
Module 1

Distributed computing

Syllabus

Evolution of Distributed Computing -Issues or challenges in designing a distributed system -

Minicomputer model – Workstation model - Workstation-Server model–Processor - pool model -

Trends in distributed systems

1.1 Introduction

A distributed system is a system whose components are located on different networked computers,

which then communicate and coordinate their actions by passing messages to each other.The

components interact with each other in order to achieve a common goal. Three significant

characteristics of distributed systems are:

• concurrency of components The main function od distributed system is to share resources

and hence distributed components must be able to handle more than one user.

• lack of a global clock Programs running on distributed systems communicate but they don’t
follow the same clock and with current technology it is not possible to synchronize their clocks, and

• independent failure of components A failure of a computer in a distributed system will not

bring down the entire system as it is designed to handle such individual component failures

Examples of distributed systems vary from SOA-based systems to massively multiplayer online

games to peer-to-peer applications.

Definitions

• “A system in which hardware or software components located at networked computers
communicate and coordinate their actions only by message passing.”[Text Book] or

• “A distributed system is a collection of independent computers that appear to the users of the

system as a single computer.” [Tanenbaum] or

• A distributed system is several computers doing something together. Thus, a distributed

system has three primary characteristics: multiple computers, interconnections, and shared state.

[Michael Schroeder]

1.2 Examples of distributed systems

Networks are everywhere and underpin many everyday services that we now take for granted: the

Internet and the associated World Wide Web, web search, online gaming, email, social networks,

eCommerce, etc.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in
https://www.ktustudents.in

Distributed systems encompass many of the most significant technological developments of recent

years and hence an understanding of the underlying technology is absolutely central to a knowledge

of modern computing.

We now look at more specific examples of distributed systems to further illustrate the diversity and

indeed complexity of distributed systems provision today.

1.2.1 Web search

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

Web search has emerged as a major growth industry in the last decade, with recent figures indicating

that the global number of searches has risen to over 10 billion per calendar month. The task of a web

search engine is to index the entire contents of the World Wide Web, encompassing a wide range of

information styles including web pages, multimedia sources and (scanned) books. This is a very

complex task, as current estimates state that the Web consists of over 63 billion pages and one trillion

unique web addresses. Given that most search engines analyze the entire web content and then

carry out sophisticated processing on this enormous database, this task itself represents a major

challenge for distributed systems design.

Google, the market leader in web search technology, has put significant effort into the design of a

sophisticated distributed system infrastructure to support search (and indeed other Google

applications and services such as Google Earth). This represents one of the largest and most

complex distributed systems installations in the history of computing and hence demands close

examination. Highlights of this infrastructure include:

• an underlying physical infrastructure consisting of very large numbers of networked computers
located at data centres all around the world;

• a distributed file system designed to support very large files and heavily optimized for the

style of usage required by search and other Google applications (especially reading from files at high

and sustained rates);

•

datasets;

an associated structured distributed storage
system that offers fast access to very large

•

agreement;

a lock service that offers distributed system

functions such as distributed locking and

• a programming model that supports the management of very large parallel and distributed

computations across the underlying physical infrastructure.

1.2.2 Massively multiplayer online games (MMOGs)

Massively multiplayer online games offer an immersive experience whereby very large numbers of

users interact through the Internet with a persistent virtual world. Leading examples of such games

include PUBG, FORTNITE etc. Such worlds have increased significantly in sophistication. The

number of players is also rising, with systems able to support over 50,000 simultaneous online

players (and the total number of players perhaps ten times this figure).

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

The engineering of MMOGs represents a major challenge for distributed systems technologies,

particularly because of the need for fast response times to preserve the user experience of the game.

Other challenges include the real-time propagation of events to the many players and maintaining a

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

consistent view of the shared world. This therefore provides an excellent example of the challenges

facing modern distributed systems designers.

A number of solutions have been proposed for the design of massively multiplayer online games:

• Perhaps surprisingly, the largest online game, EVE Online, utilises a client-server architecture where

a single copy of the state of the world is maintained on a centralized server and accessed by client

programs running on players’ consoles or other devices. To support large numbers of clients, the

server is a complex entity in its own right consisting of a cluster architecture featuring hundreds of

computer nodes

•

• Other MMOGs adopt more distributed architectures where the universe is partitioned across a

(potentially very large) number of servers that may also be geographically distributed. Users are then

dynamically allocated a particular server based on current usage patterns and also the network

delays to the server (based on geographical proximity for example). This style of architecture, which

is adopted by EverQuest, is naturally extensible by adding new servers.

• Most commercial systems adopt one of the two models presented above, but researchers are also
now looking at more radical architectures that are not based on client-server principles but rather

adopt completely decentralized approaches based on peer-to-peer technology where every

participant contributes resources (storage and processing) to accommodate the game.

1.2.3 Financial trading

As a final example, we look at distributed systems support for financial trading markets. The financial

industry has long been at the cutting edge of distributed systems technology with its need, in

particular, for real-time access to a wide range of information sources (for example, current share

prices and trends, economic and political developments). The industry employs automated monitoring

and trading applications (see below).

Note that the emphasis in such systems is on the communication and processing of items of interest,

known as events in distributed systems, with the need also to deliver events reliably and in a timely

manner to potentially very large numbers of clients who have a stated interest in such information

items. Examples of such events include a drop in a share price, the release of the latest

unemployment figures, and so on. This requires a very different style of underlying architecture from

the styles mentioned above (for example client-server), and such systems typically employ what are

known as distributed event-based systems. We present an illustration of a typical use of such

systems below and return to this important topic in more depth in Chapter 6.

Figure 1.2 illustrates a typical financial trading system. This shows a series of event feeds coming into

a given financial institution. Such event feeds share the

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

following characteristics. Firstly, the sources are typically in a variety of formats, such as Reuters

market data events and FIX events (events following the specific format of the Financial Information

eXchange protocol), and indeed from different event technologies, thus illustrating the problem of

heterogeneity as encountered in most distributed systems (see also Section 1.5.1). The figure shows

the use of adapters which translate heterogeneous formats into a common internal format. Secondly,

the trading system must deal with a variety of event streams, all arriving at rapid rates, and often

requiring real-time processing to detect patterns that indicate trading opportunities. This used to be a

manual process but competitive pressures have led to increasing automation in terms of what is

known as Complex Event Processing (CEP), which offers a way of composing event occurrences

together into logical, temporal or spatial patterns.

This approach is primarily used to develop customized algorithmic trading strategies covering both

buying and selling of stocks and shares, in particular looking for patterns that indicate a trading

opportunity and then automatically responding by placing and managing orders. As an example,

consider the following script:

WHEN

MSFT price moves outside 2% of MSFT Moving Average

FOLLOWED-BY (

MyBasket moves up by 0.5%

AND

HPQ’s price moves up by 5%

OR

MSFT’s price moves down by 2%

)

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

)

ALL WITHIN

any 2 minute time period

THEN

BUY MSFT

SELL HPQ

1.3 Evolution of Distributed Computing

Early computers were very expensive (they cost millions of dollars) and very large in size (they

occupied a big room). There were very few computers and were available only in research

laboratories of universities and industries. These computers were run from a console by an operator

and were not accessible to ordinary users. The programmers would write their programs and submit

them to the computer center on some media, such as punched cards, for processing. Before

processing a job, the operator would set up the necessary environment (mounting tapes, loading

punched cards in a card reader, etc.) for processing the job. The job was then executed and the

result, in the form of printed output, was later returned to the programmer.

The job setup time was a real problem in early computers and wasted most of the valuable central

processing unit (CPU) time. Several new concepts were introduced in the 1950s and 1960s to

increase CPU utilization of these computers. Notable among these are batching together of jobs with

similar needs before processing them, automatic sequencing of jobs, off-line processing by using the

concepts of buffering and spooling, and multiprogramming.

Batching similar jobs improved CPU utilization quite a bit because now the operator had to change

the execution environment only when a new batch of jobs had to be executed and not before starting

the execution of every job. Automatic job sequencing with the use of control cards to define the

beginning and end of a job improved CPU utilization by eliminating the need for human job

sequencing. Off-line processing improved CPU utilization by allowing overlap of CPU and input/output

(I/O) operations by executing those two actions on two independent machines (110 devices are

normally several orders of magnitude slower than the CPU). Finally, multiprogramming improved CPU

utilization by organizing jobs so that the CPU always had something to execute.

However, none of these ideas allowed multiple users to directly interact with a computer system and

to share its resources simultaneously. Therefore, execution of interactive jobs that are composed of

many short actions in which the next action depends on the result of a previous action was a tedious

and time-consuming activity. Development and debugging of programs are examples of interactive

jobs. It was not until the early 1970s that computers started to use the concept of time sharing to

overcome this hurdle.

Early time-sharing systems had several dumb terminals attached to the main computer. These terminals

were placed in a room different from the main computer room. Using these terminals, multiple users could

now simultaneously execute interactive jobs and share the resources of the computer system. In a time-

sharing system, each user is given the impression that he or she has his or her own computer because the

system switches rapidly from one user's job to the next user's job, executing only a very small part of each

job at a time. Although the idea of time sharing was demonstrated as early as 1960,

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

time- sharing computer systems were not common until the early 1970s because they were difficult

and expensive to build.

Parallel advancements in hardware technology allowed reduction in the size and increase in the

processing speed of computers, causing large-sized computers to be gradually replaced by smaller

and cheaper ones that had more processing capability than their predecessors. These systems were

called minicomputers. The advent of time-sharing systems was the first step toward distributed

computing systems because it provided us with two important concepts used in distributed computing

systems-the sharing of computer resources simultaneously by many users and the accessing of

computers from a place different from the main computer room. Initially, the terminals of a time-

sharing system were dumb terminals, and all processing was done by the main computer system.

Advancements in microprocessor technology in the 1970s allowed the dumb terminals to be replaced

by intelligent terminals so that the concepts of off-line processing and time sharing could be combined

to have the advantages of both concepts in a single system. Microprocessor technology continued to

advance rapidly, making available in the early 1980s single-user computers called workstations that

had computing power almost equal to that of minicomputers but were available for only a small

fraction of the price of a minicomputer. For example,the first workstation developed at Xerox PARC

(called Alto) had a high-resolution monochrome display, a mouse, 128 kilobytes of main memory, a

2.5-megabyte hard disk, and a microprogrammed CPU that executed machine-level instructions at

speeds of 2-6 f.Ls. These workstations were then used as terminals in the time-sharing systems. In

these time-sharing systems, most of the processing of a user's job could be done at the user's own

computer, allowing the main computer to be simultaneously shared by a larger number of users.

Shared resources such as files, databases, and software libraries were placed on the main computer.

Centralized time-sharing systems described above had a limitation in that the terminals could not be placed

very far from the main computer room since ordinary cables were used to connect the terminals to the main

computer. However, in parallel, there were advancements in computer networking technology in the late

1960s and early 1970s that emerged as two key networking technologies-LAN (local area network) and

WAN (wide-area network). The LAN technology allowed several computers located within a building or a

campus to be interconnected in such a way that these machines could exchange information with each

other at data rates of about 10 megabits per second (Mbps). On the other hand, WAN technology allowed

computers located far from each other (may be in different cities or countries or continents) to be

interconnected in such a way that these machines could exchange information with each other at data

rates of about 56 kilobits per second (Kbps).

The first high-speed LAN was the Ethernet developed at Xerox PARe in 1973, and the first WAN was

the ARPAnet (Advanced Research Projects Agency Network) developed by the U.S. Department of

Defense in 1969. The data rates of networks continued to improve gradually in the 1980s, providing

data rates of up to 100 Mbps for LANs and data rates of up to 64 Kbps for WANs. Recently (early

1990s) there has been another major advancement in networking technology-the ATM (asynchronous

transfer mode) technology. The Al'M technology is an emerging technology that is still not very well

established. It will make very high speed networking possible, providing data transmission rates up to

1.2 gigabits per second (Gbps) in both LAN and WAN environments. The availability of such high-

bandwidth networks will allow future distributed computing systems to support a completely new class

of distributed applications, called multimedia applications, that deal with the handling of a mixture of

information, including voice, video, and ordinary data. These applications were previously unthinkable

with conventional LANs and WANs.

The merging of computer and networking technologies gave birth to distributed computing systems in the

late 1970s. Although the hardware issues of building such systems were fairly well understood, the major

stumbling block at that time was the availability of adequate software for making these systems

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

easy to use and for fully exploiting their power. Therefore, starting from the late 1970s, a significant

amount of research work was carried out in both universities and industries in the area of distributed

operating systems. These research activities have provided us with the basic ideas of designing

distributed operating systems. Although the field is still immature, with ongoing active research

activities, commercial distributed operating systems have already started to emerge. These systems

are based on already established basic concepts. This book deals with these basic concepts and their

use in the design and implementation of distributed operating systems. Several of these concepts are

equally applicable to the design of applications for distributed computing systems, making this book

also suitable for use by the designers of distributed applications.

1.4 Issues or challenges in designing a distributed system

As the scope and scale or size of distributed systems and applications is extended the challenges are

likely to be encountered. In this section we describe the main challenges.

1.4.1 Heterogeneity

The Internet enables users to access services and run applications over a heterogeneous collection of

computers and networks. Heterogeneity (that is, variety and difference) applies to all of the following:

• networks;

• computer hardware;

• operating systems;

• programming languages;

• implementations by different developers.

Although the Internet consists of many different sorts of network, their differences are masked by the

fact that all of the computers attached to them use the Internet protocols to communicate with one

another. For example, a computer attached to an Ethernet has an implementation of the Internet

protocols over the Ethernet, whereas a computer on a different sort of network will need an

implementation of the Internet protocols for that network.

Different programming languages use different representations for characters and data structures

such as arrays and records. These differences must be addressed if programs written in different

languages are to be able to communicate with one another.

Programs written by different developers cannot communicate with one another unless they use

common standards, for example, for network communication and the representation of primitive data

items and data structures in messages. For this to happen, standards need to be agreed and adopted

– as have the Internet protocols.

Middleware • The term middleware applies to a software layer that provides a programming

abstraction as well as masking the heterogeneity of the underlying networks, hardware, operating

systems and programming languages. The Common Object Request Broker (CORBA) and Java

Remote Method Invocation (RMI) are examples. Most middleware is implemented over the Internet

protocols and deals with the differences in operating systems and .

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

Heterogeneity and mobile code • The term mobile code is used to refer to program code that can

be transferred from one computer to another and run at the destination – Java applets and JavaScript

codes are an example. Code suitable for running on one computer is not necessarily suitable for

running on another because executable programs are normally specific both to the instruction set and

to the host operating system.

The virtual machine approach provides a way of making code executable on a variety of host

computers: the compiler for a particular language generates code for a virtual machine instead of a

particular hardware order code. For example, the Java compiler produces code for a Java virtual

machine, which executes it by interpretation. The Java virtual machine needs to be implemented once

for each type of computer to enable Java programs to run.

1.4.2 Openness

The openness of a computer system is the characteristic that determines whether the system can be

extended by programmers in various ways. Openness cannot be achieved unless the specification

and documentation of the components of a system are made available to software developers. In a

word, the key programming standards are published.

The designers of the Internet protocols introduced a series of documents called ‘Requests For
Comments’, or RFCs. The specifications of the Internet communication protocols were published in
this series in the early 1980s, followed by specifications for applications that run over them, such as

file transfer, email and telnet by the mid-1980s. This open publication of standards have allowed

companies and startups like google and Facebook to build their applications

Systems that are designed to support resource sharing in this way are termed open distributed systems to

emphasize the fact that they are extensible. They may be extended at the hardware level by the addition of

computers to the network and at the software level by the introduction of new services.

1.4.3 Security

Many of the information resources that are made available and maintained in distributed systems

have a high value to their users. Their security is therefore of considerable importance. Security for

information resources has three components: confidentiality (protection against disclosure to

unauthorized individuals), integrity (protection against alteration or corruption), and availability

(protection against interference with the means to access the resources).

Section 1.1 pointed out that although the Internet allows a program in one computer to communicate

with a program in another computer irrespective of its location, security risks are associated with

allowing free access to all of the resources in an intranet. Although a firewall can be used to form a

barrier around an intranet, restricting the traffic that can enter and leave, this does not deal with

ensuring the appropriate use of resources by users within an intranet, or with the appropriate use of

resources in the Internet, that are not protected by firewalls.

In a distributed system, clients send requests to access data managed by servers, which involves

sending information in messages over a network. For example:

1. A doctor might request access to hospital patient data or send additions to that data.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

2. In electronic commerce and banking, users send their credit card numbers across the

Internet. Two security challenges can happen here:

Denial of service attacks: A security problem is that a user may wish to disrupt a service for some

reason. This can be achieved by bombarding the service with such a large number of pointless

requests that the serious users are unable to use it. This is called a denial of service attack.

Security of mobile code: Mobile code needs to be handled with care. Consider someone who receives

an executable program as an electronic mail attachment: the possible effects of running the program

are unpredictable; for example, it may seem to display an interesting picture but in reality it may

access local resources, or perhaps be part of a denial of service attack.

1.4.4 Scalability

Distributed systems operate effectively and efficiently at many different scales, ranging from a small

intranet to the Internet. A system is described as scalable if it will remain effective when there is a

significant increase in the number of resources and the number of users. The number of computers

and servers in the Internet has increased dramatically.

The design of scalable distributed systems presents the following challenges:

Controlling the cost of physical resources: As the demand for a resource grows, it should be possible

to extend the system, at reasonable cost, to meet it. For example, the frequency with which files are

accessed in an intranet is likely to grow as the number of users and computers increases. It must be

possible to add server computers to avoid the performance bottleneck that would arise if a single file

server had to handle all file access requests. In general, for a system with n users to be scalable, the

quantity of physical resources required to support them should be at most O(n) – that is, proportional

to n. For example, if a single file server can support 20 users, then two such servers should be able to

support 40 users.

Controlling the performance loss: Consider the management of a set of data whose size is proportional to

the number of users or resources in the system – for example, the table with the correspondence between

the domain names of computers and their Internet addresses held by the Domain Name System.

Algorithms that use hierarchic structures scale better than those that use linear structures. But even with

hierarchic structures an increase in size will result in some loss in performance: the time taken to access

hierarchically structured data is O(log n), where n is the size of the set of data. For a system to be scalable,

the maximum performance loss should be no worse than this.

Preventing software resources running out: An example of lack of scalability is shown by the numbers

used as Internet (IP) addresses (computer addresses in the Internet). In the late 1970s, it was

decided to use 32 bits for this purpose= the supply of available Internet addresses is running out.

Avoiding performance bottlenecks: In general, algorithms should be decentralized to avoid having

performance bottlenecks. We illustrate this point with reference to the predecessor of the Domain

Name System, in which the name table was kept in a single master file that could be downloaded to

any computers that needed it. That was fine when there were only a few hundred computers in the

Internet, but it soon became a serious performance and administrative bottleneck as number of

computers became larger and larger.

1.4.5 Failure handling

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

Computer systems sometimes fail. Failures in a distributed system are partial – that is, some

components fail while others continue to function. Therefore, the handling of failures is particularly

difficult. The following techniques for dealing with failures are discussed throughout the book:

Detecting failures: Some failures can be detected. For example, checksums can be used to detect

corrupted data in a message or a file.

Masking failures: Some failures that have been detected can be hidden or made less severe. Two

examples of hiding failures:

1. Messages can be retransmitted when they fail to arrive.

2. File data can be written to a pair of disks so that if one is corrupted, the other may still be

correct.

Tolerating failures: Most of the services in the Internet do exhibit failures – it would not be practical for

them to attempt to detect and hide all of the failures that might occur in such a large network with so

many components. Their clients can be designed to tolerate failures, which generally involves the

users tolerating them as well. For example, when a web browser cannot contact a web server, it does

not make the user wait for ever while it keeps on trying – it informs the user about the problem,

leaving them free to try again later.

Recovery from failures: Recovery involves the design of software so that the state of permanent data

can be recovered or ‘rolled back’ after a server has crashed.

Redundancy: Services can be made to tolerate failures by the use of redundant components.

Consider the following examples:

1. There should always be at least two different routes between any two routers in the Internet.

2. In the Domain Name System, every name table is replicated in at least two different servers.

3. A database may be replicated in several servers to ensure that the data remains accessible

after the failure of any single server; the servers can be designed to detect faults in their peers; when

a fault is detected in one server, clients are redirected to the remaining servers.

1.4.6 Concurrency

Both services and applications provide resources that can be shared by clients in a distributed

system. There is therefore a possibility that several clients will attempt to access a shared resource at

the same time. For example, a data structure that records bids for an auction may be accessed very

frequently when it gets close to the deadline time.

Any object that represents a shared resource in a distributed system must be responsible for ensuring

that it operates correctly in a concurrent environment. This applies not only to servers but also to

objects in applications. Therefore, any programmer who takes an implementation of an object that

was not intended for use in a distributed system must do whatever is necessary to make it safe in a

concurrent environment.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

For an object to be safe in a concurrent environment, its operations must be synchronized in such a

way that its data remains consistent. This can be achieved by standard techniques such as

semaphores, which are used in most operating systems.

1.4.7 Transparency

Transparency is defined as the concealment from the user and the application programmer of the

separation of components in a distributed system, so that the system is perceived as a whole rather

than as a collection of independent components. The implications of transparency are a major

influence on the design of the system software.

The ANSA Reference Manual [ANSA 1989] and the International Organization for Standardization’s
Reference Model for Open Distributed Processing (RM-ODP) [ISO 1992] identify eight forms of

transparency.

Access transparency enables local and remote resources to be accessed using identical operations.

Location transparency enables resources to be accessed without knowledge of their physical or

network location (for example, which building or IP address).

Concurrency transparency enables several processes to operate concurrently using shared resources

without interference between them.

Replication transparency enables multiple instances of resources to be used to increase reliability and

performance without knowledge of the replicas by users or application programmers.

Failure transparency enables the concealment of faults, allowing users and application programs to

complete their tasks despite the failure of hardware or software components.

Mobility transparency allows the movement of resources and clients within a system without affecting

the operation of users or programs.

Performance transparency allows the system to be reconfigured to improve performance as loads vary.

Scaling transparency allows the system and applications to expand in scale without change to the

system structure or the application algorithms.

The two most important transparencies are access and location transparency; their presence or

absence most strongly affects the utilization of distributed resources. They are sometimes referred to

together as network transparency.

As an illustration of access transparency, consider a graphical user interface with folders, which is the

same whether the files inside the folder are local or remote.

As an illustration of the presence of network transparency, consider the use of an electronic mail

address such as Fred.Flintstone@stoneit.com. The address consists of a user’s name and a domain
name. Sending mail to such a user does not involve knowing their physical or network location.

Failure transparency can also be illustrated in the context of electronic mail, which is eventually

delivered, even when servers or communication links fail. The faults are masked by attempting to

retransmit messages until they are successfully delivered, even if it takes several days.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

To illustrate mobility transparency, consider the case of mobile phones. Suppose that both caller and

callee are travelling by train in different parts of a country, moving

from one environment (cell) to another. We regard the caller’s phone as the client and the callee’s
phone as a resource. The two phone users making the call are unaware of the mobility of the phones

(the client and the resource) between cells.

1.4.8 Quality of service

Once users are provided with the functionality that they require of a service, such as the file service in

a distributed system, we can go on to ask about the quality of the service provided. The main

properties of systems that affect the quality of the service experienced by clients and users are

reliability, security and performance. Adaptability to meet changing system configurations and

resource availability has been recognized as a further important aspect of service quality.

Reliability and security issues are critical in the design of most computer systems. The performance

aspect of quality of service was originally defined in terms of responsiveness and computational

throughput, but it has been redefined in terms of ability to meet timeliness guarantees, as discussed

in the following paragraphs.

Some applications, including multimedia applications, handle time-critical data – streams of data that

are required to be processed or transferred from one process to another at a fixed rate. For example,

a movie service might consist of a client program that is retrieving a film from a video server and

presenting it on the user’s screen. For a satisfactory result the successive frames of video need to be
displayed to the user within some specified time limits.

DISTRIBUTED COMPUTING SYSTEM MODELS

Various models are used for building distributed computing systems. These models can be broadly

classified into five categories-minicomputer, workstation, workstation-server, processor-pool, and

hybrid. They are briefly described below.

1.5 Minicomputer Model

The minicomputer model is a simple extension of the centralized time-sharing system. As shown in Figure

below, a distributed computing system based on this model consists of a few minicomputers (they may be

large supercomputers as well) interconnected by a communication network. Each minicomputer usually

has multiple users simultaneously logged on to it. For this, several interactive terminals are connected to

each minicomputer. Each user is logged on to one specific minicomputer, with remote access to other

minicomputers. The network allows a user to access remote resources that are available on some machine

other than the one on to which the user is currently logged. The minicomputer model may be used when

resource sharing (such as sharing of information databases of different types, with each type of database

located on a different machine) with remote users is desired.

The early ARPAnet is an example of a distributed computing system based on the minicomputer model.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

1.6 Workstation Model

As shown in Figure below, a distributed computing system based on the workstation model consists of

several workstations interconnected by a communication network. A company's office or a university

department may have several workstations scattered throughout a building or campus, each workstation

equipped with its own disk and serving as a single-user computer. It has been often found that in such an

environment, at any one time (especially at night), a significant proportion of the workstations are idle (not

being used), resulting in the waste of large amounts of CPU time. Therefore, the idea of the workstation

model is to interconnect all these workstations by a high-speed LAN so that idle workstations may be used

to process jobs of users who are logged onto other workstations and do not have sufficient processing

power at their own workstations to get their jobs processed efficiently.

In this model, a user logs onto one of the workstations called his or her "home" workstation and submits

jobs for execution. When the system finds that the user's workstation does not have sufficient processing

power for executing the processes of the submitted jobs efficiently, it transfers one or more of the

processes from the user's workstation to some other workstation that is currently idle and gets the process

executed there, and finally the result of execution is returned to the user's workstation.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

1.7 Workstation-Server Model

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

The workstation model is a network of personal workstations, each with its own disk and a local file

system. A workstation with its own local disk is usually called a diskful workstation and a workstation

without a local disk is called a diskless workstation. With the proliferation of high-speed networks,

diskless workstations have become more popular in network environments than diskful workstations,

making the workstation-server model more popular than the workstation model for building distributed

computing systems. As shown in Figure below, a distributed computing system based on the

workstation-servermodel consists of a few minicomputers and several workstations (most of which

are diskless, but a few of which may be diskful) interconnected by a communication network.

Note that when diskless workstations are used on a network, the file system to be used by these

workstations must be implemented either by a diskful workstation or by a minicomputer equipped with

a disk for file storage. Other minicomputers may be used for providing other types of services, such

as database service and print service. Therefore, each minicomputer is used as a server machine to

provide one or more types of services. Hence in the workstation-server model, in addition to the

workstations, there are specialized machines (may be specialized workstations) for running server

processes (called servers) for managing and providing access to shared resources.

In this model, a user logs onto a workstation called his or her home workstation. Normal computation

activities required by the user's processes are performed at the user's home workstation, but requests

for services provided by special servers (such as a file server or a database server) are sent to a

server providing that type of service that performs the user's requested activity and returns the result

of request processing to the user's workstation. Therefore, in this model, the user's processes need

not be migrated to the server machines for getting the work done by those machines.

For better overall system performance, the local disk of a diskful workstation is normally used for such

purposes as storage of temporary files, storage of unshared files, storage of shared files that are rarely

changed, paging activity in virtual-memory management, and caching of remotely accessed data.

As compared to the workstation model, the workstation-server model has several advantages:

1. In general, it is much cheaper to use a few minicomputers equipped with large, fast disks that are

accessed over the network than a large number of diskful workstations, with each workstation having

a small, slow disk.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

2. Diskless workstations are also preferred to diskful workstations from a system maintenance point of

view. Backup and hardware maintenance are easier to perform with a few large disks than with many

small disks scattered all over a building or campus.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

Furthermore, installing new releases of software (such as a file server with new functionalities) is

easier when the software is to be installed on a few file server machines than on every workstation.

3. In the workstation-server model, since all files are managed by the file servers, users have the

flexibility to use any workstation and access the files in the same manner irrespective of which

workstation the user is currently logged on. Note that this is not true with the workstation model, in

which each workstation has its local file system, because different mechanisms are needed to access

local and remote files.

4. In the workstation-server model, the request-response protocol described above is mainly used to

access the services of the server machines. Therefore, unlike the workstation model, this model does

not need a process migration facility, which is difficult to implement.

The request-response protocol is known as the client-server model of communication. In this model, a

client process (which in this case resides on a workstation) sends a request to a server process

(which in this case resides on a minicomputer) for getting some service such as reading a block of a

file. The server executes the request and sends back a reply to the client that contains the result of

request processing.

A user has guaranteed response time because workstations are not used for executing remote

processes. However, the model does not utilize the processing capability of idle workstations.

The V-System [Cheriton 1988] is an example of a distributed computing system that is based on the

workstation-server model.

1.8 Processor-Pool Model

The processor-pool model is based on the observation that most of the time a user does not need any

computing power but once in a while he or she may need a very large amount of computing power for

a short time (e.g., when recompiling a program consisting of a large number of files after changing a

basic shared declaration). Therefore, unlike the workstation-server model in which a processor is

allocated to each user, in the processor-pool model the processors are pooled together to be shared

by the users as needed. Each processor in the pool has its own memory to load and run a system

program or an application program of the distributed computing system.

As shown in Figure below, in the pure processor-pool model, the processors in the pool have no terminals

attached directly to them, and users access the system from terminals that are attached to the network via

special devices. These terminals are either small diskless workstations or graphic terminals, such as X

terminals. A special server (called a run server) manages and allocates the processors in the pool to

different users on a demand basis. When a user submits a job for computation, an appropriate number of

processors are temporarily assigned to his or her job by the run server. For example, if the user's

computation job is the compilation of a program having segments, in which each of the segments can be

compiled independently to produce separate relocatable object files, n processors from the pool can be

allocated to this job to compile all the n segments in parallel. When the computation is completed, the

processors are returned to the pool for use by other users.

In the processor-pool model there is no concept of a home machine. That is, a user does not log onto

a particular machine but to the system as a whole.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

As compared to the workstation-server model, the processor-pool model allows better utilization of the

available processing power of a distributed computing system. This is because in the processor-pool

model, the entire processing power of the system is available for use by the currently logged-on

users, whereas this is not true for the workstation-server model in which several workstations may be

idle at a particular time but they cannot be used for processing the jobs of other users. Furthermore,

the processor-pool model provides greater flexibility than the workstation-server model in the sense

that the system's services can be easily expanded without the need to install any more computers;

the processors in the pool can be allocated to act as extra servers to carry any additional load arising

from an increased user population or to provide new services.

However, the processor-pool model is usually considered to be unsuitable for high-performance

interactive applications, especially those using graphics or window systems. This is mainly because of

the slow speed of communication between the computer on which the application program of a user

is being executed and the terminal via which the user is interacting with the system. The workstation-

server model is generally considered to be more suitable for such applications.

Amoeba [Mullender et a1. 1990], Plan 9 [Pike et at 1990], and the Cambridge Distributed Computing

System [Needham and l-lerbert 1982] are examples of distributed computing systems based on the

processor-pool model.

1.9 Trends in distributed systems

Distributed systems are undergoing a period of significant change and this can be traced back to a

number of influential trends:

• the emergence of pervasive networking technology;

• the emergence of ubiquitous computing coupled with the desire to support user mobility in

distributed systems;

• the increasing demand for multimedia services;

• the view of distributed systems as a utility.

1.9.1 Pervasive networking and the modern Internet

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

The modern Internet is a vast interconnected collection of computer networks of many different types,

with the range of types increasing all the time and now including, for example, a wide range of

wireless communication technologies such as WiFi, WiMAX, Bluetooth and third-generation mobile

phone networks. The net result is that networking has become a pervasive(common found

everywhere) resource and devices can be connected (if desired) at any time and in any place.

Figure below illustrates a typical portion of the Internet. Programs running on the computers

connected to it interact by passing messages, employing a common means of communication. The

Internet communication mechanisms (the Internet protocols) is a major technical achievement,

enabling a program running anywhere to address messages to programs anywhere else and

abstracting over the myriad of technologies mentioned above.

The Internet is also a very large distributed system. It enables users, wherever they are, to make use

of services such as the World Wide Web, email and file transfer. (Indeed, the Web is sometimes

incorrectly equated with the Internet.) The set of services is open-ended – it can be extended by the

addition of server computers and new types of service. The figure shows a collection of intranets –

subnetworks operated by companies and other organizations and typically protected by firewalls. The

role of a firewall is to protect an intranet by preventing unauthorized messages from leaving or

entering. A firewall is implemented by filtering incoming and outgoing messages. Internet Service

Providers (ISPs) are companies that provide broadband links and other types of connection to

individual users and small organizations. The intranets are linked together by backbones. A backbone

is a network link with a high transmission capacity, employing satellite connections, fibre optic cables

and other high-bandwidth circuits.

Note that some organizations may not wish to connect their internal networks to the Internet at all. For

example, police and other security and law enforcement agencies are likely to have at least some

internal intranets that are isolated from the outside world (the most effective firewall possible – the

absence of any physical connections to the Internet).

The implementation of the Internet and the services that it supports has entailed the development of

practical solutions to many distributed system issues.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

1.9.2 Mobile and ubiquitous(everywhere) computing

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

Technological advances in device miniaturization and wireless networking have led increasingly to the

integration of small and portable computing devices into distributed systems. These devices include:

• Laptop computers.

• Handheld devices, including mobile phones, smart phones, GPS-enabled devices, pagers,

personal digital assistants (PDAs), video cameras and digital cameras.

• Wearable devices, such as smart watches with functionality similar to a PDA.

• Devices embedded in appliances such as washing machines, hi-fi systems, cars and

refrigerators.

The portability of many of these devices, together with their ability to connect conveniently to networks

in different places, makes mobile computing possible. Mobile computing is the performance of

computing tasks while the user is on the move, or visiting places other than their usual environment.

Mobility introduces a number of challenges for distributed systems, including the need to deal with

variable connectivity and indeed disconnection, and the need to maintain operation in the face of

device mobility.

Ubiquitous computing is the harnessing of many small, cheap computational devices that are present

in users’ physical environments, including the home, office and even natural settings. The term
‘ubiquitous’ is intended to suggest that small computing devices will eventually become so pervasive
in everyday objects that they are scarcely noticed. That is, their computational behaviour will be

transparently and intimately tied up with their physical function.

The presence of computers everywhere only becomes useful when they can communicate with one

another. For example, it may be convenient for users to control their washing machine or their

entertainment system from their phone or a ‘universal remote control’ device in the homee.

Figure below shows a user who is visiting a host organization. The figure shows the user’s home
intranet and the host intranet at the site that the user is visiting. Both intranets are connected to the

rest of the Internet.

The user has access to three forms of wireless connection. Their laptop has a means of connecting to

the host’s wireless LAN. This network provides coverage of a

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

few hundred metres (a floor of a building, say). It connects to the rest of the host intranet via a

gateway or access point. The user also has a mobile (cellular) telephone, which is connected to the

Internet. The phone gives access to the Web and other Internet services, constrained only by what

can be presented on its small display, and may also provide location information via built-in GPS

functionality. Finally, the user carries a digital camera, which can communicate over a personal area

wireless network (with range up to about 10m) with a device such as a printer.

With a suitable system infrastructure, the user can perform some simple tasks in the host site using

the devices they carry. While journeying to the host site, the user can fetch the latest stock prices

from a web server using the mobile phone and can also use the built-in GPS and route finding

software to get directions to the site location.

This scenario demonstrates the need to support spontaneous interoperation, whereby associations

between devices are routinely created and destroyed – for example by locating and using the host’s
devices, such as printers. The main challenge applying to such situations is to make interoperation

fast and convenient (that is, spontaneous) even though the user is in an environment they may never

have visited before. That means enabling the visitor’s device to communicate on the host network,
and associating the device with suitable local services – a process called service discovery.

1.9.3 Distributed multimedia systems

Another important trend is the requirement to support multimedia services in distributed systems.

Multimedia support can usefully be defined as the ability to support a range of media types in an

integrated manner. One can expect a distributed system to support the storage, transmission and

presentation of what are often referred to as discrete media types, such as pictures or text messages.

A distributed multimedia system should be able to perform the same functions for audio and video;

that is, it should be able to store and locate audio or video files, to transmit them across the network),

to support the playback of the media to the user and optionally also to share the media across a

group of users.

The crucial characteristic of media types is that they are time critical, and indeed, the integrity of the

media type is fundamentally dependent on preserving real-time relationships between audio and

video of a video stream.

The benefits of distributed multimedia computing are considerable in that a wide range of new

(multimedia) services and applications can be provided on the desktop, including access to live or

pre-recorded television broadcasts, access to film libraries offering video-on-demand services(e.g.

Hotstar), access to music libraries, the provision of audio and video conferencing facilities and

integrated telephony features including IP telephony or related technologies such as Skype, a peer-

to-peer alternative to IP.

Webcasting is an application of distributed multimedia technology. Webcasting is the ability to

broadcast continuous media, typically audio or video, over the Internet

Distributed multimedia applications such as webcasting place considerable demands on the

underlying distributed infrastructure in terms of:

3. providing support for an (extensible) range of video and encryption formats, such as the

MPEG series of standards (including for example the popular MP3 standard otherwise known as

MPEG-1, Audio Layer 3) and HDTV;

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

4. providing a range of mechanisms to ensure that the desired quality of service can be met; i.e,

no frame drops or buffering

5. providing associated resource management strategies, including appropriate scheduling

policies to support the desired quality of service;

6. providing adaptation strategies to deal with the inevitable situation in open systems where

quality of service cannot be met or sustained for example when speed of a user goes from 4g to 2g

due to lack of connectivity.

1.9.4 Distributed computing as a utility

With the increasing maturity of distributed systems infrastructure, a number of companies are

promoting the view of distributed resources as a commodity or utility, drawing the analogy between

distributed resources and other utilities such as water or electricity. With this model, resources are

provided by appropriate service suppliers and effectively rented rather than owned by the end user.

This model applies to both physical resources and more logical services:

• Physical resources such as storage and processing can be made available to networked

computers, removing the need to own such resources on their own. At one end of the spectrum, a

user may opt for a remote storage facility for file storage requirements (for example, for multimedia

data such as photographs, music or video) and/or for backups. Similarly, this approach would enable

a user to rent one or more computational nodes, either to meet their basic computing needs or indeed

to perform distributed computation.

• Software services can also be made available across the global Internet using this approach.

Example google docs, which provides the office suite over the cloud.

Cloud Computing

The term cloud computing is used to capture this vision of computing as a utility. A cloud is defined as

a set of Internet-based application, storage and computing services sufficient to support most users’
needs, thus enabling them to largely or totally dispense with local data storage and application

software. The term also promotes a view of everything as a service, from physical or virtual

infrastructure through to software, often paid for on a per-usage basis rather than purchased. Note

that cloud computing reduces requirements on users’ devices, allowing very simple desktop or

portable devices to access a potentially wide range of resources and services.

Clouds are generally implemented on cluster computers to provide the necessary scale and

performance required by such services. A cluster computer is a set of interconnected computers that

cooperate closely to provide a single, integrated high-performance computing capability. Building on

projects such as the NOW (Network of Workstations) Project at Berkeley [Anderson et al. 1995,

now.cs.berkeley.edu] and Beowulf at NASA [www.beowulf.org], the trend is towards utilizing

commodity hardware both for the computers and for the interconnecting networks. Most clusters

consist of commodity PCs running a standard (sometimes cut-down) version of an operating system

such as Linux, interconnected by a local area network. Companies such as HP, Sun and IBM offer

blade solutions.

The overall goal of cluster computers is to provide a range of cloud services, including high-

performance computing capabilities, mass storage (for example through data centres), and richer

application services such as web search (Google, for example relies on a massive cluster computer

architecture to implement its search engine and other services).

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

https://www.ktustudents.in
https://www.ktustudents.in

MODULE 2

SYSTEM MODELS

System models: Physical models - Architectural models -Fundamental models

Introduction

Distributed Systems that are intended for use in real-world environments should be
designed to function correctly in the widest possible range of circumstances and in the
face of many possible difficulties and threats We show how the properties and issues of
distributed systems can be understood through the use of descriptive models. Each type of
model is intended to provide an abstract(high level) and simplified description of a relevant
aspect of distributed system design:

Physical models consider the types of computers and devices that constitute a distributed
system and how they are connected.

Architectural models describe a system in terms of the computational elements(computers)
and communications performed by its computational elements

Fundamental models examine three important aspects of distributed systems: interaction
models, which consider the structure and order or sequencing of the communication
between the elements of the system; failure models, which consider the ways in which a
system may fail to operate correctly and; security models, which consider how the system
is protected against attempts to attack it or to steal its data.

1. PHYSICAL MODEL

Physical models consider the types of computers and devices that constitute a distributed
system and how they are connected.

1.1 Baseline physical model: A distributed system is one in which hardware or software
components located at networked computers communicate and coordinate their actions
only by passing messages.

we can identify physical model of three generations of distributed systems they are,

1.2 Early distributed systems: Such systems emerged in the late 1970s and early 1980s in response to

the emergence of local area networking technology, usually Ethernet. These systems typically

consisted of between 10 and 100 nodes interconnected by a local area network, with limited Internet

connectivity and supported a small range of services such as shared local printers and file servers as

well as email and file transfer across the Internet.

1.3 Internet-scale distributed systems: Building on this foundation, larger-scale distributed

systems started to emerge in the 1990s in response to the dramatic growth of the Internet during

this time. Such systems utilise the infrastructure offered by the Internet to become truly global.

They incorporate large numbers of nodes and provide distributed system services for very large

companies that span the entire globe. Heterogeneity is high that is distributed system consist of

computers with different hardware and software. Hence openness or standardisation was need

and middleware's software like RMI was developed to reduce overall software development

work.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

1.4 Contemporary(current) distributed systems:

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

In modern distributed systems the physical model has high heterogenity such that each
node can be a tiny internet enabled embedded device or desktop and even a super
computer. These systems deploy an increasingly varied set of networking technologies and
offer a wide variety of applications and services. Such systems potentially involve up to
hundreds of thousands of nodes.

1.5 Distributed systems of systems A future trend is the emergence of ultra-large-scale
(ULS) distributed systems . Like internet is a network of networks A system of systems can
be defined as a complex system consisting of a series subsystem which are complete
distributed systems.

As an example of a system of systems, one system can be a distributed system consisting
of group of sensor to monitor weather conditions and another system a distributed system
of powerful computers that process data from sensor networks.

2 Architectural Models

Architectural models describe a system in terms of the computational elements(computers)
and communications performed by its computational elements

Architectural model consists of

• core architectural elements or building blocks of distributed systems like communicating

entities, communication techniques and architectural styles to build distributed systems

• architectural patterns or techniques that can be used in developing more
sophisticated distributed systems solutions;

• middleware platforms or software to reduce complexity of programming
distributed system software using these architectural styles.

2.1 Architectural elements

To understand the fundamental building blocks of a distributed system, it is necessary to
understand

• the entities that are communicating in the distributed system

• communication paradigm or technique used by these entities to communicate

• roles and responsibilities of these entities

• Placement of these entities

2.1.1 Communicating entities

The entities that communicate in a distributed system are typically processes which run on

different computers like a client process and server process in client server systems. In systems

that support threads communication can be done by threads.

From a programming perspective these communicating entities are represented using a
programming language feature like an object in Object oriented languages.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Objects: In distributed object-oriented approach, communicating entities are represented
as objects. RMI in Java can be used to develop such objects.

Components: Components are like objects and can be used to represent a communication entity. A

component usually mentions other components it requires to work correctly and complex distributed

systems can be build combining different components. The advantage of a component compared to

objects is that we can replace a component with a new one very easily. Java Beans is an example of

components based feature.

Web services: Web services based communicating entities used web based technologies to
interact. Such communicating entities can be called using a URI(like an URL) and uses
XML-based message format to communicate.

Whereas objects and components are often used within an organization, web services are used

across organisations where communicating entities belong to different companies and they

need to hide their internal hardware and software details.

Communication paradigms

There are three types of communication paradigm or techniques:

• interprocess communication;

• remote invocation;

• indirect communication.

Interprocess communication refers to the relatively low-level communication between
processes in distributed systems.

Remote Invocation

Remote invocation represents the most common communication paradigm in distributed
systems in which one communicating entities in a distributed system calls a remote
operation, procedure or method of another entity.

Request-reply protocols: such protocols typically involve a pairwise exchange of
messages from client to server and then from server back to client, with the first message
containing the operation to be executed at the server the second message containing any
results of the operation. An example is the HTTP protocol.

Remote procedure calls(RPC): In RPC technique, a programmer can invoke

procedures(functions) in processes on remote computers can be called as if they are

procedures in the local system memory. All the support for making this happen will be done by

the RPC module of the corresponding language(rpc.h header file in C language)

Remote method invocation: Remote method invocation (RMI) object oriented version of
RPC. With this approach, a calling object can invoke a method in a remote object. RMI
package in Java provides support for such communication.

Indirect communication

Key techniques for indirect communication include:

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

In indirect communication the two communicating entities need not be present at the same
time. A third party will store the message and send to the second entity when it is active.
Also this communication allows to send messages to a group of receiving entity. The
various techniques are,

Group communication: Group communication is concerned with the delivery of messages to

a set of recipients and hence is a one-to-many communication. Group
communication relies on the group identifier.

Recipients elect to receive messages sent to a group by joining the group. Senders then
send messages to the group via the group identifier, and hence do not need to know the
recipients of the message. Groups typically also maintain group membership and include
mechanisms to deal with failure of group members.

Publish-subscribe systems: In Publish-subscribe systems an intermediary service that
efficiently ensures information generated by producers is routed to consumers who has
subscribed for this information. Like a Facebook follow.

Message queues: Queues therefore offer an indirection between the producer and
consumer processes.

Tuple spaces: Tuple spaces offer a further indirect communication service by supporting a

model whereby processes can place structured data, called tuples, in a persistent tuple

space(memory space) and other processes can either read or remove such tuples. This is used

when readers and writers are not active at the same time.

Distributed shared memory: Distributed shared memory (DSM) systems allows two process in

different physical systems to share data as if they had shared physical memory.

Architectural Styles

We classify architectural styles based on

Roles of communicating entities

Placement of communicating entities in the distributed system

2.1.2 Roles and responsibilities

Client-server:

In such a distributed system there are two roles for communicating entities client and
server. client processes interact with individual server processes in separate computers in
order to share resources. Web servers usually use client server architecture where
browsers are client processes and webservers are the server process. The client process
request webpages from servers using HTTP protocol.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Peer-to-peer: In this architecture all of the processes has the same role as peers without
any distinction between client and server processes. While the client-server model offers a
direct and relatively simple approach to the sharing of data and other resources, it scales
poorly. As the number of clients increases the load of server too increases. Also if the
server fails entire distributed system fails.

The hardware capacity and operating system functionality of today’s desktop computers
exceeds that of yesterday’s servers, and the majority are equipped with always-on
broadband network connections. The aim of the peer-to-peer architecture is to utilise the
resources (both data and hardware) in a large number of participating computers. Peer-to-
peer applications and systems have been successfully constructed that enable tens or
hundreds of thousands of computers to provide access to data and other resources that
they collectively store and manage. One of the earliest instances was the Napster
application for sharing digital music files.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Figure 2.4a illustrates the form of a peer-to-peer application. Applications are composed of large

numbers of peer processes running on separate computers. A large number of data objects are

shared, an individual computer holds only a small part of the application database, and the

storage, processing and communication loads for access to objects are distributed across many

computers and network links.

2.1.3 Placement

Mapping of services to multiple servers:

A distributed service may be implemented as a combination of several server processes in
separate computers interacting as necessary to provide a service to client processes
(Figure 2.4b). The servers may share the set of objects required for the service and
distribute those objects between themselves, or they may maintain replicated copies of
them on several hosts.

The Web provides a common example of partitioned data in which each web server
manages its own set of resources. A user can employ a browser to access a resource at
any one of the servers.

Caching: A cache is a storage of recently used data objects(Like in processors). When an
object is needed by a client process, the caching service first checks the cache and
supplies the object from there if an up-to-date copy is available. If not, an up-to-date copy is
fetched. Caches may be co-located with each client or they may be located in a proxy server
that can be shared by several clients.

Caches are used extensively in practice. Web proxy servers (Figure 2.5) provide a cache of
web pages for the client machines in the local network. Since the proxy server is located in
the clients network the copy of webpage can be downloaded from it rather than going to the
internet.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Mobile code: Applets are a well-known and widely used example of mobile code – the user

running a browser selects a link to an applet whose code is stored on a web server; the code is

downloaded to the browser and runs there. An advantage of running the downloaded code

locally is that it is faster and isnot affected by change in the network.

Mobile agents: A mobile agent is a running program (including both code and data) that travels

from one computer to another in a network carrying out a task on someone’s behalf, such as
collecting information, and eventually returning with the results.

Mobile agents might be used to install and maintain software on the computers within an

organization or to compare the prices of products from a number of vendors by visiting each

vendor’s site and performing a series of database operations.

2.2 Architectural patterns

Architectural patterns are techniques or solutions that can be used to build distributed
systems.

2.2.1 Layering

In a layered approach, a complex system is partitioned into a number of layers, with a given
layer making use of the services offered by the layer below. A given layer therefore offers a
software abstraction, with higher layers being unaware of implementation details, or indeed
of any other layers beneath them.

Below figure shows the layers of a distributed system,

Given the complexity of distributed systems, it is often helpful to organize such services
into layers.

• A platform for distributed systems and applications consists of the lowest-level
hardware and software layers. These low-level layers provide services to the layers above
them, which are implemented independently in each computer providing support for
communication between computers.

• Middleware is as a layer of software whose purpose is to mask heterogeneity(differences in

hardware and software) and to provide a convenient programming tool to application programmers.

Middleware layer implement communication

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

and resource-sharing support for distributed applications. It is concerned with providing
useful building blocks for the construction of software components that can work with one
another in a distributed system. Middleware allows programmers to easily implement
remote method invocation; communication between a group of processes; notification of
events; the partitioning, placement and retrieval of shared data objects amongst
cooperating computers; the replication of shared data objects; and the transmission of
multimedia data in real time.

2.2.2 Tiered architecture

There are two types, two-tiered and three-tiered architecture. The tiered architecture consist
of,

• the presentation logic, which is concerned with handling user input and
displaying the data to the user;

• the application logic, which is concerned with the detailed application-specific
processing on data associated with the application;

• the data logic, which is concerned with the persistent storage of the
application data, typically in a database management system.

This is mainly used in client server architecture.

In the two-tier solution, the three logic mentioned above must be placed in two processes,
the client and the server. This is most commonly done by placing presentation and part of
the application logic in client and the other part of application logic and data logic in the
server.

In the three-tier solution, presentation, application and data logic are placed in separate
processes.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

2.2.3 Thin clients • The trend in distributed computing is towards moving complexity away from

the client device towards services in the Internet or the cloud. This trend has given rise to

interest in the concept of a thin client which is a dumb device with no processing capacity and

only a display, Input-output device and networking support. Thin client has a user interface

allowing the user invoke services at the server. For example, a simple phone can access

webpages with all the processing to display the web pages is done at the server and needs only

a thin web client running on it.

This concept has led to the emergence of virtual network computing (VNC). VNC allows a
user to have access to graphical user interfaces of a remote system. In this solution, a VNC
client (or viewer) interacts with a VNC server through a VNC protocol.

2.2.4 Middleware solutions

The task of middleware is to provide a higher-level programming abstraction for the

development of distributed systems and, through layering, to abstract over heterogeneity in the

underlying infrastructure to promote interoperability and portability.

Figure 2.12 Categories of middleware

Major categories: Subcategory Example systems

Distributed objects (Chapters 5,
8)

Standard RM-ODP

 Platform CORBA

 Platform Java RMI

Distributed components (Chapter 8)Lightweight components Fractal

 Lightweight components OpenCOM

 Application servers SUN EJB

 CORBA Component
 Application servers Model

 Application servers JBoss

Publish-subscribe systems

(Chapter 6) - CORBA Event Service

 - Scribe

 - JMS

Message queues (Chapter 6) - Websphere MQ

 - JMS

Web services (Chapter 9) Web services Apache Axis

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

 Grid services The Globus Toolkit

Peer-to-peer (Chapter 10) Routing overlays Pastry

 Routing overlays Tapestry

 Application-specific Squirrel

 Application-specific OceanStore

 Application-specific Ivy

 Application-specific Gnutella

Categories of middleware • Remote procedure calling packages such as Sun RPC and
group communication systems such as ISIS were amongst the earliest instances of
middleware

The top-level categorization of middleware in Figure 2.12 is driven by the choice of

communicating entities and associated communication paradigms, and follows five of the main

architectural models: distributed objects, distributed components, publish-subscribe systems,

message queues and web services. These are supplemented by peer-to-peer systems, a rather

separate branch of middleware based on the cooperative approach. The subcategory of

distributed components shown as application servers also provides direct support for three-tier

architectures. In particular, application servers provide structure to support a separation

between application logic and data storage, along with support for other properties such as

security and reliability.

In addition to programming abstractions, middleware can also provide infrastructural distributed

system services for use by application programs or other services. These infrastructural

services are tightly bound to the distributed programming model that the middleware provides.

For example, CORBA provides applications with a range of CORBA services, including support

for making applications secure and reliable.

Limitations of middleware • Many distributed applications rely entirely on the services
provided by middleware to support their needs for communication and data sharing. For
example, an application that is suited to the client-server model such as a database of
names and addresses, can rely on middleware that provides only remote method
invocation.

When using middleware for communication the programmer implement additional layers
for error correction and security of communication which may make the final software
more complex compared to if the software didn’t use middleware software.

3 Fundamental models

Fundemental model describes the fundamental properties of a distributed system.

Interaction: In distributed system the processes interact and work together by passing

messages, resulting in communication and coordination (synchronization) between processes.

The interaction model shows that communication takes place with delays and that the accuracy

with which independent processes can be coordinated is limited.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Failure: The correct operation of a distributed system is threatened whenever a fault occurs
in any of the computers on which it runs (including software faults) or in the network that
connects them. Our model defines and classifies the faults. This helps us to design
systems that are able to tolerate faults while continuing to run correctly.

Security: Distributed systems have threats from both external and internal agents. Our
security model defines and classifies such attacks and will help for the design of systems
that are able to resist them.

3.1 Interaction model

Fundamentally distributed systems are composed of many processes, interacting together

to perform different operations.

For example:

• Multiple server processes may cooperate with one another to provide a service; DNS

is an example where multiple severs work together to retrieve the IP address of an URL.

• A set of peer processes may cooperate with one another to achieve a common
goal: for example, a video conferencing system consist of a number of Skype processes in
different computers working together

Most programmers will be familiar with the concept of an algorithm – a sequence of steps
to be taken in order to perform a desired computation. Algorithms is executed by a single
process. Distributed systems runs algorithms called distributed algorithm where different
steps of the algorithm is executed by different processes. To make sure that steps of
distributed algorithm are executed in an order messages are transmitted between the
processes.

3.1.1 Factors affecting Interaction of processes

Two main factors affect interaction of a process in a distributed system,

• Communication channel performance.

• It is impossible to maintain a single global time for all processes.

Performance of communication channels

The communication channels in distributed systems can be stream based(e.g TCP) or by
simple message passing over a computer network(e.g, UDP).

Communication over a computer network has the following performance characteristics
relating to latency, bandwidth and jitter:

• Latency - The delay between the start of a message’s transmission from one
process and the beginning of its receipt by another is referred to as latency.

• Bandwidth - The bandwidth of a computer network is the total amount of
information that can be transmitted over it in a given time.

• Jitter - Jitter is the variation in the time taken to deliver a series of messages.
Jitter is relevant to multimedia data. For example, if consecutive samples of audio data are
played with differing time intervals, the sound will be badly distorted.

Computer clocks and timing events

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Each computer in a distributed system has its own internal clock, which can be used by local

processes to obtain the value of the current time. Therefore two processes running on different

computers can each associate timestamps with their events. However, even if the two processes

read their clocks at the same time, their local clocks may supply different time values. This is

because computer clocks drift from perfect time and, more importantly, their drift rates differ

from one another. The term clock drift rate refers to the rate at which a computer clock deviates

from a perfect reference clock. Even if the clocks on all the computers in a distributed system

are set to the same time initially, their clocks will eventually vary quite significantly unless

corrections are applied.

3.1.2 Two types(variants) of the interaction model

Synchronous distributed systems:

synchronous distributed system is defined as one in which the following bounds(limits)
are defined:

• The time to execute each step of a process has known lower and upper bounds.

• Each message transmitted over a channel is received within a known bounded time.

• Each process has a local clock whose drift rate from real time has a known bound.

It is possible to suggest likely upper and lower bounds for process execution time,
message delay and clock drift rates in a distributed system, but it is difficult to provide
guarantees of the chosen values.

Synchronous distributed systems can be built. What is required is for the processes to
perform tasks with known resource requirements for which they can be guaranteed
sufficient processor cycles and network capacity, and for processes to be supplied with
clocks with bounded drift rates.

Asynchronous distributed systems:

Many distributed systems, such as the Internet, are very useful without being a
synchronous system.

An asynchronous distributed system is one in which there are no bounds(limits) on:

• Process execution speeds – for example, one process step may take only a
picosecond and another step may take a century.

• Message transmission delays – for example, one message from process A to
process B may be delivered in negligible time and another may take several years.

• Clock drift rates are not bounded

The asynchronous model allows no assumptions about the time intervals involved in any
execution. This exactly models(represents) the Internet, in which there is no bound on
server or network load and therefore on how long it takes, for example, to transfer a file
using FTP. Sometimes an email message can take days to arrive.

Actual distributed systems are very often asynchronous because of the need for processes to

share the processors and the network is also shared by multiple processes.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Figure 2.13 Real-time ordering of events

 send receivereceive

X

1 m

1
4

 m2

 send receiv

 e

 2 3 Physical

Y

 receive time

 send

Z

 receive receive

 m3 m1 m2

A

 receive receive receive

 t1 t2 t3

For multimedia distributed systems audio and video streaming they need a synchronous
distributed model.

3.1.3 Event ordering

During an interaction between processes, we are interested in knowing whether an event
(sending or receiving a message) at one process occurred before, after or concurrently with
another event at another process.

If we have a mechanism to order the events then even without a common clock we can
coordinate the activities of processes working together.

For example, consider the following set of exchanges between a group of email users,

X, Y, Z and A, on a mailing list:

1. User X sends a message with the subject Meeting.

2. Users Y and Z reply by sending a message with the subject Re: Meeting.

In real time, X’s message is sent first, and Y reads it and replies; Z then reads both X’s
message and Y’s reply and sends another reply, which references both X’s and Y’s
messages. But due to the delays in message delivery, the messages may be delivered as
shown in Figure 2.13, and some users may view these two messages in the wrong order.
For example, user A might see:

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

 Inbox:

Item From Subject

23 Z Re: Meeting

24 X Meeting

25 Y Re: Meeting

If the clocks on X’s, Y’s and Z’s computers could be synchronized, then each message could
carry the time on the local computer’s clock when it was sent. For example, messages m1, m 2

and m3 would carry times t1, t2 and t3 where t1<t2<t3. The messages received will be displayed to

users according to their time ordering. If the clocks are roughly synchronized, then these

timestamps will often be in the correct order.

Since clocks cannot be synchronized perfectly across a distributed system, Lamport proposed a

model of logical time that can be used to provide an ordering among the events at processes

running in different computers in a distributed system.

Logically, we know that a message is received after it was sent. Also only after receiving a
message can we sent a reply to it. Using this logic A understand that message from X is the
first message as message from Y and Z are replies to the first message and hence the order
must be

 Inbox:

Item From Subject

24 X Meeting

23 Z Re: Meeting

25 Y Re: Meeting

Hence without using time we arrived at an ordering of events(order of messages received)

Logical time takes this idea further by assigning a number to each event corresponding to its

logical ordering, so that later events have higher numbers than earlier ones. For example, Figure

2.13 shows the numbers 1 to 4 on the events at X and Y.

3.2 Failure model

In a distributed system both processes and communication channels may fail The failure
model defines the ways in which failure may occur to understand the effects of failures. We
study three main failures,

omission failures,

arbitrary failures and

timing failures.

3.2.1 Omission failures

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

The faults classified as omission failures refer to cases when a process or
communication channel fails.

Process omission failures: The omission failure of a process usually means that a process
has crashed. When we say that a process has crashed we mean that it has halted and will
not execute any further steps of its program ever.

In a synchronous systems other processes can detect a process crash by using timeout
that is if a process doesn’t reply by a fixed time we can assume that its has stopped
working or has crashed.

A process crash is called fail-stop if other processes can detect certainly that the process
has crashed. Fail-stop behaviour can be produced in a synchronous system if the
processes use timeouts to detect when other processes fail to respond and messages are
guaranteed to be delivered. For example, if processes p and q are programmed for q to
reply to a message from p, and if process p has received no reply from process q in a
maximum time measured on p’s local clock, then process p may conclude that process q
has failed.

In an asynchronous system a timeout cannot confirm a process has crashed, it may have
crashed or may have become very slow.

Communication omission failures: Consider the communication primitives(commands)
send and receive. A process p performs a send by inserting the message m in its outgoing
message buffer. The communication channel transports m to q’s incoming message buffer.
Process q performs a receive by taking m from its incoming message buffer and delivering
it (see Figure 2.14). The outgoing and incoming message buffers are typically provided by
the operating system.

The communication channel produces an omission failure if it does not transport a message

from p’s outgoing message buffer to q’s incoming message buffer. This is known as ‘dropping
messages’ and is generally caused by lack of buffer space at the receiver or at an intervening

gateway, or by a network transmission error, detected by a checksum carried with the message

data. The loss of messages between the sending process and the outgoing message buffer as

send-omission failures, and loss of messages between the incoming message buffer and the

receiving process as receive-omission failures, and and loss of messages in between as channel

omission failures.

3.2.2 Arbitrary failures

The term arbitrary or Byzantine failure is used to describe the worst possible failure
semantics, in which process has not crashed but it is now working correctly and is
producing incorrect results. For example, a process may set wrong values in its data items,
or it may return a wrong value in response to an invocation.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

An arbitrary failure of a process is one in which it arbitrarily omits intended processing
steps or takes unintended processing steps. Arbitrary failures in processes cannot be
detected as process may reply but it may not have completed the requested action for
example deposit an amount to account.

Communication channels can suffer from arbitrary failures; for example, message contents may

be corrupted, nonexistent messages may be delivered or real messages may be delivered more

than once. Arbitrary failures of communication channels are rare.

Figure 2.15 Omission and arbitrary failures

Class of
failure

Affects Description

 Process halts and remains halted. Other
processes

Fail-stop Process may

 detect this state.

 Process halts and remains halted. Other
processes

Crash Process may

 not be able to detect this state.

Omission Channel A message inserted in an outgoing message
buffer

 never arrives at the other end’s incoming
message

 buffer.
 A process completes a send operation but the

Send-
omission

Process message

 is not put in its outgoing message buffer.

Receive- Process A message is put in a process’s incoming
message

omission buffer, but that process does not receive it.
 Process/channel exhibits arbitrary behaviour: it

Arbitrary Process may

 send/transmit arbitrary messages at arbitrary
times

(Byzantine) or or
 channel commit omissions; a process may stop or take

an

 incorrect step.

because the communication software is able to recognize them and reject the faulty messages. For

example, checksums are used to detect corrupted messages, and message sequence numbers can

be used to detect non-existent and duplicated messages.

3.2.3 Timing failures

Timing failures are applicable in synchronous distributed systems where time limits are set
on process execution time, message delivery time and clock drift rate. Timing failures are
listed in Figure 2.16. Any one of these failures may result in responses being unavailable to
clients within a specified time interval.

In an asynchronous distributed system, an overloaded server may respond too slowly, but we

cannot say that it has a timing failure since no guarantee has been offered.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Real-time operating systems are designed with a view to providing timing guarantees, but they are

more complex to design and may require redundant hardware. Most general-purpose operating

systems such as UNIX do not have to meet real-time constraints.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Timing is particularly relevant to multimedia computers with audio and video channels.
Video information can require a very large amount of data to be transferred. Delivering such
information without timing failures can make very special demands on both the operating
system and the communication system.

3.2.4 Masking failures • Each component in a distributed system is generally constructed from a

collection of other components. A knowledge of the failure characteristics(how it fails) of a

component can allow us to design a distributed system that masks the

Figure 2.16 Timing failures

Class of

failure

Affects Description

Clock Process Process’s local clock exceeds the bounds on

 its rate of drift from real time.

Performance Process Process exceeds the bounds on the interval

 between two steps.

Performance Channel A message’s transmission takes longer than

 the stated bound.

failure of the components on which it depends.

A service masks a failure either by hiding it altogether or by converting it into a more acceptable

type of failure. For an example of the latter, checksums are used to mask corrupted

messages(arbitrary communication failure), effectively converting an arbitrary failure into an

omission failure. We can mask failures using replication. Even process crashes may be masked,

by replacing the process with a backup process and restoring its memory from information

stored on disk by its predecessor.

Reliability of one-to-one communication

Although a basic communication channel can exhibit the omission failures described above, it is

possible to use it to build a communication service that masks some of those failures.

The term reliable communication is defined in terms of validity and integrity as follows:

Validity: Any message in the outgoing message buffer is eventually delivered to the
incoming message buffer.

Integrity: The message received is identical to one sent, and no messages are delivered
twice.

The threats to integrity come from two independent sources:

• Any protocol that retransmits messages but does not reject a message that
arrives twice. Protocols can attach sequence numbers to messages so as to detect those
that are delivered twice.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

• Malicious users that may inject spurious messages, replay old messages or
tamper with messages. Security measures can be taken to maintain the integrity property in
the face of such attacks.

3.3 Security model

The security of a distributed system can be achieved by securing the processes and the
channels used for their interactions and by protecting the objects that they encapsulate
against unauthorized access.

Protection is described in terms of objects, although the concepts apply equally well to
resources of all types.

3.3.1 Protecting objects

Figure 2.17 shows a server that manages a collection of objects on behalf of some users.
The users can run client programs that send invocations(requests) to the server to perform
operations on the objects. The server carries out the operation specified in each invocation
and sends the result to the client.

Objects are intended to be used in different ways by different users. For example, some
objects may hold a user’s private data, such as their email mailbox, and other objects may
hold shared data such as web pages. To support this, access rights specify who is allowed
to perform the operations of an object – for example, who is allowed to read or to write its
state.

Thus, we must include users in our model as the beneficiaries of access rights. We do so by

associating with each invocation and each result the authority on which it is issued. Such an

authority is called a principal. A principal may be a user or a process. In our illustration, the

invocation comes from a user and the result from a server.

The server is responsible for verifying the identity of the principal behind each invocation
and checking that they have sufficient access rights to perform the requested operation on
the particular object invoked, rejecting those that do not. The client may check the identity
of the principal behind the server to ensure that the result comes from the required server.

3.3.2 Securing processes and their interactions

Processes interact by sending messages. The messages are exposed to attack because the

network and the communication service that they use are open, to enable any pair of

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

processes to interact. Servers and peer processes expose their interfaces, enabling
invocations to be sent to them by any other process.

Distributed systems are often deployed and used in tasks that are likely to be subject to
external attacks by hostile users. This is especially true for applications that handle
financial transactions, confidential or classified information or any other information whose
secrecy or integrity is crucial.

The enemy To model security threats, we postulate an enemy (sometimes also known as
the adversary) that is capable of sending any message to any process and reading or
copying any message sent between a pair of processes, as shown in Figure 2.18. The
attack may come from a computer that is legitimately connected to the network or from one
that is connected in an unauthorized manner.

The threats from a potential enemy include threats to processes and threats to
communication channels.

Threats to processes:

A process that is designed to handle incoming requests may receive a message from any other

process in the distributed system, and it cannot necessarily determine the identity of the sender.

Communication protocols such as IP do include the address of the source computer in each

message, but it is not difficult for an enemy to generate a message with a forged source

address. This lack of reliable knowledge of the source of a message is a threat to the correct

functioning of both servers and clients, as explained below:

Servers: Since a server can receive invocations from many different clients, it cannot
necessarily determine the identity of the principal(client) behind any particular invocation.
Even if a server requires the inclusion of the principal’s identity in each invocation, an
enemy might generate an invocation with a false identity. Without reliable knowledge of the
sender’s identity, a server cannot tell whether to perform the operation or to reject it. For
example, a mail server would not know whether the user behind an invocation that requests
a mail item from a particular mailbox is allowed to do so or whether it was a request from
an enemy.

Clients: When a client receives the result of an invocation from a server, it cannot
necessarily tell whether the source of the result message is from the intended server or
from an enemy, perhaps ‘spoofing’ the mail server. Thus the client could receive a result
that was unrelated to the original invocation, such as a false mail item (one that is not in the
user’s mailbox).

Threats to communication channels: An enemy can copy, alter or inject messages as they
travel across the network. Such attacks present a threat to the privacy and integrity of
information as it travels over the network and to the integrity of the system. For example, a
message containing a user’s mail item might be revealed to another user or it might be
altered to say something quite different.

Another form of attack is the attempt to save copies of messages and to replay them at a
later time, making it possible to reuse the same message over and over again. For example,
someone could benefit by resending an message requesting a transfer of a sum of money
from one bank account to another.

All these threats can be defeated by the use of secure channels or encrypted
communication channels.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Other possible threats from an enemy • Section 1.5.3 introduced very briefly two further security

threats – denial of service attacks and the deployment of mobile code. We reiterate these as possible

opportunities for the enemy to disrupt the activities of processes:

Denial of service: This is a form of attack in which the enemy interferes with the activities of

authorized users by making excessive and pointless transmissions in a network, resulting in

overloading of physical resources (network bandwidth, server processing capacity). Such attacks are

usually made with the intention of delaying or preventing actions by other users. For example, the

operation of electronic door locks in a building might be disabled by an attack that saturates the

computer controlling the electronic locks with invalid requests.

Mobile code: Mobile code raises new and interesting security problems for any process that

receives and executes program code from elsewhere, such as the email attachment. Such code

may easily play a Trojan horse role, purporting to fulfil an innocent purpose but in fact including

code that accesses or modifies resources that are legitimately available to the host process but

not to the originator of the code. The methods by which such attacks might be carried out are

many and varied, and the host environment must be very carefully constructed in order to avoid

them. Many of these issues have been addressed in Java and other mobile code systems, but

the recent history of this topic has included the exposure of some embarrassing weaknesses.

This illustrates well the need for rigorous analysis in the design of all secure systems.

3.3.3 Defeating security threats

Cryptography and shared secrets: Suppose that a pair of processes (for example, a
particular client and a particular server) share a secret; that is, they both know the secret
but no other process in the distributed system knows it. Then if a message exchanged by
that pair of processes includes information that proves the sender’s knowledge of the
shared secret, the recipient knows for sure that the sender was the other process in the
pair. Of course, care must be taken to ensure that the shared secret is not revealed to an
enemy.

Cryptography is the science of keeping messages secure, and encryption is the process of
scrambling a message in such a way as to hide its contents. Modern cryptography is based
on encryption algorithms that use secret keys – large numbers that are difficult to guess –
to transform data in a manner that can only be reversed with knowledge of the
corresponding decryption key.

Authentication: The use of shared secrets and encryption provides the basis for the

authentication of messages – proving the identities supplied by their senders. The basic

authentication technique is to include with message an encrypted portion. The portion may

include requesting principal’s identity and the date and time of the request, all encrypted with a
secret key shared between the two processes. The server would decrypt this and check that it

corresponds to the unencrypted details specified in the request. Here we are trying to find

whether the message is fake or not and if portion of message is encrypted by the shared key

then we can confirm that sender is true.

Secure channels: Encryption and authentication are used to build secure channels as a
layer on top of existing TCP/IP layers. A secure channel is a communication channel
connecting a pair of processes, each of which acts on behalf of a principal, as shown in
Figure 2.19. A secure channel has the following properties:

• Each of the processes knows reliably the identity of the principal on whose behalf the other

process is executing. Therefore if a client and server communicate via a secure channel, the server

knows the identity of the principal behind the invocations and can check their access rights before

performing an operation. This enables the server to protect its

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

objects correctly and allows the client to be sure that it is receiving results from a bona fide
server.

• A secure channel ensures the privacy and integrity (protection against
tampering) of the data transmitted across it.

• Each message includes a physical or logical timestamp to prevent messages
from being replayed or reordered.

The uses of security models • The security model outlined above provides the basis for the

analysis and design of secure systems in which these costs are kept to a minimum, but threats

to a distributed system arise at many points, and a careful analysis of the threats that might

arise from all possible sources in the system’s network environment, physical environment and
human environment is needed. This analysis involves the construction of a threat model listing

all the forms of attack to which the system is exposed and an evaluation of the risks and

consequences of each. The effectiveness and the cost of the security techniques needed can

then be balanced against the threats.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

1

DISTRIBUTED

COMPUTING

MODULE 3
COMMUNICATION PARADIGMS:
IPC, REMOTE INVOCATION AND INDIRECT
COMMUNICATION PARADIGMS

1Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam

Module 3 - Overview

Communication Paradigms:

 Inter Process Communication:

 IPC Characteristics

 Multicast Communication

 Network Virtualization

 Case study: Skype

 Indirect Communication:

 Group communication

 Remote Invocation:

 Remote Procedure call

2Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam

Objectives and Outcome

 Examine the different communication paradigms –
IPC, Remote Invocation and Indirect Communication.

 To understand the characteristics of inter process
communication.

 To summarize multicast communication based on IP.

 To explain Network virtualization.

 To present a case study on ‘Skype’.
 To explain the group communication process.

 To explain Remote Procedure call (RPC).

Course Outcome:

 CO3: Summarize the mechanisms for inter process

communication in a distributed computing system. L2

3Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam

CHARACTERISTICS OF IPC

General IPC characteristics.
 Datagram and Stream communication using

UDP and TCP.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 4

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

2

Middleware Layers

 Concerned with the communication aspects of
middleware:

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 5

The Characteristics of IPC

 Message passing between a pair of processes is
done by two message communication operations:

 send and receive

 A process sends a message (a sequence of bytes) to
a destination and another process at the destination

receives the message.

 This involves

 the communication of data from the sending process
to the receiving process and

 the synchronization of the two processes.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 6

Sync. and Async. Communication

 A queue is associated with each message destination.

 Sending processes add messages to remote queues at
receiver.

 Receiving processes remove messages from local

queues.

 Communication between the sending and receiving
processes may be either synchronous or
asynchronous.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 7

Synchronous Communication

 The sending and receiving processes synchronize at

every message.

 Both send and receive are blocking operations.

 Whenever a send is issued the sending process (or
thread) is blocked until the corresponding receive is
issued at receiver.

 Whenever a receive is issued by a process (or thread),
it blocks until a message arrives.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 8

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

3

Asynchronous Communication

 The send operation is non-blocking.

 Sending process proceeds as soon as the message is
copied to a local buffer.

 The transmission of the message proceeds in parallel
with the sending process.

 The receive operation can be blocking/non-blocking.

 Non-blocking - the receiving process proceeds with its
program after issuing a receive operation which
provides the buffer to be filled in the background.

» It must separately receive notification by polling or

interrupt when the buffer has been filled up.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 9

Asynchronous Communication…
 In multithreading environment like Java, blocking

receive has no disadvantages.

 It can be issued by one thread while other threads in the
process remain active.

 It is simple to synchronize the receiving threads with the
incoming message.

 Non blocking communication seems more efficient, but
involves extra complexity in the receiving process.

 The need to acquire the incoming message out of its flow
of control.

 So current systems generally do not provide non-
blocking receive.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 10

Message Destinations – IP+Port No.

 In the Internet protocols, messages are sent to (Internet

address, local port) pairs.

 IP address points to the destination computer.

 Port no. is an integer that specifies a message destination

within a computer (identifies a particular process).

» Each computer has a large number (65536 or 216) of port numbers.

 Any process that know the port can send message to it.

 Servers generally publicize their port numbers for use
by the clients.

 A port has exactly one receiver, but can have many
senders.

 Processes may use multiple ports to receive messages.
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 11

Location Transparency

 If the client uses a fixed IP to refer to a service, then
that service must always run on the same computer

for its address to remain valid.

 This can be avoided by using the following approach to
providing location transparency:

 Client programs refer to services by names and use a
name server or binder to translate their names into
server locations (IP address) at runtime.

 Eg. DNS that translate domain names like ‘google.com’ to its
corresponding IP addresses.

 This allows services to be relocated.

 but not to migrate (to move while the system is running).

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 12

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

4

Reliability

 A reliable communication ensures validity and integrity:

 Validity: A point to point message service is considered
to be reliable if messages are guaranteed to be

delivered despite a ‘reasonable’ no of packets being
dropped or lost.

 Considered unreliable if messages are not guaranteed

to be delivered when even a single packet is dropped
or lost.

 Integrity: messages must arrive uncorrupted and

without duplication.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 13

Ordering

 Sender order delivery:

 Some applications require that messages must be
delivered in the order in which they were transmitted by
the sender.

 The delivery of messages out of sender order is
regarded as a failure by such applications.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 14

Sockets

 Both UDP and TCP uses the socket abstraction.

 A socket provides an endpoint for communication between
processes.

 IPC consists of transmitting a message between a socket in

one process and a socket in another process (figure).

 To receive messages, a socket must be bound to a local port

and to its IP address.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 15

Sockets…
 A socket pair (local IP address, local port, foreign IP address,

foreign port) uniquely identifies a communication.

 Messages sent to a socket can be received only by a process
associated with that IP and port no.

 Processes may use the same socket for sending and receiving

messages.

 Any process may use multiple ports to receive messages.

 But a process cannot share ports with other processes on the
same computer.

 Processes using IP multicast do share ports.

 Any number of processes may send messages to the same port.

 Each socket is associated with a particular protocol – either
UDP or TCP.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 16

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

5

Java API for Internet Addresses

 Java provides a class, InetAddress that represents
Internet Addresses.

 Users of this class refer to computers by DNS host

names as argument.

 The method uses the domain name to get the
correspondingly mapped Internet address.

 Eg: InetAddress myIPaddr =

InetAddress.getByName(“kirk.cs.twsu.edu”);
Note: kirk.cs.twsu.edu – DNS host name

 getByName() – get the IP address using hostname.

 This method can throw UnknownHostException

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 17

UDP DATADRAM

COMMUNICATION

Illustrate the communication process using UDP.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 18

API to UDP - Overview

 The application program interface to UDP provides a
message passing abstraction – the simplest form of
interprocess communication.

 This enables a sending process to transmit a single

message to a receiving process.

 The independent packets containing these messages
are called datagrams.

 In the Java and UNIX APIs, the sender specifies the
destination using a socket -

 an indirect reference to a particular port used by the
destination process at a destination computer.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 19

UDP Communication

 A datagram sent by UDP is transmitted without

acknowledgement or retries.

 If failure occurs, the message may not arrive.

 Datagram is transmitted when one process sends it and
other process receives it.

 To send or receive, a process must first create a socket
bound to a local host IP and a local port.

 A server will bind its socket to a known server port.

 A client binds its socket to any free local port.

 The receive() method returns the message along with
the IP address and port of the sender.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 20

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

6

Issues in UDP Communication

Message size:

 The receiving process needs to specify an array of

bytes of a particular size in which to receive a
message.

 If the array is smaller, the message will be truncated on
arrival.

 IP protocol allows packet lengths upto 216 bytes

including header and the message.

 The most used size restriction is 8 KB (kilobytes).

 Messages larger then this must be fragmented to
multiple datagrams.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 21

Issues in UDP Communication…
Blocking:

 Sockets normally provide non-blocking sends and
blocking receives for datagram comm.

 The send operation returns once the message is handed
over to the underlying UDP and IP protocol.

 They take care of transmitting to destination.

 On arrival, the message is placed in the queue for the
socket that is bound to the destination port.

 The message can be collected from the queue by an
outstanding or future invocation of receive in that socket.

 Messages are discarded if no process already has a
socket bound to the destination port.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 22

Issues in UDP Communication…
Blocking:

 The method receive blocks until a datagram is received,
unless a timeout has been set on the socket.

 If the process that invokes the receive method has other
work to do while waiting for the message, it should
arrange to use a separate thread.

 The receiving thread handle over the work to other
threads and wait for the next message from other
clients.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 23

Issues in UDP Communication…
Timeouts:

 Receive process that blocks for ever is suitable for use
by a server that is waiting to receive requests from its
clients.

 But is may not be appropriate in some cases as it may
wait indefinitely in case of crash or message loss.

 For that, in some programs, timeouts can be set on
sockets.

 It should be fairly large in comparison with the time
required to transmit a message.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 24

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

7

Issues in UDP Communication…
Receive from Any:

 Receive method does not specify an origin for
messages, it gets a message addressed to its socket
from any origin.

 Receive method returns the IP address and local port

of the sender to allow the recipient to know where it
came fro.

 It is possible to connect a datagram socket to a
particular remote port and internet address so that the
socket is able to send and receive messages from that
address only.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 25

Failure Model for UDP Datagrams

 Failure model defines reliable communication in terms
of integrity and validity. (not corrupted or duplicated)

 Ensured by checksum and sequence no.

 UDP datagram suffer from the following failures:

 Omission failures: Message may be dropped
occasionally. Due to checksum error or no buffer space at
source or destination.

» send-omission and receive-omission failures.

 Ordering: Messages can sometimes be delivered out of
sender order.

 A reliable delivery service may be constructed by the
use of acknowledgements.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 26

Uses of UDP

 UDP can be used in applications which accept
occasional omission failures.

 Eg.: DNS, RIP, traceroute, DHCP, NTP, SNMP, RPC, VoIP

 UDP is preferred because they do not suffer from the
overheads associated with guaranteed message
delivery like:

 the need to store state information at source and
destination.

 the transmission of extra messages.

 latency for the sender.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 27

Java API for UDP Datagrams

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 28

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

8

Java API for UDP Datagrams…
 The Java API provides datagram communication by

means of two classes:

 DatagramPacket - used to implement a connectionless
packet delivery service.

 DatagramSocket - specifies the sending or receiving
point for a packet delivery service.

 Methods of DatagramPacket:

 getData() - Returns the data buffer.

 getPort() - Returns the port number on the remote host.

 getAddress() - Returns the IP address.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 29

Java UDP API… Datagram Packet

 This class provides a constructor that makes an instance out
of an array of bytes comprising a message, the length of the

message and the IP and local port no of the destination
socket.

 Instances of this may be transmitted between processes
when send and receive happens.

 Also provides another constructor for message reception,
whose arguments specify an array of bytes in which to
receive the message and the length of the array.

 A received message is put in the DatagramPacket together
with its length and the IP address and port of the sending
socket. (using the methods mentioned before)

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 30

Java UDP API… Datagram Socket

 Support sockets for sending and receiving UDP
datagrams.

 Provides a constructor that takes port no as argument.

 Also provides a no argument constructor that allows the
system to choose a free local port.

 Throws SocketException if the port is already in use or a
reserved port (below 1024)

 Provides the following methods:

 send - Sends a datagram packet from this socket.

» Arguments include an instance of the datagram packet
and its destination

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 31

Java UDP API… Datagram Socket…
 receive - Receives a datagram packet from this socket.

 Argument is an empty datagram packet in which to put the
message, its length and origin

 setSoTimeout - Enable/disable the specified timeout, in
milliseconds.

 The receive method will block for this time and then throw
an InterruptedIO Exception

 connect - Connects the socket to a remote address for
this socket.

 Then the socket can send and receive messages only from
that address

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 32

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

9

UDP Communication Example:

 Client sends a message to server at a port 6789 and then
wait for the reply.

 Arguments of main() supply a message and DNS
hostname of the server.

 Message is converted into an array of bytes.

 DNS hostname is converted into an Internet address.

 Server creates a socket bound to its server port (6789).

 Then repeatedly waits to receive a request message from
a client to which it replies by sending back the same
message.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 33

UDP Client - sends a message to the server and gets a reply

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 34

import java.net.*;
import java.io.*;
public class UDPClient{

public static void main(String args[]){
// args give message contents and server hostname
DatagramSocket aSocket = null;
try {

aSocket = new DatagramSocket();
byte [] m = args[0].getBytes();
InetAddress aHost = InetAddress.getByName(args[1]);
int serverPort = 6789;
DatagramPacket request =

new DatagramPacket(m, args[0].length(), aHost, serverPort);
aSocket.send(request);

byte[] buffer = new byte[1000];
DatagramPacket reply = new DatagramPacket(buffer, buffer.length);
aSocket.receive(reply);
System.out.println("Reply: " + new String(reply.getData()));

}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e){System.out.println("IO: " + e.getMessage());}

}finally {if(aSocket != null) aSocket.close();}
}

}

UDP Server repeatedly receives a request and sends it back to the client

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 35

import java.net.*;
import java.io.*;
public class UDPServer{

public static void main(String args[]){
DatagramSocket aSocket = null;

try{
aSocket = new DatagramSocket(6789);
byte[] buffer = new byte[1000];
while(true){

DatagramPacket request =
new DatagramPacket(buffer, buffer.length);

aSocket.receive(request);

DatagramPacket reply = new DatagramPacket(request.getData(),
request.getLength(), request.getAddress(), request.getPort());
aSocket.send(reply);

}
}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e) {System.out.println("IO: " + e.getMessage());}

}finally {if(aSocket != null) aSocket.close();}
}

}

TCP STREAM

COMMUNICATION

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 36

Illustrate the communication process using TCP.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

10

TCP Communication

 The API to the TCP provides the abstraction of a two

way stream of bytes.

 Data is written to and read from this stream of bytes,
with no message boundaries.

 The following network characteristics are hidden by streams:

 1. Message Sizes – The application can choose how much
(small/large) data it writes to a stream or reads from it.

 Underlying TCP implementation decides how much data to
collect before transmitting it as one or more IP packets.

 2. Lost Messages – TCP uses an acknowledgement scheme.

 If the ack is not received within a timeout, it will be resent.

 Sliding window scheme reduces the no. of acks.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 37

TCP Communication…
 3. Flow control – The TCP protocol attempts to match

the speeds of the sending and receiving process.

 If the writer is too fast for the reader, then it will be
blocked until the reader has consumed sufficient data.

 4. Message duplication and ordering – Message
identifiers are associated with each IP packet.

 It enables the recipient to detect and reject duplicates, or
to reorder messages.

 5. Message destinations - A pair of processes establish
a connection before they communicate over a stream.

 Then the processes simply read from and write to the
stream without using IP address or port nos.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 38

TCP… Establishing a Connection:
 During conn. est., one process act as client and the other as

server, but thereafter they could be peers.

 A connect request is send from client to server followed by
an accept message back from server to client, before any
communication can take place.

 Considerable overhead for a simple client-server req/reply.

 Client creates a stream socket bound to any local port and
then makes a connect request asking for a connection to a
server at its server port.

 The server creates a listening socket bound to a server

port and wait for clients to request connections.

 The listening socket maintains a queue of incoming

connection requests.
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 39

TCP… Establishing a Connection: …

 When the server accepts a connection, a new stream socket

is created for the server to communicate with a client.

 Meanwhile, it retains its socket at the server port for

listening for connect requests from other clients.

 The pair of sockets in the client and server are connected by
a pair of streams, one in each direction.

 Thus each socket has an input stream and an output

stream.

 One of the pair of processes can send information to the
other by writing to its output stream, and the other
process obtains the information by reading from its input

stream.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 40

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

11

TCP… Establishing a Connection: …

 An application closes a socket once it is done with the
transmission, it will not write any more data to its output
stream.

 Any data in the output buffer is sent to the other end of the
stream and put in the queue at the destination socket, with
an indication that the stream is broken.

 The destination process can read the data in the queue, but
any further reads after the queue is empty will result in an
indication of end of stream.

 When a process exits or fails, all of its sockets are
eventually closed.

 Any process attempting to communicate with it will discover
that its connection has been broken.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 41

TCP… Outstanding Issues:

 The issues related to stream communication are:

 1. Matching of data items: Two communicating processes
need to agree on the contents of the transmitted data.

 Eg: If a process writes an int followed by a double to the stream,
then the reading process must read in the same order, else error
in interpreting data occurs, or blocks due to insufficient data.

 2. Blocking: The data written to a stream is kept in a
queue at the destination socket.

 Read: When a process tries to read data from an input stream,
it will get the data or block until the data is available.

 Write: The process that writes data to the stream may be
blocked if the socket at the other end is queuing as much data
as the protocol allows.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 42

TCP… Outstanding Issues:

 3. Thread: When a sever accepts a connection, it
generally creates a new thread for the new client.

 The advantage of using a separate thread for each client
is that the server can block when waiting for input without
delaying other clients.

 If threads are not provided, an alternative is to test
whether input is available from a stream before
attempting to read it.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 43

TCP Failure Model

 TCP create a reliable communication as far as possible:

 Checksums and sequence no. for integrity: checksums
to detect and reject corrupt packets and seq. nos to
detect and reject duplicate packets.

 Timeouts and retransmission for validity: timeouts and
retransmissions to deal with lost packets.

 ie., messages are guaranteed to be delivered even when
some of the underlying packets are lost.

 But, sometimes it is not reliable, as it does not guarantee
to deliver messages in the face of all difficulties.

 If the network becomes congested and packet loss is too
much, no ack is received and then the connection is broken.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 44

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

12

TCP Failure Model…
 When a connection is broken, a process using it will

be notified if it attempts to read or write.

 It will has the following effects:

 The processes using the connection cannot distinguish
between network failure and failure of the process at
the other end of communication.

 The communication process cannot tell whether their
recent messages have been received or not.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 45

Uses of TCP

 Many services use TCP connections with reserved port
numbers

 HTTP (Hyper Text Transfer Protocol) is used for
communication between web browsers and web servers.

 FTP (File Transfer Protocol) allows directories on a remote
computer to be browsed and files to be transferred from
one computer to another over a connection.

 Telnet (Terminal Network) provides access by means of a
terminal session to a remote computer.

 SMTP (Simple Mail Transfer Protocol) is used send mail
between computers.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 46

Java API for TCP Streams

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 47

Java API for TCP Streams…
 The Java API provides TCP streams by two classes:

 ServerSocket – Intended for use by a server to create a
socket at the server port for listening to connect

requests from clients.

ServerSocket ss = new ServerSocket(serverPort);

 Its accept method gets a connect request from the
queue or, if the queue is empty, blocks until one
arrives.

 The result of executing accept is an instance of Socket
class – a socket to use for communicating with the
client.

Socket clientSoc = ss.accept();
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 48

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

13

Java API for TCP Streams…
 Socket - This class represents a connection between a

pair of processes.

 Uses a constructor with host name and port of a server.

Socket soc = new Socket(serverIP, serverPort);

 It creates a socket associated with a local port and also
connect it to the specified remote computer and port no.

 Throws UnknownHostException if the host name is wrong
and IOException in case of IO error.

 This class provides two methods for accessing two streams
associated with a socket for reading and writing bytes.

 getInputStream - Returns an InputStream for this socket.

 getOutputStream - Returns an OutputStream for this socket.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 49

TCP Communication Example:

 Client Program:
 The arguments of main method supply a message and a

DNS host name of the server.
 Client creates a socket bound to the host name and server

port 7896.
 Makes DataInputStream and DataOutputStream to read

and write data.

 Server Program:
 Opens a server socket on its server port 7896 and listens

for connect requests.
 When one arrives, it makes a new thread to communicate

with the client.
 The new thread creates a DataInputStream and

DataOutputStream to read and write data.
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 50

TCP Communication Example: …
 writeUTF / readUTF: as the message is a string, the client and

server uses this method to write/read data.

 UTF-8 encoding represents the string in a particular format.

 When a process closes its socket, it will no longer be able to
use its input and output streams.

 Existing data can be read from the queue.

 Any further reads after the queue is empty will result in
EOFException.

 Attempts to use a closed socket to write a broken stream
result in an IOException.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 51

TCP client makes connection to server, sends

request and receives reply

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 52

import java.net.*;
import java.io.*;
public class TCPClient {

public static void main (String args[]) {
// arguments supply message and hostname of destination
Socket s = null;

try{
int serverPort = 7896;
s = new Socket(args[1], serverPort);
DataInputStream in = new DataInputStream(s.getInputStream());
DataOutputStream out =

new DataOutputStream(s.getOutputStream());
out.writeUTF(args[0]); // UTF is a string encoding
String data = in.readUTF();
System.out.println("Received: "+ data) ;

}catch (UnknownHostException e){
System.out.println("Sock:"+e.getMessage());

}catch (EOFException e){System.out.println("EOF:"+e.getMessage());
}catch (IOException e){System.out.println("IO:"+e.getMessage());}

}
finally {if(s!=null) try {s.close();}catch (IOException e){

System.out.println("close:"+e.getMessage());}}
}

}

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

14

TCP server makes a connection for each client and

then echoes the client’s request

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 53

import java.net.*;
import java.io.*;
public class TCPServer {

public static void main (String args[]) {
try{

int serverPort = 7896;
ServerSocket listenSoc = new ServerSocket(serverPort);
while(true) {

Socket clientSocket = listenSoc.accept();
Connection c = new Connection(clientSocket);

}
} catch(IOException e) {System.out.println("Listen :"+e.getMessage());}

}
}
// continues on the next slide

TCP Server …

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 54

class Connection extends Thread {
DataInputStream in;
DataOutputStream out;
Socket clientSocket;
public Connection (Socket aClientSocket) {

try {
clientSocket = aClientSocket;
in = new DataInputStream(clientSocket.getInputStream());
out =new DataOutputStream(clientSocket.getOutputStream());
this.start();

} catch(IOException e) {System.out.println("Connection:"+e.getMessage());}
}
public void run(){

try { // an echo server
String data = in.readUTF();
out.writeUTF(data);

} catch(EOFException e) {System.out.println("EOF:"+e.getMessage());
} catch(IOException e) {System.out.println("IO:"+e.getMessage());}
} finally{ try {clientSocket.close();}catch (IOException e){/*close failed*/}}

}
}

UDP vs TCP

 Datagram Socket: uses
datagrams that may take
any route to destination.

 Efficient but suffer from
failures – unreliable.

 No ack, no retransmission,
no seq. no. – out of order
delivery.

 Faster, as there is no conn.
establishment

 No flow control and error
checking.

 Stream Socket:
communication using a
stream of bytes.

 Reliable, but complex.

 Use seq. no., ack,
retransmission etc for
reliability.

 Uses three way handshake
to establish connection -
slower.

 Flow and error control
using sliding window and
checksums etc.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 55

MULTICAST COMMUNICATION

A form of inter process communication in which
one process in a group of processes transmits the

same message to all members of the group.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 56

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

15

Why Multicast?

 Multicast is an important requirement for distributed
applications.

 In distributed systems, a service may implemented as a

number of different processes in different computers,
perhaps to provide fault tolerance or to enhance
availability.

 This distribution is transparent, a sender may not be
knowing the identity of all the receivers.

 The pair-wise exchange of messages is not the best
model for communication from one process to a group
of other processes in such a scenario.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 57

Multicasting

 A multicast is an operation that sends a single

message from one process to each of the members of

a group of processes,

 usually in such a way that the membership of the

group is transparent to the sender.

 Its use in DC: Some services are implemented as a number of
different processes in different computers, to provide fault

tolerance or to enhance availability. Multicasting suits to pass
messages to such services.

 The simplest multicast protocol provides no guarantees

about message delivery or ordering.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 58

Multicast Characteristics

 Multicast messages provide a useful infrastructure for
constructing distributed systems with characteristics like:

 Fault tolerance based on replicated services:

» A replicated service consists of a group of servers. Client
requests are multicast to a group of servers. Even when
some members fail, clients can still be served.

 Finding the discovery servers in spontaneous
networking:

» Multicast messages can be used by servers and clients to
locate available discovery services in order to register
their interfaces or to look up the interfaces of other
services in the distributed system.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 59

Multicast Characteristics… contd

 ... characteristics:

 Better performance through replicated data:

» Data are replicated to increase the performance of a
service. Sometimes, replicas of the data are placed in
users’ computers. Each time the data changes, the new
value is multicast to the processes managing the replicas.

 Propagation of event notifications:

» Multicast to a group may be used to notify processes
when something happens.

» Eg. in Facebook, when someone changes their status, all
their friends receive notifications.

» Similarly, publish-subscribe protocols may make use of
group multicast to disseminate events to subscribers.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 60

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

16

IP multicast - An implementation of multicast communication

 IP multicast is built on top of the Internet Protocol (IP).

 IP packets are addressed to computers – ports belong to the

TCP and UDP levels.

 IP multicast allows the sender to transmit a single IP

packet to a set of computers that form a multicast
group.

 The sender is unaware of the identities of the

individual recipients and of the size of the group.

 A multicast group is specified by a class D Internet

address

 an address whose first 4 bits are 1110 in IPv4.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 61

IP multicast...

 A member of a multicast group can receive IP packets
sent to the group.

 The membership of multicast groups is dynamic,

 computers can join or leave at any time and

 can join an arbitrary number of groups.

 Can send datagrams to a multicast group without

being a member.

 At the API level, IP multicast is available only via UDP.

 A program performs multicast by sending UDP datagrams

with multicast addresses and ordinary port numbers.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 62

IP multicast...

 A program can join a multicast group by making its

socket join the group, enabling it to receive messages
to the group.

 At the IP level, a computer belongs to a multicast group
when one or more of its processes has sockets that belong to

that group.

 When a multicast message arrives at a computer,

 copies are forwarded to all of the local sockets that have
joined the specified multicast address and are bound to
the specified port number.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 63

IP multicast... Multicast support in IPv4

 Multicast Routers – routers enabled with multicast
support.

 IP packets can be multicast both on a local network and
on the Internet.

 Local multicasts use the multicast capability of the local
network such as an Ethernet (hardware multicast using MAC

address).

 Internet Multicast make use of multicast routers, which
forward single datagrams to routers on other networks,
where they are again multicast to local members.

 The distance of propagation is specified in the Time To
Live or TTL.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 64

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

17

IP multicast... Multicast support in IPv4

Multicast Address Allocation:

 Class D addresses (224.0.0.0 to 239.255.255.255) are
reserved for multicast traffic and managed globally.

 The management of this address space is reviewed annually.

 Address Space partitioned into a number of blocks:

 Local Network Control Block (224.0.0.0 to 224.0.0.225), for
multicast traffic within a given local network.

 Internet Control Block (224.0.1.0 to 224.0.1.225).

 Ad Hoc Control Block (224.0.2.0 to 224.0.255.0), for traffic
that does not fit any other block.

 Administratively Scoped Block (239.0.0.0 to
239.255.255.255), which is used to implement a scoping
mechanism for multicast traffic (to constrain propagation).

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 65

IP multicast... Multicast support in IPv4

Multicast Address Allocation:

 Multicast addresses may be permanent or temporary.

 Permanent groups exist even when there are no members.

 Addresses are assigned by IANA and span the various blocks.

 Addresses are reserved for a variety of purposes:

» for specific Internet protocols or

» for organizations that make heavy use of multicast traffic,
including multimedia broadcasters and financial institutions.

 224.0.1.1 is reserved for the Network Time Protocol (NTP).

 Range 224.0.6.000 to 224.0.6.127 in the ad hoc block is
reserved for the ISIS project.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 66

IP multicast... Multicast support in IPv4

Multicast Address Allocation:

 The remaining multicast addresses are available for use by
temporary groups.

 Must be created before use and cease to exist when all

the members have left.

 A temporary multicast group requires a free multicast address to
avoid accidental participation in an existing group before use
and cease after use. The IP multicast protocol does not directly
address this issue.

 For local multicast, TTL can be set to a small value, making
collisions with other groups unlikely.

 However, programs using IP multicast throughout the Internet
require a more sophisticated solutions for unique allocations.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 67

Failure model for multicast datagrams

 IP multicast datagrams suffer from omission failures.

 have the same failure characteristics as UDP datagrams.

 This is called Unreliable Multicast:

 It does not guarantee that a message will be delivered to
any member of a group.

 Some, but not all of the members of the group may
receive it.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 68

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

18

Java API to IP multicast

 The Java API provides a datagram interface to IP multicast
through the class MulticastSocket.

 MulticastSocket - Create a multicast socket.

 A subclass of UDP DatagramSocket, with additional capabilities for

joining multicast groups.

 Either bound to a port or any free local port.

 joinGroup – method to join a multicast group.

 it will receive datagrams sent by processes on other computers to that
group at that port.

 leaveGroup - method to leave a multicast group.

 setTimeToLive - Set the default TTL for multicast packets sent out on

this MulticastSocket in order to control the scope of the multicasts.
Default is 1, allowing the multicast to propagate only on the local
network.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 69

Java API to IP multicast...

 An application implemented over IP multicast may use

more than one port.

 Eg. the MultiTalk [mbone] application

» allows groups of users to hold textbased conversations,
has one port for sending and receiving data and
another for exchanging control data.

 A multicast peer program shown in next slide specify the message
and the multicast address in the arguments to the main method.

 When several instances of this program are run simultaneously on
different computers, all of them join the same group, and each of
them should receive its own message and the messages from those
that joined after it.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 70

Multicast peer joins a group and sends and

receives datagrams

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 71

Sending message to group

Receiving message
from group

Multicast peer joins a group and sends and receives

datagrams…

 In the example, the arguments to the main method specify a
message to be multicast and the multicast address of a group
(for example, "228.5.6.7").

 After joining that multicast group, the process makes an instance
of DatagramPacket containing the message and sends it through
its multicast socket to the multicast group address at port 6789.

 After that, it attempts to receive three multicast messages from its
peers via its socket, which also belongs to the group on the same
port.

 When several instances of this program are run simultaneously on
different computers, all of them join the same group, and each of
them should receive its own message and the messages from
those that joined after it.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 72

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

19

Reliability and Ordering Issues

 The following situations could occur:

 Omission failure:

» A datagram sent from one multicast router to another may be

lost, thus preventing all recipients beyond that router from
receiving the message.

» Sometimes, any one of the recipients may drop the message

because its buffer is full.

 Process failure – If a multicast router fails, the group members
beyond that router won’t receive the message.

 Ordering issue – The packets could arrive in a different order.

» some group members receive datagrams from a single sender in a
different order from other group members.

» messages sent by two different processes will not necessarily arrive
in the same order at all the members of the group.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 73

Effects of reliability and ordering issues

 Examples of the effects of reliability and ordering:

 Fault tolerance based on replicated services

 A replicated service consists of the members of a group of servers
that start in the same initial state and always perform the same

operations in the same order, so as to remain consistent with one
another.

 In replicated servers, multicast requires that either all or none should
receive the request in the same order to perform an operation to
remain consistent.

 Discovering services in spontaneous networking

 A process can discover services by multicasting requests at periodic
intervals, and the available services will listen for those multicasts and
respond.

 An occasional lost request is not an issue when discovering services.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 74

Effects of reliability and ordering issues...

 Examples of the effects of reliability and ordering:

 Better performance through replicated data

 In cases where the replicated data itself, rather than operations on
the data, are distributed by means of multicast messages, the effect
of lost messages and inconsistent ordering would depend on the
method of replication and the importance of all replicas being totally
up-to-date.

 Propagation of event notifications

 The particular application determines the qualities required of
multicast.

 Eg. Jini lookup services use IP multicast to announce their existence.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 75

Reliable IP multicast

 The examples show that some applications require a
multicast protocol that is more reliable than IP

multicast.

 Reliable multicast:

 must ensure that any message transmitted is either

received by all members of a group or by none of them.

 Totally Ordered multicast:

 Some applications have very strict and strong requirements
for ordering.

 All of the messages transmitted to a group reach all of

the members in the same order.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 76

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

20

Multicast using Overlays

 Multicast is an important requirement for distributed
applications and must be provided even if underlying
support for IP multicast is not available.

 This is typically provided by an overlay network
constructed on top of the underlying TCP/IP network.

 Overlay networks can also provide support for file
sharing, enhanced reliability and content distribution.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 77

NETWORK VIRTUALIZATION

Overlay networks

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 78

Network Virtualization: Why?

 IP protocols, through their API, provides a very effective
set of building blocks for the construction of distributed
software.

 But, Internet is growing with different classes of

applications, like peer-to-peer file sharing, Skype, etc.,
which coexist in the Internet.

 It is impractical to alter the Internet Protocols to suit

each of the many applications running over them.

 In addition, the IP transport service is implemented

over a large number of network technologies.

 These two factors led to the network virtualization.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 79

Network Virtualization

 Network virtualization deals with the construction of many

different virtual networks over an existing network such
as the Internet.

 Each virtual network can be designed to support a

particular distributed application.

 Eg. One VN might support multimedia streaming, as in BBC
iPlayer, BoxeeTV [boxee.tv] or Hulu [hulu.com], and

 coexist with another that supports a multiplayer online game,
both running over the same underlying network.

 An application-specific virtual network can be built above

an existing network and optimized for that particular

application, without changing the characteristics of the

underlying network.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 80

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

21

Network Virtualization

 Network virtualization (NV) is the ability to create
logical, virtual networks that are decoupled from the

underlying network hardware to ensure that the
network can better integrate with and support
increasingly virtual environments.

 Computer networks have addressing schemes, protocols
and routing algorithms.

 Similarly, each virtual network has its own particular

addressing scheme, protocols and routing algorithms,

 But these are redefined to meet the needs of particular
application classes.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 81

Overlay Networks

 An overlay network is a virtual network consisting of

nodes and virtual links, which sits on top of an
underlying network (such as an IP network) and offers

something that is not otherwise provided.

 A service that is tailored towards the needs of a class of

application or a particular higher-level service

» eg. multimedia content distribution.

 More efficient operation in a given networked
environment

» Eg. routing in an ad hoc network

 An additional feature – like multicast or secure comm.

 This leads to a wide variety of types of overlays.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 82

Types of Overlay

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 83

Types of Overlay… contd

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 84

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

22

Advantages of Overlay networks

 New network services can be defined without
changing the underlying network.

 Encourage experimentation with network services and
the customization of services to particular classes of
application.

 Multiple overlays can be defined and can coexist,
resulting in a more open and extensible network

architecture.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 85

Disadvantages of Overlay networks

 Overlays introduce an extra level of indirection and
hence may incur a performance penalty.

 They add to the complexity of network services when
compared to the relatively simple architecture of
TCP/IP networks.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 86

Overlay Networks…. contd

 Overlays can be related to the familiar concept of
layers.

 Overlays are layers that exist outside the standard

architecture (such as the TCP/IP stack) and exploit the
resultant degrees of freedom.

 Overlay developers are free to redefine the core

elements of a network, like the mode of addressing, the
protocols employed and the approach to routing.

 Introduces radically different approaches more tailored

towards particular application classes of operating
environments.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 87

Overlay Networks…. contd

 Eg., Distributed Hash Tables:

 Introduce a style of addressing based on a keyspace.

 Build a topology in such a way that

» a node in the topology either owns the key or

» has a link to a node that is closer to the owner

 This is a style of routing known as key-based routing.

 Most commonly ring topology.

 Skype is an example of an overlay network.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 88

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

23

CASE STUDY: SKYPE

Skype Peer-to-Peer Internet Telephony Protocol

An example of Overlay Network

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 89

Skype

 Skype is a peer-to-peer application offering Voice over
IP (VoIP).

 It includes calling, instant messaging, video

conferencing, file sharing and interfaces to the
standard telephony services through SkypeIn and
SkypeOut.

 SkypeOut: the ability to call landline or mobile phones from
Skype; but this term has been dropped later.

 Skype Number (until 2010 named SkypeIn) allows a Skype user
to receive calls to their Skype client (on whatever device) dialed
from mobiles or landlines to a Skype-provided phone number.

 Much of the service is free, but Skype Credit or a subscription is
required to call a landline or a mobile phone number.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 90

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 91

Skype…
 Skype company was created by Niklas Zennström and the

Dane Janus Friis in 2003., acquired by Microsoft in 2011.

 Ahti Heinla, Priit Kasesalu and Jaan Tallinn developed the
software, it was same as of Kaaza, a peer-to-peer music

file-sharing application.

 Skype is widely deployed, with millions of users.

 Registered users of Skype are identified by a unique

Skype Name and may be listed in the Skype directory.

 Skype supports conference calls, video chats and screen
sharing between 25 people at a time for free.

 In December 2017, Microsoft added ‘Skype Interviews’,
 a shared code editing system for those wishing to run job

interviews for programming roles.
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 92

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

24

Skype as an Overlay Network

 Skype is an excellent case study of the use of overlay
networks in real-world and large-scale systems.

 It indicates how advanced functionality can be provided in an
application-specific manner and without modifiying the core

architecture of the Internet.

 Skype is a virtual network in that it establishes

connections between Skype subscribers who are
currently active.

 No IP address or port is required to establish a call.

 The architecture of the Skype virtual network supporting Skype is
not widely publicized but researchers have studied Skype through a
variety of methods, including traffic analysis.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 93

Skype Overlay Architecture

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 94

Three types of entities:

 super nodes

ordinary nodes (client)

 login server

Skype Architecture

 Skype is based on a peer-to-peer infrastructure

consisting of ordinary users’ machines (hosts) and
super nodes.

 Super Nodes (SN) are ordinary Skype hosts that
happen to have sufficient capabilities to carry out their
enhanced role.

 They are selected on demand based on a range of criteria:

 bandwidth available,

 reachability (the machine must have a global IP address

and not be hidden behind a NAT-enabled router) and

 availability (based on the length of time that Skype has
been running continuously on that node).

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 95

Architecture… Super Nodes

 A super node is an ordinary host’s end-point on the
Skype network.

 Typically, super nodes maintain an overlay network

among themselves, while ordinary nodes pick one (or
a small number of) super nodes to associate with.

 Super nodes also function as ordinary nodes and are
elected from amongst them based on some criteria.

 Ordinary nodes issue queries through the super nodes

they are associated with.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 96

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

25

Architecture… User Connection

 Users are authenticated via a well-known Login Server.

 User names and passwords are stored at the login server
to maintain uniqueness across Skype namespace.

 The buddy list is also saved here.

 This is the only central component in Skype network.

 Online and offline user information is stored and
propagated in a decentralized fashion.

 Users then make contact with a selected super node.

 To achieve this, each client builds and maintains a
cache of reachable super nodes.

 (that is, IP address and port number pairs).

 This is called Host Cache, stored as an XML file.
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 97

Architecture… User Connection

 At first login, the Skype cache is hardcoded with the
address/port pairs of around seven super nodes.

 Over time the client builds and maintains a much
larger set (perhaps several hundreds) of online Skype
nodes.

 Skype uses Global indexing, which is guaranteed to
find a user if that user has logged in the Skype network
in the last 72 hours.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 98

Architecture… Search for Users

 The main goal of super nodes is to perform the efficient
search of the global index of users, which is
distributed across the super nodes.

 The search is done by the client’s chosen super node
and involves an expanding search of other super nodes
until the specified user is found.

 On average, eight super nodes are contacted.

 A user search typically takes between 3 - 4 seconds for
hosts that have a global IP and slightly longer, 5 - 6
seconds, if behind a NAT-enabled router.

 It appears that intermediary nodes involved in the
search cache the results to improve performance.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 99

Architecture… Voice Connection

 Once the required user is discovered, Skype establishes

a voice connection between the two parties.

 It uses TCP for signalling call requests and

terminations.

 It uses either UDP or TCP for the streaming audio.

 UDP is preferred but TCP, along with an intermediary node, is

used in certain circumstances to circumvent firewalls.

 The software used for encoding and decoding audio

plays a key part in providing the excellent call quality.

 The associated algorithms are carefully tailored to
operate in Internet environments at 32 kbps and above.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 100

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

26

Skype Security Policy

 Each caller provides the other with proof of identity and

privileges whenever a session is established.

 Each verifies the other’s proof before the session.
 Uses 256 bit AES to encrypt communication between users.

 Skype's encryption is inherent in the Skype Protocol and is
transparent to callers.

 When calling a telephone or mobile, the part of the call

over the PSTN is not encrypted.

 Skype is not considered to be a secure VoIP system as

 the calls made over the network do not make use of end-
to-end encryption, allowing for routine monitoring by
Microsoft and by government agencies.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 101

GROUP COMMUNICATION

 Examine group communication as an indirect

communication paradigm.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 102

Indirect Communication

 It is defined as communication between entities in a
distributed system through an intermediary with no
direct coupling between the sender and the receiver(s).

 Space uncoupling – senders may know about the identity

of the receivers or vice versa.

» Participants can be replaced, updated, replicated or

migrated.

 Time uncoupling - the sender and receiver(s) can have
independent lifetimes.

» They need not exist at the same time to communicate.

» Can have more volatile environments where senders and

receivers may come and go.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 103

Indirect Communication…
 It is often used in distributed systems where change is

anticipated, like

 Mobile environments where users may rapidly
connect to and disconnect from the global network.

 Event dissemination where the receivers may be
unknown and liable to change.

 Group Communication is an indirect communication

paradigm.

 Communication is via a group abstraction with the
sender unaware of the identity of the recipients.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 104

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

27

Space and Time coupling

 Disadvantages:

 Inevitable performance overhead introduced by the added level of
indirection.

 Such systems are more difficult to manage because of the lack of
any direct (space or time) coupling.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 105

Space and Time coupling in IP multicast

 IP multicast is space-uncoupled but time-coupled.

 space-uncoupled, because messages are directed towards
the multicast group, not any particular receiver.

 time-coupled, though, as all receivers must exist at the time
of the message send to receive the multicast.

 Publish-subscribe systems, also fall into this category.

 Persistency in communication channel is important to
achieve time uncoupling.

 the communication paradigm must store messages so that
they can be delivered when the receiver(s) is ready to
receive.

 IP multicast does not support this level of persistency.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 106

Group Communication

 Group communication offers a service whereby a
message is sent to a group and then this message is
delivered to all members of the group.

 The sender is not aware of the identities of the receivers.

 It represents an abstraction over multicast comm. and
may be implemented over IP multicast or an equivalent
overlay network.

 adds significant extra value in terms of managing group

membership, detecting failures and providing reliability

and ordering guarantees.

 With the added guarantees, group communication is to
IP multicast what TCP is to the point-to-point service in IP.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 107

Importance of Group Communication

 It is an important building block for reliable distributed systems,
with key areas of application including:

 the reliable dissemination of information to potentially large

numbers of clients, including in the financial industry, where
institutions require accurate and up-to-date access to a wide
variety of information sources.

 support for collaborative applications, where events must be

disseminated to multiple users to preserve a common user view –
eg. in multiuser games.

 a range of fault-tolerance strategies, including the consistent
update of replicated data or the implementation of highly
available (replicated) servers.

 support for system monitoring and management, including
load balancing strategies.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 108

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

28

Group Comm. - Programming Model

 A group with associated group membership, whereby
processes may join or leave the group.

 Processes can then send a message to this group and
have it propagated to all members of the group with
certain guarantees in terms of reliability and ordering.

 Thus, group comm. implements multicast communication,
in which a message is sent to all the members of the
group by a single operation.

 A process issues only one multicast operation to send a
message to each in a group of processes instead of

issuing multiple send operations to individual processes.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 109 110Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam

 A single send operation results in
copies of the data being delivered to
many receivers.

 Copies created at every branching.

 Communication to a single process is known as unicast.

 Communication to all processes in the system, (not a subgroup of
them), is known as broadcast.

 Multicast allows transmission to a subset of hosts, spreading
across arbitrary physical networks throughout the internet.

 Subset is known as a multicast group.

Advantages of Multicasting

 Single multicast operation instead of multiple send offers
much more than a convenience for the programmer.

 In Java, this operation is aGroup.send(aMessage))

 Efficient in its utilization of bandwidth.

 It can take steps to send the message over any
communication link, by sending it over a distribution tree;

 and it can use network hardware support for multicast
where this is available.

 Can minimize the total time taken to deliver the message
to all destinations, as compared with transmitting it
separately and serially.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 111

Advantages… Eg. Multicasting vs Unicast

 Compare the bandwidth utilization and the total transmission

time when sending the same message from a computer in London
to two computers on the same Ethernet in Palo Alto.

 (a) by two separate UDP sends

 Two copies of the message are sent independently, the second
message is delayed by the first.

 (b) by a single IP multicast operation

 Here, a set of multicast aware routers forward a single copy of
the message from London to a router on the destination LAN in
California.

 That router then uses hardware multicast (provided by the
Ethernet) to deliver the message to both destinations at once,
instead of sending it twice.

 This saves bandwidth and time.
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 112

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

29

Advantages of Multicasting …
 Reliability and Ordering: The use of a single multicast

operation is also important in terms of delivery guarantees.

 If a process issues multiple independent send operations to
individual processes, there is no way to provide guarantees
that affect the group of processes as a whole.

 If the sender fails halfway through sending, then some
members of the group may receive the message while
others do not.

 In addition, the relative ordering of two messages
delivered to any two group members is undefined.

 Group communication has the potential to offer a range of
guarantees in terms of reliability and ordering.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 113

Process groups and Object groups

 Group services mostly focuses on process groups

concept - groups where the communicating entities are

processes.

 Such services are relatively low-level in that:

 Messages are delivered to processes and no further

support for dispatching is provided.

 Messages are typically unstructured byte arrays with
no support for marshalling of complex data types.

 The level of service provided is therefore similar to
sockets.

 In contrast, object groups provide a higher-level
approach to group computing.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 114

Process groups and Object groups …
 An object group is a collection of objects (instances of

the same class) that process the same set of invocations
concurrently, with each returning responses.

 Client objects need not be aware of the replication.

 They invoke operations on a single, local object, which acts
as a proxy for the group.

 The proxy uses a group communication to send the
invocations to the members of the object group.

 Object parameters and results are marshalled and the
associated calls are dispatched automatically to the right
destination objects/methods.

 However, process groups still dominate in terms of usage.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 115

Closed and Open groups

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 116

 A group is open if processes outside the
group may send to it.

 Eg. for delivering events to groups of
interested processes.

 A group is said to be closed if only
members of the group may multicast to it.

 A process in a closed group delivers to itself
any message that it multicasts to the group.

 Eg. for cooperating servers to send
messages to one another that only they
should receive.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

30

Overlapping and Non-overlapping groups

 In overlapping groups, entities (processes or objects)
may be members of multiple groups.

 Non-overlapping groups imply that membership does

not overlap (any process belongs to at most one group).

 Note that in real-life systems, it is realistic to expect that
group membership will overlap.

 Synchronous and asynchronous systems:

 There is a requirement to consider group communication in
both environments.

 The above distinctions can have a significant impact on
the underlying multicast algorithms.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 117

Implementation Issues

 This topic discusses the properties of the underlying

multicast service in terms of reliability and ordering

and

 also the key role of group membership management

in dynamic environments, where processes can join
and leave or fail at any time.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 118

Reliability and ordering in multicast

 In group communication, all members of a group must
receive copies of the messages sent to the group, with
delivery guarantees.

 The guarantees include agreement on the

 set of messages that every process in the group should
receive and

 on the delivery ordering across the group members.

 Group communication systems are extremely
sophisticated.

 Even IP multicast, which provides minimal delivery
guarantees, requires a major engineering effort.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 119

Reliability and ordering in multicast …

 Reliability in group communication - three properties:

 Integrity - delivering the message correctly at most
once

» (the message received is the same as the one sent, and
no messages are delivered twice)

 Validity - any outgoing message is eventually
delivered.

 To extend the semantics to cover delivery to multiple
receivers, a third property is added.

 Agreement - if the message is delivered to one
process, then it is delivered to all processes in the
group.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 120

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

31

Reliability and ordering in multicast …
 Group communication demands extra guarantees in terms of the

relative ordering of messages delivered to multiple destinations.

 Messages may be subject to arbitrary delays, to counter this,
group comm. services offer ordered multicast.

 FIFO ordering: or source ordering preserves the order from the
perspective of a sender process, if it sends one message before
another, it will be delivered in this order at all processes in the group.

 Causal ordering: It considers causal relationships between
messages, if a message happens before another message in the
distributed system, this so-called causal relationship will be preserved
in the delivery of the associated messages at all processes (‘happens

before’).
 Total ordering: In total ordering, if a message is delivered before

another message at one process, then the same order will be
preserved at all processes.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 121

Group membership management

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 122

 The role of group membership management

Group membership management…
 Fig. has an open group, which shows the key elements of

group communication management.

 This illustrates the important role of group membership
management in maintaining an accurate view of the

current membership, given that entities may join, leave or

indeed fail.

 A group membership service has four main tasks:

 1. Providing an interface for group membership changes:

 The membership service provides operations to create and
destroy process groups and to add or withdraw a process to
or from a group.

 In most systems like IP multicast, a single process may belong to
several groups at the same time (overlapping groups).

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 123

Group membership management…
 2. Failure detection:

 The service monitors the group members in case of crash, or
they become unreachable because of a communication failure.

 The detector marks processes as Suspected or Unsuspected.

 The service uses the failure detector to reach a decision about
the group’s membership: it excludes a process from membership
if it is suspected to have failed or became unreachable.

 3. Notifying members of group membership changes:

 The service notifies the group’s members when a process is
added, or when a process is excluded (through failure or when
the process is deliberately withdrawn from the group).

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 124

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

32

Group membership management…
 4. Performing group address expansion:

 When a process multicasts a message, it supplies the group

identifier rather than a list of processes in the group.

 The membership management service expands the identifier
into the current group membership for delivery.

 The service can coordinate multicast delivery with

membership changes by controlling address expansion.

 That is, it can decide consistently where to deliver any given
message, even though the membership may be changing during
delivery.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 125

Implementation Issues …
 IP multicast is a weak case of a group membership

service, with some but not all of these properties.

 It does allow processes to join or leave groups

dynamically and

 it performs address expansion, so that senders need
only provide a single IP multicast address as the
destination for a multicast message.

 But IP multicast does not itself provide group members
with information about current membership, and multicast
delivery is not coordinated with membership changes.

 Achieving these properties is complex and requires what
is known as view-synchronous group communication.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 126

Implementation Issues …
 In general, the need to maintain group membership has a

significant impact on the utility of group-based approaches.

 Group communication is most effective in small-scale and
static systems and does not operate as well in larger-scale
or volatile environments.

 This can be traced to the need for a form of synchrony
assumption.

 A more probabilistic approach to group membership
designed to operate in more large-scale and dynamic
environments is using an underlying gossip protocol.

 Researchers have also developed group membership
protocols specifically for ad hoc networks and mobile

environments.
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 127

REMOTE PROCEDURE CALL

Illustrate the Remote Procedure Call mechanism
Illustrate Sun RPC

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 128

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

33

Introduction

 Remote Procedure Call (RPC) is a remote invocation

paradigm.

 This concept was first introduced by Birrell and Nelson
[1984] and paved the way for many of the developments in
distributed systems programming used today.

 RPC helps achieving a high level of distribution

transparency in a simple manner,

 by extending the abstraction of a procedure call to
distributed environments,

 allowing a calling process to call a procedure in a remote

node as if it is local.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 129

RPC

 Allows client programs to call procedures transparently

in server programs, running in separate processes and
generally in different computers other than the client.

 The underlying RPC system hides important aspects of
distribution, including

 the encoding and decoding of parameters and
results,

 the passing of messages and

 the preserving of the required semantics for the
procedure call.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 130

Design issues for RPC

 Three design issues:

 The style of programming promoted by RPC –
programming with interfaces

 The call semantics associated with RPC

 The key issue of transparency and how it relates to
RPC

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 131

Programming with Interfaces

 Modern programs can be organized as a set of modules

that can communicate with one another.

 Communication can be by procedure calls between modules
or by direct access to the variables in another module.

 To control the possible interactions between modules, an
explicit interface is defined for each module.

 The interface specifies the procedures and the variables

that can be accessed from other modules.

 It hides the module implementation details from the client.

 So long as its interface remains the same, the
implementation may be changed without affecting the

users of the module.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 132

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

34

Interfaces in distributed systems

 In a distr. program, the modules run in separate processes.

 A service interface is the specification of the procedures

offered by a server, defining the types of the arguments of
each of the procedures.

 Benefits of separating interface and implementation:

 Programmers are concerned only with the interface abstraction
and need not be aware of implementation details.

 Need not know the programming language or platform used to
implement the service (managing heterogeneity).

 Implementations can change as long as long as the interface
(the external view) remains the same.

» The interface can also change as long as it remains compatible
with the original.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 133

Interfaces in distributed systems …
 A client module in one process cannot access the variables

of a module in another process. Therefore the service
interface cannot specify direct access to variables, instead
use getter/setter methods.

 Local parameter-passing mechanisms like call by value and

call by reference are not suitable when the caller and
procedure are in different processes. Rather, the procedure
description in the interface describes the parameters as

input or output, or sometimes both.

 Input parameters are passed to the remote server by sending the
values of the arguments in the request message and then
supplying them as arguments to the operation to be executed in
the server.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 134

Interfaces in distributed systems …
 Output parameters are returned in the reply message and are

used as the result of the call or to replace the values of the
corresponding variables in the calling environment.

 When a parameter is used for both input and output, the value
must be transmitted in both the request and reply messages.

 Call by reference is not possible, why?:

 Another difference between local and remote modules is
that addresses in one process are not valid in a remote

one. Therefore, addresses cannot be passed as arguments
or returned as results of calls to remote modules.

 Interface definition languages takes care of these
constraints.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 135

Interface Definition Languages (IDL)

 Can use any programming language to implement
RPC, if it includes an adequate notation for defining

interfaces.

 This allows input and output parameters to be mapped
onto the language’s normal use of parameters.

 Convenient as it allows the programmer to use a single
language, eg. Java, for local and remote invocation.

 Many existing useful services are written in C++, etc.

 It would be beneficial to allow programs written in a
variety of languages, including Java, to access them
remotely.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 136

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

35

Interface Definition Languages (IDL)…

 IDLs are designed to allow procedures implemented in

different languages to invoke one another.

 An IDL provides a notation for defining interfaces in
which each parameter is described as for input or

output, and also its type.

 Eg. of a CORBA IDL:

 Person structure: the interface PersonList specifies the methods

available for RMI in a remote object that implements that
interface. The method addPerson specifies its argument as in,

an input argument, and the method getPerson that retrieves
an instance of Person by name specifies its second argument
as out, an output argument.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 137

CORBA IDL Example

// In file Person.idl
struct Person {

string name;
string place;
long year;

} ;

interface PersonList {
readonly attribute string listname;
void addPerson (in Person p) ;
void getPerson (in string name, out Person p);
long number();

};
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 138

CORBA has a struct

remote interface

remote interface defines

methods for RMI

parameters are in, out or inout

Interface Definition Languages (IDL)…

 Remote interface: specifies the methods of an object
available for remote invocation

 IDL concept was initially developed for RPC systems but
applies to RMI and also web services.

 Some examples of IDL include:

 Sun XDR as an IDL for RPC

 CORBA IDL as an IDL for RMI

 Web Services Description Language (WSDL), which is
designed for an Internet-wide RPC supporting web
services.

 Protocol Buffers used at Google for storing and
interchanging many kinds of structured information.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 139

RPC call semantics

 In Request-reply protocols, the doOperation can be
implemented in different ways to provide different
delivery guarantees.

 Retry request message: Controls whether to retransmit the
request message until either a reply is received or the
server is assumed to have failed (time outs).

 Duplicate filtering: Controls when retransmissions are used
and whether to filter out duplicate requests at the server.

 Retransmission of results: Controls whether to keep a
history of result messages to enable lost results to be
retransmitted without re-executing the operations at the
server.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 140

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

36

RPC call semantics…
 Combinations of these choices lead to different semantics

for the reliability of remote invocations.

 Fig. shows the choices with the corresponding semantics.

 Note: For local procedure calls, the semantics are exactly once,
meaning that every procedure is executed exactly once (except in
the case of process failure).

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 141

RPC call semantics… MayBe Semantics

 Here, the RPC may be executed once or not at all.

 This happens when no fault-tolerance measures are applied.

 Suffer from the following types of failures:

 Omission failures if the request or result message is lost.

» If the request was lost, then the procedure will not have been executed.

» If the result was not received after a timeout and there are no retries, it is
uncertain whether the procedure has been executed.

» Or, the procedure may have been executed and the result was lost.

 Crash failures when the server fails.

» A crash may occur either before or after the procedure is executed.

» In an asynchronous system, the result of executing the procedure may
arrive after the timeout.

 Maybe semantics is useful only for applications in which
occasional failed calls are acceptable.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 142

RPC call… At-least-once semantics

 Here, the invoker receives either a result, in which case
the the procedure was executed at least once,

 or an exception informing it that no result was received.

 This semantics can be achieved by the retransmission of
request messages, which masks the omission failures of
the request or result message.

 Can suffer from the following types of failures:

 Crash failures when the server fails;

 Arbitrary failures – in cases when the request message is
retransmitted, the remote server may receive it and
execute the procedure more than once, possibly
causing wrong values to be stored or returned.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 143

RPC call… At-least-once semantics…
 An idempotent operation is one that can be performed

repeatedly with the same effect as if it had been
performed exactly once.

 Non-idempotent operations can have the wrong effect

if they are performed more than once.

 Eg. an operation to increase a bank balance by $10 should be
performed only once; if it were to be repeated, the balance
would grow and grow!

 If the operations can be designed so that all of the
procedures in their service interfaces are idempotent

operations, then at-least-once call semantics may be
acceptable.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 144

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

37

RPC call… At-most-once semantics…
 Here, the caller receives either a result, in which case the

procedure was executed exactly once,

 or an exception informing it that no result was received, in
which case the procedure will have been executed either
once or not at all.

 At-most-once semantics can be achieved by using all of the
fault-tolerance measures.

 The use of retries masks any omission failures of the
request or result messages.

 This set of fault tolerance measures prevents arbitrary

failures by ensuring that a procedure is never executed
more than once.

 Sun RPC provides at-least-once call semantics.
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 145

Transparency

 Aim was to make RPC as much like local procedure calls
as possible, with no distinction in syntax.

 All the necessary calls to marshalling and message-
passing procedures were hidden from the caller.

 Retransmission of request messages are transparent to
the caller to make the semantics similar.

 RPC strives to offer at least location and access

transparency,

 hiding the physical location of the procedure and

 accessing local and remote procedures in the same way.

 Middleware can also offer additional levels of transparency
to RPC.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 146

Transparency…
 RPC calls are more vulnerable to failure than local ones, since

they involve a network, another computer and another process.

 Sometimes, no result will be received, it is impossible to distinguish
between network failure and remote server process failure.

 This requires that clients making remote calls are able to recover

from such situations.

 The latency is several orders of magnitude greater than that of
a local one, so minimize remote interactions.

 A caller should be able to abort a remote call that is taking too
long in such a way that it has no effect on the server.

 To allow this, the server would need to be able to restore things
to how they were before the procedure was called.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 147

Transparency…
 Remote calls require a different style of parameter passing.

 RPC does not offer call by reference.

 Some others claim that the difference between local and remote
operations should be expressed at the service interface, to allow
participants to react in a consistent way to possible partial
failures.

 Some arguments are that the syntax of a remote call should be
different from that of a local call: in the case of Argus, the
language was extended to make remote operations explicit to
the programmer.

 The choice as to whether RPC should be transparent is also
available to the designers of IDLs.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 148

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

38

Transparency…
 Eg., in some IDLs, a remote invocation may throw an exception

when the client is unable to communicate with a remote
procedure.

 The client program must be able to handle such exceptions,
allowing it to deal with such failures.

 An IDL can provide a facility for specifying the call semantics of
a procedure, so that the designer can choose the required
semantics.

 The current consensus is that remote calls should be made
transparent in the sense that

 the syntax of a remote call is the same as that of a local
invocation,

 but that the difference between local and remote calls should
be expressed in their interfaces.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 149

External Data Representation

 The information stored in running programs is represented as
data structures, whereas the information in messages

consists of sequences of bytes.

 The data structures must be flattened (converted to a

sequence of bytes) before transmission and rebuilt on arrival.

 Not all computers store primitive values such as integers in
the same order. There are two variants:

 Big-endian – the most significant byte comes first

 Little-endian – the most significant byte comes last

 The set of codes used to represent characters:

 ASCII – one byte per character

 Unicode – two bytes per character to present texts in different
languages

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 150

External Data Representation…
 Two methods can be used to exchange binary data

values between two systems:

 The values are converted to a agreed external format

before transmission and back to the local form on
receipt.

 No conversion needed if the two systems are of same type.

 The values are transmitted in the sender’s format,
together with an indication of the format used, and
the recipient converts the values if necessary.

 An agreed standard for the representation of data

structures and primitive values is called an external

data representation.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 151

Marshalling and Unmarshalling

 Marshalling:

 It is the process of taking a collection of data items
and assembling them into a form suitable for
transmission in a message.

 It involves data translation to an external data
representation.

 Unmarshalling:

 It is the process of disassembling them on arrival to
produce an equivalent data items at the destination.

 It involves generation of primitive values from their
external data representation and the rebuilding of the
data structures.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 152

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

39

Implementation of RPC

 Building blocks – Client process and Server process
 Communication module

 Client stub procedure: marshalling, sending, unmarshalling
 Dispatcher: will select one of the server stub procedures
 Server stub procedure: unmarshalling, calling, marshalling

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 153

client

Request

Reply

CommunicationCommunication

modulemodule dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

Implementation of RPC…
 The software components required to implement RPC:

 The client that accesses a service includes one client

stub procedure for each procedure in the service
interface.

 The stub behaves like a local procedure to the client,
but instead of executing the call,

 it marshals the procedure identifier and the

arguments into a request message, and

 it sends via its communication module to the server.

 When the reply message arrives,

 it unmarshals the results.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 154

Implementation of RPC…
 The server process contains a dispatcher, one server

stub procedure and one service procedure for each
procedure in the service interface.

 The dispatcher selects one of the server stub
procedures according to the procedure identifier in the
request message.

 The server stub procedure then unmarshals the
arguments in the request message, calls the
corresponding service procedure and marshals the
return values for the reply message.

 The service procedures implement the procedures in
the service interface.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 155

Implementation of RPC…
 RPC is generally implemented over a request-reply protocol.

 Figure shows this based on three communication primitives :

 doOperation, getRequest, and sendReply

 The doOperation method is used by clients to invoke remote operations.

 After sending the request, doOperation invokes receive to wait for a reply
message.

 getRequest is used by a server process to acquire service requests.

 When the server has invoked the method in the specified object, it then uses
sendReply to send the reply to the client.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 156

 When the reply is
received by the client,
the doOperation is
unblocked.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

40

Implementation of RPC…
 The contents of request and reply messages are:

 Server copies these req ID into the corresponding reply messages.

 RPC can have any one of the invocation semantics:

at-least-once or at-most-once is generally chosen.

 To achieve this, the communication module will implement the desired
design choices in terms of retransmission of requests, dealing with
duplicates and retransmission of results.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 157

message identifier: (unique
sequential req id + sender id)

 remote object reference

 the id of the method to be
invoked, specified in interface

 parameters to be transmitted.

Sun RPC Case Study (RFC 1831)

 Designed for client-server communication in the Sun

Network File System (NFS).

 Also called ONC (Open Network Computing) RPC.

 Supplied as a part of Sun and other UNIX OS and is
also available with NFS installations.

 Can be implemented over either TCP or UDP.

 With UDP, messages are restricted in length – theoretically
to 64 kilobytes, but in practice to 8 or 9 kilobytes.

 It uses atleast- once call semantics.

 Broadcast RPC is an option.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 158

Sun RPC Case Study… Sun XDR

 RPC uses an interface definition language called XDR.

 Has an interface compiler called rpcgen, for C lang.

 Sun XDR is used to define a service interface for Sun RPC

 by specifying a set of procedure definitions together with
supporting type definitions.

 The notation is rather primitive than CORBA IDL or Java.

 No Interface name: Instead, uses a program number and
version number, passed with request message, so that the

client and server can check that they are using the same version.

 The program nos can be obtained from a central authority to
allow every program to have its own unique number.

 The version no is intended to be changed when a procedure
signature changes.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 159

Sun RPC Case Study… Sun XDR

 A procedure definition specifies a procedure signature and
a procedure number (a procedure identifier in request)

 Only a single input parameter is allowed.

 multiple parameters must be used as components of a single
structure.

 The output parameters of a procedure are returned via a
single result.

 The procedure signature consists of the result type,
procedure name and the type of the input parameter.

 The type of both the result and the input parameter may
specify either a single value or a structure containing several
values.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 160

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

41

Files Interface in Sun XDR

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 161

const MAX = 1000;
typedef int FileIdentifier;
typedef int FilePointer;
typedef int Length;

struct Data {
int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

};

struct readargs {
FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
version VERSION {
void WRITE(writeargs)=1; 1
Data READ(readargs)=2; 2

}=2;
} = 9999;

Files Interface in Sun XDR…
 Shows an interface with two procedures - to read and

write files.

 Program no: 9999, version no: 2

 Read and write are given numbers 1 and 2

 READ: line 2

 Input parameters: a structure with three components -
file identifier, position in the file, no of bytes required

 Result: structure with no of bytes returned and file data

 WRITE: line 1, No result.

 The number 0 reserved for a null procedure to test
whether server is available.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 162

Files Interface in Sun XDR…
 This IDL provides a notation for defining constants,

typedefs, structures, enums, unions and programs.

 Typedefs, structures and enumerated types use the C
language syntax.

 Uses the interface compiler rpcgen to generate the

RPC components from an interface definition:

 client stub procedures

 server main procedure, dispatcher and server stub
procedures

 XDR marshalling and unmarshalling procedures for use
by the dispatcher and client / server stub procedures

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 163

Sun RPC Case Study… Binding

 Sun RPC runs a local binding service called the port

mapper at a well-known port no. on each computer.

 Port mapper records the program no., version no. and
port no. in use by each service running locally.

 When a server starts up it registers its program no.,
version no. and port no. with the local port mapper.

 When a client starts up, it finds out the server’s port by
making a remote request to the port mapper at the
server’s host, specifying the program no. and version no.

 Multiple instances of a service may use different port
nos for receiving client requests.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 164

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

42

Sun RPC Case Study… Binding…
 A client cannot use a direct IP multicast message to

multicast a request to all the instances of a service that
are using different port numbers.

 The solution is that clients make multicast RPC by
multicasting them to all the port mappers, specifying
the program and version number.

 Each port mapper forwards all such calls to the
appropriate local service program, if there is one.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 165

Sun RPC Case Study… Authentication

 RPC request and reply messages has fields for
authentication between client and server.

 The request contains the credentials of the client.

 Eg. the uid and gid of the user.

 Access control mechanisms can be made available to
the server procedures via a second argument.

 The server is enforces access control by deciding
whether to execute each procedure call according to
the authentication information.

 Eg., if the server is an NFS file server, it can check whether
the user has sufficient rights to do a file operation.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 166

Sun RPC Case Study… Authentication…
 Several different authentication protocols can be

supported.

 No authentication.

 UNIX style.

 A style in which a shared key is established for signing the
RPC messages.

 Kerberos - using tokens.

 A field in the RPC header indicates which style is being
used.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 167

RPC vs RMI

 Remote procedure call (RPC)

 Allows client programs to call procedures in server programs
running on different processes or machines.

 RPC’s Service interface:

 Specification of the procedures of the server, defining the
types of the input and output arguments of each procedure.

 Remote method invocation (RMI)

 Allows an object living in one process to invoke the methods of

an object living in other process.

 RMI’s Remote interface:

 Specification of the methods of an object that are available
for objects in other processes, defining the types of them.

 May pass objects or remote object references as arguments or
returned result.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 168

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

43

Local and Remote Method Invocations

 Object oriented program consists of a collection of
interacting objects, encapsulating of data and a set of

methods.

 Object communicates with other objects by invoking their
methods by passing arguments and receiving results.

 In a distributed environment, the objects may be physically
distributed in different processes or computers.

 For a distributed system, the objects data should be
accessed only via its methods.

 Method invocations between objects in different processes

are known as remote method invocations.

 Otherwise local method invocations (objects in same process).

 Has exactly once semantics.
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 169

Local and Remote Invocations …

 Objects that can receive remote invocations are called remote
objects, eg. B & F

 All objects can receive local invocations from other objects that
hold references to them. (C must have reference to E).

 Remote Object Reference:

 Other objects can invoke the methods of a remote object if they
have access to its remote object reference

 Eg. Remote obj ref to B must be available to A

 Remote Interface:

 Specifies the methods of an object that are available for
invocation by remote objects in other processes.

 Eg. B and F must have remote interfaces
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 170

Summary

Learnt the different Communication Paradigms:

 Inter process communication:

 IPC Characteristics

 Multicast Communication

 Network Virtualization

 Case study: Skype

 Indirect communication:

 Group communication

 Remote Invocation:

 Remote Procedure call

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 171

Text Books

 1. George Coulouris, Jean Dollimore and Tim Kindberg ,
Distributed Systems: Concepts and Design, Fifth Edition,
Pearson Education, 2011

 Website: http://www.cdk5.net/wp/

 2. Pradeep K Sinha, Distributed Operating Systems:
Concepts and Design, Prentice Hall of India

References:

 1. A S Tanenbaum and M V Steen , Distributed Systems:
Principles and paradigms, Pearson Education, 2007

 2. M Solomon and J Krammer, Distributed Systems and
Computer Networks, PHI

172Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

20-Oct-18

44

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 173

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

DISTRIBUTED

COMPUTING

MODULE 4
DISTRIBUTED FILE SYSTEMS

1Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Module 4 - Overview

Distributed file system (DFS):

 File service architecture

 Network File System (Sun‟s NFS)
 Andrew File System (AFS)

Name Services

2Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Objectives and Outcome

 To distinguish between the characteristics of local file systems and
distributed file systems (DFS).

 To summarize the DFS requirements.

 To describe the file service architecture and implementation of
DFS.

 To outline how a relatively simple, widely-used service like Sun
NFS is designed.

 To understand how Andrew file system is designed.

 To explain name services.

COURSE OUTCOME:

 CO4: Identify appropriate distributed system principles in

ensuring transparency, consistency and fault-tolerance in

distributed file systems. L3

3Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

INTRODUCTION TO

DISTRIBUTED FILE SYSTEM

Distributed File System
DFS Characteristics
DFS Requirements

4Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Introduction

 The sharing of stored information is the most
important aspect of distributed resource sharing.

 Eg. Web servers provide a restricted data sharing in which

files stored locally, in file systems at the server, are made

available to clients throughout the Internet.

 The requirements for sharing within local networks and
intranets lead to a service that supports the persistent

storage of data and programs.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 5
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

File Systems

 File systems were originally developed for centralized
computer systems and desktop computers as an OS
facility.

 It provides a convenient programming interface to

disk storage (persistent local storage).

 Access-control and file-locking mechanisms made them
useful for the sharing of data and programs.

6Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Distributed File Systems (DFS)

 A DFS enables programs to store and access remote

files exactly as they do local ones, allowing users to
access files from any computer on a network.

 It supports the sharing of information in the form of files

and hardware resources in the form of persistent storage

throughout an intranet.

 The performance and reliability experienced for access
to files stored at a server should be comparable to that
for files stored on local disks.

 Most effective in providing shared persistent storage

for use in intranets.

 Eg. Sun NFS

7Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

File Service

 A file service enables programs to store and access

remote files exactly as they do local ones, allowing
users to access their files from any computer in an
intranet.

 The concentration of persistent storage at a few

servers reduces the need for local disk storage.

 The web servers can store and access the material from
a local distributed file system.

8Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Storage Systems and their properties

 Advent of distributed object oriented programming led to the
need for persistent storage and distribution of shared objects.

 Serializing objects is impractical for rapidly changing objects.

 Java RMI & CORBA ORB provide access to remote shared objects.

 But offers no persistence of the objects and replication.

 Distributed shared memory (DSM): emulation of shared memory
by replication of memory pages at each host.

 No automatic persistence

 Persistent object stores: offers persistence for distributed shared
objects

 Eg: CORBA Persistent State Service and persistent extensions to Java

 PerDiS and Khazana: support the automatic replication and

persistent storage of objects.

9Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Storage Systems and their properties...

10Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Storage Systems and their properties...

 Virtually all storage systems rely on the use of caching to optimize the
performance of programs.

 Consistency between the copies stored at web proxy/client cache with
the original server is maintained by explicit user actions.

 The consistency column indicates whether multiple copies are kept
consistent when updates occur.

 Strict consistency („1‟ for one copy consistency): Programs cannot
observe any discrepancies between cached copies and stored data
after an update (as in in centralized systems).

 Specific consistency (√): To maintain an approximation to strict
consistency in distributed environment like NFS and Ivy.

 When distr. replicas are used, strict consistency is difficult to achieve.

 DFS such as Sun NFS and the AFS cache copies of portions of files at
client computers, and they adopt specific consistency mechanisms to
maintain an approximation to strict consistency – indicated by a tick.

*
11Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Characteristics of File Systems

 File System Responsibilities:

 Organization, storage, retrieval, naming, sharing
and protection of files.

 Provide a programming interface freeing the
programmers from the details of storage allocation
and layout.

 File:

 Files are stored on disks or other non-volatile storage
media.

 Include data and attributes

» Data: Sequence of data items, can read and write data.

» Attributes is a single record consisting of details of files.

12Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

 Record structure has attribute like length of the file, timestamps, file
type, owner‟s identity, access control lists etc.

 The shaded attributes are managed by the file system and are not
normally updatable by user programs.

File Attributes and Record Structure

updated
by system:

File length
Creation timestamp

Read timestamp
Write timestamp

Attribute timestamp
Reference count

Owner

File type

Access control list

Eg. for UNIX: rw-rw-r--

updated
by owner:

13
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Characteristics of File Systems…
 File systems are designed to store and manage large

no of files – create, delete and naming of files

 Naming is supported by directories

 Directory:

 A special file that provides a mapping from text
names to internal file identifiers.

 Also include names of other directories for
hierarchical file scheme.

 File systems also control access to files, restricting

access according to users‟ authorizations and the type

of access requested (read, write, execute).

14Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Characteristics of File Systems…
 Metadata:

 Extra information stored by the files.

 Needed for the management of files.

 It includes attribute, directories and all the other
persistent information used by the file system.

 File System Architecture

 Layered structure.

 Each layer depends on the layer below it.

15Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

File System Modules

 Figure shows a typical layered module structure for the
implementation of a non-distributed file system in a
conventional operating system.

16Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Characteristics of File Systems…
 File system operations:

 Applications access the operations on files using
system calls on kernal via library procedures.

 In UNIX operations, some file state information is
stored by the file system for each running program.

» Consists of a list of currently opened files with a read-

write pointer to each, giving the position within the file
at which the next read or write operation will be
applied.

 Unix file system also applies access control for files –
by checking the user’s rights and using the mode of
access requested.

17Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Unix File System Operations

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 18
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Distributed File System Requirements

 Transparency

 Concurrency

 Replication

 Heterogeneity

 Fault tolerance

 Consistency

 Security

 Efficiency..

Tranparencies

Access: Same operations (client programs are
unaware of distribution of files)

Location: Same name space after relocation of
files or processes (client programs
should see a uniform file name space)

Mobility: Automatic relocation of files is
possible (neither client programs nor
system admin tables in client nodes
need to be changed when files are
moved).

Performance: Satisfactory performance across a
specified range of system loads

Scaling: Service can be expanded to meet
additional loads or growth.

Changes to a file by one client should not
interfere with the operation of other clients
simultaneously accessing or changing the
same file.

Concurrency properties

Isolation

File-level or record-level locking

Other forms of concurrency control to
minimise contention

Replication properties

File service maintains multiple identical
copies of files

• Load-sharing between servers makes
service more scalable

• Local access has better response (lower
latency)

• Fault tolerance

Full replication is difficult to implement.

Caching (of all or part of a file) gives most
of the benefits (except fault tolerance)

Heterogeneity properties

Service can be accessed by clients running
on (almost) any OS or hardware
platform.

Design must be compatible with the file
systems of different OSes

Service interfaces must be open - precise
specifications of APIs are published.

Fault tolerance

Service must continue to operate even when
clients make errors or crash.

• at-most-once semantics

• at-least-once semantics

•requires idempotent operations

Service must resume after a server machine
crashes.

If the service is replicated, it can continue to
operate even during a server crash.

Consistency

Unix offers one-copy update semantics for
operations on local files - caching is
completely transparent.

Difficult to achieve the same for distributed
file systems while maintaining good
performance and scalability.

Security

Must maintain access control and privacy as
for local files.

•based on identity of user making
request

•identities of remote users must be
authenticated

•privacy requires secure
communication

Service interfaces are open to all processes
not excluded by a firewall.

•vulnerable to impersonation and
other attacks

Efficiency

Goal for distributed file systems is usually
performance comparable to local file
system.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Distributed File System Requirements…
 Transparency:
 access
 location
 mobility
 performance
 scaling

 Concurrent file updates
 File replication

 Consistency

 Fault tolerance

 Hardware and OS
heterogeneity

 Security

 Efficiency

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 20

File service is most heavily loaded service in an
intranet, so its functionality and performance are
critical

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

DFS Requirements …
 Transparencies: The design of the file service should

support many of the transparency requirements for DS.

 The following forms of transparency are partially or wholly

addressed by current file services:

 Access: Client programs should be unaware of the
distribution of files. Single set of operations for accessing

local and remote files. Programs written to operate on
local files are able to access remote files without
modification.

 Location: Client programs should see a uniform file name

space. Files or groups of files may be relocated without
changing their pathnames, and user programs see the
same name space wherever they are executed.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 21
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

DFS Requirements …
 Transparencies:

 Mobility: Automatic relocation of files must be possible.
Neither client programs nor system admin tables in client
nodes need to be changed when files are moved. This
allows file mobility, either by system administrators or
automatically.

 Performance: Satisfactory performance of client programs
across a specified range of system loads.

 Scaling: Service can be expanded by incremental growth
to deal with additional loads and network sizes.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 22
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

DFS Requirements …
 Concurrent file updates:

 Changes to a file by one client should not interfere with
the operation of other clients simultaneously accessing or
changing the same file - concurrency control.

 Concurrency control for access to shared data is costly to
implement.

 Follow UNIX standards in providing advisory or mandatory
file or record-level locking.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 23
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

DFS Requirements …
 File Replication:

 File service maintains multiple identical copies of files at
different locations.

Two Advantages:

 Enables load-sharing between multiple servers making service
more scalable.

 Enhances fault tolerance by enabling clients to locate another
server that holds a copy of the file when one has failed.

 Local access has better response (lower latency).

 Full replication is difficult to implement.

 Caching, a limited form of replication, of all or part of a
file gives most of the benefits.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 24
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

DFS Requirements …
 Hardware and OS Heterogeneity:

 Service can be accessed by clients running on (almost) any
OS or hardware platform.

 Design must be compatible with the file systems of
different OSes.

 Service interface should be defined so that client and
server software can be implemented for different OSs and
computers – openess.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 25
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

DFS Requirements …
 Fault tolerance:

 Service must continue to operate in the face of client and
server failures. A moderately fault-tolerant design is
straightforward for simple servers.

 To cope with comm. failures, at-most-once semantics or at-least-

once semantics with idempotent operations can be used so that
that duplicated requests do not result in invalid updates to files.

 The servers can be stateless, so that they can be restarted and
the service restored after a failure without any need to recover
previous state.

 Tolerance of disconnection or server failures requires file
replication, which is more difficult to achieve. If the service is
replicated, it can continue to operate even during a server
crash.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 26
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

DFS Requirements …
 Consistency

 Unix offers one-copy update semantics for operations on
local files .

 This is a model for concurrent access to files in which the
file contents seen by all of the processes accessing or
updating a given file are those that they would see if only
a single copy of the file contents existed.

 When files are replicated or cached at different sites,
there is a delay in the propagation of modifications made
at one site to all of the other sites that hold copies, and this
may result in some deviation from one-copy semantics.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 27
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

DFS Requirements …
 Security:

 Must maintain access control based on access control lists.

 In DFS, client requests must be authenticated so that access
control at server is based on user id.

 protect the contents of request and reply messages with digital
signatures and encryption of secret data.

 Vulnerable to impersonation and other attacks

 Efficiency:

 Goal for distributed file service is usually the performance
comparable with or better than local file system.

 It must be convenient to administer, providing operations and
tools that enable system administrators to install and operate
the system conveniently.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 28
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

FILE SERVICE ARCHITECTURE

Three components:
 a flat file service

 a directory service

 a client module

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 29
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

File Service Architecture

 A distributed file service architecture, structured as
three components hides the concerns in providing

access to files.

 A flat file service

 A directory service

 A client module

 The relevant modules and their relationships are shown in

Figure.

30Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

File Service Architecture ...

Client computer Server computer

Application
program

Application
program

Client module
Flat file service

Directory service

Lookup

AddName

UnName

GetNames

Read

Write

Create

Delete

GetAttributes

SetAttributes

31Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

File Service Architecture…
 The flat file service and the directory service:

 each export an interface for use by client programs.

 Along with their RPC interfaces, they provide a
comprehensive set of operations for file access.

 The client module:

 provides a single programming interface with
operations on files similar to those found in local file
systems.

32Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Responsibilities of modules

 Flat File Service:

 Concerned with the implementation of operations on

the contents of file.

 Unique File Identifiers (UFIDs) are used to refer to
files in all requests for operations.

 UFIDs are long sequences of bits chosen so that each
file has a unique ID among all of the files in a
distributed system.

 When a flat file service receives a request to create a
file, it generates a new UFID for it and returns the
UFID to the requester.

33Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Responsibilities of modules…
Directory Service:

 Provides mapping between text names of files and
their UFIDs.

» Clients may obtain the UFID of a file by quoting its text
name to directory service.

 It also provides the functions needed create

directories, to add new file names to directories and
to obtain UFIDs from directories.

 It is a client of the flat file service; its directory files
are stored in the files of flat file service.

 Directories hold references to other directories in a
hierarchic scheme.

34Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Responsibilities of modules…
 Client Module:

 It runs on each computer and provides integrated
services (flat file and directory services) as a single API

to user level application programs.

» Eg., in UNIX hosts, a client module emulates the full set of

Unix file operations, interpreting UNIX multi-part file

names by iterative requests to the directory service.

 It holds information about the network locations of
flat-file server and directory server processes

 Achieve better performance by implementing a cache

of recently used file blocks at the client.

35Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Flat File Service Interface

 This is the RPC interface used by client modules.

 not normally used directly by user-level programs.

 A Fileld is invalid if that file is not present in the server
or if its access permissions are inappropriate for the
operation requested.

 All functions except Create throw exception if the FileId

contains invalid UFID or the user doesn’t have access rights.

 Read and Write: Used for reading and writing files.

 Needs ‘i’ which specifies the position in the file.

 Read: copies the sequence of n data items beginning at
item i from the specified file into Data, which is then
returned to the client.

36Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Flat File Service Interface …
 Write: copies the sequence of data items in Data into the

specified file beginning at item i.

 It replaces the previous contents of the file at the corresponding
position or extends the file if necessary.

 Create: Creates a new empty file and returns its UFID that is
generated.

 Delete: Removes the file.

 GetAttribute, SetAttribute: Enable clients to access the attributes
of a file.

 GetAttribute is available to any client who can read it.

 SetAttribute is restricted to use by the directory service that
provides access to file.

» Length and timestamp fields cannot be changed; they are maintained
separately by the flat file service itself.

37Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Flat File Service Operations

Read(FileId, i, n) -> Data

— throws BadPosition

If 1 ≤ i ≤ Length(File): Reads a sequence of up to n items

from a file starting at item i and returns it in Data.

Write(FileId, i, Data)

— throws BadPosition

If 1 ≤ i ≤ Length(File)+1: Writes a sequence of Data to a

file, starting at item i, extending the file if necessary.

Create() -> FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes the file from the file store.

GetAttributes(FileId) -> Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not

shaded in file attribute figure).

38Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Comparison with UNIX

 This interface and the UNIX file system primitives are
functionally equivalent.

 But, flat file service has no Open and Close operations –
files can be accessed immediately by quoting the
appropriate UFID.

 Read and Write calls include a parameter to indicate the
starting point within the file, while UNIX do not have that.

 In UNIX, each read or write starts at the current position of
the read-write pointer, and the pointer is advanced by the
number of bytes transferred after each read or write.

 A seek operation is provided to enable the read-write
pointer to be explicitly repositioned.

39Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Comparison with UNIX…

 Flat file service differs from UNIX in fault tolerance.

 Repeatable Operations

» Except for create, all operations are idempotent,
allowing to use at least one semantics – clients may
repeat calls for which they receive no reply.

» Repeated execution of Create produces a different new
file for each call.

 Stateless Servers

» Services can be restarted after crash without any need

for clients or the server to restore any state.

 The UNIX file operations are neither idempotent nor consistent

for a stateless implementation.

40Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Comparison with UNIX…
 A read-write pointer is generated by the UNIX file system

whenever a file is opened, and it is retained, together with the
results of access-control checks, until the file is closed.

 The UNIX read and write operations are not idempotent;

 if an operation is accidentally repeated, the automatic

advance of the read-write pointer results in access to a
different portion of the file in the repeated operation.

 The read-write pointer is a hidden, client-related state variable.

 To mimic it in a file server, open and close operations would be
needed, and the read-write pointer‟s value have to be retained
by the server as long as the relevant file is open.

 By eliminating the read-write pointer, we have eliminated most of
the need for the file server to retain state information on behalf
of specific clients.

41Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Access Control

 UNIX checks access rights against access mode when a file is
opened using open call.

 The user identity (UID) is retrieved from login.

 Retained until close operation, so subsequent checks during
read/write are not necessary.

 In distributed file system environment,

 access rights checks are to be done at the server.

 because the server RPC interface is an otherwise unprotected point of

access to files.

 UID has to be passed with each requests.

 the server is vulnerable to forged identities.

 If the results of access rights are retained in the server, it
will no longer be stateless. Two approaches can be taken.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 42
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Access Control …
 Two Stateless approaches:

 Access check is made whenever a file name is

converted to a UFID:

 Client gets back the results encoded in the form of a
capability (who can access and how).

 Capability is submitted with each subsequent requests.

 Access check for each request using UID:

 UID is submitted with every client request, and access
checks are performed by the server for every file
operation.

 Second approach is more common.

 Used in NFS and AFS
Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 43

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Access Control …
 Neither of these approaches overcomes the security

problem concerning forged user identities, but it can be
addressed by the use of digital signatures.

 Kerberos is an effective authentication scheme that has
been applied to both NFS and AFS.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 44
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Directory Service Interface

 Provides a service for translating text names to UFID’s.
 To do so, it maintains directory files containing the

mappings between text names for files and UFID‟s.
 Each directory is stored as a conventional file with a

UFID, so directory service is a client of file service.

 The RPC interface to directory handles operations on
individual directories.

 For each operation, a UFID for the file containing the
directory is required in the Dir parameter.

45Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Directory Service Operations

 The RPC interface to a directory service:

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 46

Lookup(Dir, Name) -> FileId

— throws NotFound

Locates the text name in the directory and returns the

relevant UFID. If Name is not in the directory, throws an

exception.

AddName(Dir, Name, FileId)

— throws NameDuplicate

If Name is not in the directory, adds (Name, File) to the

directory and updates the file’s attribute record.
If Name is already in the directory: throws an exception.

UnName(Dir, Name)

— throws NotFound

If Name is in the directory: the entry containing Name is

removed from the directory.

If Name is not in the directory: throws an exception.

GetNames(Dir, Pattern) -> NameSeq Returns all the text names in the directory that match the

regular expression Pattern.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Directory Service Interface…
 LookUp performs a single Name --> UFID translation

 a building block for use in other services or in the client
module to perform more complex translations, such as the
hierarchic name interpretation.

 Operations for altering directories: AddName, UnName

 AddName adds an entry to the directory and increments
the reference count field of the file attribute.

 UnName removes an entry from a directory and
decrements the reference count.

 If this causes the reference count to reach zero, the file is
removed.

47Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Directory Service Interface…
 GetNames enable clients to examine the contents of

directories and to implement pattern matching
operations on file names.

 Returns all or a subset of the names stored in a given
directory.

 The names are selected by pattern matching against a
regular expression supplied by the client.

 Pattern matching enables users to determine the names of

one or more files by giving an incomplete specification of

the characters in the names.

48Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Hierarchical file system

 Directory Tree: directories arranged in a tree structure.

 Each directory is a special file which holds the names of
the files and other directories that are accessible from it.

 Pathname - Reference a file or a directory

 Multi-part name that represents a path through the tree.
eg. “/etc/rc.d/init.d/nfsd”

 The root has a distinguished name, and each file or
directory has a name in a directory.

 In UNIX, files can have several names, and they can be in
the same or different directories.

 A link operation adds a new name for a file to a specified
directory.

49Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Hierarchical file system …
 A UNIX-like file-naming system can be implemented by the client

module using the flat file and directory services.

 A tree-structured network of directories is constructed with files at the

leaves and directories at the other nodes of the tree.

 The root of the tree is a directory with a ‘well-known’ UFID.

 Multiple names for files can be supported using the AddName

operation and the reference count field in the attribute record.

 Client module can use a function that gets the UFID of a file given its

pathname.

 The function interprets the pathname starting from the root, using
multiple Lookup to obtain the UFID of each directory in the path.

 In a hierarchical service, the file attributes should include a type field

that distinguishes between ordinary files and directories.

 This is used when following a path to ensure that each part of the
name, except the last, refers to a directory.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 50
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

File Groups

 A file group is a collection of files located on a given
server.

 A server may hold several file groups.

 Groups can be moved between servers while
maintaining the same names.

 But a file cannot change the group to which it belongs.

 Similar to a UNIX filesystem.

 Helps with distributing the load between several servers.

 Initially created to support facilities for moving
collections of files stored on removable media between
computers.

51Dept. of CSE, Toc H Institute of Science and Technology, ArakkunnamFor more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

File Groups…

 File groups must have globally unique identifiers

because they can be moved across systems or several
distributed systems can be merged.

 Eg., whenever a new file group is created, a unique id can
be generated by concatenating the 32-bit IP address of
the host creating the new group with a 16-bit integer
derived from the date, producing a unique 48-bit integer.

 But, IP address cannot be used for locating the file group,
since it may be moved to another server.

 Instead, a mapping between group identifiers and servers
should be maintained by the file service.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 52
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

File Groups…
 In a distributed file service, file groups support

 the allocation of files to file servers in larger logical units
and enable the service to be implemented with files stored
on several servers.

 In a distributed file system that supports file groups,

 the representation of UFIDs includes a file group identifier
component, enabling the client module in each client
computer to take responsibility for dispatching requests to
the server that holds the relevant file group.

Dept. of CSE, Toc H Institute of Science and Technology, Arakkunnam 53
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Transactions and Concurrency Control

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Transactions and Concurrency Control

 A Transaction defines a sequence of server operations that is

guaranteed to be atomic in the presence of multiple clients

and server crash.

 All concurrency control protocols are based on serial

equivalence and are derived from rules of conflicting

operations.

Locks are used to order transactions that access the same object

according to request order.

Optimistic concurrency control allows transactions to proceed until

they are ready to commit, whereupon a check is made to see any

conflicting operation on objects.

Timestamp ordering uses timestamps to order transactions that

access the same object according to their starting time.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Banking Example

 Each account is represented by a remote object whose

interface Account provides operations for making deposits

and withdrawals and for enquiring about and setting the

balance.

 Each branch of the bank is represented by a remote object

whose interface Branch provides operations for creating a

new account, for looking up an account by name and for

enquiring about the total funds at that branch.

Main issue: unless a server is carefully designed, its

operations performed on behalf of different clients may

sometimes interfere with one another. Such interference may

result in incorrect values in the object.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Figure 13.1

Operations of the Account interface

deposit(amount)

deposit amount in the account

withdraw(amount)

withdraw amount from the account

getBalance() -> amount

return the balance of the account

setBalance(amount)

set the balance of the account to amount

create(name) -> account

create a new account with a given name

lookUp(name) -> account

return a reference to the account with the given name

branchTotal() -> amount

return the total of all the balances at the branch

Operations of the Branch interface

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Simple Synchronization without Transactions

 The use of multiple threads is beneficial to the performance.

 Multiple threads may access the same objects.

For example, deposit and withdraw methods

 Synchronized keyword can be applied to method in Java, so only one

thread at a time can access an object.

(If one thread invokes a synchronized method on an object, then that object is

locked, another thread that invokes one of the synchronized method will be

blocked.)

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Enhancing Client Cooperation by synchronization of

server operations

We have seen how clients may use a server as a

means of sharing some resources.

E.g. some clients update the server’s objects and other
clients access them.

In some applications, threads need to communicate

and coordinate their actions.

Producer and Consumer problem.

Wait and Notify actions.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

What is a Transaction?

Transaction - originally from database management

systems.

Clients require a sequence of separate requests to a

server to be atomic in the sense that:

Other concurrent clients should not interfere; and

Either all of the operations must be completed

successfully or they must have no effect at all in the

presence of server crashes.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Atomicity

All or nothing: a transaction either completes

successfully, and effects of all of its operations are

recorded in the object, or it has no effect at all.

Failure atomicity: effects are atomic even when server crashes

Durability: after a transaction has completed successfully, all

its effects are saved in permanent storage for recover later.

Isolation: each transaction must be performed without

interference from other transactions. The intermediate

effects of a transaction must not be visible to other

transactions.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

A client’s banking transaction

Transaction T:

a.withdraw(100);

b.deposit(100);

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Operations in Coordinator interface

openTransaction() -> trans;

starts a new transaction and delivers a unique TID trans. This

identifier will be used in the other operations in the transaction.

closeTransaction(trans) -> (commit, abort);

ends a transaction: a commit return value indicates that the

transaction has committed; an abort return value indicates that

it has aborted.

abortTransaction(trans);

aborts the transaction.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Transaction life histories

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction

operation operation operation

operation operation operation

server aborts

transaction

operation operation operation ERROR

reported to client

closeTransaction abortTransaction

If a transaction aborts for any reason (self abort or server

abort), it must be guaranteed that future transaction will

not see its effect either in the object or in their copies in

permanent storage. For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Concurrency Control

Two well-known problems of concurrent transactions

in the context of the banking example –
The ‘lost update’ problem and
The ‘inconsistent retrievals’ problem.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Concurrency Control: the lost update problem

Transaction T :

balance = b.getBalance();

b.setBalance(balance*1.1);

a.withdraw(balance/10)

Transaction U:

balance = b.getBalance();

b.setBalance(balance*1.1);

c.withdraw(balance/10)

balance = b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

a, b and c initially have bank account balance are: 100, 200, and 300. T transfers an

amount from a to b. U transfers an amount from c to b.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Concurrency Control: The inconsistent retrievals problem

Transaction V:

a.withdraw(100)

b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

total = a.getBalance() $100

total = total+b.getBalance() $300

total = total+c.getBalance()

b.deposit(100) $300

a, b accounts start with 200 both.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Serial equivalence

If these transactions are done one at a time in some

order, then the final result will be correct.

If we do not want to sacrifice the concurrency, an

interleaving of the operations of transactions may

lead to the same effect as if the transactions had

been performed one at a time in some order.

We say it is a serially equivalent interleaving.

The use of serial equivalence is a criterion for

correct concurrent execution to prevent lost updates

and inconsistent retrievals.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

A serially equivalent interleaving of T and U

Transaction T:

balance = b.getBalance()

b.setBalance(balance*1.1)

a.withdraw(balance/10)

Transaction U:

balance = b.getBalance()

b.setBalance(balance*1.1)

c.withdraw(balance/10)

balance = b.getBalance() $200

b.setBalance(balance*1.1) $220

balance = b.getBalance() $220

b.setBalance(balance*1.1) $242

a.withdraw(balance/10) $80

c.withdraw(balance/10) $278

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Conflicting Operations

When we say a pair of operations conflicts we mean

that their combined effect depends on the order in

which they are executed. eg: read and write

Three ways to ensure serializability:

Locking

Timestamp ordering

Optimistic concurrency control

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Read and write operation conflict rules

Operations of different
transactions

Conflict Reason

read read No Because the effect of a pair of read operations

does not depend on the order in which they are

executed

read write Yes Because the effect of a read and a write operation

depends on the order of their execution

write write Yes Because the effect of a pair of write operations

depends on the order of their execution

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Recoverability from aborts

Servers must record the effect of all committed

transactions and none of the effects of the aborted

transactions.

Two problems associated with aborting transactions

that may occur in the presence of serially equivalent

execution of transactions:

Dirty reads

Premature writes

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

A dirty read when transaction T aborts

Transaction T:

a.getBalance()

a.setBalance(balance + 10)

Transaction U:

a.getBalance()

a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110

balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

abort transaction

Dirty reads caused by a read in one transaction U and an earlier unsuccessful

write in another transaction T on the same object.

T will be rolled back and restore the original a value, thus U will have seen a

value that never existed. U is committed, so cannot be undone. U performs a

dirty read.
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Premature Write: Overwriting uncommitted values

Transaction T:

a.setBalance(105)

Transaction U:

a.setBalance(110)

$100

a.setBalance(105) $105

a.setBalance(110) $110

Premature write: related to the interaction between write operations on the same

object belonging to different transactions.

a. If U aborts and then T commit, we got a to be correct 105.

Some systems restore value to “Before images” value for abort action, namely the
value before all the writes of a transaction. a is 100, which is the before image of T’s
write. 105 is the before image of U’s write.
b. Consider if U commits and then T aborts, we got wrong value of 100.

c. Similarly if T aborts then U aborts, we got 105, which is wrong and should be 100.

So to ensure correctness, write operations must be delayed until earlier transactions

that updated the same object have either committed or aborted.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Strict executions of transactions

Generally, it is required that transactions delay both

their read and write operations so as to avoid both

‘dirty reads’ and ‘premature writes’.
The executions of transactions are called strict if the

service delays both read and write operations on an

object until all transactions that previously wrote that

object have either committed or aborted.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Tentative versions

 For a server of recoverable objects to participate in transactions, it

must be designed so that any updates of objects can be removed

if and when a transaction aborts.

 All of the update operations performed during a transaction are

done in tentative versions of objects in volatile memory.

 The tentative versions are transferred to the objects only when a

transaction commits, by which time they will also have been

recorded in permanent storage.

 This is performed in a single step, during which other transactions

are excluded from access to the objects that are being altered.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Nested transactions

 Nested transaction extend the transaction model by allowing

transactions to be composed of other transactions.

 The outermost transaction in a set of nested transactions is

called the top-level transaction.

 Transactions other than the top-level transaction are called

subtransactions.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Nested transactions

T : top-level transaction

T1 = openSubTransaction T2 = openSubTransaction

openSubTransaction openSubTransactionopenSubTransaction

openSubTransaction

T1 : T2 :

T11 : T12 :

T211 :

T21 :

prov.commit

prov. commit

abort

prov. commitprov. commit

prov. commit

commit

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Nested transactions

 The rules for committing of nested transactions are:

A transaction may commit or abort only after its child transactions

have completed.

When a subtransaction completes, it makes an independent decision

either to commit provisionally or to abort. Its decision to abort is final.

When a parent aborts, all of its subtransactions are aborted.

When a subtransaction aborts, the parent can decide whether to abort

or not.

If the top-level transaction commits, then all of the subtransactions that

have provisionally committed can commit too, provided that none of

their ancestors has aborted.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Locks

 A simple example of a serializing mechanism is the use of

exclusive locks.

 Server can lock any object that is about to be used by a

client.

 If another client wants to access the same object, it has to

wait until the object is unlocked in the end.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Transactions T and U with exclusive locks

Transaction T:

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Transaction U:

balance = b.getBalance()
b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction

bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) Lock A bal = b.getBalance() waits for T’s

lock on B

closeTransaction unlock A, B

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B, C

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Two-phase locking

 Serial equivalence requires that all of a transaction’s
accesses to a particular object be serialized with respect to

accesses by other transactions. All pair of conflicting

operations of two transactions should be executed in the

same order.

 To ensure this, a transaction is not allowed any new locks

after it has released a lock.

 Two-phase locking

The first phase of each transaction is a ‘growing phase’, during which
new locks are acquired.

In the second phase, the locks are released (a ‘shrinking phase’).
 Strict two-phase locking

Any locks applied during the progress of a transaction are held until

the transaction commits or aborts.
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

read locks and write locks

 It is preferable to adopt a locking scheme that controls the access to each

object so that there can be several concurrent transactions reading an

object, or a single transaction writing an object, but not both – commonly

referred to as a ‘many readers/single writer’ scheme.

 Two types of locks are used: read locks and write locks

Before a transaction’s read operation is performed, a read lock should
be set on the object.

Before a transaction’s write operation is performed, a write lock should
be set on the object.

Whenever it is impossible to set a lock immediately, the transaction

must wait until it is possible to do so.

As pair of read operations from different transactions do not conflict,

an attempt to set a read lock on an object with a read lock is always

successful. Therefore, read locks are sometimes called shared lock.
For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Lock compatibility

For one object Lock requested

read write

Lock already set none OK OK

read OK wait

write wait wait

An object can be read and write. From the compatibility table, we know pairs of

read operations from different transactions do not conflict. So a simple exclusive

lock used for both read and write reduces concurrency more than necessary.

(Many readers/Single writer)

Rules;

1. If T has already performed a read operation, then a concurrent transaction U

must not write until T commits or aborts.

2. If T already performed a write operation, then concurrent U must not read or

write until T commits or aborts.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Strict two-phase Locking Protocol

 Because transaction may abort, strict execution are needed

to prevent dirty reads and premature writes, which are

caused by read or write to same object accessed by another

earlier unsuccessful transaction that already performed an

write operation.

 So to prevent this problem, a transaction that needs to read

or write an object must be delayed until other transactions

that wrote the same object have committed or aborted.

 Rule:

 Any locks applied during the progress of a transaction are

held until the transaction commits or aborts.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Strict two-phase Locking Protocol

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Use of locks in strict two-phase locking

1. When an operation accesses an object within a transaction:

(a) If the object is not already locked, it is locked and the operation proceeds.

(b) If the object has a conflicting lock set by another transaction, the

transaction must wait until it is unlocked.

(c) If the object has a non-conflicting lock set by another transaction, the

lock is shared and the operation proceeds.

(d) If the object has already been locked in the same transaction, the lock will

be promoted if necessary and the operation proceeds. (Where promotion

is prevented by a conflicting lock, rule (b) is used.)

2. When a transaction is committed or aborted, the server unlocks all objects it

locked for the transaction.

A transaction with a read lock that is shared by other transactions cannot

promote its read lock to a write lock, because write lock will conflict with other

read locks. For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Lock class - implementation

public class Lock {

private Object object; // the object being protected by the lock

private Vector holders; // the TIDs of current holders

private LockType lockType; // the current type

public synchronized void acquire(TransID trans, LockType aLockType){

while(/*another transaction holds the lock in conflicing mode*/) {

try {

wait();

}catch (InterruptedException e){/*...*/ }

}

if(holders.isEmpty()) { // no TIDs hold lock

holders.addElement(trans);

lockType = aLockType;

} else if(/*another transaction holds the lock, share it*/)){

if(/* this transaction not a holder*/) holders.addElement(trans);

} else if (/* this transaction is a holder but needs a more exclusive lock*/)

lockType.promote();

}

}

Continues on next slide

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Lock class - implementation

public synchronized void release(TransID trans){

holders.removeElement(trans); // remove this holder

// set locktype to none

notifyAll();

}

}

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Locking rules for nested transactions

every lock that is acquired by a successful subtransaction

is inherited by its parent when it completes

Parent transactions are not allowed to run concurrently

with their child transactions

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Deadlock with write locks

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

waits for U’s
a.withdraw(200); waits for T’s

lock on B
lock on A

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

The wait-for graph for Figure 13.19

B

A

Waits for

Held by

Held by

T UU T

Waits for

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Figure 13.21

A cycle in a wait-for graph

U

V

T

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Figure 13.22

Another wait-for graph

C

T

U
V

Held by

Held by

Held by

T

U

V

W

W

B

Held by

Waits for

T and W then request write locks on object C and a deadlock arises. V is

involved in two cycles.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Deadlock Prevention

Deadlock prevention:

Simple way is to lock all of the objects used by a

transaction when it starts. It should be done as an atomic

action to prevent deadlock. a. inefficient, say lock an

object you only need for short period of time. b. Hard to

predict what objects a transaction will require.

Judge if system can remain in a Safe state by satisfying a

certain resource request. Banker’s algorithm.
Order the objects in certain order. Acquiring the locks

need to follow this certain order.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Safe State

System is in safe state if there exists a sequence

<P1, P2, …, Pn> of ALL the processes is the

systems such that for each Pi, the resources that Pi

can still request can be satisfied by currently

available resources + resources held by all the Pj,

with j < i.

If a system is in safe state  no

deadlocks.

If a system is in unsafe state 
possibility of deadlock.

Avoidance  ensure that a system will

never enter an unsafe state

 Banker’s Algorithm For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Deadlock Detection

 Deadlock may be detected by finding cycles in the wait-for-graph. Having

detected a deadlock, a transaction must be selected for abortion to break

the cycle.

If lock manager blocks a request, an edge can be added. Cycle should

be checked each time a new edge is added.

One transaction will be selected to abort in case of cycle. Age of

transaction and number of cycles involved when selecting a victim

 Timeouts is commonly used to resolve deadlock. Each lock is given a

limited period in which it is invulnerable. After this time, a lock becomes

vulnerable.

 If no other transaction is competing for the object, vulnerable object remained locked.

However, if another transaction is waiting, the lock is broken.

Disadvantages:

 Transaction aborted simply due to timeout and waiting transaction even if there is no

deadlock. (may add deadlock detection)

 Hard to set the timeout time

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Resolution of the deadlock – Time-outs

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

waits for U’s a.withdraw(200); waits for T’s

lock on B lock on A

(timeout elapses)

T’s lock on A becomes vulnerable,

unlock A, abort T

a.withdraw(200); write locks A

unlock A, B

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Optimistic Concurrency Control

Kung and Robinson [1981] identified a number of inherent

disadvantages of locking and proposed an alternative

optimistic approach to the serialization of transaction that

avoids these drawbacks. Disadvantages of lock-based:

Lock maintenance represents an overhead that is not present in

systems that do not support concurrent access to shared data.

Locking sometimes are only needed for some cases with low

probabilities.

The use of lock can result in deadlock. Deadlock prevention

reduces concurrency severely. The use of timeout and deadlock

detection is not ideal for interactive programs.

To avoid cascading aborts, locks cannot be released until the end

of the transaction. This may reduce the potential for concurrency.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Optimistic Concurrency Control

It is based on observation that, in most applications,

the likelihood of two clients’ transactions accessing
the same object is low. Transactions are allowed to

proceed as though there were no possibility of

conflict with other transactions until the client

completes its task and issues a closeTransaction

request.

When conflict arises, some transaction is generally

aborted and will need to be restarted by the client.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Optimistic Concurrency Control

Each transaction has the following phases:

Working phase: Each transaction has a tentative version of each

of the objects that it updates. This is a copy of the most recently

committed version of the object. The tentative version allows the

transaction to abort with no effect on the object, either during the

working phase or if it fails validation due to other conflicting

transaction. Several different tentative values of the same object

may coexist. In addition, two records are kept of the objects

accessed within a transaction, a read set and a write set containing

all objects either read or written by this transaction. Read are

performed on committed version (no dirty read can occur) and

write record the new values of the object as tentative values which

are invisible to other transactions.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Optimistic Concurrency Control

Validation phase: When closeTransaction request is received, the

transaction is validated to establish whether or not its operations on

objects conflict with operations of other transaction on the same

objects. If successful, then the transaction can commit. If fails, then

either the current transaction or those with which it conflicts will

need to be aborted.

Update phase: If a transaction is validated, all of the changes

recorded in its tentative versions are made permanent. Read-only

transaction can commit immediately after passing validation. Write

transactions are ready to commit once the tentative versions have

been recorded in permanent storage.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Validation of Transactions

Validation uses the read-write conflict rules to ensure that

the scheduling of a particular transaction is serially

equivalent with respect to all other overlapping

transactions- that is, any transactions that had not yet

committed at the time this transaction started. Each

transaction is assigned a number when it enters the

validation phase (when the client issues a

closeTransaction). Such number defines its position in

time. A transaction always finishes its working phase after

all transactions with lower numbers. That is, a transaction

with the number Ti always precedes a transaction with

number Tj if i < j.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Table on page 547

Serializability of transaction T with respect to transaction

Ti

Tv Ti Rule

write read 1. Ti must not read objects written by Tv

read write 2. Tv must not read objects written by Ti

write write 3. Ti must not write objects written by Tv and

Tv must not write objects written by Ti

The validation test on transaction Tv is based on conflicts between

operations in pairs of transaction Ti and Tv, for a transaction Tv to be

serializable with respect to an overlapping transaction Ti, their

operations must conform to the above rules.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Figure 13.28

Validation of transactions

Earlier committed
transactions

Working Validation Update

T1

Tv

Transaction

being validated

T2

T3

Later active

transactions

active
1

active
2

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Validation

Backward Validation: checks the transaction undergoing

validation with other preceding overlapping transactions-

those that entered the validation phase before it.

 Forward Validation: checks the transaction undergoing

validation with other later transactions, which are still

active.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Page 547-548

Validation of Transactions

Backward validation of transaction Tv

boolean valid = true;

for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;

}

Forward validation of transaction Tv

boolean valid = true;

for (int Tid = active1; Tid <= activeN; Tid++){

if (write set of Tv intersects read set of Tid) valid = false;

}

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Comparison of methods for Concurrency Control

 The timestamp ordering method is similar to two-phase locking in that both use

pessimistic approaches in which conflicts between transactions are detected as

each object is accessed. On the one hand, timestamp ordering decides the

serialization order statically – when a transaction starts. On the other hand, two-

phase locking decides the serialization order dynamically – according to the order

in which objects are accessed. Timestamp ordering, and in particular multiversion

timestamp ordering, is better than strict two-phase locking for read-only

transactions. Two-phase locking is better when the operations in transactions are

predominantly updates.

 The pessimistic methods differ in the strategy used when a conflicting access to

an object is detected. Timestamp ordering aborts the transaction immediately,

whereas locking makes the transaction wait – but with a possible later penalty of

aborting to avoid deadlock.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Contd.

 When optimistic concurrency control is used, all transactions are allowed to

proceed, but some are aborted when they attempt to commit, or in forward

validation transactions are aborted earlier. This results in relatively efficient

operation when there are few conflicts, but a substantial amount of work may

have to be repeated when a transaction is aborted.

 Historically, the predominant method of concurrency control of access to data in

distributed systems is by locking – for example, as mentioned earlier, the

CORBA Concurrency Control Service is based entirely on the use of locks.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Share Document Applications

 The above concurrency control mechanisms are not always adequate for twenty-

first-century applications that enable users to share documents over the Internet.

Many of the latter use optimistic forms of concurrency control followed by

conflict resolution instead of aborting one of any pair of conflicting operations.

The following are some examples.

 Dropbox : Dropbox [www.dropbox.com] is a cloud service that provides file

backup and enables users to share files and folders, accessing them from

anywhere. Dropbox uses an optimistic form of concurrency control, keeping track

of consistency and preventing clashes between users’ updates – which are at the

granularity of whole files. Thus if two users make concurrent updates to the same

file, the first write will be accepted and the second rejected. However, Dropbox

provides a version history to enable users to merge their updates manually or

restore previous versions.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Contd.

 Google apps : Google Apps include Google Docs, a cloud service that provides

web-based applications (word processor, spreadsheet and presentation) that allow

users to collaborate with one another by means of shared documents. If several

people edit the same document simultaneously, they will see each other’s
changes. In the case of a word processor document, users can see one another’s
cursors and updates are shown at the level of individual characters as they are

typed by any participant. Users are left to resolve any conflicts that occur, but

conflicts are generally avoided because users are continuously aware of each

other’s activities. In the case of a spreadsheet document, users’ cursors and
changes are displayed and updated at the granularity of single cells. If two users

access the same cell simultaneously, the last update wins.

 Wikipedia : Concurrency control for editing is optimistic, allowing editors

concurrent access to web pages in which the first write is accepted and a user

making a subsequent write is shown an ‘edit conflict’ screen and asked to resolve
the conflicts.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Coordination and Agreement

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Introduction

 The goal is to introduce some topics and algorithms related to the

issue of how processes coordinate their actions and agree on

shared values in distributed systems, despite failures.

 An important distinction is whether the distributed system is

asynchronous or synchronous

 In an asynchronous system, we can make no timing assumptions.

 In a synchronous system, assume that there are bounds

 on the maximum message transmission delay

 on the time to execute each step of a process

 on clock drift rates

 The synchronous assumptions allow us to use timeouts to detect

process crashes.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Distributed mutual exclusion

 Distributed processes often need to coordinate their activities.

 If a collection of processes share a resource or collection of

resources, then often mutual exclusion is required to prevent

interference and ensure consistency when accessing the

resources – the critical section problem.

 eg: wireless Ad-hoc networks, car parking

No centralized server will help

 In a distributed system, require a solution to distributed

mutual exclusion: one that is based solely on message

passing.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

- (needs a global clock)

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Performance Evaluation

 Bandwidth consumption, which is proportional to the

number of messages sent in each entry and exit

operations.

 The client delay incurred by a process at each entry

and exit operation.

 Throughput of the system : Rate at which the collection

of processes as a whole can access the critical section.

We can measure the effect using the synchronization

delay between one process exiting the critical section

and the next process entering it; the shorter the delay

is, the greater the throughput is.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Central Server Algorithm

 The simplest way to grant permission to enter the critical section is

to employ a server.

 A process sends a request message to server and awaits a reply

from it.

A reply contains a token giving the permission to enter the critical

section.

 If no other process has the token at the time of the request, then the

server replies immediately, granting the token.

 If token is currently held by other processes, the server does not

reply but queues the request.

 When a client exits the critical section, a message is sent to server,

giving it back the token.

 If some processes are waiting in the queue, then the server

chooses the oldest entry in the queue, removes it and replies to the

corresponding process

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Central Server algorithm: managing a mutual exclusion token for a set

of processes

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

ME1: safety

ME2: liveness

Are satisfied but not

ME3: ordering

Bandwidth: entering takes

two messages (request

followed by a grant),

delayed by the round-trip

time; exiting takes one

release message, and does

not delay the exiting

process.

Throughput is measured

by synchronization delay,

the round-trip of a release

message and grant

message.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Ring-based Algorithm

 Simplest way to arrange mutual exclusion between N processes

without requiring an additional process is arrange them in a logical

ring.

 Each process pi has a communication channel to the next process

in the ring, p(i+1)/mod N.

 The unique token is in the form of a message passed from process

to process in a single direction clockwise.

 If a process does not require to enter the CS when it receives the

token, then it immediately forwards the token to its neighbor.

 A process requires the token waits until it receives it, but retains it.

 To exit the critical section, the process sends the token on to its

neighbor.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

A ring of processes transferring a mutual exclusion token

p
n

p
2

p
3

p
4

Token

p
1

ME1: safety

ME2: liveness

Are satisfied but not

ME3: ordering

Bandwidth: continuously

consumes the bandwidth except

when a process is inside the CS.

Exit only requires one message

Delay: experienced by process is

zero message(just received token)

to N messages(just pass the token).

Throughput: synchronization

delay between one exit and next

entry is anywhere from 1(next

one) to N (self) message

transmission.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Using Multicast and logical clocks

 Mutual exclusion between N peer processes based upon multicast.

 Processes that require entry to a critical section multicast a request

message, and can enter it only when all the other processes have replied to

this message.

 The condition under which a process replies to a request are designed to

ensure ME1 ME2 and ME3 are met.

 Each process pi keeps a Lamport clock. Message requesting entry are of

the form<T, pi>.

 Each process records its state of either RELEASE, WANTED or HELD in a

variable state.

 If a process requests entry and all other processes is RELEASED, then all

processes reply immediately.

 If some process is in state HELD, then that process will not reply until it is

finished.

 If some process is in state WANTED and has a smaller timestamp than the

incoming request, it will queue the request until it is finished.

 If two or more processes request entry at the same time, then whichever bears

the lowest timestamp will be the first to collect N-1 replies.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Ricart and Agrawala’s algorithm

On initialization
state := RELEASED;

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Multicast synchronization

p
3

34

Reply

41

41

34

p
1

p
2

Reply
Reply

 P1 and P2 request CS

concurrently. The timestamp

of P1 is 41 and for P2 is 34.

When P3 receives their

requests, it replies

immediately. When P2

receives P1’s request, it finds
its own request has the lower

timestamp, and so does not

reply, holding P1 request in

queue. However, P1 will

reply. P2 will enter CS. After

P2 finishes, P2 reply P1 and

P1 will enter CS.

 Granting entry takes 2(N-1)

messages, N-1 to multicast

request and N-1 replies.

Bandwidth consumption is

high.

 Client delay is again 1 round

trip time

 Synchronization delay is

one message transmission

time.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Maekawa’s voting algorithm

 It is not necessary for all of its peers to grant access.

Only need to obtain permission to enter from subsets of

their peers, as long as the subsets used by any two

processes overlap.

 Think of processes as voting for one another to enter the

CS. A candidate process must collect sufficient votes to

enter.

 Processes in the intersection of two sets of voters

ensure the safety property ME1 by casting their votes for

only one candidate.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Maekawa’s voting algorithm

 A voting set Vi is associated with each process pi.

 There is at least one common member of any two voting sets, the size of all

voting set are the same size to be fair.

 The optimal solution to minimizes K is K~sqrt(N) and M=K.

V
i
Í{p

1
, p

2
,..., p

N
}

such that for all i, j =1,2,...N :

p
i
ÎV

i

V
i
ÇV

j
¹Æ

|V
i
|= K

Each process is contained in M of the voting set V
i

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Maekawa’s algorithm

On initialization

state := RELEASED;

voted := FALSE;

For pi to enter the critical section

state := WANTED;

Multicast request to all processes in Vi;

Wait until (number of replies received = K);

state := HELD;

On receipt of a request from pi at pj

if (state = HELD or voted = TRUE)

then

queue request from pi without replying;

else

send reply to pi;

voted := TRUE;

end if

For pi to exit the critical section

state := RELEASED;

Multicast release to all processes in Vi;

On receipt of a release from pi at pj

if (queue of requests is non-empty)

then

remove head of queue – from pk, say;

send reply to pk;

voted := TRUE;

else

voted := FALSE;

end if

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Maekawa’s algorithm

 ME1 is met. If two processes can enter CS at the same time, the processes

in the intersection of two voting sets would have to vote for both. The

algorithm will only allow a process to make at most one vote between

successive receipts of a release message.

 Deadlock prone. For example, p1, p2 and p3 with V1={p1,p2}, V2={p2, p3},

V3={p3,p1}. If three processes concurrently request entry to the CS, then it

is possible for p1 to reply to itself and hold off p2; for p2 rely to itself and

hold off p3; for p3 to reply to itself and hold off p1. Each process has

received one out of two replies, and none can proceed.

 If process queues outstanding request in happen-before order, ME3 can be

satisfied and will be deadlock free.

 Bandwidth utilization is 2sqrt(N) messages per entry to CS and sqrt(N) per

exit.

 Client delay is the same as Ricart and Agrawala’s algorithm, one round-

trip time.

 Synchronization delay is one round-trip time which is worse than R&A.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Fault tolerance

 What happens when messages are lost?

 What happens when a process crashes?

 None of the algorithm that we have described would tolerate the

loss of messages if the channels were unreliable.

 The central server algorithm can tolerate the crash failure of a client

process that neither holds nor has requested the token.

 The ring-based algorithm cannot tolerate any single process crash

failure.

Maekawa’s algorithm can tolerate some process crash failures: if a
crashed process is not in a voting set that is required.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

Elections

 Algorithm to choose a unique process to play a particular role is called

an election algorithm.

e.g. central server for mutual exclusion, one process will be elected as

the server. Everybody must agree. If the server wishes to retire, then

another election is required to choose a replacement.

Requirements:

E1 (safety): a participant pi has

where P is chosen as the non-crashed process at the

end of run with the largest identifier. (concurrent

elections possible.)

E2 (liveness): All processes Pi participate in election

process and eventually set

i i
elected or elected P  

i
elected or crash 

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

A ring based election algorithm

All processes arranged in a logical ring.

Each process has a communication channel to

the next process.

All messages are sent clockwise around the

ring.

Assume that no failures occur, and system is

asynchronous.

Goal is to elect a single process coordinator

which has the largest identifier.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

A ring-based election in progress

24

15

9

4

3

28

17

24

1

1. Initially, every process is marked as non-

participant. Any process can begin an election.

2. The starting process marks itself as participant

and place its identifier in a message to its

neighbour.

3. A process receives a message and compare it

with its own. If the arrived identifier is larger, it

passes on the message.

4. If arrived identifier is smaller and receiver is not

a participant, substitute its own identifier in the

message and forward if. It does not forward the

message if it is already a participant.

5. On forwarding of any case, the process marks

itself as a participant.

6. If the received identifier is that of the receiver

itself, then this process’s identifier must be the

greatest, and it becomes the coordinator.

7. The coordinator marks itself as non-participant,

set electedi and sends an elected message to

its neighbour enclosing its ID.

8. When a process receives elected message, it

marks itself as a non-participant, sets its variable

electedi and forwards the message.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

A ring-based election in progress

 Note: The election was

started by process 17.

 The highest process

identifier encountered so far

is 24.

 Participant processes are

shown darkened
24

15

9

4

3

28

17

24

1

 E1 is met. All identifiers

are compared, since a

process must receive its

own ID back before

sending an elected

message.

 E2 is also met due to the

guaranteed traversals of

the ring.

 Tolerates no failure :-

makes ring algorithm of

limited practical use.

 If only a single process starts an

election, the worst-performance case is

then the anti-clockwise neighbour has

the highest identifier. A total of N-1

messages is used to reach this

neighbour. Then further N messages are

required to announce its election. The

elected message is sent N times.

Making 3N-1 messages in all.

 Turnaround time is also 3N-1

sequential message transmission time

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

The bully algorithm

 Allows process to crash during an election, although it assumes the

message delivery between processes is reliable.

 Assume system is synchronous to use timeouts to detect a process

failure.

 Assume each process knows which processes have higher

identifiers and that it can communicate with all such processes.

 Three types of messages:

Election is sent to announce an election message. A process

begins an election when it notices, through timeouts, that the

coordinator has failed.

T = 2xTtrans + Tprocess from the time of sending

Answer is sent in response to an election message.

Coordinator message is sent to announce the identity of the

elected process.

Ttrans : transmission delay

Tprocess : processing delay

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

How does it start an election?

 The process that knows it has the highest identifier can

elect itself as the coordinator simply by sending a

coordinator message to all processes with lower

identifiers.

 On the other hand, a process with a lower identifier can

begin an election by sending an election message to

those processes that have a higher identifier

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

The bully algorithm

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C

coord inat or

Stag e 4

C

ele cti on

ele cti on

Stag e 2

p
1

p
2

p
3

p
4

C

ele cti on

an swe r

an swe r

ele cti on
Stag e 1

tim eou t

Stag e 3

Eventu ally.....

p
1

p
2

p
3

p
4

ele cti on

an swe r

The election of coordinator p2,

after the failure of p4 and then p3

1. The process begins an election by

sending an election message to these

processes that have a higher ID and

awaits an answer in response.

2. If none arrives within time T, the

process considers itself the coordinator

and sends coordinator message to all

processes with lower identifiers.

3. Otherwise, it waits a further time T’ for

coordinator message to arrive. If none,

begins another election.

4. If a process receives a coordinator

message, it sets its variable electedi to

be the coordinator ID.

5. If a process receives an election

message, it sends back an answer

message and begins another election

unless it has begun one already.

For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

The bully algorithm

 E1 may be broken if timeout is not accurate or

replacement. (suppose P3 crashes and replaced by

another process. P2 set P3 as coordinator and P1 set

P2 as coordinator)

 E2 is clearly met by the assumption of reliable

transmission.

 Best case the process with the second highest ID

notices the coordinator’s failure. Then it can immediately
elect itself and send N-2 coordinator messages.

 The bully algorithm requires O(N2) messages in the

worst case - that is, when the process with the least ID

first detects the coordinator’s failure. Because, then N-1

processes altogether begin election, each sending

messages to processes with higher ID. For more study materials: WWW.KTUSTUDENTS.IN

KTUStudents.in

