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Oscillations 

 A motion that is repeated itself after regular intervals of time is called periodic motion or harmonic 

motion. Eg: motion of a satellite around a planet, vibrations of atoms in molecules etc. 

 A body or particle is said to possess oscillatory or vibratory motion if it moves back and forth 

repeatedly about the mean position. Eg: motion of simple pendulum, the vertical oscillations of a loaded 

spring etc. 

 All oscillatory motions are periodic. 

Period (T) : Time required for one oscillation. 

Frequency () : The number of oscillations per unit time is the frequency of the oscillation. T = 
1


 

Displacement : The distance of oscillating particle in any direction from its equilibrium position at any 

instant is the displacement of the particle at that instant. 

Amplitude : The maximum displacement of the particle from its equilibrium position. 

Phase: The phase of an oscillatory particle at any instant defines the states of the particle, i.e., its position 

and the direction of motion at that instant. 

Restoring Force:  In the equilibrium position of the oscillating particle, no net force acts on it. When a 

particle is displaced from its equilibrium position, a periodic force acts on it in such a direction to bring back 

the particle to its equilibrium position. This periodic force is called restoring force.  

*Simple Harmonic Motion* 

 A particle is said to execute SHM, if acceleration at any instant is directly proportional to its 

displacement from the equilibrium position and is directed towards the equilibrium position. Eg: Motion of 

simple pendulum, vibration in tuning fork. 

 A particle or a system executing SHM is called harmonic oscillator. 

 For SHM, the restoring force is directly proportional to the displacement and acts in the direction 

opposite to that of displacement. 

 A system executing SHM is called simple harmonic oscillator.  

Differential equation of motion of SHM 

 Consider a particle of mass, executing SHM. If the displacement of the particle at any instant t be x. 

Then its acceleration will be 
𝑑2𝑥

𝑑𝑡2
 .  

According to the definition of SHM, we have, restoring force acting on the mass is F  − x.   

F = − Cx              

    [ Here − sign shows that the restoring force and the displacement are in opposite direction. ] 

According to Newton’s law of motion, F = ma  
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i.e.,      m 
𝑑2𝑥

𝑑𝑡2  = − Cx    or    m 
𝑑2𝑥

𝑑𝑡2  +  Cx  = 0 

       
𝑑2𝑥

𝑑𝑡2
 +  

C

𝑚
 x  = 0.  

Putting 
C

m
 = 2,    we get    

𝒅𝟐𝒙

𝒅𝒕𝟐
 +  𝟐 x  = 0     Here  is natural angular frequency. 

       This is known as differential equation of motion for a simple harmonic oscillator. 

       The solution of this differential equation is 

 x = asin(0t+) where x is displacement, a is amplitude,  is angular frequency and  is known as  initial 

phase or phase constant. 

Free Oscillations 

 If no frictional force or resistance is acting on an oscillating system, it will keep on oscillating with 

constant energy and amplitude indefinitely. These oscillations are known as free oscillations. The frequency 

of oscillation is called natural frequency. 

Damped oscillations: 

 When frictional force or resistance is acting on an oscillator opposite to the direction of its motion, 

then a part of the energy of the oscillator is used to overcome this frictional force. As a result, its amplitude 

and velocity of oscillations decreases. Such oscillations are known as damped oscillations and these forces 

are known as damping force or retarding forces. 

Practical cases of damping 

(i)  Damping plays a useful role in the oscillations of an automobile’s suspension system. 

 The shock absorbers provide a velocity depending damping force, so that when the car goes over a 

bump, it does not continue bouncing forever. For optimal passenger comfort, the system should be critically 

damped or slightly under damped. 

 (ii) An LCR circuit is an excellent example of a DHO with the resistance playing the role of a damping 

force. 

Damped Harmonic Oscillator 

 An oscillating system which undergo damping due to retarding force are known as damped harmonic 

oscillator. The amplitude of vibrations of the oscillator gradually decreases to zero as the result of frictional 

forces arising due to viscosity of the medium in which the oscillator is moving. 

This harmonic oscillator experiences two forces. i.e., 

 (i)    restoring force [ F = − Cx ] 

 (ii) damping force (proportional to velocity  but opposes it)  [ F = −  
𝑑𝑥

𝑑𝑡
 ]   

According to Newton’s law of motion, F = ma  

                m 
𝑑2𝑥

𝑑𝑡2
 = − Cx −   

𝑑𝑥

𝑑𝑡
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                m 
𝑑2𝑥

𝑑𝑡2  +  Cx +   
𝑑𝑥

𝑑𝑡
 = 0 

Dividing throughout by m, we get, 

 
𝑑2𝑥

𝑑𝑡2
 +   



𝑚
 
𝑑𝑥

𝑑𝑡
  +  

C

m
 x = 0.     

Putting 


𝑚
 = 2k and 

C

m
 = 0

2. Here k is the damping constant. 

𝒅𝟐𝒙

𝒅𝒕𝟐  + 2k
𝒅𝒙

𝒅𝒕
+  𝟎

𝟐 x  = 0  →  (1)  

This is the differential equation of damped harmonic oscillator (DHO). 

Solution of differential equation of DHO 

 Let the solution of this equation is x = A𝑒 𝑡   

   
𝑑𝑥

𝑑𝑡
 = A  𝑒 𝑡         

   
𝑑2𝑥

𝑑𝑡2
 = 2 A 𝑒 𝑡 

Putting these equations in equation (1), we get,  

2 A 𝑒 𝑡 + 2k A  𝑒 𝑡 + 0
2A𝑒 𝑡 = 0 

i.e., A𝑒 𝑡[2 +  2k + 0
2]= 0   

i.e.,  [2 +  2k +  0
2]= 0   

i.e.,  = 
− 2k  √4𝑘2− 40

2

2
    =    − k  √𝑘2− 0

2 

So the solution x = A𝑒 𝑡 can be written as 

x = A1 𝒆
(− 𝐤+ √𝒌𝟐− 𝟎

𝟐)𝒕
 +   A2 𝒆

(− 𝐤 − √𝒌𝟐− 𝟎
𝟐)𝒕

    →  (2) 

or  x = 𝒆−𝒌𝒕 [𝐀𝟏 𝒆
(√𝒌𝟐− 𝟎

𝟐)𝒕
+  𝐀𝟐 𝒆

(− √𝒌𝟐− 𝟎
𝟐)𝒕

]     

where A1 and A2 are arbitrary constants whose value depend on the initial conditions of motion. 

 Depending upon the relative values of k and 0, three different cases will arise. 

 The quantity √𝑘2− 0
2  =  can be  real, imaginary or zero. 

(i) If  k > 𝟎 ,          Then √𝑘2− 0
2  =  is a real quantity and it is called over damped case, non oscillatory  

motion, dead beat or aperodic. 

(ii)  If k < 𝟎 ,            Then √𝑘2− 0
2 is imaginary and it is called under damped case. 

(iii) If  k = 𝟎 , Then √𝑘2− 0
2  = 0 and it is called critically damped case. 

 

 

 

Solution for quadriatic 

equation ax2+bx+c = 0 

x = 
− b  √𝑏2− 4ac

2a
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Case I : Over damped  (k > 𝟎) 

 If the damping is so high, such that k > 𝟎,   then √𝑘2− 0
2  =  is a real quantity and is less than k. 

Then x = A1 𝒆(− 𝒌+ )𝒕  +   A2 𝒆(− 𝒌 − )𝒕 

 As k >  , both terms of RHS decreases exponentially with time. After attaining the maximum value, 

the displacement dies off exponentially without changing direction. Time-displacement curve for over 

damped harmonic motion is as shown below. 

 

 

 

 

Thus the motion is non oscillatory. Such a motion is called dead-beat or aperiodic. 

Application: Its main application is in dead beat galvanometer. 

Case II  : Critically damped (k = 𝟎) 

 If k = 0,        then √𝑘2− 0
2 = 0. 

 Then eqn (2) becomes,   x = (A1 + A2)  𝑒−𝑘𝑡     or     x = B𝑒−𝑘𝑡       where   B = A1 + A2. 

  But in this equation, there is only one constant and hence does not form the solution of the second 

order differential equation. 

  Now suppose √𝑘2− 0
2 = h which is a very small quantity, i.e., h → 0, then 

  x = 𝑒−𝑘𝑡 [A1 𝑒ℎ𝑡+ A2𝑒−ℎ𝑡] 

      = 𝑒−𝑘𝑡 [A1 (1 + ℎ𝑡)+ A2(1 − ℎ𝑡)] 

               = 𝑒−𝑘𝑡 [(A1 + A2) + (A1 - A2) ht] 

  x   = 𝑒−𝑘𝑡 [ D+ Et ]        where (A1 + A2) = D   and    (A1 - A2) h = E 

 This equation shows that initially the displacement increases due to the factor D + Et.  But as time 

passes, the exponential term becomes relatively more important and the displacement returns continuously 

from the maximum value to zero rather faster than over damped. The motion becomes just aperiodic or non 

oscillatory. This is called critical damping.  Time-displacement curve for critically damped harmonic motion 

is as shown below. 

 

 

 

Application:  It finds application in many pointer type instruments like galvanometer, where the pointer 

moves at once to take a correct position and stays at this position without any oscillation. 

 

 

x 

t 

x 
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Case III : Under damped (k < 𝟎) 

  If the damping is very low, that is if k < 0,       √𝑘2− 0
2   =  √− (0

2 − 𝑘2)  = i   

 where i = √−1    and      = √(0
2 − 𝑘2)    which is a real quantity. 

Now the solution is x = 𝑒−𝑘𝑡 [A1 𝑒i𝑡+ A2𝑒−i𝑡]  

x = 𝑒−𝑘𝑡[A1 (𝑐𝑜𝑠𝑡 + 𝑖𝑠𝑖𝑛𝑡) + A2 (𝑐𝑜𝑠𝑡 − 𝑖𝑠𝑖𝑛𝑡)] 

x = 𝑒−𝑘𝑡 [(A1 + A2) cos𝑡 + I (A1 - A2) sin𝑡 ] 

  Since x is a real quantity,   both (A1 + A2) and  i(A1 - A2) must be real. So  A1 and A2 are complex 

quantities. 

  If (A1 + A2) = a0sin    and      i(A1 - A2) = a0cos, 

Then x = 𝑎0𝑒−𝑘𝑡 [costsin  + sint cos]    or  

x = 𝒂𝟎𝒆−𝒌𝒕sin(𝐭 + ) 

  This is the equation which represents a damped harmonic motion.  This motion is oscillatory.  

  Amplitude of oscillation is 𝑎0𝑒−𝑘𝑡 which decreases exponentially with time. 

Here it can be seen that angular frequency  = √(0
2 − 𝑘2) is less than 0  and 

 period T = 
2


 is greater than 

2

0
 .  The time-displacement curve for under damped harmonic motion is as 

shown below. 

 

 

 

 

 

 

Effects of damping: 

(i) A decrease in angular frequency. 

(ii) An increase in period. 

(iii) A decrease in amplitude exponentially with time. 
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Displacement –time graph of over damped, critical damped and under damped oscillations 
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*Power Dissipation* 

 In damped harmonic oscillator, work is to be done by the oscillating particle to overcome the 

damping force.    The rate of dissipation of energy or power dissipation is defined as the ratio of energy loss 

in one period to time period.  We know that total energy is proportional to the square of the amplitude.  

Here amplitude A = 𝑎0𝑒−𝑘𝑡 

Hence the energy at the instant ‘t’ is Et = ( 𝑎0𝑒−𝑘𝑡)2  or        𝐄𝐭 = C𝒆−𝟐𝒌𝒕     where C is a constant. 

The energy of the oscillator after one cycle (one period) is Et+T = C 𝑒−2𝑘(𝑡+𝑇)   

                           = C𝑒−2𝑘𝑡 𝑒−2𝑘𝑇  =    Et𝑒−2𝑘𝑇 

Average power dissipation,  P  =      
Energy loss in one period

Time period
     =  

Et−Et+T

T
      =  

Et−Et𝑒−2𝑘𝑇

T
    

P   =     
Et−Et(1−2𝑘𝑇)

T
         (for small value of k). 

P = 2k𝐄𝐭        or            P = 
Et


             where  = 

𝟏

𝟐𝐤
  is called relaxation time. 

 Relaxation time () is the time after which the energy reduces to (
1

e
)

th

of its initial value. 

Quality factor 

 The quality factor is defines as 2 times the ratio of energy stored in the system to the energy lost per 

unit time.            Q    =    2      
energy stored in system

energy lost per unit time
     

                                  =     2  
E

PT
        where P is the power dissipated and T is known as periodic time. 

Q = 2  
E

(
E


)T

 = 
2

T
 =              where 

2

T
 =  (angular frequency) 

Significance: Higher the value of Q, higher would be the value of relaxation time .  

                        (i.e. as Q is high, damping is low.) 

 

Forced Harmonic Oscillator  

  If an external periodic force is applied on a damped harmonic oscillator, the oscillator oscillates with 

the frequency of the applied force. Such an oscillator is called forced harmonic oscillator and its oscillations 

are called forced oscillations.   For example, when we push a swing, we have to keep on pushing 

periodically to keep the swing in same oscillatory motion. Another example is an electrical oscillator. 

        Let the external periodic force be represented by 𝐅 = 𝐅𝟎 𝐬𝐢𝐧 𝐩𝐭 where F0 be the maximum value of the 

force with frequency p.   The forces acted upon this oscillator are 

(i)   a restoring force − Cx  

(ii)  a frictional force −  
d𝑥

dt
 (damping force) 

(iii) external periodic force F = F0 sin pt    where 
p

2
 is the frequency of the driving force. 
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 According to Newton’s second law, F = ma  ; F = m 
𝑑2𝑥

𝑑𝑡2  

So, m 
𝑑2𝑥

𝑑𝑡2
  =  − 

d𝑥

dt
   −  Cx  +  F  

m 
𝑑2𝑥

𝑑𝑡2  +    
𝑑𝑥

𝑑𝑡
  +  Cx  = F0 sin pt 

𝑑2𝑥

𝑑𝑡2  +   


𝑚
 
𝑑𝑥

𝑑𝑡
  +  

C

m
 x =  

F0

𝑚
sin pt    

𝒅𝟐𝒙

𝒅𝒕𝟐  + 2k
𝒅𝒙

𝒅𝒕
+  𝟎

𝟐 x  = 𝒇𝟎 𝒔𝒊𝒏 𝒑𝒕  → (1)  where 2k = 


𝑚
  , 0 = √

C

m
  is the natural frequency in absence 

of damping and driven forces  and   𝑓0 = 
F0

𝑚
   .  k is the damping constant ,  C is force constant.  

Here 
𝑝

2
 is the frequency of the applied force.  

This is the differential equation for forced harmonic oscillator. 

Solution of differential equation of FHO 

Let us suppose that the solution of this differential equation be of the form,  

x = A𝒔𝒊𝒏(𝒑𝒕− )    →   (2)   

 Here, A is the amplitude of the forced oscillations and  represents the phase difference between the force 

and the resultant displacement of the system . 

We have 
𝑑𝑥

𝑑𝑡
  =  A𝑐𝑜𝑠(𝑝𝑡− )  p =  A𝑝 𝑐𝑜𝑠(𝑝𝑡− ) 

Also, 
𝑑2𝑥

𝑑𝑡2
   =  − A𝑝 𝑠𝑖𝑛(𝑝𝑡− )   p = − A𝑝2 𝑠𝑖𝑛(𝑝𝑡− ) 

Substituting these equation in eqn (1), we get,  

−A𝑝2 𝑠𝑖𝑛(𝑝𝑡− ) + 2kA𝑝 𝑐𝑜𝑠(𝑝𝑡−  ) + 0
2A𝑠𝑖𝑛(𝑝𝑡−  )  =  𝑓0 𝑠𝑖𝑛(𝑝𝑡−  + )                                                                                                                                                                                                               

[ 𝑓0 𝑠𝑖𝑛 𝑝𝑡 may be written as 𝑓0 𝑠𝑖𝑛(𝑝𝑡−  + ) ] 

−A𝑝2 𝑠𝑖𝑛(𝑝𝑡− )+2kA𝑝 𝑐𝑜𝑠(𝑝𝑡− )+0
2 𝐴𝑠𝑖𝑛(𝑝𝑡−  ) = 𝑓0 𝑠𝑖𝑛(𝑝𝑡−  ) 𝑐𝑜𝑠 + 𝑓0 𝑐𝑜𝑠(𝑝𝑡−  ) 𝑠𝑖𝑛                           

A(0
2− 𝑝2)𝑠𝑖𝑛(𝑝𝑡− ) + 2kA𝑝 𝑐𝑜𝑠(𝑝𝑡− )  =  𝑓0 𝑐𝑜𝑠 𝑠𝑖𝑛(𝑝𝑡−  )+ 𝑓0𝑠𝑖𝑛 𝑐𝑜𝑠(𝑝𝑡−  )      

Equating the coefficient of  𝑠𝑖𝑛(𝑝𝑡− ) and 𝑐𝑜𝑠(𝑝𝑡−  ) 

 A(0
2− 𝑝2)  =  𝑓0𝑐𝑜𝑠      →    (3)           and             2k A𝑝  =   𝑓0𝑠𝑖𝑛    →  (4)    

Squaring and adding eqn (3) and eqn (4),   A2(0
2− 𝑝2)2  + 4𝑘2𝐴2𝑝2   =    𝑓0

2
 

   Or   A2[(0
2− 𝑝2)2 +  4𝑘2𝑝2]    =    𝑓0

2
 

i.e.,  A = 
   𝑓0

√(0
2− 𝑝2)2  + 4𝑘2𝑝2

 → (4)    

This is the expression for amplitude of forced oscillation. 

 Now, to find phase of forced oscillations,  

Dividing (4) by (3),    tan   = 
2𝑘𝑝

0
2− 𝑝2      
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The phase difference     =  tan−1 2𝑘𝑝

0
2− 𝑝2  →   (5)    

Substituting (4) and (5) in eqn (2), we have the solution as  

x =    
   𝑓0

√(0
2− 𝑝2)

2
  + 4𝑘

2
𝑝2

  𝑠𝑖𝑛 [𝑝𝑡  −   tan−1 2𝑘𝑝

0
2− 𝑝2]  →     (6)    

The complete solution becomes,  

x   =    𝑎0𝑒−𝑘𝑡sin(t + )  +  
   𝑓0

√(0
2− 𝑝2)2  + 4𝑘2𝑝2

𝑠𝑖𝑛 [𝑝𝑡  −  tan−1 2𝑘𝑝

0
2− 𝑝2]        →    (8)    

         First term represents the natural damped oscillation and the second term represents the forced 

oscillation. Initially both the vibrations will be present, but with the passage of time, the first term vanishes 

and the motion of the body will be completely represented by the second term.  

So the solution is only       x  =   
   𝑓0

√(0
2− 𝑝2)

2
  + 4𝑘

2
𝑝2

   𝑠𝑖𝑛 [𝑝𝑡− tan−1 2𝑘𝑝

0
2− 𝑝2] 

*Case I: Low driving frequency ( p < 𝟎)* 

 We have A =  
   𝑓0

√(0
2− 𝑝2)

2
  + 4𝑘

2
𝑝2

 

When p < 0, neglect 𝑝2, then A = 
   𝑓0

0
2  = 

   F0
𝑚⁄

𝐶
𝑚⁄

    or   A = 
   F0

C
     

Here amplitude depends only on force constant, but not on mass of the body or frequency of the force 

applied. The force and displacement are always in phase. 

*Case II: High driving frequency ( p > 𝟎)* 

 We have A =   
   𝑓0

√(0
2− 𝑝2)

2
  + 4𝑘

2
𝑝2

 

When p > 0, neglect 0
2, and also for low damping, 𝑘2 can be neglected,   then A =  

   𝑓0

𝑝2   

The displacement lags behind the force by a phase by . 

Resonance 

 The phenomenon in which the amplitude of a forced harmonic oscillator becomes maximum at a 

particular driving frequency which is very close to the natural frequency, is known as amplitude resonance. 

The frequency of the driving force at which resonance occurs is known as resonant frequency (𝑃𝑅). 

Eg:  Tuning of a radio (A tuned circuit in a radio receiver responds strongly to waves having frequencies 

near its resonant frequency and this fact is used to select a particular station and reject the others), musical 
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instruments can be made to vibrate by bringing them in contact with vibrations which have the frequency 

equal to the natural frequency of the instruments, a vibrating rattle in a car that occurs only at a certain 

engine speed or wheel rotation speed etc. 

Expression for resonant frequency 

 In case of forced vibrations, amplitude   A = 
𝑓0

√(0
2−𝑝2)

2
+4𝑘2𝑝2

 

The amplitude is maximum (A = Amax), when √(0
2 − 𝑝2)2 + 4𝑘2𝑝2    is minimum. 

i.e., when 
d

dp
[√(0

2 − 𝑝2)2 + 4𝑘2𝑝2] = 0 

i.e., when − 2(0
2 − 𝑝2)  2p  +  8𝑘2𝑝  = 0 

i.e., when  (0
2 − 𝑝2)  + 2𝑘2 = 0 

i.e., when  𝑝2 = 0
2 −2𝑘2 

 i.e., when PR  = √𝟎
𝟐 − 𝟐𝒌𝟐   where PR is resonant frequency. 

When damping 𝑘 is low,    p = 0,     

then    Amax = 
𝑓0

2𝑘𝑝
 =   

𝑓0

0
  where  = 

1

2𝑘
 

The figure shows the variation of amplitude with  

driving frequency. 

When k = 0, the amplitude becomes infinite and there is no damping. But this does not occur as damping is 

never zero. 

At resonance, the amplitude of oscillations is maximum. 

For small values of k (low damping ), the amplitude decreases very rapidly on either side of the resonant 

 frequency than for higher value of k. 

Sharpness of Resonance 

 The term sharpness of resonance refers to the rate of fall in amplitude with the change of driving 

frequency on either side of resonant frequency. 

 Resonance is said to be sharp, when for a small change of the driving frequency from the resonant 

frequency, there is a large change in the energy of vibration.  

 When the damping is low, the amplitude falls of a very rapidly on either side of resonant frequency  

and that the resonance is sharp.  Example for sharp resonance is a sonometer wire with a tuning fork. 

 When the damping is high, the amplitude falls of very slowly on either side of resonant frequency and 

that the resonance is flat. Example for flat resonance is resonance of an air column. 

Significance:  Sharpness of resonance is defined by the Q factor which is related to how quickly the energy 

of the oscillating system decreases. 

Zero damping 

low damping 

High damping 

am
p

lit
u

d
e 

driving frequency 0 
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Quality factor (Q) at resonance 

Q measures sharpness of resonance. 

 Quality factor at resonance is defined as the ratio of amplitude at resonance to the amplitude at zero driving 

frequency.  Q  =  
A𝑚𝑎𝑥

A𝑝=0
   =   

𝑓0
2𝑘0

⁄

𝑓0
0

2⁄
   = 𝟎  

.  Q  =  
0

2𝑘
 =  

√ C
m

𝑚

 =  
√Cm


  Thus Q factor at resonance depends on the values of C, m and  . 

LCR circuit as an electrical analog of   mechanical oscillator 

 Consider a series LCR circuit applied by an alternating emf, E = 𝐸0 𝑠𝑖𝑛𝑝𝑡 .  

 

 

 

      Let ‘q’ be the charge in the conductor, and ‘C’ be the capacitance, then V = 
q

C
 

 Let I = 
dq

dt
 is the current in the circuit, then induced emf in the inductance is L 

𝑑𝐼

𝑑𝑡
   

 According to Ohm’s law, V = IR 

The sum of potential difference across each circuit is equal to the applied voltage. 

 𝐿 
𝑑𝐼

𝑑𝑡
  +  IR + 

q

C
 =  𝐸0 𝑠𝑖𝑛𝑝𝑡     

𝐿
𝑑2𝑞

𝑑𝑡2
 +   𝑅 

𝑑𝑞

𝑑𝑡
  +  

q

c
 =  𝐸0 𝑠𝑖𝑛𝑝𝑡     

 
𝒅𝟐𝒒

𝒅𝒕𝟐
  + 

𝐑

𝐋
 
𝒅𝒒

𝒅𝒕
 + 

𝒒

𝑳𝑪
 = 𝑬𝟎 𝒔𝒊𝒏𝒑𝒕    Here we see that the above voltage equation of LCR circuit is similar to the 

force equation of driven harmonic oscillator. 
𝑑2𝑥

𝑑𝑡2   + 2k
𝑑𝑥

𝑑𝑡
+  0

2 x  = 𝑓0 𝑠𝑖𝑛 𝑝𝑡. 

 The electric charge oscillates between a capacitor (C) and inductor (L) through resistor (R), similar to 

the mechanical oscillation of the oscillator. The resistance (R) causes the dissipation of electric energy 

where as damping causes the dissipation in mechanical oscillator.  

 

 

 

 

 

 

 

 

C R L 

E = 𝐸0 𝑠𝑖𝑛𝑝𝑡 



ICET Module I Oscillations And Waves 

11 

 

Comparison of above two equations yield the following equivalence relations. 

Quantity in mechanical oscillator Quantity in electrical oscillator 

Mass (m) Inductor (L) 

Displacement (x) Charge (q) 

Velocity v = 
𝑑𝑥

𝑑𝑡
 Electric current I = 

𝑑𝑞

𝑑𝑡
 

Damping coefficient   k Electric resistance   R 

Force constant (C)             Reciprocal of capacitance 
1

C
        

Potential energy 
1

2
C𝑥2 Energy stored in capacitor =  

1

2

1

𝐶
𝑞2 =   

1

2
C𝑣2 

Kinetic energy 
1

2
𝑚𝑣2 Energy stored in inductor  

1

2
𝐿𝐼2 

Resonant angular frequency, p = 0 = √
𝐶

𝑚
   and  

Resonant frequency 0 = 
1

2
√

𝐶

𝑚
        [since =

0

2
 ] 

Resonant angular frequency of an LCR circuit 

0 = √
1

𝐿𝐶
  

Resonant frequency  0 = 
1

2
√

1

𝐿𝐶
 

Quality factor  Q =  0 = 
√Cm


   Quality factor  

L0

R
   [

0

R
L⁄
] 

 

 Potential energy at the extreme position is analogous to energy stored in the capacitor while kinetic 

energy at the mean position is analogous to energy in the inductor. In mechanical oscillator, energy is 

switched between potential and kinetic energies while in LCR circuit, electrical charge switched between 

capacitor and inductor. These results clearly show their close similarity. 
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WAVES 

 Wave motion is a form of disturbances which travel through a medium due to the repeated periodic 

motion of the particles of the medium about their mean positions. 

 Without transferring matter, only the disturbance is handed over from one particle to the next.  

Example: Waves produced when a stone is dropped into a water tank. 

There are two types of waves. 

Elastic waves or mechanical waves:  The waves which require a medium for propagation are known as 

elastic wave or mechanical wave. 

Electromagnetic waves:  The waves which do not require any medium for propagation is known as 

electromagnetic wave. 

Types of wave motion 

Transverse wave motion 

The particles of the medium vibrate about their mean position in a direction perpendicular to the direction of 

propagation of the wave. 

This type of waves travels in the form of crests and troughs.  

The distance between adjacent crests or troughs constitutes one wave. 

Transverse waves can be polarized. 

Example: light wave, waves in stretched string. 

Longitudinal wave motion 

In longitudinal wave motion, particles of the medium vibrate about their mean position in the direction 

parallel to the direction of propagation of the wave. 

This wave type travels in the form of compressions and rarefactions. 

The distance between the adjacent compressions or rarefactions constitute one wave. 

 Longitudinal waves cannot be polarized. 

Example: Sound waves in air. 

 In some cases, the waves are neither purely transverse nor purely longitudinal. For examples, ripples 

or surface waves on water. Again, waves may be one dimensional (transverse waves along a string and 

longitudinal waves along a spring) two dimensional (ripples on water) and three dimensional (sound waves 

travelling through space) according as they transport energy in one, two or three directions. 

 The maximum displacement of the wave is known as the amplitude (A) of the wave. 

 The distance between two consecutive points having the same state of vibration or having the same 

phase is called wavelength (). 

 The time required for the wave to travel a distance of one wavelength is called period. 
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Mathematical description of a wave: Any wave can be mathematically described by a function of 

position and time coordinate known as wave function (). It describes the displacement of the particles at 

any position and time. 

Equation of a plane progressive harmonic wave 

 A wave which propagate by transferring energy across any medium is known as progressive wave. 

Consider a wave travelling towards positive direction from the origin O with velocity v. 

 

 

 

 

 

   The equation of SHM representing vibrations at O is given by  = a sint. 

Consider a point P at a distance x from O. Let  be the phase difference between vibrations at O and P. 

Then the displacement at P,  = a sin(t −  ) 

We know that phase difference = 
2


  path difference     (i.e.,  =  

2


  x ) 

 So,  = a sin(t− 
2


 x ) 

Also,  = 2,  then    = a sin(2 t −  
𝟐


 x )  [ since v = ] 

i.e.,  = a sin 
2


 (vt −  x )                or        = a sin 2 (

𝑡

𝑇
 −  

𝑥


 ) 

 For a wave travelling towards negative direction from the origin O with velocity v, then 

 = a sin(t +  )    or    = a sin 
𝟐


 (vt + x )     

One Dimensional Wave Equation 

 We have the general equation for harmonic wave travelling along positive direction of x-axis as, 

 = a sin 
2


 (vt −  x )                →  (1) 

Differentiating (1) with respect to t,           
 

 𝑡
 = a cos 

2


 (vt −  x )   

2 v


               →  (2) 

Differentiating (1) with respect to x ,         
 

 𝑥
 =  − a cos 

2


 (vt −  x )   

2 


               →  (3) 

Comparing (2) and (3), we get,          
 

 𝑥
 = − 

1

v
 
 

 𝑡
 →  (4) 

Differentiating eqn (4) w.r.t. x,                 
 

 𝑥
 (

  

 𝑥
) = − 

1

v
  

 

 𝑥
(

 

 𝑡
) 

   
2 

 𝑥2
  = − 

1

v
  

 

 𝑡
(

 

 𝑥
) = − 

1

v
  

 

 𝑡
(− 

1

v
 
 

 𝑡
)  

    


𝟐
 

 𝒙𝟐
  =    

𝟏

𝐯𝟐
  


𝟐

 

 𝒕𝟐
      This is the differential equation of wave motion. 

v 
O 

A 

B 

C 

D 

P 
x 
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Solution of the one dimensional wave equation 

 We have the differential equation of wave motion as 
2 

 𝑥2
  =    

1

v2
  

2 

 𝑡2
 →  (1) where  is a 

function of x and t.  So, 
(𝑥,𝑡) 

= X(𝑥)T(𝑡) →  (2) 

Differentiating (2) twice with respect to x and t, 

We get  
 

 𝑥
 = T 

d𝑋

d𝑥
     and      

2 

 𝑥2
   =  T 

𝑑2𝑋 

𝑑𝑥2
 

 
 

 𝑡
 = X 

d𝑇

d𝑡
      and    

2 

 𝑡2
   =  X 

𝑑2𝑇 

𝑑𝑡2
 

Substituting this in equation (1),    T 
𝑑2𝑋 

𝑑 𝑥2
 = 

1

v2
  X 

𝑑2𝑇 

𝑑𝑡2
  →  (3) 

Rearranging equation (3),    
1

X
 
𝑑2𝑋 

𝑑 𝑥2
 = 

1

v2
  

1

T
 
𝑑2𝑇 

𝑑𝑡2
 →  (4) 

Here LHS is a function of x and RHS is a function of t only. 

Hence each side of the equation must be equal to a constant (-K2). 

{since change in x will not change the right side and change in t will not change the left side}  

 
1

X
 
𝑑2𝑋 

𝑑𝑥2
 = − k2        

𝑑2𝑋 

𝑑𝑥2
 + k2X  = 0  →  (5) 

 
1

v2T
  

𝑑2𝑇 

𝑑 𝑡2
 = − k2      

𝑑2𝑇 

𝑑 𝑡2
 + k2v2T  = 0  →  (6) 

Since  k2v2 = 2      
𝑑2𝑇 

𝑑𝑡2
 +2T  = 0  →  (7) 

(5) and (7) are the standard differential equation with solutions given as  

X(x) = Aexp( ikx)  and    T(x) = Aexp( it)  where A is a constant. 

So equation (2) can be written as 
(𝒙,𝒕) 

= A exp [𝒊(𝐤𝒙  𝒕)]   Here A is constant,  is the angular 

frequency and k is the wave vector. This is the solution of one dimensional wave equation. 

Three Dimensional Wave Equation and its Solution 

 The differential equation in three dimensional is     


2 

 𝑥2
 + 


2 

 𝑦2
 + 


2 

 𝑧2
 = 

1

v2
  

2 

 𝑡2
 

or    
𝟐
  = 

𝟏

𝐯𝟐
  


𝟐

 

 𝒕𝟐
     where 2 = 


2 

 𝑥2
 + 


2  

 𝑦2
 + 


2  

 𝑧2
 

The solution of this equation is 
(𝒙,𝒚,𝒛,𝒕) 

= A exp [𝒊( 𝐤⃗. 𝒓⃗⃗  𝒕 + )]   Here A and  are constants. 
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Transverse Vibrations of a Stretched String 

 Consider a flexible uniform string stretched between 

two points A and B by a constant tension T. Let the 

string lie along x-axis. Let it be plucked at the centre and is  

made to vibrate transversally. These vibrations are 

simple harmonic. Let a small element AB of length x. 

  The magnitude of the tension will be same everywhere. 

(Since the string is perfectly flexible.) The tension T acts tangentially at every point.  

 At point A, tension T makes an angle 1 with horizontal and at point B, tension T makes an angle 2 with 

horizontal. 

  The net force acting in the y-direction is  

  F = T sin 2 − T sin 1 = T( sin 2 −  sin 1) 

Since  is small, sin   = tan  

 F = T( tan 2 −  tan 1) → (1) 

But  tan 2= (
y

x
)

𝑥+𝑑𝑥
 at B (slope at B) 

 tan 1= (
y

x
)

𝑥
 at A    (slope at A) 

 Equation (1) becomes, F = T ((
y

x
)

𝑥+𝑑𝑥
− (

y

x
)

𝑥
 )  

Applying Taylor’s series, 

F = T ((
y

x
)

𝑥+𝑑𝑥
− (

y

x
)

𝑥
 )   =   T 


2

𝑦 

 𝑥2 dx 

  If ‘m’ is the mass per unit length of the string.  Then mass of the element = mdx 

Force acting on the element = mass  acceleration 

F = mdx   


2𝑦 

 𝑡2
     or    T 


2

𝑦 

 𝑥2 dx  =  mdx   


2𝑦 

 𝑡2
 

i.e., 


𝟐𝒚 

 𝒙𝟐
  = 

𝒎

𝑻
   


𝟐𝒚 

 𝒕𝟐
     This is the wave equation in the case of waves in a stretched string. 

 Comparing with the one dimensional wave equation  
2 

 𝑥2
  =    

1

v2
  

2 

 𝑡2
,     we get  

1

v2
 = 

𝑚

𝑇
 

So, the expression for the velocity of transverse vibrations in a stretched string is velocity  v = √
𝑻

𝒎
 

 

 

 

x P Q 

B 

T 

1 

A 
2 
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 If a string of length ‘l’ vibrating in ‘p’ segment , length of each segment  be 
𝑙

p
 and it corresponds to 



2
 

.i.e., 
𝑙

p
 = 



2
   or  = 

2𝑙

p
  Then  = 

v


  =  

√𝑇
𝑚⁄

2𝑙
𝑃⁄

  = 
P

2𝑙
√

𝑇

𝑚
    

i.e.,  frequency   = 
𝐏

𝟐𝒍
√

𝑻

𝒎
 

When p = 1,  1 = 
1

2𝑙
√

𝑇

𝑚
 

 This the fundamental frequency of  the transverse vibrations in a stretched string.  

When p =2, the string will be vibrating in two segments, then l = ,  2 = 
1

𝑙
√

𝑇

𝑚
 .  

This stage is called second mode of vibration or first overtone. 

Laws of transverse vibrations of stretched string 

The fundamental frequency   = 
1

2𝑙
√

𝑇

𝑚
 

Hence (i)   Frequency of transverse vibrations in a stretched string is inversely proportional to the length of 

the stretched string.   
1

𝑙
    

(ii) Frequency of transverse vibrations in a stretched string is directly proportional to the square root of 

tension of the string.    √T 

 (iii)  )   Frequency of transverse vibrations in a stretched string is inversely proportional to the square root 

of mass per unit length of the string.   
1

√𝑚
       

 

 

 

 

    

 


