Module-3

Private-Key Cryptography

- traditional private/secret/single key cryptography uses one key
- shared by both sender and receiver
- > if this key is disclosed communications are compromised
- > also is **symmetric**, parties are equal
- hence does not protect sender from receiver forging a message & claiming is sent by sender
- probably most significant advance in the 3000 year history of cryptography
- uses two keys a public & a private key
- > **asymmetric** since parties are **not** equal
- > uses clever application of number theoretic concepts to function
- > complements **rather than** replaces private key crypto

Symmetric vs Public-Key

	Conventional Encryption	Public-Key Encryption		
Neede	ed to Work:	Needed to Work:		
1.	The same algorithm with the same key is used for encryption and decryption.	 One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption. 		
2.	The sender and receiver must share the			
	algorithm and the key.	The sender and receiver must each have one of the matched pair of keys (not the		
Neede	ed for Security:	same one).		
1.	The key must be kept secret.	Needed for Security:		
2.	It must be impossible or at least impractical to decipher a message if no	1. One of the two keys must be kept secret.		
	other information is available.	 It must be impossible or at least impractical to decipher a message if no 		
3.	Knowledge of the algorithm plus samples of ciphertext must be	other information is available.		
	insufficient to determine the key.	 Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other 		
		key		

Public-Key Cryptosystems

Public-Key Applications

- can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)

PRIMES

Euler's Theorem

In theory, Let $\phi(n)$ be Euler's totient function. If n is a positive integer, $\phi(n)$ is the number of integers in the range $\{1, 2, 3 \cdots, n\}$ which are relatively prime to n. If a is an integer and m is a positive integer relatively prime to a,

Then $a^{\phi(m)} \equiv 1 \pmod{m}$.

Proof

Consider the set of numbers $A = \{n_1, n_2, ..., n_{\phi(m)}\} \pmod{m}$ such that the elements of the set are the numbers relatively prime to m. It will now be proved that this set is the same as the

set $B = \{an_1, an_2, ..., an_{\phi(m)}\} \pmod{m}$ where (a, m) = 1. All elements of Bare relatively prime to m so if all elements of B are distinct, then B has the same elements as A. In other words, each element of B is congruent to one of A. This means that $n_1n_2...n_{\phi(m)} \equiv an_1 \cdot an_2...an_{\phi(m)} \pmod{m}$ $\rightarrow a^{\phi(m)} \cdot (n_1n_2...n_{\phi(m)}) \equiv n_1n_2...n_{\phi(m)} \pmod{m} \rightarrow a^{\phi(m)} \equiv 1 \pmod{m}$ as desired. Note that dividing by $n_1n_2...n_{\phi(m)}$ is allowed since it is relatively prime to m.

Euler's Phi-Function

Euler's phi-function, Φ (n), which is sometimes called the Euler's totient function plays a very important role in cryptography.

1.
$$\phi(1) = 0$$
.
2. $\phi(p) = p - 1$ if *p* is a prime.

3. $\phi(m \times n) = \phi(m) \times \phi(n)$ if *m* and *n* are relatively prime. 4. $\phi(p^e) = p^e - p^{e-1}$ if *p* is a prime.

We can combine the above four rules to find the value of f(n). For example, if n can be factored as

$$n = p_1^{e1} \times p_2^{e2} \times \ldots \times p_k^{ek}$$

then we combine the third and the fourth rule to find

$$\phi(n) = (p_1^{e_1} - p_1^{e_1 - 1}) \times (p_2^{e_2} - p_2^{e_2 - 1}) \times \cdots \times (p_k^{e_k} - p_k^{e_k - 1})$$

Fermat's Little Theorem

Let *p* be a prime which does not divide the integer *a*, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof.

Start by listing the first p-1 positive multiples of a:

a, 2a, 3a, ... (p -1)a

Suppose that *ra* and *sa* are the same modulo *p*, then we have $r = s \pmod{p}$, so the *p*-1 multiples of *a* above are distinct and nonzero; that is, they must be congruent to 1, 2, 3, ..., *p*-1 in some order. Multiply all these congruences together and we find

 $a (2a) (3a) \dots ((p-1)a) \equiv 1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1) \pmod{p}$

which is, $a^{(p-1)}(p-1)! \equiv (p-1)! \pmod{p}$. Divide both side by (p-1)! to complete the proof.

Sometimes Fermat's Little Theorem is presented in the following form:

Corollary.

Let *p* be a prime and *a* any integer, then $a^p \equiv a \pmod{p}$. Proof.

The result is trival (both sides are zero) if p divides a. If p does not divide a, then we need only multiply the congruence in Fermat's Little Theorem by *a* to complete the proof.

Greatest Common Divisor

The greatest common divisor of two positive integers is the largest integer that can divide both integers. When gcd(a, b) = 1, we say that a and b are relatively prime.

Euclidean Algorithm

b. Algorithm

Find the greatest common divisor of 2740 and 1760

q	r_1	r_2	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
	20	0	

Extended Euclidean Algorithm

Given two integers a and b, we often need to find other two integers, s and t, such that

 $s \times a + t \times b = \gcd(a, b)$

The extended Euclidean algorithm can calculate the gcd (a, b) and at the same time calculate the value of s and t.

a. Process

b. Algorithm

Eg. Given a = 161 and b = 28, find gcd (a, b) and the values of s and t

q	$r_1 r_2$	r	s ₁ s ₂	S	$t_1 t_2$	t
5	161 28	21	1 0	1	0 1	-5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	-5 6	-23
	7 0		-1 4		6 -23	

Modulo Operator

The modulo operator is shown as mod. The second input(n) is called the modulus. The output r is called the residue.

Find the result of the following operations:

 a.
 27 mod 5
 b.
 36 mod 12

c. -18 mod 14 d. -7 mod 10

Solution:

- a. Dividing 27 by 5 results in r = 2
- b. Dividing 36 by 12 results in r = 0.
- c. Dividing -18 by 14 results in r = -4. After adding the modulus r = 10
- d. Dividing -7 by 10 results in r = -7. After adding the modulus to -7, r = 3.

Properties:

First Property:	$(a+b) \bmod n = [(a \bmod n) + (b \bmod n)] \bmod n$
Second Property:	$(a-b) \mod n = [(a \mod n) - (b \mod n)] \mod n$
Third Property:	$(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n$

Inverses

 $a + b \equiv 0 \pmod{n}$

In modular arithmetic, each integer has an additive inverse. The sum of an integer and its additive inverse is congruent to 0 modulo n.

Multiplicative Inverse

 $a \times b \equiv 1 \pmod{n}$

In modular arithmetic, an integer may or may not have a multiplicative inverse.When it does, the product of the integer and its multiplicative inverse is congruent to 1 modulo n.

The extended Euclidean algorithm finds the multiplicative inverses of b in Z_n when n and b are given and gcd (n, b) = 1. The multiplicative inverse of b is the value of t after being mapped to Z_n .

a. Process

b. Algorithm

Find the multiplicative inverse of 11mod26 (ie. 11⁻¹mod26)

q	r_1	r_2	r	$t_1 t_2$	t
2	26	11	4	0 1	-2
2	11	4	3	1 -2	5
1	4	3	1	-2 5	-7
3	3	1	0	5 -7	26
	1	0		-7 26	

The gcd (26, 11) is 1; the inverse of 11 is -7 or 19.

Find the inverse of 12 in Z_{26} .

q	r_{I}	<i>r</i> ₂	r	t_{l}	<i>t</i> ₂	t
2	26	12	2	0	1	-2
6	12	2	0	1	-2	13
	2	0		-2	13	

The gcd (26, 12) is 2; the inverse does not exist.

RSA

- ▶ by Rivest, Shamir & Adleman of MIT in 1977
- best known & widely used public-key scheme
- based on exponentiation in a finite (Galois) field over integers modulo a prime
- uses large integers (eg. 1024 bits)
- security due to cost of factoring large numbers
- ➤ to encrypt a message M the sender:
 - obtains **public key** of recipient PU={e,n}
 - computes: $C = M^e \mod n$, where $0 \le M \le n$
 - to decrypt the ciphertext C the owner:
 - uses their private key PR={d,n}
 - computes: $M = C^d \mod n$
- each user generates a public/private key pair by:
- selecting two large primes at random: p, q
- computing their system modulus n=p.q
 - note ø(n)=(p-1)(q-1)
- selecting at random the encryption key e
 - where $1 \le \phi(n)$, $gcd(e,\phi(n))=1$
- solve following equation to find decryption key d
 - e.d=1 mod $\emptyset(n)$ and $0 \le d \le n$
- > publish their public encryption key: PU={e,n}
- keep secret private decryption key: PR={d,n}

Key Generation Algorithm

Act, Ocher allon		
Select p, q	p and q both prime, $p \neq q$	
Calculate $n = p \times q$		
Calculate $\phi(n) = (p-1)(q-1)$)	
Select integer e	gcd $(\phi(n), e) = 1; 1 \le e \le \phi(n)$	
Calculate d	$d \equiv e^{-1} \pmod{\phi(n)}$	
Public key	$PU = \{e, n\}$	
Private key	$PR = \{d, n\}$	

Encryption

Plaintext:
Ciphertext

C =	M^e	mod	\overline{n}
			-

M < n

	Decryption
Ciphertext:	C
Plaintext:	$M = C^d \bmod n$

RSA Example

- 1. Select primes: p=17 & q=11
- 2. Calculate $n = pq=17 \ge 11=187$
- 3. Calculate $\phi(n)=(p-1)(q-1)=16x10=160$
- 4. Select e:gcd(e,160)=1; choose *e*=7
- 5. Determine d:*de*=1 mod 160 and *d* < 160 Value is d=23 since 23x7=161= 10x160+1
- 6. Publish public key $PU=\{7,187\}$
- 7. Keep secret private key PR={23,187}

RSA Example - En/Decryption

- sample RSA encryption/decryption is:
- ➢ given message M = 88 (nb.88<187)</p>
- ➢ encryption:

 $C = 88^7 \mod 187 = 11$

➤ decryption:

 $M = 11^{23} \mod 187 = 88$

RSA Security

- possible approaches to attacking RSA are:
 - brute force key search infeasible given size of numbers

- mathematical attacks based on difficulty of computing ø(n), by factoring modulus n
- timing attacks on running of decryption
- chosen ciphertext attacks given properties of RSA

Diffie-Hellman Key Exchange

- first public-key type scheme proposed
 - For key distribution only
- by Diffie& Hellman in 1976 along with the exposition of public key concepts
 - is a practical method for public exchange of a secret key
 - used in a number of commercial products
 - a public-key distribution scheme
 - cannot be used to exchange an arbitrary message
 - rather it can establish a common key
 - known only to the two participants
 - value of key depends on the participants (and their private and public key information)
 - based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) easy
 - Security relies on the difficulty of computing discrete logarithms (similar to factoring) hard.
- all users agree on global parameters:
 - large prime integer or polynomial q
 - α a primitive root mod q
 - each user (eg. A) generates their key
 - chooses a secret key (number): $x_A < q$
 - compute their **public key**: $y_A = \alpha^{xA} \mod q$
 - each user makes public that key y_A
- shared session key for users A & B is K:
 - $K = y_A^{xB} \mod q$ (which **B** can compute)
 - $K = y_B^{xA} \mod q$ (which **A** can compute)

- K is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the **same** key as before, unless they choose new public-keys
- attacker needs an x, must solve discrete log

	Global Public Elements					
$\mathbb{E}_q(a,b)$	elliptic curve with parameters $a, b, and q$, where q is a prime or an integer of the form 2^m					
G	point on elliptic curve whose order is large value n					

User A Ke	Generation
-----------	------------

 $n_A < n$

 $P_A = n_A \times G$

Select private n_A

Calculate public P_A

User B Key GenerationSelect private n_B $n_A < n$ Calculate public P_B $P_B = n_B \times G$

Calculation of Secret Key by User A

 $K = n_A \times P_B$

Calculation of Secret Key by User B

 $K = n_B \times P_A$

Diffie-Hellman Example

- users Alice & Bob who wish to swap keys:
- agree on prime q=353 and α =3
- select random secret keys:
 - A chooses $x_A=97$, B chooses $x_B=233$
- compute public keys:
 - $y_A = 3^{97} \mod 353 = 40$ (Alice)
 - $y_B = 3^{233} \mod 353 = 248$ (Bob)

- compute shared session key as:
 - K_{AB}= y_B^{xA} mod 353 = 248⁹⁷ = 160 (Alice)
 - $K_{AB} = y_A x_B \mod 353 = 40^{233} = 160$ (Bob)

Elliptic Curve Cryptography

- majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials
- imposes a significant load in storing and processing keys and ٠ messages
- an alternative is to use elliptic curves ٠
- offers same security with smaller bit sizes

Real Elliptic Curves

- an elliptic curve is defined by an equation in two variables x & y, with ٠ coefficients
- consider a cubic elliptic curve of form ٠
 - $y^2 = x^3 + ax + b$
 - where x,y,a,b are all real numbers
 - also define zero point O

Global Public Elements

- $E_q(a, b)$ elliptic curve with parameters a, b, and q, where q is a prime or an integer of the form 2" G
 - point on elliptic curve whose order is large value n

User A Key Generation	
Select private n_A	$n_A < n$
Calculate public P_A	$P_A = n_A \times G$

User B Key Generation

Select private n_B

 $n_A < n$

Calculate public P_B

 $P_B = n_B \times G$

Calculation of Secret Key by User A

 $K = n_A \times P_B$

Calculation of Secret Key by User B

 $K = n_B \times P_A$

- can do key exchange similar to D-H
- users select a suitable curve E_p(a,b)
 - Either a prime curve, or a binary curve
- select base point $G=(x_1,y_1)$ with large order n (nG=O)
- A & B select private keys $n_A < n$, $n_B < n$
- compute public keys: $P_A=n_A \times G$, $P_B=n_B \times G$
- compute shared key: $K=n_A \times P_B$, $K=n_B \times P_A$
 - same since $K=n_A \times n_B \times G$

ECC Encryption/Decryption

- select suitable curve & point G as in D-H
- encode any message M as a point on the elliptic curve $P_m=(x,y)$
- each user chooses private key $n_A < n$
- and computes public key $P_A=n_A\times G$
- to encrypt pick random k: $C_m = \{kG, P_m + k P_b\},\$
- decrypt C_m compute:
 - $P_m + kP_b n_B(kG) = P_m + k(n_BG) n_B(kG) = P_m$