
MODULE 2

IDEA: Primitive operations- Key expansions- One round, Odd

round, Even Round- Inverse keys for decryption.

AES: Basic Structure- Primitive operation- Inverse Cipher- Key

Expansion, Rounds, Inverse Rounds. Stream Cipher –RC4.

INTERNATIONAL DATA ENCRYPTION ALGORITHM (IDEA)

 International Data Encryption Algorithm is one of the strongest cryptographic algorithms launched

in 1990..

 IDEA is not as popular as DES for two primary reasons:

o It is patented unlike DES and therefore must be licensed before it can be used in

commercial applications.

o DES has a long history as compared to IDEA.

 One popular e-mail privacy technology known as pretty good privacy (PGP) is based on

IDEA.

 BASIC PRINCIPLES

o IDEA is a block cipher

o Works on 64 bit plain text blocks.

o Key consists of 128 bits

o Same algorithm is used for encryption and decryption

Steps in IDEA

o 64 bit plain text block is divided into four portions of plain text each of size 16 bits(say P1

to P4).

o P1 to P4 are the inputs to the first round of the algorithm.

o There are eight such rounds.

o The key consists of 128 bits. In each round 6 subkeys are used and after the round

operation an output transformation is performed using subkeys(K49 to K52).

o The final output produced is the output produced by the output transformation step which

is the four blocks of cipher text named C1 to C4(16 bits each).

o These are combined to form the final 64 bit cipher text block.

 SUB KEY GENERATION

o Each rounds makes use of 6 subkeys (8X6=48) and the final output transformation uses

four subkeys(48+4 =52 subkeys).

o 128 bit key is divided into 8 parts K1 to K8 each of 16 bits.

o Of which K1 to K6 is used for ROUND 1 operation.

o For the remaining round subkeys are generated by performing key shifting.

o The orginal key is shifted left circularly by 25 bits.

o And hence 52 subkeys are generated.

 OPERATIONS

o Operations performed are

 Addition,

 Multiplication,

 XOR

 ROUNDS

o Each round involves a series of operation on the four data blocks using six keys.

 Details of one ROUND in IDEA

o Similarly same set of operations are performed for each round by changing the key.

o The input blocks for the next round is obtained from the previous round.

o For the next round P1, P2, P3, P4 as S11, S13, S12, S14 respectively.

o 8
th
 round

o In the 8

th
 round steps 15 to 18 is called output tramsformation to obtain C1, C2, C3, C4

combined to form cipher text C.

 OUTPUT TRANSFORMATION

o It is a one time operation

o Takes place at the end of 8
th
 round.

o The output of this process is the final 64 bit cipher text which is the combination of four

four cipher text blocks C1 to C4.

 DECRYPTION

o The process is exactly same as that of encryption process.

o There are some altertions in the generation and patterns of subkeys.

o The decryption subkeys are actually an inverse of the encryption subkeys.That is while

subkey generation an right circular shift is performed.

 STRENGTH OF IDEA

o IDEA uses 128 bit key which is double than the size of DES.

o Thus to break IDEA 2 exp 128 encryption operations would be required.

o Thus IDEA is more secured.

ADVANCED ENCRYPTION STANDARD
 Designed by Rijmen-Daemen in Belgium

 Has 128/192/256 bit keys, 128 bit data

 an iterative rather than feistel cipher

o It is based on ‘substitution–permutation network’.

o processes data as block of 4 columns of 4 bytes

o operates on entire data block in every round

 designed to be:

o resistant against known attacks

o speed and code compactness on many CPUs

o design simplicity

 AES DATA STRUCTURE

o Input array

o State array

o Output array

o Key and expanded key

 AES STRUCTURE
o Encryption consists of 10 rounds of processing for 128-bit keys, 12 rounds for 192-bit

keys, and 14 rounds for 256-bit keys.

o Each of these rounds uses a different 128-bit round key, which is calculated from the

original AES key.

 AES ENCRYPTION PROCESS

 first round process

 Substitute Bytes

 a simple substitution of each byte

 uses one table of 16x16 bytes containing a permutation of all 256 8-bit values

 each byte of state is replaced by byte indexed by row (left 4-bits) & column (right
4-bits)

 eg. byte {95} is replaced by byte in row 9 column 5

 designed to be resistant to all known attacks

 The Byte Substitution operates on each byte of state independently, with the
input byte used to index a row/col in the table to retrieve the substituted value.

 The corresponding substitution step used during decryption is called
InvSubBytes.)

 Substitute Bytes Example

 Shift Rows

 a circular byte shift in each

 1
st
 row is unchanged

 2
nd

 row does 1 byte circular shift to left

 3rd row does 2 byte circular shift to left

 4th row does 3 byte circular shift to left

 decrypt inverts using shifts to right

 since state is processed by columns, this step permutes bytes between the

columns

 Mix Columns

 each column is processed separately

 each byte is replaced by a value dependent on all 4 bytes in the column

 Each column of four bytes is now transformed using a special mathematical

function.

 This function takes as input the four bytes of one column and outputs four

completely new bytes, which replace the original column.

 The result is another new matrix consisting of 16 new bytes.

 It should be noted that this step is not performed in the last round.

 Add Round Key

 XOR state with 128-bits of the round key

 again processed by column (though effectively a series of byte operations)

 The 16 bytes of the matrix are now considered as 128 bits and are XORed to the

128 bits of the round key.

 If this is the last round then the output is the ciphertext.

 Otherwise, the resulting 128 bits are interpreted as 16 bytes and we begin

another similar round.

 AES Encryption round

o AES DECRYPTION PROCESS

 The process of decryption of an AES ciphertext is similar to the encryption process in the

reverse order.

 Each round consists of the four processes conducted in the reverse order

 Add round key

 Mix columns

 Shift rows

 Byte substitution

 Since sub-processes in each round are in reverse manner, unlike for a Feistel Cipher,

the encryption and decryption algorithms needs to be separately implemented, although

they are very closely related.

INVERSE CIPHER

o AES decryption cipher is not identical to the encryption cipher

o Sequence of transformations for decryption differs from that for encryption, although the form of

the key schedules for encryption and decryption is the same.

o It has the disadvantage that two separate software or firmware modules are needed for

applications that require both encryption and decryption.

o An equivalent version of the decryption algorithm that has the same structure as the encryption

algorithm.

o The equivalent version has the same sequence of transformations as the encryption algorithm

(with transformations replaced by their inverses).

o To achieve this equivalence, a change in key schedule is needed.

o An encryption round has the structure SubBytes, ShiftRows, MixColumns, AddRoundKey.

o The standard decryption round has the structure InvShiftRows, InvSubBytes, AddRoundKey,

InvMixColumns.

o Thus, the first two stages of the decryption round need to be interchanged, and the second two

stages of the decryption round need to be interchanged.

o INTERCHANGING INVSHIFTROWS AND INVSUBBYTES

 InvShiftRows affects the sequence of bytes in State but does not alter byte contents and

does not depend on byte contents to perform its transformation.

 InvSubBytes affects the contents of bytes in State but does not alter byte sequence and

does not depend on byte sequence to perform its transformation.

 For a given State Si

 InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)]

o INTERCHANGING ADDROUNDKEY AND INVMIXCOLUMNS

 The transformations AddRoundKey and InvMixColumns do not alter the sequence of

bytes in State.

 If we view the key as a sequence of words,then both AddRoundKey and InvMixColumns

operate on State one column at a time

 for a given State Si and a given round key wj, InvMixColumns (Si XOR wj) =

[InvMixColumns (Si)] XOR [InvMixColumns (wj)]

o INVSUBBYTES

o INVSHIFTROWS

 a circular byte shift in each

 1
st
 row is unchanged

 2
nd

 row does 1 byte circular shift to right

 3rd row does 2 byte circular shift to right

 4th row does 3 byte circular shift to right

o INVMIXCOLUMNS

 Inverse mix columns operation

 Take each column(word) and multiply with a predefined 4X4 matrix(inverse)

o we can interchange AddRoundKey and InvMixColumns, provided that we first apply

InvMixColumns to the round key.

 Equivalent decryption algorithm.

KEY EXPANSION

o Takes as input a 4-word (16 byte) key and produces a linear array of 44 words (176) bytes

o In other words, the orginal 16-byte key array is expanded into a key containing 11X4X4= 176

bytes.

o STEPS

 The orginal 16 byte key is copied into the first 4 words of the expanded key.

 (After filling the first array (W0 to W3) of the expanded key block, the remaining

10 arrays(for words numbered from W4 to W43) are filled one by one.

 Every added key array block depends on the immediately preceding block and

the block 4 positions earlier.

 Function ROTATE performs a circular left shift on the contents of the word by one byte.If

an input word contains four bytes numbered[B1,B2,B3,B4] then the output word would

contain [B2,B3,B4,B1].

 Function SUBSTITUTE performs a byte substitution on each byte of the input word. For

this purpose it uses an S- box.

 In the function CONSTANT(Rcon), the output of the above steps is XORed with a

constant. This constant is a word consisting of 4 bytes. The value of the constant

depends on the round number. The last three bytes of a constant word always contain 0.

Round number 1 2 3 4 5 6 7 8 9 10

Value of a
constant be
used in Hex

01 02 04 08 10 20 40 80 1B 36

o Key Expansion Rationale

 The expansion key algorithm is designed to be resistant to known cryptanalytic attacks

 The specific criteria that were used are:

 Knowledge of a part of the cipher key or round key does not enable calculation of

many other round-key bits.

 An invertible transformation [i.e.,knowledge of any consecutive words of the

expanded key enables regeneration the entire expanded key].

 Speed on a wide range of processors.

 Usage of round constants to eliminate symmetries.

 Diffusion of cipher key differences into the round keys; that is, each key bit

affects many round key bits.

 Simplicity of description.

STREAM CIPHER

 A typical stream cipher encrypts plaintext one byte (or bit) at a time, usually by XOR’ing with a

pseudo-random keystream.

 Have a pseudo random keystream

 randomness of stream key completely destroys statistically properties in message

o Ci = Mi XOR StreamKeyi

Encryption:

Decryption:

o STREAM CIPHER DIAGRAM

 general structure of a stream cipher illustrates that, where a key is input to a

pseudorandom bit generator that produces an apparently random keystream of

bits, and which are XOR’d with message to encrypt it, and XOR’d again to

decrypt it by the receiver.

o DESIGN CONSIDERATIONS FOR A STREAM CIPHER:

 The encryption sequence should have a large period, the longer the period of

repeat the more difficult it will be to do cryptanalysis.

 The keystream should approximate the properties of a true random number

stream as close as possible, the more random-appearing the keystream is, the

more randomized the ciphertext is, making cryptanalysis more difficult.

 To guard against brute-force attacks, the key needs to be sufficiently long. The

same considerations as apply for block ciphers are valid here .Thus, with current

technology, a key length of at least 128 bits is desirable.

 With a properly designed pseudorandom number generator, a stream cipher can

be as secure as block cipher of comparable key length. The primary advantage

of a stream cipher is that stream ciphers are almost always faster and use far

less code than do block ciphers.

RC4

 RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security.

 It is a variable key-size stream cipher with byte-oriented operations.

 The algorithm is based on the use of a random permutation.

 RC4 is probably the most widely used stream cipher.

 It is used in the SSL/TLS secure web protocol, & in the WEP & WPA wireless LAN security

protocols.

 RC4 was kept as a trade secret by RSA Security, but in September 1994 was anonymously

posted on the Internet on the Cypherpunks anonymous remailers list.

 The RC4 key is used to form a random permutation of all 8-bit values, it then uses that

permutation to scramble input info processed a byte at a time.

 RC4 generates a pseudorandom tream of bits called keystream. This is combined wih the

plaintext using XOR for encryption.

 Two parts are included:

o Key schedule algorithm(KSA)

 starts with an array S of numbers: 0..255

 use key to well and truly shuffle

 S forms internal state of the cipher

for i = 0 to 255 do

S[i] = i

T[i] = K[i mod keylen])

j = 0

for i = 0 to 255 do

j = (j + S[i] + T[i]) (mod 256)

swap (S[i], S[j])

 The RC4 key schedule initialises the state S to the numbers 0..255, and then

walks through each entry in turn, using its current value plus the next byte of key

to pick another entry in the array, and swaps their values over. After doing this

256 times, the result is a well and truly shuffled array. The total number of

possible states is 256! - a truly enormous number, much larger even than the

2048-bit (256*8) max key allowed can select.

o Pseudo random number generation

 encryption continues shuffling array values

 sum of shuffled pair selects "stream key" value from permutation

 XOR S[t] with next byte of message to en/decrypt

i = j = 0

for each message byte Mi

i = (i + 1) (mod 256)

j = (j + S[i]) (mod 256)

swap(S[i], S[j])

t = (S[i] + S[j]) (mod 256)

Ci = Mi XOR S[t]

 To form the stream key for en/decryption (which are identical), RC4 continues to

shuffle the permutation array S by continuing to swap each element in turn with

some other entry, and using the sum of these two entry values to select another

value from the permutation to use as the stream key, which is then XOR’d with

the current message byte.

 DECRYPTION

o Decryption is also processed in the same manner.

