
Operating System Module : III

Department Of CSE,ICET 1

ILAHIA COLLEGE OF ENGINEERING AND TECHNOLOGY

OPERATING SYSTEM-S4 CSE

Process Synchronization

A co-operating process is one that can affect or be affected by other processes executing in the

system. Cooperating process may either directly share a logical address space (that is, both code and data) or

be allowed to share data only through files. The former case is achieved through the use of lightweight

processes or threads.

Concurrent access to shared data may result in data inconsistency. Several processes access and

manipulate the same data concurrently and the outcome of the execution depends on the particular order in

which the access takes place, is called a race condition. To guard against the race condition we need to

ensure that only one process at a time can be manipulating the variable counter. To make such a guarantee,

we require some form of synchronization of the processes. Such situations occur frequently in operating

system systems as different parts of the system manipulate resources and we want the changes not to

interfere with one another. A major portion of this module is concerned with process synchronization and

coordination

 we looked at cooperating processes (those that can effect or be effected by other

simultaneously running processes), and as an example, we used the producer-consumer

cooperating processes:

Producer code :

item nextProduced;

while(true) {

/* Produce an item and store it in nextProduced */
nextProduced = makeNewItem(. . .);

/* Wait for space to become available */
while(((in + 1) % BUFFER_SIZE) == out)
 ; /* Do nothing */

/* And then store the item and repeat the loop. */

Module III

Process Synchronization: Critical SectionPeterson's solution. Synchronization – Locks, Semaphores,

Monitors, Classical Problems – Producer Consumer, Dining Philosophers and Readers-Writers Problems

Operating System Module : III

Department Of CSE,ICET 2

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}

Consumer code :

item nextConsumed;

while(true) {

/* Wait for an item to become available */
while(in == out)
 ; /* Do nothing */

/* Get the next available item */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

/* Consume the item in nextConsumed
 (Do something with it) */

}

 The only problem with the above code is that the maximum number of items which can be placed into

the buffer is BUFFER_SIZE - 1. One slot is unavailable because there always has to be a gap

between the producer and the consumer.

 We could try to overcome this deficiency by introducing a counter variable, as shown in the following

code segments:

Operating System Module : III

Department Of CSE,ICET 3

 Unfortunately we have now introduced a new problem, because both the producer and the

consumer are adjusting the value of the variable counter, which can lead to a condition known

as a race condition. In this condition a piece of code may or may not work correctly,

depending on which of two simultaneous processes executes first, and more importantly if

one of the processes gets interrupted such that the other process runs between important steps

of the first process. (Bank balance example discussed in class.)

 The particular problem above comes from the producer executing "counter++" at the same

time the consumer is executing "counter--". If one process gets part way through making the

update and then the other process butts in, the value of counter can get left in an incorrect

state.

 But, you might say, "Each of those are single instructions - How can they get interrupted

halfway through?" The answer is that although they are single instructions in C++, they are

actually three steps each at the hardware level: (1) Fetch counter from memory into a register,

(2) increment or decrement the register, and (3) Store the new value of counter back to

Operating System Module : III

Department Of CSE,ICET 4

memory. If the instructions from the two processes get interleaved, there could be serious

problems, such as illustrated by the following:

 Note that race conditions are notoriously difficult to identify and debug, because by their

very nature they only occur on rare occasions, and only when the timing is just exactly right. (

or wrong! :-)) Race conditions are also very difficult to reproduce. :-(

 Obviously the solution is to only allow one process at a time to manipulate the value

"counter". This is a very common occurrence among cooperating processes, so lets look at

some ways in which this is done, as well as some classic problems in this area.

The Critical-Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

o Process may be changing common variables, updating table, writing file, etc

o When one process in critical section, no other may be in its critical section

o Critical section problem is to design protocol to solve this

Operating System Module : III

Department Of CSE,ICET 5

 Each process must ask permission to enter critical section in entry section, may follow

critical section with exit section, then remainder section

The general structure of a typical process Pi having critical section is as shown below.

 do {

 Critical section

 Remainder section

 } while (1);

A solution to the critical-section problem must satisfy the following three requirements:

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes

can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and some processes wish to enter

their critical sections, then only those processes that are not executing in their remainder

section can participate in the decision on which will enter its critical section.

3. Bound Waiting - There exist a bound on the number of times that other processes are

allowed to enter their critical sections after a process has made a request to enter its critical

section and before that request is granted.

 Two approaches depending on if kernel is preemptive or non-preemptive

o Preemptive – allows preemption of process when running in kernel mode

o Non-preemptive – runs until exits kernel mode, blocks, or voluntarily yields CPU

 Essentially free of race conditions in kernel mode

Peterson’s Solution

It is the classic software based solution to the critical section problem.It is restricted to two processes.

The processes are numbered pi and pj..

 The two processes share two variables:

o int turn;

Entry Section

Exit section

Operating System Module : III

Department Of CSE,ICET 6

o Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical section

 The flag array is used to indicate if a process is ready to enter the critical section. flag[i] =

true implies that process Pi is ready!

 The structure of process in algorithm 3 is as shown below.

 Do {

 Flag[i] = true;

 Turn =j;

 While (flag[j] && turn ==j);

 Critical section

 Flag[i] = false;

 Remainder section

 } while (1);

 Provable that

o Mutual exclusion is preserved

o Progress requirement is satisfied

o Bounded-waiting requirement is met

Synchronization hardware

 Many systems provide hardware support for critical section code

 All solutions below based on idea of locking

o Protecting critical regions via locks

o Uniprocessors – could disable interrupts

o Currently running code would execute without preemption

o Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

o Either test memory word and set value

Operating System Module : III

Department Of CSE,ICET 7

o Or swap contents of two memory words

Solution to Critical-section Problem Using Locks

do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE);

test_and_set Instruction

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

Solution using test_and_set()

 Shared boolean variable lock, initialized to FALSE

 Solution:

do {

 while (test_and_set(&lock))

; /* do nothing */

/* critical section */

Operating System Module : III

Department Of CSE,ICET 8

lock = false;

/* remainder section */

} while (true);

compare_and_swap Instruction

Definition:

int compare and swap(int *value, int expected, int new_value) {

 int temp = *value;

 if (*value == expected)

 *value = new_value;

 return temp;

}

 Solution using compare_and_swap

 Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean

variable key

 Solution:

do {

 while (compare_and_swap(&lock, 0, 1) != 0)

 ; /* do nothing */

 /* critical section */

 lock = 0;

 /* remainder section */

} while (true);

 Bounded-waiting Mutual Exclusion with test_and_set

do {

 waiting[i] = true;

Operating System Module : III

Department Of CSE,ICET 9

 key = true;

 while (waiting[i] && key)

 key = test_and_set(&lock);

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = false;

 else

 waiting[j] = false;

 /* remainder section */

} while (true);

Mutex Locks

 Previous solutions are complicated and generally inaccessible to application

programmers

 OS designers build software tools to solve critical section problem

 Simplest is mutex lock

 Product critical regions with it by first acquire() a lock then release() it

o Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic

o Usually implemented via hardware atomic instructions

 But this solution requires busy waiting

 This lock therefore called a spinlock

acquire() and release()

Operating System Module : III

Department Of CSE,ICET 10

acquire() {

 while (!available)

 ; /* busy wait */

 available = false;;

}

release() {

 available = true;

}

do {

 acquire lock

 critical section

 release lock

 remainder section

} while (true);

Semaphore

 Synchronization tool that does not require busy waiting

 Semaphore S – integer variable

 Two standard operations modify S: wait() and signal()

o Originally called P() and V()

 Less complicated

 Can only be accessed via two indivisible (atomic) operations

wait (S) {

while (S <= 0)

; // busy wait

S--;

 }

Operating System Module : III

Department Of CSE,ICET 11

signal (S) {

S++;

 }

Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1

o Then a mutex lock

 Can implement a counting semaphore S as a binary semaphore

 Can solve various synchronization problems

 Consider two processes P1 with a statement S1 and P2 with a statement S2 Suppose we

require that S2 to be executed only after S1 has completed.We can implement this scheme by

letting p1 and p2 share a common semaphore synch,initialized to 0 and by inserting

statements

 S1;

 signal(synch);

 in process in P1 and statements

 wait(synch);

 S2;

in P2

Mutual exclusion implementation with semaphores

Semaphore mutex; // initialized to 1

do {

wait (mutex);

// Critical Section

signal (mutex);

Operating System Module : III

Department Of CSE,ICET 12

// remainder section

} while (TRUE);

Semaphore Implementation

The main disadvantages of the semaphore definition given here is that it requires busy waiting. While a

process is in critical section,any other process that tries to enter its critical section must loop continuously

in the entry code.This type of semaphore is called a spinlock because the process spins while waiting for

the lock.

To overcome the need for busy waiting, we can modify the definition of the wait() and signal()

semaphore operations.When a process execute the wait() operation and finds that the semaphore value is

not positive, it must wait.Rather than engaging in busy waiting, the process can block itself. Block

operation places a process into a waiting queue associated with the semaphore,and the state of the

process is switched to the waiting state.A process that is blocked should be restart ed by a wake up()

operation. wakeup – operation remove one of processes in the waiting queue and place it in the ready

queue.Its state changes from waiting to ready.

We define a semaphore as

typedef struct{

 int value;

 struct process *list;

} semaphore;

Each semaphore has two data items:

o value (of type integer)

o List of processes list

When a process must wait on a semaphore,it is added to the list of processes.A signal() operation

remove one process from the list of waiting processes aand awakens that process

Implementation of wait:

 wait(semaphore *S) {

S->value--;

Operating System Module : III

Department Of CSE,ICET 13

if (S->value < 0) {

add this process to S->list;

block();

}

}

Implementation of signal:

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

Deadlock and Starvation

Several processes compete for a finite set of resources in a multiprogrammed environment. A

process requests for resources that may not be readily available at the time of the request. In such a

case the process goes into a wait state. It may so happen that this process may never change state

because the requested resources are held by other processes which themselves are waiting for

additional resources and hence in a wait state. This situation is called a deadlock.

two (or more) processes are waiting for an event that can be caused by only one of the waiting

processes, e.g. let S and Q be two semaphores initialized to 1:

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

 : :

signal (S); signal (Q);

Operating System Module : III

Department Of CSE,ICET 14

signal (Q); signal (S);

 Suppose P0 executes wait(S) and then P1 executes wait(Q). When P0 executes wait(Q),it

must wait until P1 executes signal(Q).Similarly, when P1 executes wait(S),it must wait until P0 executes

sugnal(S).Since these signal() operations cannot be executed,P0 and P1 are deadlocked.

 Another problem related to deadlocks is indefinite blocking or starvation, a situation in

which processes wait indefinetly within the semaphore.

 Priority inversion - A challenging scheduling problem arises when a high-priority process

gets blocked waiting for a resource that is currently held by a low-priority process.

 If the low-priority process gets pre-empted by one or more medium-priority processes, then

the high-priority process is essentially made to wait for the medium priority processes to

finish before the low-priority process can release the needed resource, causing a priority

inversion. If there are enough medium-priority processes, then the high-priority process may

be forced to wait for a very long time.

 One solution is a priority-inheritance protocol, in which a low-priority process holding a

resource for which a high-priority process is waiting will temporarily inherit the high priority

from the waiting process. This prevents the medium-priority processes from preempting the

low-priority process until it releases the resource, blocking the priority inversion problem.

Classic Problems of Synchronization

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

Bounded-Buffer Problem

 This is a generalization of the producer-consumer problem wherein access is controlled to a

shared group of buffers of a limited size.

 In this solution, the two counting semaphores "full" and "empty" keep track of the current

number of full and empty buffers respectively (and initialized to 0 and N respectively.) The

binary semaphore mutex controls access to the critical section. The producer and consumer

processes are nearly identical - One can think of the producer as producing full buffers, and

the consumer producing empty buffers.

Operating System Module : III

Department Of CSE,ICET 15

 The Readers-Writers Problem

A data set is shared among a number of concurrent processes

 readers – only read the data set

 writers – can both read and write

Operating System Module : III

Department Of CSE,ICET 16

We can allow multiple readers to read at the same time. However, only one single writer can access

the shared data at a time.

There are several variations to the readers-writers problem, most centered around relative priorities

of readers versus writers.

 The first readers-writers problem gives priority to readers. In this problem, if a reader wants

access to the data, and there is not already a writer accessing it, then access is granted to the

reader. A solution to this problem can lead to starvation of the writers, as there could always

be more readers coming along to access the data.

 The second readers-writers problem gives priority to the writers. In this problem, when a

writer wants access to the data it jumps to the head of the queue - All waiting readers are

blocked, and the writer gets access to the data as soon as it becomes available. In this solution

the readers may be starved by a steady stream of writers.

The following code is an example of the first readers-writers problem, and involves an important

counter and two binary semaphores:

 readcount is used by the reader processes, to count the number of readers currently accessing

the data.

 mutex is a semaphore used only by the readers for controlled access to readcount.

 wrt is a semaphore used to block and release the writers. The first reader to access the data

will set this lock and the last reader to exit will release it; The remaining readers do not

touchrw_mutex

 Note that the first reader to come along will block on wrt if there is currently a writer

accessing the data, and that all following readers will only block on mutex for their turn to

increment readcount.

 The structure of a Writer process

do {

wait (wrt) ;

// writing is performed

signal (wrt) ;

} while (TRUE);

Operating System Module : III

Department Of CSE,ICET 17

 The structure of a Reader process

do {

wait (mutex) ;

readcount ++ ;

if (readcount == 1)

wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount - - ;

if (readcount == 0)

signal (wrt) ;

signal (mutex) ;

} while (TRUE);

3. Dining Philosophers Problem

 The dining philosophers problem is a classic synchronization problem involving the

allocation of limited resources amongst a group of processes in a deadlock-free and

starvation-free manner:

Consider five philosophers sitting around a table, in which there are five chopsticks evenly

distributed and an endless bowl of rice in the center, as shown in the diagram below. (There is

exactly one chopstick between each pair of dining philosophers.)These philosophers spend their

lives alternating between two activities: eating and thinking.When it is time for a philosopher to eat,

Operating System Module : III

Department Of CSE,ICET 18

it must first acquire two chopsticks - one from their left and one from their right.When a philosopher

thinks, it puts down both chopsticks in their original locations.

Figure 5.13 - The situation of the dining philosophers

 One possible solution, as shown in the following code section, is to represent each chopstick

with a semaphore.A philosopher tries to grab a chopstick by executing a wait() operation and

release her chopstick by executing the signal() operation. use a set of five semaphores (

chopsticks[5]), and to have each hungry philosopher first wait on their left chopstick (

chopsticks[i]), and then wait on their right chopstick (chopsticks[(i + 1) % 5])

 But suppose that all five philosophers get hungry at the same time, and each starts by picking

up their left chopstick. They then look for their right chopstick, but because it is unavailable,

they wait for it, forever, and eventually all the philosophers starve due to the resulting

deadlock.

Operating System Module : III

Department Of CSE,ICET 19

Figure 5.14 - The structure of philosopher i.

 Some potential solutions to the problem include:

o Only allow four philosophers to dine at the same time. (Limited simultaneous

processes.)

o Allow philosophers to pick up chopsticks only when both are available, in a critical

section. (All or nothing allocation of critical resources.)

o Use an asymmetric solution, in which odd philosophers pick up their left chopstick

first and even philosophers pick up their right chopstick first5.8 Monitors

