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MODULE 4 

Authentication requirements- Authentication functions- Message 

authentication codes- Hash functions- SHA -1, MD5, Security of Hash 

functions and MACs- Authentication protocols-Digital signatures-Digital 

signature standards. 

Authentication Requirements 

1. Disclosure: Release of message contents to any person or process not pos

sess- ing the appropriate cryptographic key. 

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a 

connection-oriented application, the frequency and duration of 

connectionscould be determined. In either a connectionoriented or connect

ionless environment, the number and length of messages between parties c

ould be determined. 

3. Masquerade: Insertion of messages into the network from a fraudulent sou

rce. This includes the creation of messages by an opponent that are 

purported to come from an authorized entity. Also included are 

fraudulent acknowledgments of message receipt or nonreceipt by 

someone other than the message recipient. 

4. Content modification: Changes to the contents of a message, including inse

rtion, deletion, transposition, and modification. 

5. Sequence modification: Any modification to a sequence of messages betw

een parties, including insertion, deletion, and reordering. 

6. Timing modification: Delay or replay of messages. In a connection-

oriented application, an entire session or sequence of messages could be a 

replay of some 

previous valid session, or individual messages in the sequence could be del

ayed or replayed. In a connectionless application, an individual message (

e.g., data- gram) could be delayed or replayed. 

7. Source repudiation: Denial of transmission of message by source. 
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8. Destination repudiation: Denial of receipt of message by destination. 

Message authentication 

a. A procedure to verify that messages come from the alleged source 

and have not been altered 

b. Message authentication may also verify sequencing and timeliness 

Digital signature 

c. An authentication technique that also includes measures to counter 

repudiation by either source or destination. 

Authentication Functions 

Three classes of functions that may be used to produce an authenticator 

 Message encryption 

 Cipher text itself serves as authenticator 

 Message authentication code (MAC) 

 A public function of the message and a secret key that 

produces a fixed-length value that serves as the 

authenticator 

 Hash function 

 A public function that maps a message of any length 

into a fixed-length hash value, which serves as the 

authenticator  

Message Encryption 

 Conventional encryption can serve as authenticator 

 Conventional encryption provides authentication as well as 

confidentiality 
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 Requires recognizable plaintext or other structure to 

distinguish between well-formed legitimate plaintext and 

meaningless random bits 

e.g., ASCII text, an appended checksum, or use of 

layered protocols 

Basic Uses of Message Encryption 
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Confidentiality and Authentication Implications of Message Encryption 

 

Message Authentication Code 

 Uses a shared secret key to generate a fixed-size block of 

data (known as a cryptographic checksum or MAC) that is 

appended to the message 

MAC = CK(M) 

Assurances: 

 Message has not been altered 

 Message is from alleged sender 
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 Message sequence is unaltered (requires internal 

sequencing) 

Similar to encryption but MAC algorithm needs not be 

reversible. 

 

Basic Uses of MAC  
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Hash Function 

 Converts a variable size message M into fixed size hash code H(M) 

(Sometimes called a message digest) 

 Can be used with encryption for authentication 

o E(M || H)  

o M || E(H) 

o M || signed H 

o E( M || signed H ) gives confidentiality 

o M || H( M || K ) 

o E( M || H( M || K ) ) 

Basic Uses of Hash Function  
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Basic Uses of Hash Function  
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Secure Hash Algorithm-SHA-1 

 based on design of MD5 with key differences  

 produces 160-bit hash values  

 Padding: Length of the message is 64 bits short of multiple of 512 

after padding. 

 Append a 64-bit length value of original message is taken. 

 Divide the input into 512-bit blocks 

 Initialise CV5-word (160-bit) buffer (A,B,C,D,E) to  

(A=01 23 45 67,  

 B=89 AB CD EF,  

C=FE DC BA 98,  

D=76 54 32 10, 

E=C3 D2 E1 F0)  

 ProcessBlocksnow the actual algorithm begins.      message in 16-word 

(512-bit) chunks: 

o Copy CV into single register for storing temporary intermediate as 

well as the final results. 

o Divide the current 512-bit blocks into 16 sub-blocks, each 

consisting of 32 bits. 

o Has No. Of Rounds=4,each round consisting of 20 bit /step 

iteration operations on message block & buffer  

o expand 16 words into 80 words(20*4) by mixing & shifting.K[t] 

constant= Where t=0 to 79 

o Form new buffer value by adding output to input.  

 output hash value is the final buffer value  
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SHA-1 Compression Function 
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SHA-1 Compression Function terms 

 each round has 20 steps which replaces the 5 buffer words thus: 

(A,B,C,D,E) <-(E+f(t,B,C,D)+(A<<5)+Wt+Kt),A,(B<<30),C,D) 

 ABCDE refer to the 5 words of the buffer 

 t is the step number 

 f(t,B,C,D) is nonlinear function for round 

 Wt is derived from the message block  

 Kt is a constant value  

 S^t circular left shift of 32 bit sub-block by t bits 

Creation of 80-word input Wt 

 Adds redundancy and interdependence among message blocks  

MD 5 hash algorithm 

It was developed with the main motive of security as it takes an input of any 

size and produces an output if a 128-bit hash value. To be considered 

cryptographically secure MD5 should meet two requirements: 
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• It is impossible to generate two inputs that cannot produce the same 

hash function. 

• It is impossible to generate a message having the same hash value. 

Initially, MD5 was developed to store one way hash of a password and some 

file servers also provide pre-computed MD5 checksum of a file so that the user 

can compare the checksum of the downloaded file to it. Most Unix based 

Operating Systems include MD5 checksum utilities in their distribution 

packages. 

• produces a 128-bit hash value 

1. pad message so its length is 448 mod 512  

2. append a 64-bit length value to message  

3. initialise 4-word (128-bit) MD buffer (A,B,C,D)  

4. process message in 16-word (512-bit) blocks:  

a. using 4 rounds of 16 bit operations on message block & buffer  

b. add output to buffer input to form new buffer value  

5. output hash value is the final buffer value  
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MD5 Compression Function 

• each round has 16 steps of the form:  

a = b+((a+g(b,c,d)+X[k]+T[i])<<<s)  

• a,b,c,d refer to the 4 words of the buffer, but used in varying 

permutations 

– note this updates 1 word only of the buffer 

– after 16 steps each word is updated 4 times 

• where g(b,c,d) is a different nonlinear function in each round (F,G,H,I) 

• T[i] is a constant value derived from sin 

 

 

SHA-1 verses MD5 

 brute force attack is harder (160 vs 128 bits for MD5)  

 not vulnerable to any known attacks (compared to MD4/5)  

 a little slower than MD5 (80 vs 64 steps)  

 both designed as simple and compact 
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 optimised for big endian CPU's (SUN) vs MD5  for little endian CPU’s 

(PC)  

Hash Functions & MAC Security 

• like block ciphers have: 

• brute-force attacks exploiting 

– strong collision resistance hash have cost 2m/2  

• 128-bit hash looks vulnerable, 160-bits better 

– MACs with known message-MAC pairs 

• can either attack key space (cf key search) or MAC 

– Min(2k, 2n) 

• at least 128-bit MAC and 128-bit key is needed for security 

• cryptanalytic attacks exploit structure 

– like block ciphers want brute-force attacks to be the best 

alternative 

• have a number of analytic attacks on iterated hash functions 

– CVi = f[CVi-1, Mi]; H(M)=CVN 

– typically focus on collisions in function f 

– like block ciphers is often composed of rounds 

– attacks exploit properties of round functions 
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Authentication Protocol 

1. Mutual Authentication 

• A two-level hierarchy of symmetric encryption keys can be used to provide 

confidentiality for communication in a distributed environment. In 

general, this strategy involves the use of a trusted key distribution center 

(KDC). Each party in the network shares a secret key, known as a master

 key, with the KDC. The KDC is responsible for generating keys to be 

used for a short time 

over a connection between two parties, known as session keys, and for di

stributing those keys using the master keys to protect the distribution. 

This approach is quite common.  

Needham and Schroeder Protocol 

Needham and Schroeder for secret key distribution using  a  KDC  that, 

includes authentication features. The protocol can be summarized as 

follows. 

 

Secret keys Ka and Kb are shared between A and the KDC and B and the 

KDC, respectively. The purpose of the protocol is to distribute securely a 

session key Ks to A and B.  

A securely acquires a new session key in step 2.  

The message in step 3 can be decrypted, and hence understood, only by B. 

Step 4 reflects B's knowledge of Ks, and step 5 assures B of A's knowledge of 

Ks and assures B that this is a fresh Authentication Protocols message 

because of the use of the nonce N2.  
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The purpose of steps 4 and 5 is to prevent a certain type of replay attack.  

In particular, if an opponent is able to capture the message in step 3 and 

replay it, this might in some fashion disrupt operations at B.  

• Despite the handshake of steps 4 and 5, the protocol is still vulnerable to 

a form of replay attack. 

•  Xcan impersonate A and trick B into using the old key by simply replaying  

step 3. Unless B remembers indefinitely all previous session keys used 

with A, B will be unable to 

determine that this is a replay. If X can intercept the handshake message in

 step 4, then it can impersonate A’s response in step 5. From this point on, 

X can send bogus messages to B that appear to B to come from A using an 

authenticated session key. 

Denning Protocol 

• Denning proposes to overcome this weakness by a modification to the 

Needham/Schroeder protocol that includes the addition of a timestamp 

to steps 2 and 3.  

• Her proposal assumes that the master keys, Ka and Kb, are 

secure, and it consists of the following steps. 

 

• T is a timestamp that assures A and B that the session key has only 

just been 

generated. Thus, both A and B know that the key distribution is a fresh ex

change. A and B can verify timeliness by checking that 

•  
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• Where Δt1 is the estimated normal discrepancy between the KDC’s clock an

d the local 

clock (at A or B) and Δt2 is the expected network delay time. Each node c

an set its clock against some standard reference source. Because the time

stamp T is encrypted 

using the secure master keys, an opponent, even with knowledge of an old s

ession key, cannot succeed because a replay of step 3 will be detected by B 

as untimely. 

• A final point: Steps 4 and 5 were not included in the 

original presentation but were added later. 

These steps confirm the receipt of the session key at B. 

• The Denning protocol seems to provide an increased 

degree of security compared to the Needham/Schroeder protocol.  

• The Denning protocol requires reliance on clocks that are synchronized 

throughout the network 

• A risk involved is based on the fact that the distributed clocks can 

become unsynchronized as a result of sabotage on or faults in the clocks 

or the synchronization mechanism 

• The problem occurs when a sender’s clock is ahead of the intended 

recipient’s clock 

– An opponent can intercept a message from the sender and replay it 

later when the timestamp in the message becomes current at the 

recipient’s site 

– Such attacks are referred to as suppress-replay attacks 

One way to counter suppress-replay attacks is to enforce the 

requirement that parties regularly check their clocks against the 

KDC's clock. The other alternative, which avoids the need for clock 

synchronization, is to rely on handshaking protocols using nonces. 
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This latter alternative is not vulnerable to a suppress-replay attack 

because the nonces the recipient will choose in the future are 

unpredictable to the sender. The Needham/Schroeder protocol 

relies on nonces only but, as we have seen, has other 

vulnerabilities. 

1. AB: IDA||Na  

2. B KDC: IDB||Nb||E(Kb, [IDA||Na||Tb])  

3.KDCA: E(Ka, [IDB||Na||Ks||Tb])||E(Kb,[IDA||Ks||Tb])||Nb 

4. A B: E(Kb, [IDA||Ks||Tb])||E(Ks, Nb) 

 

One-Way Authentication 

Using symmetric encryption, the decentralized key distribution scenario illus

trated in Figure 14.5 is impractical. This scheme requires the sender to 

issue a request to the intended recipient, await a response that includes a 

session key, and only then send the message. 

2. With some refinement, the KDC strategy illustrated in Figure 14.3 is a ca

ndi- date for encrypted electronic mail. Because we wish to avoid 

requiring that the recipient (B) be on line at the same time as the sender 

(A), steps 4 and 5 must be 

eliminated. For a message with content M, the sequence is as follows: 

3.   

4. This approach guarantees that only the intended recipient of a message 

will be able to read it. It also provides a level of authentication that the 

sender is A. As specified, the protocol does not protect against replays. 
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Some measure of defense could be provided by including a timestamp 

with the message. However, because of the potential delays in the e-mail 

process, such timestamps may have limited usefulness. 

Digital signatures 

Digital signatures provide the ability to:  

– verify author, date and time of signature  

– authenticate message contents  

– be verified by third parties to resolve disputes  

• Hence include authentication function with additional capabilities 

DSA Key Generation 

 have shared global public key values (p,q,g):  

 choose 160-bit prime number  q 

 choose a large prime p with 2L-1< p < 2L 

• where L= 512 to 1024 bits and is a multiple of 64 

• such that q is a 160 bit prime divisor of (p-1)  

 choose g = h(p-1)/q 

• where  1<h<p-1 and h(p-1)/q mod p > 1  

 users choose private & compute public key:  

 choose random private key:  x<q  

 compute public key: y = gxmod p  

DSA Signature Creation 

 to sign a message M the sender: 



 

 generates a random signature key k, k<q 

 k must be random, be destroyed after use, and never be reused

 then computes signature pair: r = (g

mod q  

 sends signature (r,s) with message M

DSA Signature Verification

 having received M &

 to verify a signature, recipient computes: 

w = s-1 mod q  

u1= [H(M)w ]mod q 

u2= (rw)mod q 

v = [(gu1 yu2)mod p ]mod q

 if v=r then signature is verified 

generates a random signature key k, k<q  

must be random, be destroyed after use, and never be reused

computes signature pair: r = (gk mod p)mod q s = [k

sends signature (r,s) with message M 

DSA Signature Verification 

having received M &signature (r,s)  

a signature, recipient computes:  

u1= [H(M)w ]mod q  

)mod p ]mod q 

if v=r then signature is verified  

19 

must be random, be destroyed after use, and never be reused 

mod p)mod q s = [k-1(H(M)+ xr)] 
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RSA Digital Signature 

Key Generation 

Key generation in the RSA digital signature scheme is exactly the same as 

key generation in the RSA 

In the RSA digital signature scheme, d is private;  

e and n are public. 

Signing and Verifying  

 

RSA Signature on the Message Digest  
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When the digest is signed instead of the message itself, the susceptibility of 

the RSA digital signature scheme depends on the strength of the hash 

algorithm. 

Arbitrated Digital Signature Techniques 

• involves use of arbiter A 

– validates any signed message 

– then dated and sent to recipient 

• requires suitable level of trust in arbiter 

• can be implemented with either private or public-key algorithms 

• arbiter may or may not see message 

 

The arbiter uses Kay to recover IDX, M, and the signature, and then uses Kxa 

to decrypt the signature and verify the hash code. In this scheme, Y cannot 

directly check X's signature; the signature is there solely to settle disputes. Y 
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considers the message from X authentic because it comes through A. In this 

scenario, both sides must have a high degree of trust in A: 

● X must trust A not to reveal Kxa and not to generate false signatures of the 

form E(Kxa, [IDX||H(M)]). 

● Y must trust A to send E(Kay, [IDX||M||E(Kxa, [IDX||H(M)])||T]) only if the 

hash value is correct and the signature was generated by X. 

● Both sides must trust A to resolve disputes fairly. 

If the arbiter does live up to this trust, then X is assured that no one can forge 

his signature and Y is assured that X cannot disavow his signature. 

The preceding scenario also implies that A is able to read messages from X to Y 

and, indeed, that any eavesdropper is able to do so. Table 10.1b shows a 

scenario that provides the arbitration as before but also assures confidentiality. 

In this case it is assumed that X and Y share the secret key Kxy. Now, X 

transmits an identifier, a copy of the message encrypted with Kxy, and a 

signature to A. The signature consists of the identifier plus the hash value of 

the encrypted message, all encrypted using Kxa. As before, A decrypts the 

signature and checks the hash value to validate the message. In this case, A is 

working only with the encrypted version of the message and is prevented from 

reading it. A then transmits everything that it received from X, plus a 

timestamp, all encrypted with Kay, to Y. 

Although unable to read the message, the arbiter is still in a position to 

prevent fraud on the part of either X or Y. A remaining problem, one shared 

with the first scenario, is that the arbiter could form an alliance with the 

sender to deny a signed message, or with the receiver to forge the sender's 

signature.  

All the problems just discussed can be resolved by going to a public-key 

scheme, one version of which is shown in Table 10.1c. In this case, X double 
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encrypts a message M first with X's private key, PRx and then with Y's public 

key, PUy. This is a signed, secret version of the message. This signed message, 

together with X's identifier, is encrypted again with PRx and, together with IDX, 

is sent to A. The inner, double-encrypted message is secure from the arbiter 

(and everyone else except Y). However, A can decrypt the outer encryption to 

assure that the message must have come from X (because only X has PRx). A 

checks to make sure that X's private/public key pair is still valid and, if so, 

verifies the message. Then A transmits a message to Y, encrypted with PRa. 

The message includes IDX, the double-encrypted message, and a timestamp. 

This scheme has a number of advantages over the preceding two schemes. 

First, no information is shared among the parties before communication, 

preventing alliances to defraud. Second, no incorrectly dated message can be 

sent, even if PRx is compromised, assuming that PRa is not compromised. 

Digital Signatures the content of the message from X to Y is secret from A and 

anyone else. However, this final scheme involves encryption of the message 

twice with a public-key algorithm. 


