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Process Synchronization 

A co-operating process is one that can affect or be affected by other processes executing in the 

system. Cooperating process may either directly share a logical address space (that is, both code and data) or 

be allowed to share data only through files. The former case is achieved through the use of lightweight 

processes or threads. 

Concurrent access to shared data may result in data inconsistency. Several processes access and 

manipulate the same data concurrently and the outcome of the execution depends on the particular order in 

which the access takes place, is called a race condition. To guard against the race condition we need to 

ensure that only one process at a time can be manipulating the variable counter. To make such a guarantee, 

we require some form of synchronization of the processes. Such situations occur frequently in operating 

system systems as different parts of the system manipulate resources and we want the changes not to 

interfere with one another. A major portion of this module is concerned with process synchronization and 

coordination 

 we looked at cooperating processes ( those that can effect or be effected by other 

simultaneously running processes ), and as an example, we used the producer-consumer 

cooperating processes: 

Producer code : 

item nextProduced; 

while( true ) { 

/* Produce an item and store it in nextProduced */ 
nextProduced = makeNewItem( . . . );  
 
/* Wait for space to become available */  
while( ( ( in + 1 ) % BUFFER_SIZE ) == out ) 
      ; /* Do nothing */ 
 
/* And then store the item and repeat the loop. */  

Module III 

Process Synchronization: Critical SectionPeterson's solution. Synchronization – Locks, Semaphores, 

Monitors, Classical Problems – Producer Consumer, Dining Philosophers and Readers-Writers Problems 
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buffer[ in ] = nextProduced; 
in = ( in + 1 ) % BUFFER_SIZE; 

} 

Consumer code : 

item nextConsumed; 

while( true ) { 

/* Wait for an item to become available */  
while( in == out ) 
      ; /* Do nothing */ 

/* Get the next available item */  
nextConsumed = buffer[ out ]; 
out = ( out + 1 ) % BUFFER_SIZE; 
 
/* Consume the item in nextConsumed 
     ( Do something with it ) */ 

} 

 The only problem with the above code is that the maximum number of items which can be placed into       

the buffer is BUFFER_SIZE - 1. One slot is unavailable because there always has to be a gap 

between the producer and the consumer. 

 We could try to overcome this deficiency by introducing a counter variable, as shown in the following 

code segments: 
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 Unfortunately we have now introduced a new problem, because both the producer and the 

consumer are adjusting the value of the variable counter, which can lead to a condition known 

as a race condition. In this condition a piece of code may or may not work correctly, 

depending on which of two simultaneous processes executes first, and more importantly if 

one of the processes gets interrupted such that the other process runs between important steps 

of the first process. ( Bank balance example discussed in class. ) 

 The particular problem above comes from the producer executing "counter++" at the same 

time the consumer is executing "counter--". If one process gets part way through making the 

update and then the other process butts in, the value of counter can get left in an incorrect 

state. 

 But, you might say, "Each of those are single instructions - How can they get interrupted 

halfway through?" The answer is that although they are single instructions in C++, they are 

actually three steps each at the hardware level: (1) Fetch counter from memory into a register, 

(2) increment or decrement the register, and (3) Store the new value of counter back to 
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memory. If the instructions from the two processes get interleaved, there could be serious 

problems, such as illustrated by the following: 

 Note that race conditions are notoriously difficult to identify and debug, because by their 

very nature they only occur on rare occasions, and only when the timing is just exactly right. ( 

or wrong! :-) ) Race conditions are also very difficult to reproduce. :-( 

 Obviously the solution is to only allow one process at a time to manipulate the value 

"counter". This is a very common occurrence among cooperating processes, so lets look at 

some ways in which this is done, as well as some classic problems in this area. 

The Critical-Section Problem 

 

 Consider system of n processes {p0, p1, … pn-1} 

 Each process has critical section segment of code 

o Process may be changing common variables, updating table, writing file, etc 

o When one process in critical section, no other may be in its critical section 

o Critical section problem is to design protocol to solve this 
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 Each process must ask permission to enter critical section in entry section, may follow 

critical section with exit section, then remainder section 

 

The general structure of a typical process Pi having critical section is as shown below. 

                             do { 

                                         

 

                                 Critical section 

                           

                      

                                  Remainder section 

                                   } while (1); 

 

A solution to the critical-section problem must satisfy the following three requirements: 

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes 

can be executing in their critical sections. 

2. Progress - If no process is executing in its critical section and some processes wish to enter 

their critical sections, then only those processes that are not executing in their remainder 

section can participate in the decision on which will enter its critical section. 

3. Bound Waiting - There exist a bound on the number of times that other processes are 

allowed to enter their critical sections after a process has made a request to enter its critical 

section and before that request is granted. 

 

 Two approaches depending on if kernel is preemptive or non-preemptive  

o Preemptive – allows preemption of process when running in kernel mode 

o Non-preemptive – runs until exits kernel mode, blocks, or voluntarily yields CPU 

 Essentially free of race conditions in kernel mode 

Peterson’s Solution 

It is the classic software based solution to the critical section problem.It is restricted to two processes. 

The processes are numbered pi and pj.. 

 The two processes share two variables: 

o int turn;  

Entry Section 

Exit section 
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o Boolean flag[2] 

 

 The variable turn indicates whose turn it is to enter the critical section 

 The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = 

true implies that process Pi is ready! 

 The structure of process in algorithm 3 is as shown below. 

                                    Do { 

                                             Flag[i] = true; 

                                             Turn =j; 

           While (flag[j] && turn ==j); 

                                                  Critical section 

                                            Flag[i] = false; 

                                                  Remainder section 

                                          } while (1); 

 Provable that  

o Mutual exclusion is preserved 

o Progress requirement is satisfied 

o Bounded-waiting requirement is met  

 

Synchronization hardware 

 Many systems provide hardware support for critical section code 

 All solutions below based on idea of locking 

o Protecting critical regions via locks 

o Uniprocessors – could disable interrupts 

o Currently running code would execute without preemption 

o Generally too inefficient on multiprocessor systems 

 Operating systems using this not broadly scalable 

 Modern machines provide special atomic hardware instructions 

 Atomic = non-interruptible 

o Either test memory word and set value 
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o Or swap contents of two memory words 

Solution to Critical-section Problem Using Locks 

do {  

  acquire lock  

   critical section  

  release lock  

   remainder section  

 } while (TRUE);  

 

test_and_set Instruction 

Definition: 

boolean test_and_set (boolean *target) 

{ 

boolean rv = *target; 

*target = TRUE; 

return rv: 

} 

 

Solution using test_and_set() 

 Shared boolean variable lock, initialized to FALSE 

 Solution: 

do { 

   while (test_and_set(&lock))  

; /* do nothing */  

/* critical section */  
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lock = false;  

/* remainder section */  

} while (true);  

compare_and_swap Instruction 

Definition: 

int compare and swap(int *value, int expected, int new_value) {  

   int temp = *value;  

   if (*value == expected)  

      *value = new_value;  

   return temp;  

}  

 

   Solution using compare_and_swap         

 Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean 

variable key 

 Solution: 

do { 

   while (compare_and_swap(&lock, 0, 1) != 0)  

      ; /* do nothing */  

      /* critical section */  

   lock = 0;  

      /* remainder section */  

} while (true);  

    Bounded-waiting Mutual Exclusion with test_and_set 

do { 

   waiting[i] = true; 
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   key = true; 

   while (waiting[i] && key)  

      key = test_and_set(&lock);  

   waiting[i] = false;  

   /* critical section */  

   j = (i + 1) % n;  

   while ((j != i) && !waiting[j])  

      j = (j + 1) % n;  

   if (j == i)  

      lock = false;  

   else  

      waiting[j] = false;  

   /* remainder section */  

} while (true);  

 

Mutex Locks 

  Previous solutions are complicated and generally inaccessible to application 

programmers 

 OS designers build software tools to solve critical section problem 

 Simplest is mutex lock 

 Product critical regions with it by first acquire() a lock then release() it 

o Boolean variable indicating if lock is available or not 

 Calls to acquire() and release() must be atomic 

o Usually implemented via hardware atomic instructions 

 But this solution requires busy waiting 

 This lock therefore called a spinlock 

      

acquire() and release() 



Operating System                     Module : III 

 
Department Of CSE,ICET    10  
 

acquire() { 

   while (!available)  

      ; /* busy wait */  

   available = false;;  

}  

release() {  

   available = true;  

}  

do {  

   acquire lock 

      critical section 

   release lock  

      remainder section  

} while (true);  

Semaphore 

 Synchronization tool that does not require busy waiting  

 Semaphore S – integer variable 

 Two standard operations modify S: wait() and signal() 

o Originally called P() and V() 

 Less complicated 

 Can only be accessed via two indivisible (atomic) operations 

wait (S) {  

while (S <= 0) 

; // busy wait 

S--; 

   } 
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signal (S) {  

S++; 

     } 

Semaphore Usage 

 Counting semaphore – integer value can range over an unrestricted domain 

 Binary semaphore – integer value can range only between 0 and 1 

o Then a mutex lock  

 Can implement a counting semaphore S as a binary semaphore 

 Can solve various synchronization problems 

 Consider two processes  P1   with a statement S1 and P2 with a statement S2 Suppose we 

require that   S2 to be executed only after S1 has completed.We can implement this scheme by 

letting p1 and p2 share a common semaphore synch,initialized to 0 and by inserting 

statements  

   S1; 

   signal(synch);  

  in process in P1 and statements  

   wait(synch);  

   S2;  

in P2 

 

Mutual exclusion implementation with semaphores 

Semaphore mutex;    //  initialized to 1 

do { 

wait (mutex); 

// Critical Section 

signal (mutex); 
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// remainder section 

} while (TRUE); 

Semaphore Implementation 

The main disadvantages of the semaphore definition given here is that it requires busy waiting. While a 

process is in critical section,any other process that tries to enter its critical section must loop continuously 

in the entry code.This type of semaphore is called a spinlock because the process spins while waiting for 

the lock. 

To overcome the need for busy waiting, we can modify the definition of the wait() and signal() 

semaphore operations.When a process execute the wait() operation and finds that the semaphore value is 

not positive, it must wait.Rather than engaging in busy waiting, the process can block itself. Block 

operation  places a process into a waiting queue associated with the semaphore,and the state of the 

process is switched to the waiting state.A process that is blocked should be restart ed by a wake up() 

operation. wakeup – operation remove one of  processes in the waiting queue and place it in the ready 

queue.Its state changes from waiting to ready. 

We define a semaphore as  

typedef struct{  

   int value;  

   struct process *list;  

} semaphore;  

 

Each semaphore has two data items: 

o  value (of type integer) 

o  List of processes list 

When a process must wait on a semaphore,it is added to the list of processes.A signal() operation 

remove one process from the list of waiting processes aand awakens that process 

Implementation of wait: 

            wait(semaphore *S) {  

S->value--;  
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if (S->value < 0) {  

add this process to S->list;  

block();  

}  

} 

Implementation of signal: 

signal(semaphore *S) {  

S->value++;  

if (S->value <= 0) {  

remove a process P from S->list;  

wakeup(P);  

} 

}  

Deadlock and Starvation 

Several processes compete for a finite set of resources in a multiprogrammed environment. A 

process requests for resources that may not be readily available at the time of the request. In such a 

case the process goes into a wait state. It may so happen that this process may never change state 

because the requested resources are held by other processes which themselves are waiting for 

additional resources and hence in a wait state. This situation is called a deadlock.  

two (or more) processes are waiting for an event that can be caused by only one of the waiting 

processes, e.g. let S and Q be two semaphores initialized to 1: 

P0    P1 

wait (S);    wait (Q); 

wait (Q);    wait (S); 

     :      : 

signal  (S);    signal (Q); 
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signal (Q);    signal (S); 

          Suppose P0 executes wait(S) and then P1 executes wait(Q). When P0 executes wait(Q),it 

must wait until P1 executes signal(Q).Similarly, when P1 executes wait(S),it must wait until P0 executes 

sugnal(S).Since these signal() operations cannot be executed,P0 and P1 are deadlocked. 

 Another problem related to deadlocks is indefinite blocking or starvation, a situation in 

which processes wait indefinetly within the semaphore. 

 Priority inversion  - A challenging scheduling problem arises when a high-priority process 

gets blocked waiting for a resource that is currently held by a low-priority process. 

 If the low-priority process gets pre-empted by one or more medium-priority processes, then 

the high-priority process is essentially made to wait for the medium priority processes to 

finish before the low-priority process can release the needed resource, causing a priority 

inversion. If there are enough medium-priority processes, then the high-priority process may 

be forced to wait for a very long time. 

 One solution is a priority-inheritance protocol, in which a low-priority process holding a 

resource for which a high-priority process is waiting will temporarily inherit the high priority 

from the waiting process. This prevents the medium-priority processes from preempting the 

low-priority process until it releases the resource, blocking the priority inversion problem. 

Classic Problems of Synchronization 

 Bounded-Buffer Problem 

 Readers and Writers Problem 

 Dining-Philosophers Problem 

 

Bounded-Buffer Problem 

 This is a generalization of the producer-consumer problem wherein access is controlled to a 

shared group of buffers of a limited size. 

 In this solution, the two counting semaphores "full" and "empty" keep track of the current 

number of full and empty buffers respectively ( and initialized to 0 and N respectively. ) The 

binary semaphore mutex controls access to the critical section. The producer and consumer 

processes are nearly identical - One can think of the producer as producing full buffers, and 

the consumer producing empty buffers. 



Operating System                     Module : III 

 
Department Of CSE,ICET    15  
 

 

 The Readers-Writers Problem 

A data set is shared among a number of concurrent processes 

 readers – only read the data set 

 writers – can both read and write 
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We can allow multiple readers to read at the same time.  However, only one single writer can access 

the shared data at a time. 

There are several variations to the readers-writers problem, most centered around relative priorities 

of readers versus writers. 

 The first readers-writers problem gives priority to readers. In this problem, if a reader wants 

access to the data, and there is not already a writer accessing it, then access is granted to the 

reader. A solution to this problem can lead to starvation of the writers, as there could always 

be more readers coming along to access the data.  

 The second readers-writers problem gives priority to the writers. In this problem, when a 

writer wants access to the data it jumps to the head of the queue - All waiting readers are 

blocked, and the writer gets access to the data as soon as it becomes available. In this solution 

the readers may be starved by a steady stream of writers. 

The following code is an example of the first readers-writers problem, and involves an important 

counter and two binary semaphores: 

 readcount is used by the reader processes, to count the number of readers currently accessing 

the data. 

 mutex is a semaphore used only by the readers for controlled access to readcount. 

 wrt is a semaphore used to block and release the writers. The first reader to access the data 

will set this lock and the last reader to exit will release it; The remaining readers do not 

touchrw_mutex 

 Note that the first reader to come along will block on wrt  if there is currently a writer 

accessing the data, and that all following readers will only block on mutex for their turn to 

increment readcount. 

 The structure of a Writer process 

do { 

wait (wrt) ; 

//    writing is performed 

signal (wrt) ; 

} while (TRUE); 
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 The structure of a Reader process 

do { 

wait (mutex) ; 

readcount ++ ; 

if (readcount == 1)   

wait (wrt) ; 

signal (mutex) 

// reading is performed 

wait (mutex) ; 

readcount  - - ; 

if (readcount  == 0)   

signal (wrt) ; 

signal (mutex) ; 

} while (TRUE); 

3. Dining Philosophers Problem 

 The dining philosophers problem is a classic synchronization problem involving the 

allocation of limited resources amongst a group of processes in a deadlock-free and 

starvation-free manner: 

Consider five philosophers sitting around a table, in which there are five chopsticks evenly 

distributed and an endless bowl of rice in the center, as shown in the diagram below. ( There is 

exactly one chopstick between each pair of dining philosophers. )These philosophers spend their 

lives alternating between two activities: eating and thinking.When it is time for a philosopher to eat, 
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it must first acquire two chopsticks - one from their left and one from their right.When a philosopher 

thinks, it puts down both chopsticks in their original locations. 

 

Figure 5.13 - The situation of the dining philosophers 

 One possible solution, as shown in the following code section, is to represent each chopstick 

with a semaphore.A philosopher tries to grab a chopstick by executing a wait() operation and 

release her chopstick by executing the signal() operation. use a set of five semaphores ( 

chopsticks[ 5 ] ), and to have each hungry philosopher first wait on their left chopstick ( 

chopsticks[ i ] ), and then wait on their right chopstick ( chopsticks[ ( i + 1 ) % 5 ] ) 

 But suppose that all five philosophers get hungry at the same time, and each starts by picking 

up their left chopstick. They then look for their right chopstick, but because it is unavailable, 

they wait for it, forever, and eventually all the philosophers starve due to the resulting 

deadlock. 
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Figure 5.14 - The structure of philosopher i. 

 Some potential solutions to the problem include: 

o Only allow four philosophers to dine at the same time. ( Limited simultaneous 

processes. ) 

o Allow philosophers to pick up chopsticks only when both are available, in a critical 

section. ( All or nothing allocation of critical resources. ) 

o Use an asymmetric solution, in which odd philosophers pick up their left chopstick 

first and even philosophers pick up their right chopstick first5.8 Monitors 

 


