
Module-3 

Private-Key Cryptography

 traditional private/secret/single key

 shared by both sender and receiver 

 if this key is disclosed communications are compromised 

 also is symmetric

 hence does not protect sender from receiver forging a message & 
claiming is sent by sender 

 probably most significant advance in the 3000 year history of 
cryptography  

 uses two keys – a public & a private key

 asymmetric since parties are 

 uses clever application of number theoretic concepts to function

 complements rather than

Symmetric vs Public-Key

Key Cryptography 

private/secret/single key cryptography uses 

shared by both sender and receiver  

if this key is disclosed communications are compromised 

symmetric, parties are equal  

hence does not protect sender from receiver forging a message & 
claiming is sent by sender  

probably most significant advance in the 3000 year history of 

a public & a private key 

since parties are not equal  

ever application of number theoretic concepts to function

rather than replaces private key crypto 

Key 

cryptography uses one key  

if this key is disclosed communications are compromised  

hence does not protect sender from receiver forging a message & 

probably most significant advance in the 3000 year history of 

ever application of number theoretic concepts to function 

 

 



 

Public-Key Cryptosystems

Public-Key Applications

• can classify uses into 3 categories:

– encryption/decryption

– digital signatures

– key exchange

PRIMES 

Euler’s Theorem 

In theory, Let  be Euler's totient function

number of integers in the range
 is an integer and  is a positive integer

Then 

 

  

 

Key Cryptosystems 

Key Applications 

can classify uses into 3 categories: 

encryption/decryption (provide secrecy) 

digital signatures (provide authentication) 

key exchange (of session keys) 

Euler's totient function. If  is a positive integer,

number of integers in the range  which are relatively prime to
is a positive integer relatively prime to , 

.   

 

 

is a positive integer,  is the 

which are relatively prime to . If 



Proof 

Consider the set of numbers
elements of the set are the numbers relatively
proved that this set is the same as the 

set 
 are relatively prime to 
the same elements as 
one of .This means that

 → 
desired. Note that dividing by
prime to . 

Euler’s Phi-Function 

Euler’s phi-function, Φ (n), which is sometimes called the
function plays a very important role in cryptography. 

We can combine the above four rules to find the value of f(
n can be factored as  

                         n = p1e1 × p

then we combine the third and the fourth rule to find

Fermat’s Little Theorem

Let p be a prime which does not divide the integer

Proof. 
Start by listing the first

a, 2a, 3a, ... (p -1)a

Suppose that ra
have r = s (mod p), so the
nonzero; that is, they must be congruent to 1, 
order. Multiply all these congruences together and we find

a (2a) (3a) ... ((p-1)

which is, a(p-1)(p-1)! ≡ (p-
the proof. 

Sometimes Fermat's Little 

Consider the set of numbers  such that the 
are the numbers relatively prime to . It will now be 

proved that this set is the same as the 

 where . All elements of
  so if all elements of  are distinct, then
 In other words, each element of  is congruent to 

.This means that 

 → 
desired. Note that dividing by  is allowed since it is relatively 

(n), which is sometimes called the Euler’s totient
function plays a very important role in cryptography.  

We can combine the above four rules to find the value of f(n). For example, if 

× p2e2 × … × pkek 

then we combine the third and the fourth rule to find 

Fermat’s Little Theorem 

be a prime which does not divide the integer a, then ap-1 ≡ 1 (mod

Start by listing the first p-1 positive multiples of a: 

a 

ra and sa are the same modulo 
), so the p-1 multiples of a above are distinct and 

nonzero; that is, they must be congruent to 1, 2, 3, ...,
order. Multiply all these congruences together and we find

1)a) ≡ 1.2.3.....(p-1) (mod p) 

-1)! (mod p).   Divide both side by (p

Sometimes Fermat's Little Theorem is presented in the following form:

such that the 
. It will now be 

. All elements of 
are distinct, then  has 

is congruent to 

 as 
owed since it is relatively 

Euler’s totient 

 

 

n). For example, if 

 

≡ 1 (mod p). 

 p, then we 
above are distinct and 

2, 3, ..., p-1 in some 
order. Multiply all these congruences together and we find 

p-1)! to complete 

Theorem is presented in the following form: 



Corollary. 
Let p be a prime and a any integer, then ap ≡ a (mod p). 

Proof. 
The result is trival (both sides are zero) if p divides a. If p does not divide a, 
then we need only multiply the congruence in Fermat's Little Theorem 
by a to complete the proof. 

Greatest Common Divisor 

The greatest common divisor of two positive integers is the largest integer 
that can divide both integers. When gcd (a, b) = 1, we say that a and b are 
relatively prime. 

Euclidean Algorithm 

 

 

 

 

 

 

 

 

Find the greatest common divisor of 2740 and 1760 

 

 

 

 

 

 

 

Extended Euclidean Algorithm 

Given two integers a and b, we often need to find other two integers, s and t, 
such that 

 

The extended Euclidean algorithm can calculate the gcd (a, b) and at the 
same time calculate the value of s and t. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eg. Given a = 161 and b = 28, find gcd (a, b) and the values of s and t 

 

 

 

 

 

Modulo Operator 

The modulo operator is shown as mod. The second input(n) is called the 
modulus. The output r is called the residue. 

 

 

 



 

 

 

 

 

Find the result of the following operations: 

a. 27 mod 5 b. 36 mod 12 

c. −18 mod 14 d. −7 mod 10 
Solution: 

a. Dividing 27 by 5 results in r = 2 

b. Dividing 36 by 12 results in r = 0. 

c. Dividing −18 by 14 results in r = −4. After adding the modulus  r = 10 

d. Dividing −7 by 10 results in r = −7. After adding the modulus to −7, r 
= 3. 

Properties: 

 

 

 

 

 

Inverses 

 

 

In modular arithmetic, each integer has an additive inverse. The sum of an 
integer and its additive inverse is congruent to 0 modulo n. 

Multiplicative Inverse 

 

 

In modular arithmetic, an integer may or may not have a multiplicative 
inverse.When it does, the product of the integer and its multiplicative 
inverse is congruent to 1 modulo n. 



The extended Euclidean algorithm finds the multiplicative inverses of b in Zn 

when n and b are given and gcd (n, b) = 1.The multiplicative inverse of b is 
the value of t after being mapped to Zn. 

Using extended Euclidean algorithm tofind multiplicative inverse 

 

 

 

 

 

 

 

 

 

Find the multiplicative inverse of 11mod26 (ie. 11-1mod26) 

 

 

 

 

 

 

 

 

The gcd (26, 11) is 1; the inverse of 11 is -7 or 19. 

Find the inverse of 12 in Z26. 

 

 

 

 

 

 

The gcd (26, 12) is 2; the inverse does not exist. 



RSA 

 by Rivest, Shamir & Adleman of MIT in 1977  

 best known & widely used public-key scheme  

 based on exponentiation in a finite (Galois) field over integers modulo 
a prime  

 uses large integers (eg. 1024 bits) 

 security due to cost of factoring large numbers  

 to encrypt a message M the sender: 

 obtains public key of recipient PU={e,n} 

 computes: C = Me mod n, where 0≤M<n 

 to decrypt the ciphertext C the owner: 

 uses their private key PR={d,n} 

 computes: M = Cd mod n 

 each user generates a public/private key pair by:  

 selecting two large primes at random: p, q 

 computing their system modulus n=p.q 

 note ø(n)=(p-1)(q-1) 

 selecting at random the encryption key e 

 where 1<e<ø(n), gcd(e,ø(n))=1  

 solve following equation to find decryption key d 

 e.d=1 mod ø(n) and 0≤d≤n 

 publish their public encryption key: PU={e,n}  

 keep secret private decryption key: PR={d,n}  



Key Generation Algorithm

RSA Example 

1. Select primes: p=17 &

2. Calculate n = pq

3. Calculate ø(n)=(p

4. Select e:gcd(e,160)=1; choose 

5. Determine d:de=1 mod 160 and 
23x7=161= 10x160+1

6. Publish public key PU={7,187}

7. Keep secret private key PR={23,

RSA Example - En/Decryption

 sample RSA encryption/decryption is: 

 given message M = 88 (nb.88<187)

 encryption: 

C = 887 mod 187 = 11 

 decryption: 

M = 1123 mod 187 = 88 

RSA Security 

• possible approaches to attacking RSA are:

– brute force key search 

Key Generation Algorithm

=17 &q=11 

pq=17 x 11=187 

p–1)(q-1)=16x10=160 

Select e:gcd(e,160)=1; choose e=7 

1 mod 160 and d < 160 Value is d=23 since 
160+1 

Publish public key PU={7,187} 

Keep secret private key PR={23,187} 

En/Decryption 

sample RSA encryption/decryption is:  

given message M = 88 (nb.88<187) 

mod 187 = 11  

mod 187 = 88  

possible approaches to attacking RSA are: 

brute force key search - infeasible given size of numbers

 

Value is d=23 since 

infeasible given size of numbers 



– mathematical attacks - based on difficulty of computing ø(n), by 
factoring modulus n 

– timing attacks - on running of decryption 

– chosen ciphertext attacks - given properties of RSA 

Diffie-Hellman Key Exchange 

• first public-key type scheme proposed  

– For key distribution only 

• by Diffie& Hellman in 1976 along with the exposition of public key 
concepts 

– is a practical method for public exchange of a secret key 

– used in a number of commercial products 

– a public-key distribution scheme  

– cannot be used to exchange an arbitrary message  

– rather it can establish a common key  

– known only to the two participants  

– value of key depends on the participants (and their private 
and public key information)  

– based on exponentiation in a finite (Galois) field (modulo a 
prime or a polynomial) - easy 

– Security relies on the difficulty of computing discrete 
logarithms (similar to factoring) – hard. 

• all users agree on global parameters: 

– large prime integer or polynomial q 

– α a primitive root mod q 

– each user (eg. A) generates their key 

– chooses a secret key (number): xA < q  

– compute their public key: yA = αxA mod q 

–  each user makes public that key yA  

• shared session key for users A & B is K:  

– K = yAxB mod q  (which B can compute)  

– K = yBxA mod q  (which A can compute)  



• K is used as session key in private-key encryption scheme between 
Alice and Bob 

• if Alice and Bob subsequently communicate, they will have the same 
key as before, unless they choose new public-keys  

• attacker needs an x, must solve discrete log 

 

Diffie-Hellman Example 

• users Alice & Bob who wish to swap keys: 

• agree on prime q=353 and α=3  

• select random secret keys: 

– A chooses xA=97, B chooses xB=233 

• compute public keys: 

– yA=397 mod 353 = 40 (Alice) 

– yB=3233 mod 353 = 248 (Bob) 



• compute shared session key as: 

– KAB= yBxA mod 353 = 24897 = 160 (Alice) 
– KAB= yAxB mod 353 = 40233 = 160 (Bob) 

 

Elliptic Curve Cryptography 

• majority of public-key crypto (RSA, D-H) use either integer or 
polynomial arithmetic with very large numbers/polynomials 

• imposes a significant load in storing and processing keys and 
messages 

• an alternative is to use elliptic curves 

• offers same security with smaller bit sizes  

Real Elliptic Curves 

• an elliptic curve is defined by an equation in two variables x & y, with 
coefficients 

• consider a cubic elliptic curve of form 

– y2 = x3 + ax + b 

– where x,y,a,b are all real numbers 

– also define zero point O 

 

 



 

• can do key exchange similar to D-H 

• users select a suitable curve Ep(a,b)  

– Either a prime curve, or a binary curve 

• select base point G=(x1,y1) with large order n (nG=O) 

• A & B select private keys nA<n, nB<n 

• compute public keys: PA=nA×G, PB=nB×G  

• compute shared key: K=nA×PB, K=nB×PA  

– same since K=nA×nB×G  

ECC Encryption/Decryption 

• select suitable curve & point G as in D-H  

• encode any message M as a point on the elliptic curve Pm=(x,y) 

• each user chooses private key nA<n  

• and computes public key PA=nA×G  

• to encrypt pick random k: Cm={kG, Pm+k Pb}, 

•  decrypt Cm compute:  

– Pm+kPb–nB(kG) = Pm+k(nBG)–nB(kG) = Pm 

 


