscalar architecture

As illustrated in Fig. 6.3 l, this was a 64-bit superscalar processor. The design emphasized speed, multiple -

instruction issue, multiprocessor applications, software migration from the VAX./VMS and MIPS/OS, and a

long list of usable features. The clock rate was 150 MHz, with the first chip implementation.

Unlike others, the Alpha architecture had thirty-two 64-bit integer registers and thirty-two 64-bit

floating point registers. The integer pipeline had 7 stages, and the floating-point pipeline had 10

Computer System Architecture

34

stages. All Alpha instructions were 32 bits. The first Alpha implementation issued two instructions per

cycle, with larger number of issues in later implementations. Pipeline timing hazards, load delay slots, and

branch delay slots were all minimized by hardware support. The Alpha was designed to support fast

multiprocessor interlocking and interrupts. The processor was designed to have a 300-MIPS peak and 150 -

Mflops peak at 150 MHz.

