MODULE 5

Matrix representation of graphs- Adjacency
matrix, Incidence Matrix, Circuit matrix,
Fundamental Circuit matrix and Rank, Cut
set matrix, Path matrix




»Graph 1s a set of edges and vertices.

*Graph can be represented in the form of matrix.
»Different matrix that can be formed are:

1. Incidence Matrix

2. Adjacency Matrix

3. Cut-Set Matrix

4. Circuit Matrix

5. Path Matrix
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Incidence Viatrix
=Edge connected to the vertex is known as incidence edge to that vertex.

Vertex

a[f vertex is incident on vertex then put 1 else 0. 1

a, =1, 1f edge e, is incident on vertex v.
=0, otherwise
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Adjacency Viatrix
= [f two vertices are connected by single path than they are known as adjacent vertices.

= [f vertex is connected to itself then vertex is said to be adjacent to itself.

»[f vertex is adjacent then put 1 else O.

5 Vo6

Vertices
V1 V2 V3 V4




Cut-Set Matrix

=Cut set is a “Set of edges in a graph whose removal leaves the graph disconnected”.

=[f edge of graph is a part of given cut set then put 1 else O.

Cut Set Edges
C,;=Lif j™ cutset contains edge ] f, g, d

2 C, g, ¢
R) h
4

=0, otherwise

Vi a,b




Circurt Matrx

=Circuit can be defined as “A close walk in which no vertex/edge can appear twice”.

=[f edge of graph is a part of given circuit then put 1 else 0.

Circuit Edges
C..=1,1f circuit contains edge 1 d,e g
=0, otherwise

2 c,f, g
3 c,d, e, f
4

a,b

Edges
d e

Circuits




Path Matrix

=Path can be defined as “A open walk in which no vertex/edge can appear twice”.

=[f edge of graph is a part of given path then put 1 else 0. rath Edges

a, f, h

P(V. V)=L,if edge 1s on path Ex:P(V, V() a,c,gh
. :0, otherwise a, C, d: , h
b, f, h

vVl a V6 b,c,g h

V2 g Vs o b,c,d, e, h

h




INCIDENCE MATRIX




Incidence Matrix

Let G be a graph with n vertices, m edges and without self-loops. The incidence matrix A of
G is an n x m matrix A = [a;j] whose n rows correspond to the » vertices and the m columns
correspond to m edges such that

— l. if jthedgemjis incident on the ith vertex
Y71 0. otherwise.

It is also called vertex-edge incidence matrix and is denoted by A(G).
Example Consider the graphs given in Figure 10.1. The incidence matrix of G, is

€ €3 E4 €5 € €7 €g

V1 0 0 |
Vo |
V3 0
V4 0
Vs |

0

Ve

The incidence matrix of G, is




el €2 ez e4

Vi

|

’ |

AG)= 1 | o
0

V4

1
0

0
The incidence matrix of GG3 is

€] €2 e3 é4

0
1
0
1




Incidence Matrix-- Observations

The incidence matrix contains only two types of elements, 0 and 1. This clearly is a
binary matrix or a (0, 1)-matrix.

We have the following observations about the incidence matrix A.

I Since every edge is incident on exactly two vertices, each column of A has exactly
(WO one’s.

2. The number of one’s in each row equals the degree of the corresponding vertex.




Incidence Matrix- Observations
(Cont...)

3. A row with all zeros represents an isolated vertex.

4. Parallel edges in a graph produce identical columns in its incidence matrix.

5. If a graph is disconnected and consists of two components Gy and Gy, the incidence
matrix A(G) of graph G can be written in a block diagonal form as

o |
A(Gy) |

where A(Gy) and A(G,) are the incidence matrices of components Gy and Gy. This
observation results from the fact that no edge in G, is incident on vertices of G, and
vice versa. Obviously, this is also true for a disconnected graph with any number of
components.

. Permutation of any two rows or columns in an incidence matrix simply corresponds
to relabeling the vertices and edges of the same graph.




Theorem

Theorem 10.1  Two graphs Gy and G, are isomorphic if and only if their incidence ma-
trices A(G}) and A(G,) differ only by permutation of rows and columns.

Proof  Let the graphs G and G, be isomorphic. Then there is a one-one correspondence
between the vertices and edges in G and G, such that the incidence relation is preserved.
Thus A(G ) and A(Gy ) are either same or differ only by permutation of rows and columns.

The converse follows, since permutation of any two rows or columns in an incidence
matrix simply corresponds to relabeling the vertices and edges of the same graph. 0




Rank of the incidence matrix

Let &G be a graph and let A(G) be its incidence matrix. Now each row in A(G) is a vector
over GF(2) in the vector space of graph G. Let the row vectors be denoted by Ay, A2, ...,

A,,. Then,

= A
Az

Since there are exactly two ones in every column of A, the sum of all these vectors is 0

(this being a modulo 2 sum of the corresponding entries).
Thus vectors Ay, Az, ..., A, are linearly dependent. Therefore, rank A < n.

Hence, rank A < n—1.

Remark If G is a disconnected graph with & components, then it follows from the above
theorem that rank of A(G) is n —k.




Theorem 10.2 If A{G) 1s an incidence matrix of a connected graph & with n vertices,
then rank of A(G) 1s n — 1.

Proof Let G be a connected graph with » vertices and let the number of edges in G be m.
Let A(<) be the incidence matrix and let A;. Az, ..., A, be the row vector of A(G).

s
Az

(10.2.1)

An

Clearly, rank A(G) =< n — 1. (10.2.2)

Consider the sum of any m of these row vectors, m << n — 1. Since & is connected, A(G)
cannot be partittioned in the form

A(G) = [ Af” A(nﬁgj ]

such that A(G) ) has m rows and A(Gz) has n —m rows.

Thus there exists no m = m submatrix of A(G) for m < n — 1, such that the modulo 2 sum
of these m rows i1s equal to zero.

As there are only two elements O and 1 in this field. the additions of all vectors taken m
ata time form=1,2,...,n— 1 gives all possible linear combinations of » — 1 row vectors.

Thus no linear combinations of m row vectors of A, for m < n — 1. 18 Zero.

Therefore, rank A(G) < n — 1. (10.2.3)

Combining (10.2.2) and (10.2.3), 1t follows that rank A{G) = » — L. a




Circuit Matrix
10.3 Cycle Matrix

Let the graph G have m edges and let g be the number of different cycles in &. The cvcle
matrix B = [b;jlg.m of G 1s a (0, 1)— matrix of order g = m, with b;; = 1, if the ith cycle
includes jth edge and b;; = 0, otherwise. The cycle matrix B of a graph G is denoted by
B(G).

Example Consider the graph G, given in Figure 10.3.

Fig. 10.3

The graph &) has four different cycles Z) = {e, ez}, Z2 = {e3, €5, e7}. Z3 = {e1. e5. 7}

and Z4 = {83, €4, €6, E‘j}.
The cycle matrix is




€] €2 €3 €4 €5 5 €] €§

[ 0000007
0
1
1

I
00101
00010
001 11
The graph G, of Figure 10.3 has seven different cycles, namely, Z) = {e, &, },

n=1{e, a,a},Zs=1{e, &1, &8}, Zs = |es, &5, €6, &1}, Zs ={en, es, &5, &, €3},
Zg=1e1, ey, 5, €. es} and Zy = {eg }. The cycle matrix is given by

€) € €3 € €5 €5 €] €5 €
(11000000 0]

1
1
0
1
1
0




Circuit Matrix--Observations

. A column of all zeros corresponds to a non cycle edge, that is, an edge which does
not belong to any cycle.

. Each row of B(G) 1s a cycle vector.

. A cycle matrix has the property of representing a self-loop and the corresponding
row has a single one.

. The number of ones in a row is equal to the number of edges in the corresponding
cycle.

. If the graph G is separable {or disconnected) and consists of two blocks (or compo-
nents) H, and H,, then the cycle matrix B(G) can be written in a block-diagonal form
as

B(H,) 0O
B(GJ':[ Iinij B(Ha) |’

where B(H,) and B(H:) are the cycle matrices of H) and H>. This follows from the
fact that cycles in H have no edges belonging to H: and vice versa.

Permutation of any two rows or columns in a cycle matrix corresponds to relabeling
the cycles and the edges.




Circuit Matrix—ODbservations
(Conti...)

7. We know two graphs G; and Gz are 2-isomorphic if and only if they have cycle
correspondence. Thus two graphs G and G have the same cycle matrix if and only
if &) and G2 are 2-1somorphic. This implies that the cycle matrix does not specify a
graph completely, but only specifies the graph within 2-isomorphism.

For example, the two graphs given in Figure 10.4 have the same cycle matrix. They are
2-1somorphic, but are not isomorphic.




Theorem 10,9 If G is a graph without self-loops, with incidence matrix A and cycle
matrix B whose columns are arranged using the same order of edges, then every row of B
is orthogonal to every row of A, that is ABT = BAT = 0 (mod2), where AT and B" are the
transposes of A and B respectively.

SD,Oo=0=00Q
O=m=O=000

o000 ==
o R e B = R

= 0{mod2).

ok oo
S T S a4 e
om I oV I o8 e Y S I o8

e o B o8




Proaf: Consider & vertex v Emd a circeit I' in the graph G. Either »isin I or

the other hand, if » is in I, the numh-er of those edges in the circuit T that are
m»:ulent nn v 1% exact]}r 1wu

Since the edges are amnged in the same order, the nonzero entrlea in the ‘coITe-

sponding positions occur only if the particular ¢dge is incident on the ith veriex
and is alse i the jth circust.

If the ith vertex is not in the jth circuit, there is no such nonzero entry, and
the dot product of the two rows is zero. 1f the ith vertex is in the jth circuit, there
will be exactly two 1's in the sum of the products of individual entries, Since
1 + 1 =0 (mod 2), the dot product of the twa arbitrary rows—one from A and
the other from B—Iis zero. Hence the theorem. |




Fundamental Circuit Matrix

= In a cycle matrix, if we take only those rows
that correspond to a set of fundamental cycles
and remove all other rows, we do not lose any
information.

The removed rows can be formed from the
rows corresponding to the set of fundamental
cycles.

For example, in the cycle matrix of the graph
given in Figure 10.6, the fourth row is simply
the mod 2 sum of the second and the third
rows. Fundamental cycles are




Zy= e, e, &y, 1}
VAR {‘9‘3.'- €4. E?}
23 — {eS!o €6, PT]

€| ey es

I 1 0 |
1
00 1 1|




A submatrix of a cycle matrix in which all rows correspond to a set of fundamental
cycles is called a fundamental cycle matrix By.

The permutation of rows and/or columns do not affect By. If n is the number of vertices,
m the number of edges in a connected graph G, then By is an (m —n+1) x m matrix because
the number of fundamental cycles is m —n+ 1, each fundamental cycle being produced by
one chord.

Now, arranging the columns in B such that all the m —n+ 1 chords correspond to the
first m —n+ 1 columns and rearranging the rows such that the first row corresponds to the
fundamental cycle made by the chord in the first column, the second row to the fundamental
cycle made by the second, and so on. This arrangement is done for the above fundamental
cycle matrix.

A matrix By thus arranged has the form

By =l : By,
where [, 1s an identity matrix of order g =m —wn+1 and B, is the remaining p x (n—1)
submatrix, corresponding to the branches of the spanning tree.
From equation By = [I, : B,]. we have rank By =p=m—n+1.
Since By is a submatrix of the cycle matrix B, therefore, rank B = rank By and thus,
rank B=m—n+1.

The following result gives the rank of the cycle matrix.



Theorem 10.10 If B is a cycle matrix of a connected graph G with n vertices and m
edges, then rank B=m —n+ 1.

Proof LetA be the incidence matrix of the connected graph &.
Then ABT = 0{mod2).

Using Sylvester’s theorem (Theorem 10.13), we have rank A+ rank B < m so that
rank A+ rank B < m.

Therefore, rank B < m— rank A.
AsrankA=n—1, wegetrank B<m—(n—1)=m—n+1
But, rank B = mi—n+ 1.

Combining, we get rank B =m —n+ 1.

Theorem 10.10 can be generalised in the following form.

eorem 10.11 1t B1s a cycle matrix of a disconnected graph G with n vertices, m ec
and k components, then rank B=m —n+k.




Cut Set Matrix

10.4 Cut-Set Matrix

Let & be a graph with m edges and g cutsets. The cut-set matrix € = [¢j;]g.m of G 15 a (0,
I l-matrix with

; if ith cutset contains jth edge,

ot herwise .




Example Consider the graphs shown in Figure 10. 7.

Fig 10.7(a)

In the gl'aPh Gi:- E= {EI:- €, €3, €4, €5, €5, €7, ES}'

The cut-sets are cy = {es}, co={e1, e2}, ca={e3, es}, ca = {es, €6, €7}, 05 = {3, 06,07}, c6 =
{ea, eg}, €7 ={e3, eq, e7} and cs = {ey, es5,e7}.

The cut-sets for the graph G; are ¢; ={e), 2}, ca = {e3, eq}, c3 ={eg. es}, cy = {e}. 6}, 5
= {EZ: gﬁ}: €a = {"93:: '35}:- 7 = {E[, €4, m}r Cg = {32: €3, 'ﬂ'} and o {"?5: e, "97}

Thus the cut-set matrices are given by

]
i,
b
[
3

€5 €5 €

a1}
-

L]
—_—_——ooco0o0oOo B

DR, O, O =00

o T B e e
oo oo o OO
DD D e e OO
e e e v e e i =




b=
LT
Ly
S
=t
k¥
£y
S
[}
S
—_
B

1 00000

l

0010100

001 001

1




Cut set Matrix -- Observations

e permutation of rows or columns in a cut-set matrix corresponds simply to re-
naming of the cut-sets and edges respectively.

. Each row in €(G) 15 a cut-set vector.
. A column with all zeros corresponds to an edge forming a self-loop.
. Parallel edges form identical columns in the cut-set matrix.

. In a non-separable graph, since every set of edges incident on a vertex is a cut-set,
therefore every row of incidence matrix A(G) is included as a row in the cut-set matrix
C(G). That 1s, for a non-separable graph G, C(G) contains A(G). For a separable graph,
the incidence matrix of each block is contained in the cut-set matrix. For example, in
the graph Gy of Figure 10.7, the incidence matrix of the block {es, ey, es, e, &7} 18
the 4 » 5 submatrix of C, left after deleting rows ¢y, ¢z, ¢5, cs and columns ey, e, es.

6. It follows from observation 5, that rank C(G) = rank A(G). Therefore, for a connected
graph with n vertices, rank C(G) = n— 1.




Theorem 10.14 If G is a connected graph. then the rank of a cut-set matrix C(G) is equal
to the rank of incidence matrix A(G), which equals the rank of graph G.

Proof Let A{G), B(G) and C(G) be the incidence, cycle and cut-set matrix of the con-
nected graph G. Then we have

rank C(G) =n— L. (10.14.1)
Since the number of edges common to a cut-set and a cycle 1s always even, every row

in € is orthogonal to every row in B, provided the edges in both B and C are arranged in the
same order.

Thus, B¢ =cB” =0 (mod 2). (10.14.2)

Now, applving Sylvester’s theorem to equation (10.14.2), we have
rank B+ rank C < m.
For a connected graph, we have rank B=m —n+1.
Therefore, rank C<m—rank B=m—(m—n+1)=n—1.
So,rankC<n—1. (10.14.3)

It follows from (10.14.1) and (10.14.3) that rank C =n— 1. a




Fundamental Cut set Matrix

10.5 Fundamental Cut-Set Matrix

Let G be a connected graph with » vertices and m edges. The fundamental cut-set matrix C;
of G is an (n—1) xm submatrix of € such that the rows correspond to the set of fundamental
cut-sets with respect to some spanning tree. Clearly, a fundamental cut-set matrix Cy can
be partitioned into two submatrices, one of which is an identity matrix /,_; of order n— 1.
We have

Cf = [CE | _1],

where the last » — 1 columns forming the identity matrix correspond to the n — | branches
of the spanning tree and the first m —n + | columns forming €, correspond to the chords.




Example Consider the connected graphs G, and G given in Figure 10.8. The spanning
tree 1s shown with bold lines. The fundamental cut-sets of Gy are ¢, c2, 3, cg and o7 while
the fundamental cut-sets of G; are ¢y, ¢z, 3, ¢4 and 7.

Fig. 10.8

The fundamental cut-set matrix of G| and G, respectively are given by




€5 € €7 €§
0000
1 0 0 0
01 0
00 1 0
000 1

0
0
0
0

0 0

€] €4 EIEEEEEEET_
1 0 : 1 00 00

1 0 0 0O
0 0

0
0
0




10.6 Relations between A, B; and C;

Let G be a connected graph and Af, Br and Cy be respectively the reduced incidence matrix,
the fundamental cycle matrix, and the fundamental cut-set matrix of G.
We have shown that

Bf= [I,, : B,} (10.6.1)

and Cp= [CEE .f,,-;} (10.6.1i)

where B, denotes the submatrix corresponding to the branches of a spanning tree and C,

denotes the submatrix corresponding to the chords.

Let the spanning tree T in Equations (10.6.1) and {10.6.11) be the same and let the order
of the edges in both equations be same. Also, in the reduced incidence matrix Ay of size
(n— 1) = m, let the edges (1.e., the columns) be arranged in the same order as in B¢ and Cy.

Partition A ¢ into two submatrices given by
Af= [Affﬂ;], (10.6.i1)

where A, consists of » — | columns corresponding to the branches of the spanning tree T
and A, is the spanning submatrix corresponding to the m —n+ 1 chords.



Since the columns in Ay and By are arranged in the same order, the equation AB" =
BAT =0(mod 2) gives

AfB; = 0Oimod 2),

Iy
or [AC : A,,} : = mod 2),
BT
or A.4 A, B} = O(mod 2). {(10.6.iv)

Since A, is non singular, A, exists. Now, premultiplying both sides of equation (10.6.iv)
by A7, we have

A7'AL+A71A BT =0(mod 2),
or A7'A, 4+ BT =0(mod 2).
Therefore, A7 'A. = —BT.
Since in mod 2 arithmetic —1 =1,
i b (10.6.v)

Now as the columns in By and Cr are arranged in the same order, therefore (in mod 2
arithmetic) Cy. Bj: = 0(mod 2) in mod 2 arithmetic gives C‘f.B§ =0

Iy
Therefore, [C'E s ;] : =0, so that €.+ B =0, that is, C. = — B! .
BT

[l

Thus, C. = BT (as —1 = 1 in mod 2 arithmetic).

Hence, C,=A;! A, from (10.6.v).




Example Consider the graph G of Figure 10.9.

Let {e}, es, g, €7, €3} be the spanning tree.

€] €2 €3 €4 €5 &g 6] &y




we get

-
=
z
S
=
5

Dropping the

€1 €5 €5 €7 €8

€2 €3 &4

€1 €5 €5 €7 €§

€2 €3 &4




€2 €31 €4 €] €5 €5 €] €8

001000 0]

1

0

1

1

0O000O0O00

_ 5

<
—.rl
3
:
T




Remarks We make the following observations from the above relations.

I. If A orAyis given, we can construct By and Cy starting from an arbitrary spanning
tree and its submatrix A; in A .

2. If either B or Cy 1s given, we can construct the other. Therefore, since By determines
a graph within 2 "’ -isomorphism, so does Cy.

. It either By and Cy is given, then Ay in general cannot be determined completely.




Path Matrix

10.7 Path Matrix

Let G be a graph with m edges, and « and v be any two vertices in G. The path matrix
for vertices # and v denoted by P(u, v) = [pij]q.m. Where ¢ is the number of different paths
between u and v, 1s defined as

{ 1. if jthedge lies in the ith path,
pij =

0, otherwise .

Clearly, a path matrix is defined for a particular pair of vertices, the rows in P(u, v)
correspond to different paths between u and v, and the columns correspond to different
edges in G. For example, consider the graph in Figure 10.10.




Example

Fig. 10.10
The difterent paths between the vertices v; and v, are
p1={es, es}, p> = {es, e7, ea} and pa = {es, ¢q, €4, €3}.

The path matrix for vz, v4 1s given by




Path Matrix-- Observations

. A column of all zeros corresponds to an edge that does not lie in any path between u
and v,

2. A column of all ones corresponds to an edge that lies in every path between u and v,

3, There 18 no row with all zeros.

4. The ring sum of any two rows in P(u, v) cortesponds to a cycle or an edge-disjoint
union of cycles.




1f the edges of a counccted graph are arranged in the same order for the columns
of the incidence matrix A and the path matrix P(x, 3}, then the product (mod 2)

A'PT(.I, .P] — M:

where the matrix M has 1's in two rows x and v, and the rest of the n — 2 rows
are all O's.

Proof: The proof is left ammﬁcMHeadeL@mblcm 7-14).

As an example, muliiply the incidence matrix in Fig. 7-1 to the transposed
P(,, #,), just discussed. )

Q0 O

0 0 D
0 i 1 1
0 ' o 1
1 0 0O
0 o 1
1 1 0
11

o 0 o]

Other properties of the path matrix, such as the rank, are left for the
reader to investigate on his own. It should be noted that a path matrix con-

tains less information about the graph in general than any of the matrices
A, B, or C does. '




Adjacency Matrix

10.8 Adjacency Matrix

LetV =(V, E) be a graph withV ={vy, vo, ..., v, }, E={ey, €2, ..., ¢, } and without parallel
edges. The adjacency matrix of G is an n x n symmetric binary matrix X = [x;;] defined over
the ring of integers such that

1, if vv; € E,
xfj-:

0, otherwise .

Example Consider the graph G given in Figure 10.12.

Fig. 10.12




Example

The adjacency matrix of G 1s given by

Vi V2 V3 V4 Vg Vg




Adjacency Matrix-- Observations

. The entries along the principal diagonal of X are all zeros if and only if the graph has
no self-loops. However, a self-loop at the ith vertex corresponds to x; = 1.

. If the graph has no self-loops, the degree of a vertex equals the number of ones in the
corresponding row or column of X.

. Permutation of rows and the corresponding columns imply reordering the vertices.
We note that the rows and columns are arranged in the same order. Therefore, when
two rows are interchanged in X, the corresponding columns are also interchanged.
Thus two graphs G, and G, without parallel edges are isomorphic if and only if their
adjacency matrices X (G) and X (Gz) are related by

X(Ga) = R7'X(G)R,

where R is a permutation matrix.

. A graph G is disconnected having components G; and G» if and only if the adjacency
matrix X (G) is partitioned as

X(G)= [

X(G) : O
O ;. X(G2)
where X (G) and X (Gz) are respectively the adjacency matrices of the components

G and G,. Obviously, the above partitioning implies that there are no edges between
vertices in G and vertices in G».

. If any square, symmetric and binary matrix Q of order n is given, then there exists a
graph G with n vertices and without parallel edges whose adjacency matrix is Q.




Power of X

Powers of X: Let us multiply by itself the 6 by 6 adjacency matrix of the
simple graph in Fig. 7-7. The result, another 6 by 6 symmetric matrix X2, is
shown below (note that this is ordinary matrix multiplication in the ring of
integers and not mod 2 multiplication): |

0
I
1
0
I
1

0 2

The value of an off-diagonal entry in X%, that is, ijth entry (§ # j) in X%,
— number of 17s in the dot product of ith row and jth column (or jth
row) of X. « 8
— number of positions in which both ith and jth rows of X have I's.
_ number of vertices that are adjacent to both ith and jth vertices.
— number of different paths of length two between ith and jth vertices.




Relationship Between A(G) and X(G): Recall that if a graph G has no
self-loops, its incidence matrix A(G) contains all the information about G.

Likewise, if G has no paraliel edges, its adjacency matrix X(G) contains all the
information about G, Therefore, if a graph G has neither self-loops nor parallel
edges (ie., Gis a simple graph), both A(G) and X(G) contain the entire in-
formation. Thus it is natural to ¢xpect that either matrix can be obtained
directly from the other, in the case of a simple graph. This relationship is
given in Problem 7-23,




MODULE 5
END




