
Operating System Module : IV

Department Of CSE,ICET 1

ILAHIA COLLEGE OF ENGINEERING AND TECHNOLOGY

OPERATING SYSTEM-S4 CSE

SCHEDULING CRITERIA

Scheduling Criteria refers to those set of parameters / metrics / characteristics which are used for
comparing different Scheduling Algorithms or Methods.

 The following are the major criteria for process scheduling:

1) CPU UTILIZATION It measures the CPU usage in terms of how busy the processors is, or load on
the processors.

2) THROUGHPUT It is the number of processes that are completed per unit time. It is dependent on the
characteristics and resource requirement of the process being executed.

3) TURNAROUND TIME (TAT) It measures the time taken to execute a process.

4) RESPONSE TIME (RT) It is a measure of time taken to produce the first response for a process
(before it is given as output to user). It is more relevant in Time-Sharing and Real-Time systems.

5) WAITING TIME (WT) It measures the time a process waits in the ready queue. It is more significant
in Multiprogramming systems.

GANTT CHART

 It is used to represent the scheduling of process graphically.
 It is a rectangular time scale diagram with the X-axis depicting the timeline.
 Process IDs of processes allocated to the CPU for a particular time-period is indicated in its

rectangular slot.

FEW TERMS THAT NEED TO BE FAMILIARIZED
1) REQUEST RELATED

a) ARRIVAL TIME Time when a job or process is submitted

b) ADMISSION TIME Time when the system starts considering a job or process for scheduling

 c) COMPLETION TIME Time by which a job or process is completed

Module IV

CPU Scheduling – Scheduling Criteria – Scheduling Algorithms.

Deadlocks – Conditions, Modeling using graphs. Handling – Prevention – Avoidance – DetectionRecovery.

Operating System Module : IV

Department Of CSE,ICET 2

d) DEADLINE Time by which a job or process must be completed to meet the response
requirement of a real time application

e) SERVICE TIME The total CPU and I/O time required by a job or process, or sub-request, to
complete its operation

 f) PREEMPTION Forced deallocation of CPU from a job or process

CPU SCHEDULING ALGORITHMS

 The following are the major types of CPU Scheduling algorithms:

 1) NON-PREEMPTIVE ALGORITHMS

 a) FIRST-COME FIRST SERVE (FCFS) SCHEDULING

 b) SHORTEST JOB FIRST (SJF) SCHEDULING

 c) PRIORITY NON-PREEMPTIVE (P-NP) SCHEDULING

 2) PREEMPTIVE ALGORITHMS

 a) SHORTEST REMAINING TIME FIRST (SRTF) SCHEDULING

b) PRIORITY PREEMPTIVE (PRI-P) SCHEDULING

 c) ROUND ROBIN SCHEDULING

 3) HIGHEST RESPONSE RATIO NEXT SCHEDULING

 4) MULTILEVEL QUEUE SCHEDULING

 5) MULTILEVEL FEEDBACK QUEUE SCHEDULING

 6) MULTIPLE-PROCESSOR SCHEDULING

 7) REAL-TIME SCHEDULING

First Come First Serve (FCFS)

 The process that request first for the processor is allotted the processor first.

 The ready queue is maintained as a FIFO queue.

 When the processor becomes free it is allotted to the process at the head of the queue and when a

new process arrives it is entered at the tail of the queue.

 It is the simplest algorithm and easy to implement.

Process Burst Time

 P1 6

 P2 8

 P3 7

Operating System Module : IV

Department Of CSE,ICET 3

 P4 3

P1 P2 P3 P4

 0 6 14 21
24

Average waiting time = (0+6+14+21)/4 = 10.25ms.

If there is one CPU bound process and many I/O bound processes, while CPU bound process executes

all the I/O bound process will finish their job with the I/O devices and will wait for the CPU in the ready

queue. During this time the I/O devices will be idle. When the CPU bound process finish its CPU burst

it goes to do I/O, meantime all the I/O bound processes will finish their CPU burst since they have got

very short CPU bursts, and will wait in the device queue. All the processes waiting for one big process

to get off the CPU is called convoy effect.

Shortest Job First Scheduling (SJF)

 Here among the processes in the ready queue, the one with the least CPU burst time will be

allotted the processor first.

 If two processes have their burst time equal, then FCFS scheduling is used.

 The average waiting time is small when compared to FCFS scheduling.

 SJF is optimal algorithm.

 It is difficult to implement because knowing the length of the next CPU burst is difficult.

Process Burst Time

 P1 6

 P2 8

 P3 7

 P4 3

P4 P1 P3 P2

 0 3 9 16 24

Average waiting time = (3+16+9+0)/4 = 7ms.

SJF can be non preemptive or preemptive. The preemptive version of SJF is called Shortest Remaining

Time First scheduling. Here when a new job arrives in the ready queue, its CPU burst is compared with

the remaining CPU burst of the currently running process. If the newly arrived process has got the

smaller burst then the currently running process will be preempted and the new process will be allotted

Operating System Module : IV

Department Of CSE,ICET 4

to the processor. The preempted process will enter the ready queue and wait for its turn to get the

processor.

Process Arrival time Burst Time

 P1 0 6

 P2 1 8

 P3 2 7

 P4 3 3

P1 P4 P1 P3 P2

 0 3 6 9 16 24

Average waiting time = (0+3+9+16)/4 = 7ms.

Priority Scheduling

Each process is assigned a priority number (integer). The CPU is allocated to the process with the

highest priority (smallest integer may be considered as highest priority). Priority scheduling can be

preemptive or non preemptive. In preemptive priority scheduling, while a process is executing, if a new

process with high priority than the currently running process arrives, the process is preempted and the

processor is allocated to the new process. SJF is a priority scheduling where priority is the predicted

next CPU burst time.

The problem with priority scheduling is that a low priority processes may have to wait indefinitely to get

the processor to execute. This is called starvation. The solution is to increase the priority of the process

as time progresses. This is called aging.

 Round Robin Scheduling

Each process gets a small amount of CPU time known as time quantum. When the time elapses process

is preempted and the processor is allocated to the next process at the head of the ready queue. When the

time quantum is very high this scheduling behaves as FCFS and when the time quantum is very small

overhead will be high. It should be large with respect to context switch.

Consider the following table (let the time quantum be 5ms)

Process Burst Time

 P1 6

 P2 8

Operating System Module : IV

Department Of CSE,ICET 5

 P3 7

 P4 3

P1 P2 P3 P4 P1 P2 P3

 0 5 10 15 18 19 22 24

Average waiting time = (0+5+10+15)/4 = 14.75ms.

This scheduling exhibits higher waiting time and turnaround time than SJF but the response time is

better.

Multilevel Queue Scheduling

Ready queue is partitioned into separate queues, for example, foreground (interactive) and background

(batch).

Each queue has its own scheduling algorithm, foreground – RR, background – FCFS

Scheduling must be done between the queues. Any scheduling algorithm can be used for this purpose. If

fixed priority scheduling is used for this purpose (i.e., serve all from foreground then from background).

There is possibility of starvation. If RR is used each queue gets a certain amount of CPU time which it

can schedule amongst its processes; i.e., 80% to foreground in RR and 20% to background in FCFS

 Multilevel Feedback Queue Scheduling

In multilevel queue scheduling once a process enters a queue, it remains there. But in multilevel

feedback queue scheduling a process can move between the various queues. Thus aging can be

implemented.

Operating System Module : IV

Department Of CSE,ICET 6

Multilevel-feedback-queue scheduler defined by the following parameters:

 Number of queues

 Scheduling algorithms for each queue

 Method used to determine when to upgrade a process

 Method used to determine when to demote a process

 Method used to determine which queue a process will enter when that process needs service

For example let us consider three queues:

Q0 – time quantum 8 milliseconds

Q1 – time quantum 16 milliseconds

Q2 – FCFS

Scheduling

A new job enters queue Q0 is served using FCFS. When it gains CPU, job receives 8 milliseconds. If it

does not finish in 8 milliseconds, job is moved to queue Q1. At Q1 job is again served FCFS and

receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue

Q2. In

Operating System Module : IV

Department Of CSE,ICET 7

Deadlocks

 A set of blocked processes each holding a resource and waiting to acquire a resource held by

another process in the set

 Example

o System has 2 disk drives

o P1 and P2 each hold one disk drive and each needs another one

 Example

o semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)

wait (B); wait(A)

Bridge Crossing Example

Operating System

Department Of CSE,ICET

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

 If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)

 Several cars may have to be backed up if a deadlock occurs

 Starvation is possible

 Note – Most OSes do not prevent or deal with deadlocks

System Model

 For the purposes of deadlock discussion, a system can be modeled as a collection of limited

resources, which can be partitioned into different categories, to be allocated to a number

processes, each having different needs.

 Resource categories may include memory, printers, CPUs, open files, tape drives, CD

etc.

 By definition, all the resources within a category are equivalent, and a request of this category

can be equally satisfied by any one of the resources in that category. If this is not the case (

there is some difference between the resources within a category), then that category needs to be

further divided into separate categories. For example, "printers" may n

"laser printers" and "color inkjet printers".

 If a system has two cpus, then the resource type cpu has two instances

 In normal operation a process must request a resource before using it, and release it when it is

done, in the following sequence:

1. Request - If the request cannot be immediately granted, then the process must wait until

the resource(s) it needs become available. For example the system calls open(

malloc(), new(), and request(

2. Use - The process uses the

3. Release - The process relinquishes the resource. so that it becomes available for other

processes. For example, close(

Deadlock Characterization

Traffic only in one direction

Each section of a bridge can be viewed as a resource

If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)

Several cars may have to be backed up if a deadlock occurs

Most OSes do not prevent or deal with deadlocks

For the purposes of deadlock discussion, a system can be modeled as a collection of limited

resources, which can be partitioned into different categories, to be allocated to a number

processes, each having different needs.

Resource categories may include memory, printers, CPUs, open files, tape drives, CD

By definition, all the resources within a category are equivalent, and a request of this category

sfied by any one of the resources in that category. If this is not the case (

there is some difference between the resources within a category), then that category needs to be

further divided into separate categories. For example, "printers" may n

"laser printers" and "color inkjet printers".

If a system has two cpus, then the resource type cpu has two instances

In normal operation a process must request a resource before using it, and release it when it is

owing sequence:

If the request cannot be immediately granted, then the process must wait until

the resource(s) it needs become available. For example the system calls open(

), and request().

The process uses the resource, e.g. prints to the printer or reads from the file.

The process relinquishes the resource. so that it becomes available for other

For example, close(), free(), delete(), and release(

 Module : IV

 8

If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)

For the purposes of deadlock discussion, a system can be modeled as a collection of limited

resources, which can be partitioned into different categories, to be allocated to a number of

Resource categories may include memory, printers, CPUs, open files, tape drives, CD-ROMS,

By definition, all the resources within a category are equivalent, and a request of this category

sfied by any one of the resources in that category. If this is not the case (i.e. if

there is some difference between the resources within a category), then that category needs to be

further divided into separate categories. For example, "printers" may need to be separated into

In normal operation a process must request a resource before using it, and release it when it is

If the request cannot be immediately granted, then the process must wait until

the resource(s) it needs become available. For example the system calls open(),

resource, e.g. prints to the printer or reads from the file.

The process relinquishes the resource. so that it becomes available for other

).

Operating System Module : IV

Department Of CSE,ICET 9

 Necessary Conditions For Deadlocks

A deadlock occurs in a system if the following four conditions hold simultaneously:

1. Mutual exclusion: At least one of the resources is non-sharable that is only one process at a time can

use the resource.

2. Hold and wait: A process exists that is holding on to at least one resource and waiting for an

additional resource held by another process.

3. No preemption: Resources cannot be preempted, i.e. a resource is released only by the process that is

holding it,after that process has completed its task

4. Circular wait: There exist a set of processes P0, P1, ….., Pn of waiting processes such that P0 is

waiting for a resource held by P1, P1 is waiting for a resource held by P2, ….., Pn-1 is waiting for a

resource held Pn and Pn is in turn waiting for a resource held by P0.

Resource Allocation Graph

Deadlocks can be described by a resource allocation graph. The resource allocation graph is a directed

graph consisting of vertices and directed edges. The vertex set is partitioned into two types, a subset

representing processes and another subset representing resources. Pictorially, the resources are

represented by rectangles with dots within, each dot representing an instance of the resource and circles

represent processes.

A directed edge from a process to a resource (Pi  Rj) signifies a request from a process Pi for an

instance of the resource Rj and Pi is waiting for Rj. A directed edge from a resource to a process (Rj 

Pi) indicates that an instance of the resource Rj has been allotted to process Pi. Thus a resource allocation

graph consists of vertices which include resources and processes and directed edges which consist of

request edges and assignment edges. A request edge is introduced into the graph when a process

requests for a resource. This edge is converted into an assignment edge when the resource is granted.

When the process releases the resource, the assignment edge is deleted. Consider the following system:

There are 3 processes P1, P2 and P3.

Resources R1, R2, R3 and R4 have instances 1, 2, 1, and 3 respectively.

P1 is holding R2 and waiting for R1.

P2 is holding R1, R2 and is waiting for R3.

P3 is holding R3.

The resource allocation gragh for a system in the above situation is as shown below

Operating System Module : IV

Department Of CSE,ICET 10

 .

If a resource allocation graph has no cycles (a closed loop in the direction of the edges), then the system

is not in a state of deadlock. If on the other hand, there are cycles, then a deadlock may exist. If there

are only single instances of each resource type, then a cycle in a resource allocation graph is a

necessary and sufficient condition for existence of a deadlock.

 Ο Ο

Ο

Ο

Ο

Ο

P1
P2 P3

R2 R4

R1
R3

 Ο Ο

Ο

Ο

Ο

Ο

P1
P2 P3

R2 R4

R1
R3

Operating System Module : IV

Department Of CSE,ICET 11

Here two cycles exist:

P1  R1  P2  R3  P3  R2 P1

P2  R3  P3  R2  P2

Processes P0, P1 and P3 are deadlocked and are in a circular wait. P2 is waiting for R3 held by P3. P3 is

waiting for P1 or P2 to release R2. So also P1 is waiting for P2 to release R1. If there are multiple

instances of resources types, then a cycle does not necessarily imply a deadlock. Here a cycle is a

necessary condition but not a sufficient condition for the existence of a deadlock.

Deadlock Handling

Different methods to deal with deadlocks include

 methods to ensure that the system will never enter into a state of deadlock,]

 methods that allow the system to enter into a deadlock and then recover or

 just ignore the problem of deadlocks.

To ensure that deadlocks never occur, deadlock prevention / avoidance schemes are used. The four

necessary conditions for deadlocks to occur are mutual exclusion, hold and wait, no preemption and

circular wait. Deadlock prevention ensures that at least one of the four necessary conditions for

deadlocks do not hold. To do this the scheme enforces constraints on requests for resources. Dead lock

avoidance scheme requires the operating system to know in advance, the resources needed by a process

for its entire lifetime. Based on this a priori information, the process making a request is either made to

wait or not to wait in case the requested resource is not readily available. If none of the above two

schemes are used, then deadlocks may occur. In such a case, an algorithm to recover from the state of

deadlock is used.

If the problem of deadlocks is ignored totally that is to say the system does not ensure that a deadlock

does not occur and also does not provide for recovery from deadlock and such a situation arises, then

there is no way out of the deadlock. Eventually the system may crash because more and more processes

request for resources and enter into deadlock.

Deadlock Prevention

The four necessary conditions for deadlocks to occur are mutual exclusion, hold and wait, no

preemption and circular wait. If any one of the above four conditions does not hold, then deadlocks will

not occur. Thus prevention of deadlock is possible by ensuring that at least one of the four conditions

cannot hold.

Operating System Module : IV

Department Of CSE,ICET 12

1. Mutual exclusion: Resources that can be shared are never involved in a deadlock because such

resources can always be granted simultaneous access by processes. Hence processes requesting for such

a sharable resource will never have to wait. Examples of such resources include read-only files. Mutual

exclusion must therefore hold for non-sharable resources. But it is not always possible to prevent

deadlocks by denying mutual exclusion condition because some resources are by nature non-sharable,

for example printers.

2. Hold and wait: To avoid hold and wait, the system must ensure that a process that requests for a

resource does not hold on to another. There can be two approaches to this scheme:

1. A process requests for and gets allocated all the resources it uses before execution begins.

2. A process can request for a resource only when it does not hold on to any other.

Algorithms based on these approaches have poor resource utilization. This is because resources get

locked with processes much earlier than they are actually used and hence not available for others to use

as in the first approach. The second approach seems to be applicable only when there is assurance about

reusability of data and code on the released resources. The algorithms also suffer from starvation since

popular resources may never be freely available.

3. No preemption: This condition states that resources allocated to processes cannot be preempted. To

ensure that this condition does not hold, resources could be preempted. When a process requests for a

resource, it is allocated the resource, if it is available. If it is not, than a check is made to see if the

process holding the wanted resource is also waiting for additional resources. If so the wanted resource is

preempted from the waiting process and allotted to the requesting process. If both the above is not true

that is the resource is neither available nor held by a waiting process, then the requesting process waits.

During its waiting period, some of its resources could also be preempted in which case the process will

be restarted only when all the new and the preempted resources are allocated to it.

Another alternative approach could be as follows: If a process requests for a resource which is not

available immediately, then all other resources it currently holds are preempted. The process restarts

only when the new and the preempted resources are allocated to it as in the previous case.

Resources can be preempted only if their current status can be saved so that processes could be restarted

later by restoring the previous states. Example CPU memory and main memory. But resources such as

printers cannot be preempted, as their states cannot be saved for restoration later.

4. Circular wait: Resource types need to be ordered and processes requesting for resources will do so in

increasing order of enumeration. Each resource type is mapped to a unique integer that allows resources

to be compared and to find out the precedence order for the resources. Thus F: R  N is a 1:1 function

that maps resources to numbers. For example:

F (tape drive) = 1, F (disk drive) = 5, F (printer) = 10.

Operating System Module : IV

Department Of CSE,ICET 13

To ensure that deadlocks do not occur, each process can request for resources only in increasing order of

these numbers. A process to start with in the very first instance can request for any resource say Ri.

There after it can request for a resource Rj if and only if F(Rj) is greater than F(Ri). Alternately, if F(Rj)

is less than F(Ri), then Rj can be allocated to the process if and only if the process releases Ri.

The mapping function F should be so defined that resources get numbers in the usual order of usage.

Deadlock Avoidance

Deadlock prevention algorithms ensure that at least one of the four necessary conditions for deadlocks

namely mutual exclusion, hold and wait, no preemption and circular wait do not hold. The disadvantage

with prevention algorithms is poor resource utilization and thus reduced system throughput.

An alternate method is to avoid deadlocks. In this case additional a priori information about the usage of

resources by processes is required. This information helps to decide on whether a process should wait

for a resource or not. Decision about a request is based on all the resources available, resources allocated

to processes, future requests and releases by processes.

A deadlock avoidance algorithm requires each process to make known in advance the maximum number

of resources of each type that it may need. Also known is the maximum number of resources of each

type available. Using both the above a priori knowledge, deadlock avoidance algorithm ensures that a

circular wait condition never occurs.

Safe State

A system is said to be in a safe state if it can allocate resources up to the maximum available and is not

in a state of deadlock. A safe sequence of processes always ensures a safe state. A sequence of processes

< P1, P2,, Pn > is safe for the current allocation of resources to processes if resource requests from

each Pi can be satisfied from the currently available resources and the resources held by all Pj where j <

i. If the state is safe then Pi requesting for resources can wait till Pj’s have completed. If such a safe

sequence does not exist, then the system is in an unsafe state.

A safe state is not a deadlock state. Conversely a deadlock state is an unsafe state. But all unsafe states

are not deadlock states as shown below:

Operating System Module : IV

Department Of CSE,ICET 14

Figure : Safe, unsafe and deadlock state spaces.

If a system is in a safe state it can stay away from an unsafe state and thus avoid deadlock. On the other

hand, if a system is in an unsafe state, deadlocks cannot be avoided.

Illustration: A system has 12 instances of a resource type and 3 processes using these resources. The

maximum requirements for the resource by the processes and their current allocation at an instance say

t0 is as shown below:

 Process Maximum Current

 P0 10 5

 P1 4 2

 P3 9 2

At the instant t0, the system is in a safe state and one safe sequence is < P1, P0, P2 >. This is true because

of the following facts:

Out of 12 instances of the resource, 9 are currently allocated and 3 are free. P1 needs only 2 more, its

maximum being 4, can be allotted 2. Now only 1 instance of the resource is free. When P1 terminates, 5

instances of the resource will be free. P0 needs only 5 more, its maximum being 10, can be allotted 5.

Now resource is not free. Once P0 terminates, 10 instances of the resource will be free. P3 needs

only 7 more, its maximum being 9, can be allotted 7. Now 3 instances of the resource are free. When P3

terminates, all 12 instances of the resource will be free.

unsafe

Unsafe

Safe

Deadlock

Operating System Module : IV

Department Of CSE,ICET 15

Thus the sequence < P1, P0, P3 > is a safe sequence and the system is in a safe state. Let us now consider

the following scenario at an instant t1. In addition to the allocation shown in the table above, P2 requests

for 1 more instance of the resource and the allocation is made. At the instance t1, a safe sequence cannot

be found as shown below:

Out of 12 instances of the resource, 10 are currently allocated and 2 are free. P1 needs only 2 more, its

maximum being 4, can be allotted 2. Now resource is not free. Once P1 terminates, 4 instances of the

resource will be free. P0 needs 5 more while P2 needs 6 more. Since both P0 and P2 cannot be granted

resources, they wait. The result is a deadlock.

Thus the system has gone from a safe state at time instant t0 into an unsafe state at an instant t1. The

extra resource that was granted to P2 at the instant t1 was a mistake. P2 should have waited till other

processes finished and released their resources.

 Since resources available should not be allocated right away as the system may enter an unsafe

state, resource utilization is low if deadlock avoidance algorithms are used.

1.Resource Allocation Graph Algorithm

A resource allocation graph could be used to avoid deadlocks. If a resource allocation graph does not

have a cycle, then the system is not in deadlock. But if there is a cycle then the system may be in a

deadlock. If the resource allocation graph shows only resources that have only a single instance, then a

cycle does imply a deadlock. An algorithm for avoiding deadlocks where resources have single

instances in a resource allocation graph is as described below.

The resource allocation graph has request edges and assignment edges. Let there be another kind of edge

called a claim edge. A directed edge Pi  Rj indicates that Pi may request for the resource Rj some time

later. In a resource allocation graph a dashed line represents a claim edge. Later when a process makes

an actual request for a resource, the corresponding claim edge is converted to a request edge Pi  Rj.

Similarly when a process releases a resource after use, the assignment edge Rj  Pi is reconverted to a

claim edge Pi  Rj. Thus a process must be associated with all its claim edges before it starts executing.

If a process Pi requests for a resource Rj, then the claim edge Pi  Rj is first converted to a request edge

Pi  Rj. The request of Pi can be granted only if the request edge when converted to an assignment edge

does not result in a cycle.

If no cycle exists, the system is in a safe state and requests can be granted. If not the system is in an

unsafe state and hence in a deadlock. In such a case, requests should not be granted. This is illustrated

below (Figure 5.5a, 5.5b).

Operating System Module : IV

Department Of CSE,ICET 16

 Figure : Resource allocation graph showing safe and deadlock states.

Consider the resource allocation graph shown on the left above. Resource R2 is currently free.

Allocation of R2 to P2 on request will result in a cycle as shown on the right. Therefore the system will

be in an unsafe state. In this situation if P1 requests for R2, then a deadlock occurs.

2.Banker’s Algorithm

The resource allocation graph algorithm is not applicable where resources have multiple instances. In

such a case Banker’s algorithm is used.

A new process entering the system must make known a priori the maximum instances of each resource

that it needs subject to the maximum available for each type. As execution proceeds and requests are

made, the system checks to see if the allocation of the requested resources ensures a safe state. If so only

are the allocations made, else processes must wait for resources.

The following are the data structures maintained to implement the Banker’s algorithm:

1. n: Number of processes in the system.

2. m: Number of resource types in the system.

3. Available: is a vector of length m. Each entry in this vector gives maximum instances of a

resource type that are available at the instant. Available[j] = k means to say there are k instances

of the jth resource type Rj.

4. Max: is a demand vector of size n x m. It defines the maximum needs of each resource by the

process. Max[i][j] = k says the ith process Pi can request for at most k instances of the jth

resource type Rj.

5. Allocation: is an n x m vector which at any instant defines the number of resources of each type

currently allocated to each of the m processes. If Allocation[i][j] = k then ith process Pi is

currently holding k instances of the jth resource type Rj.

6. Need: is also an n x m vector which gives the remaining needs of the processes. Need[i][j] = k

means the ith process Pi still needs k more instances of the jth resource type Rj. Thus Need[i][j] =

Max[i][j] – Allocation[i][j].

R1

R2

P1 P2

R1

R2

P1 P2

Operating System Module : IV

Department Of CSE,ICET 17

2.1 Safety Algorithm

Using the above defined data structures, the Banker’s algorithm to find out if a system is in a safe state

or not is described below:

1. Define a vector Work of length m and a vector Finish of length n.

2. Initialize Work = Available and Finish[i] = false for i = 1, 2,, n.

3. Find an i such that

a. Finish[i] = false and

b. Needi <= Work (Needi represents the ith row of the vector Need).

 If such an i does not exist , go to step 5.

4. Work = Work + Allocationi

 Finish[i] = true

 Go to step 3.

5. If finish[i] = true for all i, then the system is in a safe state.

2.2 Resource-Request Algorithm

Let Requesti be the vector representing the requests from a process Pi. Requesti[j] = k shows that

process Pi wants k instances of the resource type Rj. The following is the algorithm to find out if a

request by a process can immediately be granted:

1. If Requesti <= Needi, go to step 2.

 else Error “request of Pi exceeds Maxi”.

2. If Requesti <= Availablei, go to step 3.

 else Pi must wait for resources to be released.

3. An assumed allocation is made as follows:

 Available = Available – Requesti

 Allocationi = Allocationi + Requesti

 Needi = Needi – Requesti

If the resulting state is safe, then process Pi is allocated the resources and the above changes are made

permanent. If the new state is unsafe, then Pi must wait and the old status of the data structures is

restored.

Illustration: n = 5 < P0, P1, P2, P3, P4 >

 M = 3 < A, B, C >

Operating System Module : IV

Department Of CSE,ICET 18

 Initially Available = < 10, 5, 7 >

At an instant t0, the data structures have the following values:

 Allocation Max Available Need

 A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

To find a safe sequence and to prove that the system is in a safe state, use the safety algorithm as

follows:

Step Work Finish Safe sequence

0 3 3 2 F F F F F < >

1 5 3 2 F T F F F < P1 >

2 7 4 3 F T F T F < P1, P3 >

3 7 4 5 F T F T T < P1, P3, P4 >

4 7 5 5 T T F T T < P1, P3, P4, P0 >

5 10 5 7 T T T T T < P1, P3, P4, P0, P2 >

Now at an instant t1, Request1 = < 1, 0, 2 >. To actually allocate the requested resources, use the request-

resource algorithm as follows:

Request1 < Need1 and Request1 < Available so the request can be considered. If the request is fulfilled,

then the new the values in the data structures are as follows:

 Allocation Max Available Need

 A B C A B C A B C A B C

P0 0 1 0 7 5 3 2 3 0 7 4 3

P1 3 0 2 3 2 2 0 2 0

Operating System Module : IV

Department Of CSE,ICET 19

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Use the safety algorithm to see if the resulting state is safe:

Step Work Finish Safe sequence

0 2 3 0 F F F F F < >

1 5 3 2 F T F F F < P1 >

2 7 4 3 F T F T F < P1, P3 >

3 7 4 5 F T F T T < P1, P3, P4 >

4 7 5 5 T T F T T < P1, P3, P4, P0 >

5 10 5 7 T T T T T < P1, P3, P4, P0, P2 >

Since the resulting state is safe, request by P1 can be granted.

Now at an instant t2 Request4 = < 3, 3, 0 >. But since Request4 > Available, the request cannot be

granted. Also Request0 = < 0, 2, 0> at t2 cannot be granted since the resulting state is unsafe as shown

below:

 Allocation Max Available Need

 A B C A B C A B C A B C

P0 0 3 0 7 5 3 2 1 0 7 2 3

P1 3 0 2 3 2 2 0 2 0

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Using the safety algorithm, the resulting state is unsafe since Finish is false for all values of i and we

cannot find a safe sequence.

 Step Work Finish Safe sequence

Operating System Module : IV

Department Of CSE,ICET 20

 0 2 1 0 F F F F F < >

Deadlock Detection

If the system does not ensure that a deadlock cannot be prevented or a deadlock cannot be avoided, then

a deadlock may occur. In case a deadlock occurs the system must

1. detect the deadlock

2. recover from the deadlock

Single Instance Of A Resource

If the system has resources, all of which have only single instances, then a deadlock detection algorithm,

which uses a variant of the resource allocation graph, can be used. The graph used in this case is called a

wait-for graph.

The wait-for graph is a directed graph having vertices and edges. The vertices represent processes and

directed edges are present between two processes one of which is waiting for a resource held by the

other. Two edges Pi  Rq and Rq  Pj in the resource allocation graph are replaced by one edge Pi  Pj

in the wait-for graph. Thus the wait-for graph is obtained by removing vertices representing resources

and then collapsing the corresponding edges in a resource allocation graph.

An Illustration is shown below:

 Wait-for graph

As in the previous case, a cycle in a wait-for graph indicates a deadlock. Therefore the system maintains

a wait-for graph and periodically invokes an algorithm to check for a cycle in the wait-for graph.

Multiple Instances Of A Resource

A wait-for graph is not applicable for detecting deadlocks where there exist multiple instances of

resources. This is because there is a situation where a cycle may or may not indicate a deadlock. If this

is so then a decision cannot be made. In situations where there are multiple instances of resources, an

algorithm similar to Banker’s algorithm for deadlock avoidance is used.

P5

P2 P3 P1

P4

Operating System Module : IV

Department Of CSE,ICET 21

Data structures used are similar to those used in Banker’s algorithm and are given below:

1. n: Number of processes in the system.

2. m: Number of resource types in the system.

3. Available: is a vector of length m. Each entry in this vector gives maximum instances of a resource

type that are available at the instant.

4. Allocation: is an n x m vector which at any instant defines the number of resources of each type

currently allocated to each of the m processes.

5. Request: is also an n x m vector defining the current requests of each process. Request[i][j] = k

means the ith process Pi is requesting for k instances of the jth resource type Rj.

ALGORITHM

1. Define a vector Work of length m and a vector Finish of length n.

2. Initialize Work = Available and

 For i = 1, 2, ….., n

 If Allocationi != 0

 Finish[i] = false

 Else

 Finish[i] = true

3. Find an i such that

a. Finish[i] = false and

b. Requesti <= Work

 If such an i does not exist , go to step 5.

4. Work = Work + Allocationi

 Finish[i] = true

 Go to step 3.

5. If finish[i] = true for all i, then the system is not in deadlock.

 Else the system is in deadlock with all processes corresponding to Finish[i] = false being

deadlocked.

Illustration: n = 5 < P0, P1, P2, P3, P4 >

Operating System Module : IV

Department Of CSE,ICET 22

 M = 3 < A, B, C >

 Initially Available = < 7, 2, 6 >

 At an instant t0, the data structures have the following values:

 Allocation Request Available

 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

To prove that the system is not deadlocked, use the above algorithm as follows:

Step Work Finish Safe sequence

 0 0 0 0 F F F F F < >

 1 0 1 0 T F F F F < P0 >

 2 3 1 3 T F T F F < P0, P2 >

 3 5 2 4 T F T T F < P0, P2, P3 >

 4 5 2 6 T F T T T < P0, P2, P3, P4 >

 5 7 2 6 T T T T T < P0, P2, P3, P4, P1 >

Now at an instant t1, Request2 = < 0, 0, 1 > and the new values in the data structures are as follows:

 Allocation Request Available

 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 1

P3 2 1 1 1 0 0

Operating System Module : IV

Department Of CSE,ICET 23

P4 0 0 2 0 0 2

To prove that the system is deadlocked, use the above algorithm as follows:

 Step Work Finish Safe sequence

 0 0 0 0 F F F F F < >

 1 0 1 0 T F F F F < P0 >

The system is in deadlock with processes P1, P2, P3, and P4 deadlocked.

WHEN TO INVOKE?

The deadlock detection algorithm takes m x n2 operations to detect whether a system is in deadlock.

How often should the algorithm be invoked? This depends on the following two main factors:

1. Frequency of occurrence of deadlocks

2. Number of processes involved when it occurs

If deadlocks are known to occur frequently, then the detection algorithm has to be invoked frequently

because during the period of deadlock, resources are idle and more and more processes wait for idle

resources.

 Deadlocks occur only when requests from processes cannot be immediately granted. Based on

this reasoning, the detection algorithm can be invoked only when a request cannot be immediately

granted. If this is so, then the process causing the deadlock and also all the deadlocked processes can

also be identified.

 But invoking the algorithm an every request is a clear overhead as it consumes CPU time.

Better would be to invoke the algorithm periodically at regular less frequent intervals. One criterion

could be when the CPU utilization drops below a threshold. The drawbacks in this case are that

deadlocks may go unnoticed for some time and the process that caused the deadlock will not be known.

Recovery From Deadlock

 There are three basic approaches to recovery from deadlock:

1. Inform the system operator, and allow him/her to take manual intervention.

2. Terminate one or more processes involved in the deadlock

3. Preempt resources.

1 Process Termination

 Two basic approaches, both of which recover resources allocated to terminated processes:

Operating System Module : IV

Department Of CSE,ICET 24

o Terminate all processes involved in the deadlock. This definitely solves the deadlock, but

at the expense of terminating more processes than would be absolutely necessary.

o Terminate processes one by one until the deadlock is broken. This is more conservative,

but requires doing deadlock detection after each step.

 In the latter case there are many factors that can go into deciding which processes to terminate

next:

1. Process priorities.

2. How long the process has been running, and how close it is to finishing.

3. How many and what type of resources is the process holding. (Are they easy to preempt

and restore?)

4. How many more resources does the process need to complete.

5. How many processes will need to be terminated

6. Whether the process is interactive or batch.

7. (Whether or not the process has made non-restorable changes to any resource.)

2 Resource Preemption

 When preempting resources to relieve deadlock, there are three important issues to be addressed:

1. Selecting a victim - Deciding which resources to preempt from which processes involves

many of the same decision criteria outlined above.

2. Rollback - Ideally one would like to roll back a preempted process to a safe state prior to

the point at which that resource was originally allocated to the process. Unfortunately it

can be difficult or impossible to determine what such a safe state is, and so the only safe

rollback is to roll back all the way back to the beginning. (I.e. abort the process and

make it start over.)

3. Starvation - How do you guarantee that a process won't starve because its resources are

constantly being preempted? One option would be to use a priority system, and increase

the priority of a process every time its resources get preempted. Eventually it should get a

high enough priority that it won't get preempted any more.

